pnv_phb4_pec: use pnv_phb4_pec_get_phb_id() in pnv_pec_dt_xscom()
[qemu.git] / target / arm / cpu.c
bloba211804fd3df9f3694ddb7a9c8ed7a754fea29ac
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "hvf_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
48 ARMCPU *cpu = ARM_CPU(cs);
49 CPUARMState *env = &cpu->env;
51 if (is_a64(env)) {
52 env->pc = value;
53 env->thumb = 0;
54 } else {
55 env->regs[15] = value & ~1;
56 env->thumb = value & 1;
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62 const TranslationBlock *tb)
64 ARMCPU *cpu = ARM_CPU(cs);
65 CPUARMState *env = &cpu->env;
68 * It's OK to look at env for the current mode here, because it's
69 * never possible for an AArch64 TB to chain to an AArch32 TB.
71 if (is_a64(env)) {
72 env->pc = tb->pc;
73 } else {
74 env->regs[15] = tb->pc;
77 #endif /* CONFIG_TCG */
79 static bool arm_cpu_has_work(CPUState *cs)
81 ARMCPU *cpu = ARM_CPU(cs);
83 return (cpu->power_state != PSCI_OFF)
84 && cs->interrupt_request &
85 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87 | CPU_INTERRUPT_EXITTB);
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91 void *opaque)
93 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 entry->hook = hook;
96 entry->opaque = opaque;
98 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102 void *opaque)
104 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
106 entry->hook = hook;
107 entry->opaque = opaque;
109 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
114 /* Reset a single ARMCPRegInfo register */
115 ARMCPRegInfo *ri = value;
116 ARMCPU *cpu = opaque;
118 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119 return;
122 if (ri->resetfn) {
123 ri->resetfn(&cpu->env, ri);
124 return;
127 /* A zero offset is never possible as it would be regs[0]
128 * so we use it to indicate that reset is being handled elsewhere.
129 * This is basically only used for fields in non-core coprocessors
130 * (like the pxa2xx ones).
132 if (!ri->fieldoffset) {
133 return;
136 if (cpreg_field_is_64bit(ri)) {
137 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138 } else {
139 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
145 /* Purely an assertion check: we've already done reset once,
146 * so now check that running the reset for the cpreg doesn't
147 * change its value. This traps bugs where two different cpregs
148 * both try to reset the same state field but to different values.
150 ARMCPRegInfo *ri = value;
151 ARMCPU *cpu = opaque;
152 uint64_t oldvalue, newvalue;
154 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155 return;
158 oldvalue = read_raw_cp_reg(&cpu->env, ri);
159 cp_reg_reset(key, value, opaque);
160 newvalue = read_raw_cp_reg(&cpu->env, ri);
161 assert(oldvalue == newvalue);
164 static void arm_cpu_reset(DeviceState *dev)
166 CPUState *s = CPU(dev);
167 ARMCPU *cpu = ARM_CPU(s);
168 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169 CPUARMState *env = &cpu->env;
171 acc->parent_reset(dev);
173 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
175 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
178 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
183 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
185 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190 /* 64 bit CPUs always start in 64 bit mode */
191 env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193 env->pstate = PSTATE_MODE_EL0t;
194 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196 /* Enable all PAC keys. */
197 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198 SCTLR_EnDA | SCTLR_EnDB);
199 /* and to the FP/Neon instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201 /* and to the SVE instructions */
202 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203 /* with reasonable vector length */
204 if (cpu_isar_feature(aa64_sve, cpu)) {
205 env->vfp.zcr_el[1] =
206 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
209 * Enable TBI0 but not TBI1.
210 * Note that this must match useronly_clean_ptr.
212 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
214 /* Enable MTE */
215 if (cpu_isar_feature(aa64_mte, cpu)) {
216 /* Enable tag access, but leave TCF0 as No Effect (0). */
217 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
219 * Exclude all tags, so that tag 0 is always used.
220 * This corresponds to Linux current->thread.gcr_incl = 0.
222 * Set RRND, so that helper_irg() will generate a seed later.
223 * Here in cpu_reset(), the crypto subsystem has not yet been
224 * initialized.
226 env->cp15.gcr_el1 = 0x1ffff;
228 #else
229 /* Reset into the highest available EL */
230 if (arm_feature(env, ARM_FEATURE_EL3)) {
231 env->pstate = PSTATE_MODE_EL3h;
232 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
233 env->pstate = PSTATE_MODE_EL2h;
234 } else {
235 env->pstate = PSTATE_MODE_EL1h;
237 env->pc = cpu->rvbar;
238 #endif
239 } else {
240 #if defined(CONFIG_USER_ONLY)
241 /* Userspace expects access to cp10 and cp11 for FP/Neon */
242 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
243 #endif
246 #if defined(CONFIG_USER_ONLY)
247 env->uncached_cpsr = ARM_CPU_MODE_USR;
248 /* For user mode we must enable access to coprocessors */
249 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
250 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
251 env->cp15.c15_cpar = 3;
252 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
253 env->cp15.c15_cpar = 1;
255 #else
258 * If the highest available EL is EL2, AArch32 will start in Hyp
259 * mode; otherwise it starts in SVC. Note that if we start in
260 * AArch64 then these values in the uncached_cpsr will be ignored.
262 if (arm_feature(env, ARM_FEATURE_EL2) &&
263 !arm_feature(env, ARM_FEATURE_EL3)) {
264 env->uncached_cpsr = ARM_CPU_MODE_HYP;
265 } else {
266 env->uncached_cpsr = ARM_CPU_MODE_SVC;
268 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
270 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
271 * executing as AArch32 then check if highvecs are enabled and
272 * adjust the PC accordingly.
274 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
275 env->regs[15] = 0xFFFF0000;
278 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
279 #endif
281 if (arm_feature(env, ARM_FEATURE_M)) {
282 #ifndef CONFIG_USER_ONLY
283 uint32_t initial_msp; /* Loaded from 0x0 */
284 uint32_t initial_pc; /* Loaded from 0x4 */
285 uint8_t *rom;
286 uint32_t vecbase;
287 #endif
289 if (cpu_isar_feature(aa32_lob, cpu)) {
291 * LTPSIZE is constant 4 if MVE not implemented, and resets
292 * to an UNKNOWN value if MVE is implemented. We choose to
293 * always reset to 4.
295 env->v7m.ltpsize = 4;
296 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
297 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
298 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
301 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
302 env->v7m.secure = true;
303 } else {
304 /* This bit resets to 0 if security is supported, but 1 if
305 * it is not. The bit is not present in v7M, but we set it
306 * here so we can avoid having to make checks on it conditional
307 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
309 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
311 * Set NSACR to indicate "NS access permitted to everything";
312 * this avoids having to have all the tests of it being
313 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
314 * v8.1M the guest-visible value of NSACR in a CPU without the
315 * Security Extension is 0xcff.
317 env->v7m.nsacr = 0xcff;
320 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
321 * that it resets to 1, so QEMU always does that rather than making
322 * it dependent on CPU model. In v8M it is RES1.
324 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
325 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
326 if (arm_feature(env, ARM_FEATURE_V8)) {
327 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
328 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
329 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
331 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
332 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
333 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
336 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
337 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
338 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
339 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
342 #ifndef CONFIG_USER_ONLY
343 /* Unlike A/R profile, M profile defines the reset LR value */
344 env->regs[14] = 0xffffffff;
346 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
347 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
349 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
350 vecbase = env->v7m.vecbase[env->v7m.secure];
351 rom = rom_ptr_for_as(s->as, vecbase, 8);
352 if (rom) {
353 /* Address zero is covered by ROM which hasn't yet been
354 * copied into physical memory.
356 initial_msp = ldl_p(rom);
357 initial_pc = ldl_p(rom + 4);
358 } else {
359 /* Address zero not covered by a ROM blob, or the ROM blob
360 * is in non-modifiable memory and this is a second reset after
361 * it got copied into memory. In the latter case, rom_ptr
362 * will return a NULL pointer and we should use ldl_phys instead.
364 initial_msp = ldl_phys(s->as, vecbase);
365 initial_pc = ldl_phys(s->as, vecbase + 4);
368 env->regs[13] = initial_msp & 0xFFFFFFFC;
369 env->regs[15] = initial_pc & ~1;
370 env->thumb = initial_pc & 1;
371 #else
373 * For user mode we run non-secure and with access to the FPU.
374 * The FPU context is active (ie does not need further setup)
375 * and is owned by non-secure.
377 env->v7m.secure = false;
378 env->v7m.nsacr = 0xcff;
379 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
380 env->v7m.fpccr[M_REG_S] &=
381 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
382 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
383 #endif
386 /* M profile requires that reset clears the exclusive monitor;
387 * A profile does not, but clearing it makes more sense than having it
388 * set with an exclusive access on address zero.
390 arm_clear_exclusive(env);
392 if (arm_feature(env, ARM_FEATURE_PMSA)) {
393 if (cpu->pmsav7_dregion > 0) {
394 if (arm_feature(env, ARM_FEATURE_V8)) {
395 memset(env->pmsav8.rbar[M_REG_NS], 0,
396 sizeof(*env->pmsav8.rbar[M_REG_NS])
397 * cpu->pmsav7_dregion);
398 memset(env->pmsav8.rlar[M_REG_NS], 0,
399 sizeof(*env->pmsav8.rlar[M_REG_NS])
400 * cpu->pmsav7_dregion);
401 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
402 memset(env->pmsav8.rbar[M_REG_S], 0,
403 sizeof(*env->pmsav8.rbar[M_REG_S])
404 * cpu->pmsav7_dregion);
405 memset(env->pmsav8.rlar[M_REG_S], 0,
406 sizeof(*env->pmsav8.rlar[M_REG_S])
407 * cpu->pmsav7_dregion);
409 } else if (arm_feature(env, ARM_FEATURE_V7)) {
410 memset(env->pmsav7.drbar, 0,
411 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
412 memset(env->pmsav7.drsr, 0,
413 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
414 memset(env->pmsav7.dracr, 0,
415 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
418 env->pmsav7.rnr[M_REG_NS] = 0;
419 env->pmsav7.rnr[M_REG_S] = 0;
420 env->pmsav8.mair0[M_REG_NS] = 0;
421 env->pmsav8.mair0[M_REG_S] = 0;
422 env->pmsav8.mair1[M_REG_NS] = 0;
423 env->pmsav8.mair1[M_REG_S] = 0;
426 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
427 if (cpu->sau_sregion > 0) {
428 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
429 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
431 env->sau.rnr = 0;
432 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
433 * the Cortex-M33 does.
435 env->sau.ctrl = 0;
438 set_flush_to_zero(1, &env->vfp.standard_fp_status);
439 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
440 set_default_nan_mode(1, &env->vfp.standard_fp_status);
441 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
442 set_float_detect_tininess(float_tininess_before_rounding,
443 &env->vfp.fp_status);
444 set_float_detect_tininess(float_tininess_before_rounding,
445 &env->vfp.standard_fp_status);
446 set_float_detect_tininess(float_tininess_before_rounding,
447 &env->vfp.fp_status_f16);
448 set_float_detect_tininess(float_tininess_before_rounding,
449 &env->vfp.standard_fp_status_f16);
450 #ifndef CONFIG_USER_ONLY
451 if (kvm_enabled()) {
452 kvm_arm_reset_vcpu(cpu);
454 #endif
456 hw_breakpoint_update_all(cpu);
457 hw_watchpoint_update_all(cpu);
458 arm_rebuild_hflags(env);
461 #ifndef CONFIG_USER_ONLY
463 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
464 unsigned int target_el,
465 unsigned int cur_el, bool secure,
466 uint64_t hcr_el2)
468 CPUARMState *env = cs->env_ptr;
469 bool pstate_unmasked;
470 bool unmasked = false;
473 * Don't take exceptions if they target a lower EL.
474 * This check should catch any exceptions that would not be taken
475 * but left pending.
477 if (cur_el > target_el) {
478 return false;
481 switch (excp_idx) {
482 case EXCP_FIQ:
483 pstate_unmasked = !(env->daif & PSTATE_F);
484 break;
486 case EXCP_IRQ:
487 pstate_unmasked = !(env->daif & PSTATE_I);
488 break;
490 case EXCP_VFIQ:
491 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
492 /* VFIQs are only taken when hypervized. */
493 return false;
495 return !(env->daif & PSTATE_F);
496 case EXCP_VIRQ:
497 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
498 /* VIRQs are only taken when hypervized. */
499 return false;
501 return !(env->daif & PSTATE_I);
502 default:
503 g_assert_not_reached();
507 * Use the target EL, current execution state and SCR/HCR settings to
508 * determine whether the corresponding CPSR bit is used to mask the
509 * interrupt.
511 if ((target_el > cur_el) && (target_el != 1)) {
512 /* Exceptions targeting a higher EL may not be maskable */
513 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
515 * 64-bit masking rules are simple: exceptions to EL3
516 * can't be masked, and exceptions to EL2 can only be
517 * masked from Secure state. The HCR and SCR settings
518 * don't affect the masking logic, only the interrupt routing.
520 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
521 unmasked = true;
523 } else {
525 * The old 32-bit-only environment has a more complicated
526 * masking setup. HCR and SCR bits not only affect interrupt
527 * routing but also change the behaviour of masking.
529 bool hcr, scr;
531 switch (excp_idx) {
532 case EXCP_FIQ:
534 * If FIQs are routed to EL3 or EL2 then there are cases where
535 * we override the CPSR.F in determining if the exception is
536 * masked or not. If neither of these are set then we fall back
537 * to the CPSR.F setting otherwise we further assess the state
538 * below.
540 hcr = hcr_el2 & HCR_FMO;
541 scr = (env->cp15.scr_el3 & SCR_FIQ);
544 * When EL3 is 32-bit, the SCR.FW bit controls whether the
545 * CPSR.F bit masks FIQ interrupts when taken in non-secure
546 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
547 * when non-secure but only when FIQs are only routed to EL3.
549 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
550 break;
551 case EXCP_IRQ:
553 * When EL3 execution state is 32-bit, if HCR.IMO is set then
554 * we may override the CPSR.I masking when in non-secure state.
555 * The SCR.IRQ setting has already been taken into consideration
556 * when setting the target EL, so it does not have a further
557 * affect here.
559 hcr = hcr_el2 & HCR_IMO;
560 scr = false;
561 break;
562 default:
563 g_assert_not_reached();
566 if ((scr || hcr) && !secure) {
567 unmasked = true;
573 * The PSTATE bits only mask the interrupt if we have not overriden the
574 * ability above.
576 return unmasked || pstate_unmasked;
579 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
581 CPUClass *cc = CPU_GET_CLASS(cs);
582 CPUARMState *env = cs->env_ptr;
583 uint32_t cur_el = arm_current_el(env);
584 bool secure = arm_is_secure(env);
585 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
586 uint32_t target_el;
587 uint32_t excp_idx;
589 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
591 if (interrupt_request & CPU_INTERRUPT_FIQ) {
592 excp_idx = EXCP_FIQ;
593 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
594 if (arm_excp_unmasked(cs, excp_idx, target_el,
595 cur_el, secure, hcr_el2)) {
596 goto found;
599 if (interrupt_request & CPU_INTERRUPT_HARD) {
600 excp_idx = EXCP_IRQ;
601 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
602 if (arm_excp_unmasked(cs, excp_idx, target_el,
603 cur_el, secure, hcr_el2)) {
604 goto found;
607 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
608 excp_idx = EXCP_VIRQ;
609 target_el = 1;
610 if (arm_excp_unmasked(cs, excp_idx, target_el,
611 cur_el, secure, hcr_el2)) {
612 goto found;
615 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
616 excp_idx = EXCP_VFIQ;
617 target_el = 1;
618 if (arm_excp_unmasked(cs, excp_idx, target_el,
619 cur_el, secure, hcr_el2)) {
620 goto found;
623 return false;
625 found:
626 cs->exception_index = excp_idx;
627 env->exception.target_el = target_el;
628 cc->tcg_ops->do_interrupt(cs);
629 return true;
631 #endif /* !CONFIG_USER_ONLY */
633 void arm_cpu_update_virq(ARMCPU *cpu)
636 * Update the interrupt level for VIRQ, which is the logical OR of
637 * the HCR_EL2.VI bit and the input line level from the GIC.
639 CPUARMState *env = &cpu->env;
640 CPUState *cs = CPU(cpu);
642 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
643 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
645 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
646 if (new_state) {
647 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
648 } else {
649 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
654 void arm_cpu_update_vfiq(ARMCPU *cpu)
657 * Update the interrupt level for VFIQ, which is the logical OR of
658 * the HCR_EL2.VF bit and the input line level from the GIC.
660 CPUARMState *env = &cpu->env;
661 CPUState *cs = CPU(cpu);
663 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
664 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
666 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
667 if (new_state) {
668 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
669 } else {
670 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
675 #ifndef CONFIG_USER_ONLY
676 static void arm_cpu_set_irq(void *opaque, int irq, int level)
678 ARMCPU *cpu = opaque;
679 CPUARMState *env = &cpu->env;
680 CPUState *cs = CPU(cpu);
681 static const int mask[] = {
682 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
683 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
684 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
685 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
688 if (level) {
689 env->irq_line_state |= mask[irq];
690 } else {
691 env->irq_line_state &= ~mask[irq];
694 switch (irq) {
695 case ARM_CPU_VIRQ:
696 assert(arm_feature(env, ARM_FEATURE_EL2));
697 arm_cpu_update_virq(cpu);
698 break;
699 case ARM_CPU_VFIQ:
700 assert(arm_feature(env, ARM_FEATURE_EL2));
701 arm_cpu_update_vfiq(cpu);
702 break;
703 case ARM_CPU_IRQ:
704 case ARM_CPU_FIQ:
705 if (level) {
706 cpu_interrupt(cs, mask[irq]);
707 } else {
708 cpu_reset_interrupt(cs, mask[irq]);
710 break;
711 default:
712 g_assert_not_reached();
716 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
718 #ifdef CONFIG_KVM
719 ARMCPU *cpu = opaque;
720 CPUARMState *env = &cpu->env;
721 CPUState *cs = CPU(cpu);
722 uint32_t linestate_bit;
723 int irq_id;
725 switch (irq) {
726 case ARM_CPU_IRQ:
727 irq_id = KVM_ARM_IRQ_CPU_IRQ;
728 linestate_bit = CPU_INTERRUPT_HARD;
729 break;
730 case ARM_CPU_FIQ:
731 irq_id = KVM_ARM_IRQ_CPU_FIQ;
732 linestate_bit = CPU_INTERRUPT_FIQ;
733 break;
734 default:
735 g_assert_not_reached();
738 if (level) {
739 env->irq_line_state |= linestate_bit;
740 } else {
741 env->irq_line_state &= ~linestate_bit;
743 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
744 #endif
747 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
749 ARMCPU *cpu = ARM_CPU(cs);
750 CPUARMState *env = &cpu->env;
752 cpu_synchronize_state(cs);
753 return arm_cpu_data_is_big_endian(env);
756 #endif
758 static int
759 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
761 return print_insn_arm(pc | 1, info);
764 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
766 ARMCPU *ac = ARM_CPU(cpu);
767 CPUARMState *env = &ac->env;
768 bool sctlr_b;
770 if (is_a64(env)) {
771 /* We might not be compiled with the A64 disassembler
772 * because it needs a C++ compiler. Leave print_insn
773 * unset in this case to use the caller default behaviour.
775 #if defined(CONFIG_ARM_A64_DIS)
776 info->print_insn = print_insn_arm_a64;
777 #endif
778 info->cap_arch = CS_ARCH_ARM64;
779 info->cap_insn_unit = 4;
780 info->cap_insn_split = 4;
781 } else {
782 int cap_mode;
783 if (env->thumb) {
784 info->print_insn = print_insn_thumb1;
785 info->cap_insn_unit = 2;
786 info->cap_insn_split = 4;
787 cap_mode = CS_MODE_THUMB;
788 } else {
789 info->print_insn = print_insn_arm;
790 info->cap_insn_unit = 4;
791 info->cap_insn_split = 4;
792 cap_mode = CS_MODE_ARM;
794 if (arm_feature(env, ARM_FEATURE_V8)) {
795 cap_mode |= CS_MODE_V8;
797 if (arm_feature(env, ARM_FEATURE_M)) {
798 cap_mode |= CS_MODE_MCLASS;
800 info->cap_arch = CS_ARCH_ARM;
801 info->cap_mode = cap_mode;
804 sctlr_b = arm_sctlr_b(env);
805 if (bswap_code(sctlr_b)) {
806 #ifdef TARGET_WORDS_BIGENDIAN
807 info->endian = BFD_ENDIAN_LITTLE;
808 #else
809 info->endian = BFD_ENDIAN_BIG;
810 #endif
812 info->flags &= ~INSN_ARM_BE32;
813 #ifndef CONFIG_USER_ONLY
814 if (sctlr_b) {
815 info->flags |= INSN_ARM_BE32;
817 #endif
820 #ifdef TARGET_AARCH64
822 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
824 ARMCPU *cpu = ARM_CPU(cs);
825 CPUARMState *env = &cpu->env;
826 uint32_t psr = pstate_read(env);
827 int i;
828 int el = arm_current_el(env);
829 const char *ns_status;
831 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
832 for (i = 0; i < 32; i++) {
833 if (i == 31) {
834 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
835 } else {
836 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
837 (i + 2) % 3 ? " " : "\n");
841 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
842 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
843 } else {
844 ns_status = "";
846 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
847 psr,
848 psr & PSTATE_N ? 'N' : '-',
849 psr & PSTATE_Z ? 'Z' : '-',
850 psr & PSTATE_C ? 'C' : '-',
851 psr & PSTATE_V ? 'V' : '-',
852 ns_status,
854 psr & PSTATE_SP ? 'h' : 't');
856 if (cpu_isar_feature(aa64_bti, cpu)) {
857 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
859 if (!(flags & CPU_DUMP_FPU)) {
860 qemu_fprintf(f, "\n");
861 return;
863 if (fp_exception_el(env, el) != 0) {
864 qemu_fprintf(f, " FPU disabled\n");
865 return;
867 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
868 vfp_get_fpcr(env), vfp_get_fpsr(env));
870 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
871 int j, zcr_len = sve_zcr_len_for_el(env, el);
873 for (i = 0; i <= FFR_PRED_NUM; i++) {
874 bool eol;
875 if (i == FFR_PRED_NUM) {
876 qemu_fprintf(f, "FFR=");
877 /* It's last, so end the line. */
878 eol = true;
879 } else {
880 qemu_fprintf(f, "P%02d=", i);
881 switch (zcr_len) {
882 case 0:
883 eol = i % 8 == 7;
884 break;
885 case 1:
886 eol = i % 6 == 5;
887 break;
888 case 2:
889 case 3:
890 eol = i % 3 == 2;
891 break;
892 default:
893 /* More than one quadword per predicate. */
894 eol = true;
895 break;
898 for (j = zcr_len / 4; j >= 0; j--) {
899 int digits;
900 if (j * 4 + 4 <= zcr_len + 1) {
901 digits = 16;
902 } else {
903 digits = (zcr_len % 4 + 1) * 4;
905 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
906 env->vfp.pregs[i].p[j],
907 j ? ":" : eol ? "\n" : " ");
911 for (i = 0; i < 32; i++) {
912 if (zcr_len == 0) {
913 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
914 i, env->vfp.zregs[i].d[1],
915 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
916 } else if (zcr_len == 1) {
917 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
918 ":%016" PRIx64 ":%016" PRIx64 "\n",
919 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
920 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
921 } else {
922 for (j = zcr_len; j >= 0; j--) {
923 bool odd = (zcr_len - j) % 2 != 0;
924 if (j == zcr_len) {
925 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
926 } else if (!odd) {
927 if (j > 0) {
928 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
929 } else {
930 qemu_fprintf(f, " [%x]=", j);
933 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
934 env->vfp.zregs[i].d[j * 2 + 1],
935 env->vfp.zregs[i].d[j * 2],
936 odd || j == 0 ? "\n" : ":");
940 } else {
941 for (i = 0; i < 32; i++) {
942 uint64_t *q = aa64_vfp_qreg(env, i);
943 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
944 i, q[1], q[0], (i & 1 ? "\n" : " "));
949 #else
951 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
953 g_assert_not_reached();
956 #endif
958 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
960 ARMCPU *cpu = ARM_CPU(cs);
961 CPUARMState *env = &cpu->env;
962 int i;
964 if (is_a64(env)) {
965 aarch64_cpu_dump_state(cs, f, flags);
966 return;
969 for (i = 0; i < 16; i++) {
970 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
971 if ((i % 4) == 3) {
972 qemu_fprintf(f, "\n");
973 } else {
974 qemu_fprintf(f, " ");
978 if (arm_feature(env, ARM_FEATURE_M)) {
979 uint32_t xpsr = xpsr_read(env);
980 const char *mode;
981 const char *ns_status = "";
983 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
984 ns_status = env->v7m.secure ? "S " : "NS ";
987 if (xpsr & XPSR_EXCP) {
988 mode = "handler";
989 } else {
990 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
991 mode = "unpriv-thread";
992 } else {
993 mode = "priv-thread";
997 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
998 xpsr,
999 xpsr & XPSR_N ? 'N' : '-',
1000 xpsr & XPSR_Z ? 'Z' : '-',
1001 xpsr & XPSR_C ? 'C' : '-',
1002 xpsr & XPSR_V ? 'V' : '-',
1003 xpsr & XPSR_T ? 'T' : 'A',
1004 ns_status,
1005 mode);
1006 } else {
1007 uint32_t psr = cpsr_read(env);
1008 const char *ns_status = "";
1010 if (arm_feature(env, ARM_FEATURE_EL3) &&
1011 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1012 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1015 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1016 psr,
1017 psr & CPSR_N ? 'N' : '-',
1018 psr & CPSR_Z ? 'Z' : '-',
1019 psr & CPSR_C ? 'C' : '-',
1020 psr & CPSR_V ? 'V' : '-',
1021 psr & CPSR_T ? 'T' : 'A',
1022 ns_status,
1023 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1026 if (flags & CPU_DUMP_FPU) {
1027 int numvfpregs = 0;
1028 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1029 numvfpregs = 32;
1030 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1031 numvfpregs = 16;
1033 for (i = 0; i < numvfpregs; i++) {
1034 uint64_t v = *aa32_vfp_dreg(env, i);
1035 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1036 i * 2, (uint32_t)v,
1037 i * 2 + 1, (uint32_t)(v >> 32),
1038 i, v);
1040 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1041 if (cpu_isar_feature(aa32_mve, cpu)) {
1042 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1047 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1049 uint32_t Aff1 = idx / clustersz;
1050 uint32_t Aff0 = idx % clustersz;
1051 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1054 static void cpreg_hashtable_data_destroy(gpointer data)
1057 * Destroy function for cpu->cp_regs hashtable data entries.
1058 * We must free the name string because it was g_strdup()ed in
1059 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1060 * from r->name because we know we definitely allocated it.
1062 ARMCPRegInfo *r = data;
1064 g_free((void *)r->name);
1065 g_free(r);
1068 static void arm_cpu_initfn(Object *obj)
1070 ARMCPU *cpu = ARM_CPU(obj);
1072 cpu_set_cpustate_pointers(cpu);
1073 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1074 g_free, cpreg_hashtable_data_destroy);
1076 QLIST_INIT(&cpu->pre_el_change_hooks);
1077 QLIST_INIT(&cpu->el_change_hooks);
1079 #ifdef CONFIG_USER_ONLY
1080 # ifdef TARGET_AARCH64
1082 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1083 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1084 * our corresponding sve-default-vector-length cpu property.
1086 cpu->sve_default_vq = 4;
1087 # endif
1088 #else
1089 /* Our inbound IRQ and FIQ lines */
1090 if (kvm_enabled()) {
1091 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1092 * the same interface as non-KVM CPUs.
1094 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1095 } else {
1096 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1099 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1100 ARRAY_SIZE(cpu->gt_timer_outputs));
1102 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1103 "gicv3-maintenance-interrupt", 1);
1104 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1105 "pmu-interrupt", 1);
1106 #endif
1108 /* DTB consumers generally don't in fact care what the 'compatible'
1109 * string is, so always provide some string and trust that a hypothetical
1110 * picky DTB consumer will also provide a helpful error message.
1112 cpu->dtb_compatible = "qemu,unknown";
1113 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1114 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1116 if (tcg_enabled() || hvf_enabled()) {
1117 cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
1121 static Property arm_cpu_gt_cntfrq_property =
1122 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1123 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1125 static Property arm_cpu_reset_cbar_property =
1126 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1128 static Property arm_cpu_reset_hivecs_property =
1129 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1131 static Property arm_cpu_rvbar_property =
1132 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1134 #ifndef CONFIG_USER_ONLY
1135 static Property arm_cpu_has_el2_property =
1136 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1138 static Property arm_cpu_has_el3_property =
1139 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1140 #endif
1142 static Property arm_cpu_cfgend_property =
1143 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1145 static Property arm_cpu_has_vfp_property =
1146 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1148 static Property arm_cpu_has_neon_property =
1149 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1151 static Property arm_cpu_has_dsp_property =
1152 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1154 static Property arm_cpu_has_mpu_property =
1155 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1157 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1158 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1159 * the right value for that particular CPU type, and we don't want
1160 * to override that with an incorrect constant value.
1162 static Property arm_cpu_pmsav7_dregion_property =
1163 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1164 pmsav7_dregion,
1165 qdev_prop_uint32, uint32_t);
1167 static bool arm_get_pmu(Object *obj, Error **errp)
1169 ARMCPU *cpu = ARM_CPU(obj);
1171 return cpu->has_pmu;
1174 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1176 ARMCPU *cpu = ARM_CPU(obj);
1178 if (value) {
1179 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1180 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1181 return;
1183 set_feature(&cpu->env, ARM_FEATURE_PMU);
1184 } else {
1185 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1187 cpu->has_pmu = value;
1190 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1193 * The exact approach to calculating guest ticks is:
1195 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1196 * NANOSECONDS_PER_SECOND);
1198 * We don't do that. Rather we intentionally use integer division
1199 * truncation below and in the caller for the conversion of host monotonic
1200 * time to guest ticks to provide the exact inverse for the semantics of
1201 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1202 * it loses precision when representing frequencies where
1203 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1204 * provide an exact inverse leads to scheduling timers with negative
1205 * periods, which in turn leads to sticky behaviour in the guest.
1207 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1208 * cannot become zero.
1210 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1211 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1214 void arm_cpu_post_init(Object *obj)
1216 ARMCPU *cpu = ARM_CPU(obj);
1218 /* M profile implies PMSA. We have to do this here rather than
1219 * in realize with the other feature-implication checks because
1220 * we look at the PMSA bit to see if we should add some properties.
1222 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1223 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1226 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1227 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1228 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1231 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1232 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1235 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1236 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1239 #ifndef CONFIG_USER_ONLY
1240 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1241 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1242 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1244 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1246 object_property_add_link(obj, "secure-memory",
1247 TYPE_MEMORY_REGION,
1248 (Object **)&cpu->secure_memory,
1249 qdev_prop_allow_set_link_before_realize,
1250 OBJ_PROP_LINK_STRONG);
1253 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1254 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1256 #endif
1258 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1259 cpu->has_pmu = true;
1260 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1264 * Allow user to turn off VFP and Neon support, but only for TCG --
1265 * KVM does not currently allow us to lie to the guest about its
1266 * ID/feature registers, so the guest always sees what the host has.
1268 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1269 ? cpu_isar_feature(aa64_fp_simd, cpu)
1270 : cpu_isar_feature(aa32_vfp, cpu)) {
1271 cpu->has_vfp = true;
1272 if (!kvm_enabled()) {
1273 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1277 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1278 cpu->has_neon = true;
1279 if (!kvm_enabled()) {
1280 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1284 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1285 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1286 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1289 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1290 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1291 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1292 qdev_property_add_static(DEVICE(obj),
1293 &arm_cpu_pmsav7_dregion_property);
1297 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1298 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1299 qdev_prop_allow_set_link_before_realize,
1300 OBJ_PROP_LINK_STRONG);
1302 * M profile: initial value of the Secure VTOR. We can't just use
1303 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1304 * the property to be set after realize.
1306 object_property_add_uint32_ptr(obj, "init-svtor",
1307 &cpu->init_svtor,
1308 OBJ_PROP_FLAG_READWRITE);
1310 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1312 * Initial value of the NS VTOR (for cores without the Security
1313 * extension, this is the only VTOR)
1315 object_property_add_uint32_ptr(obj, "init-nsvtor",
1316 &cpu->init_nsvtor,
1317 OBJ_PROP_FLAG_READWRITE);
1320 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1322 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1323 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1326 if (kvm_enabled()) {
1327 kvm_arm_add_vcpu_properties(obj);
1330 #ifndef CONFIG_USER_ONLY
1331 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1332 cpu_isar_feature(aa64_mte, cpu)) {
1333 object_property_add_link(obj, "tag-memory",
1334 TYPE_MEMORY_REGION,
1335 (Object **)&cpu->tag_memory,
1336 qdev_prop_allow_set_link_before_realize,
1337 OBJ_PROP_LINK_STRONG);
1339 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1340 object_property_add_link(obj, "secure-tag-memory",
1341 TYPE_MEMORY_REGION,
1342 (Object **)&cpu->secure_tag_memory,
1343 qdev_prop_allow_set_link_before_realize,
1344 OBJ_PROP_LINK_STRONG);
1347 #endif
1350 static void arm_cpu_finalizefn(Object *obj)
1352 ARMCPU *cpu = ARM_CPU(obj);
1353 ARMELChangeHook *hook, *next;
1355 g_hash_table_destroy(cpu->cp_regs);
1357 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1358 QLIST_REMOVE(hook, node);
1359 g_free(hook);
1361 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1362 QLIST_REMOVE(hook, node);
1363 g_free(hook);
1365 #ifndef CONFIG_USER_ONLY
1366 if (cpu->pmu_timer) {
1367 timer_free(cpu->pmu_timer);
1369 #endif
1372 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1374 Error *local_err = NULL;
1376 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1377 arm_cpu_sve_finalize(cpu, &local_err);
1378 if (local_err != NULL) {
1379 error_propagate(errp, local_err);
1380 return;
1384 * KVM does not support modifications to this feature.
1385 * We have not registered the cpu properties when KVM
1386 * is in use, so the user will not be able to set them.
1388 if (!kvm_enabled()) {
1389 arm_cpu_pauth_finalize(cpu, &local_err);
1390 if (local_err != NULL) {
1391 error_propagate(errp, local_err);
1392 return;
1397 if (kvm_enabled()) {
1398 kvm_arm_steal_time_finalize(cpu, &local_err);
1399 if (local_err != NULL) {
1400 error_propagate(errp, local_err);
1401 return;
1406 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1408 CPUState *cs = CPU(dev);
1409 ARMCPU *cpu = ARM_CPU(dev);
1410 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1411 CPUARMState *env = &cpu->env;
1412 int pagebits;
1413 Error *local_err = NULL;
1414 bool no_aa32 = false;
1416 /* If we needed to query the host kernel for the CPU features
1417 * then it's possible that might have failed in the initfn, but
1418 * this is the first point where we can report it.
1420 if (cpu->host_cpu_probe_failed) {
1421 if (!kvm_enabled() && !hvf_enabled()) {
1422 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1423 } else {
1424 error_setg(errp, "Failed to retrieve host CPU features");
1426 return;
1429 #ifndef CONFIG_USER_ONLY
1430 /* The NVIC and M-profile CPU are two halves of a single piece of
1431 * hardware; trying to use one without the other is a command line
1432 * error and will result in segfaults if not caught here.
1434 if (arm_feature(env, ARM_FEATURE_M)) {
1435 if (!env->nvic) {
1436 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1437 return;
1439 } else {
1440 if (env->nvic) {
1441 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1442 return;
1446 if (kvm_enabled()) {
1448 * Catch all the cases which might cause us to create more than one
1449 * address space for the CPU (otherwise we will assert() later in
1450 * cpu_address_space_init()).
1452 if (arm_feature(env, ARM_FEATURE_M)) {
1453 error_setg(errp,
1454 "Cannot enable KVM when using an M-profile guest CPU");
1455 return;
1457 if (cpu->has_el3) {
1458 error_setg(errp,
1459 "Cannot enable KVM when guest CPU has EL3 enabled");
1460 return;
1462 if (cpu->tag_memory) {
1463 error_setg(errp,
1464 "Cannot enable KVM when guest CPUs has MTE enabled");
1465 return;
1470 uint64_t scale;
1472 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1473 if (!cpu->gt_cntfrq_hz) {
1474 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1475 cpu->gt_cntfrq_hz);
1476 return;
1478 scale = gt_cntfrq_period_ns(cpu);
1479 } else {
1480 scale = GTIMER_SCALE;
1483 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1484 arm_gt_ptimer_cb, cpu);
1485 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1486 arm_gt_vtimer_cb, cpu);
1487 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1488 arm_gt_htimer_cb, cpu);
1489 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1490 arm_gt_stimer_cb, cpu);
1491 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1492 arm_gt_hvtimer_cb, cpu);
1494 #endif
1496 cpu_exec_realizefn(cs, &local_err);
1497 if (local_err != NULL) {
1498 error_propagate(errp, local_err);
1499 return;
1502 arm_cpu_finalize_features(cpu, &local_err);
1503 if (local_err != NULL) {
1504 error_propagate(errp, local_err);
1505 return;
1508 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1509 cpu->has_vfp != cpu->has_neon) {
1511 * This is an architectural requirement for AArch64; AArch32 is
1512 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1514 error_setg(errp,
1515 "AArch64 CPUs must have both VFP and Neon or neither");
1516 return;
1519 if (!cpu->has_vfp) {
1520 uint64_t t;
1521 uint32_t u;
1523 t = cpu->isar.id_aa64isar1;
1524 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1525 cpu->isar.id_aa64isar1 = t;
1527 t = cpu->isar.id_aa64pfr0;
1528 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1529 cpu->isar.id_aa64pfr0 = t;
1531 u = cpu->isar.id_isar6;
1532 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1533 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1534 cpu->isar.id_isar6 = u;
1536 u = cpu->isar.mvfr0;
1537 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1538 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1539 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1540 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1541 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1542 if (!arm_feature(env, ARM_FEATURE_M)) {
1543 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1544 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1546 cpu->isar.mvfr0 = u;
1548 u = cpu->isar.mvfr1;
1549 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1550 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1551 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1552 if (arm_feature(env, ARM_FEATURE_M)) {
1553 u = FIELD_DP32(u, MVFR1, FP16, 0);
1555 cpu->isar.mvfr1 = u;
1557 u = cpu->isar.mvfr2;
1558 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1559 cpu->isar.mvfr2 = u;
1562 if (!cpu->has_neon) {
1563 uint64_t t;
1564 uint32_t u;
1566 unset_feature(env, ARM_FEATURE_NEON);
1568 t = cpu->isar.id_aa64isar0;
1569 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1570 cpu->isar.id_aa64isar0 = t;
1572 t = cpu->isar.id_aa64isar1;
1573 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1574 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1575 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1576 cpu->isar.id_aa64isar1 = t;
1578 t = cpu->isar.id_aa64pfr0;
1579 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1580 cpu->isar.id_aa64pfr0 = t;
1582 u = cpu->isar.id_isar5;
1583 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1584 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1585 cpu->isar.id_isar5 = u;
1587 u = cpu->isar.id_isar6;
1588 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1589 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1590 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1591 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1592 cpu->isar.id_isar6 = u;
1594 if (!arm_feature(env, ARM_FEATURE_M)) {
1595 u = cpu->isar.mvfr1;
1596 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1597 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1598 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1599 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1600 cpu->isar.mvfr1 = u;
1602 u = cpu->isar.mvfr2;
1603 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1604 cpu->isar.mvfr2 = u;
1608 if (!cpu->has_neon && !cpu->has_vfp) {
1609 uint64_t t;
1610 uint32_t u;
1612 t = cpu->isar.id_aa64isar0;
1613 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1614 cpu->isar.id_aa64isar0 = t;
1616 t = cpu->isar.id_aa64isar1;
1617 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1618 cpu->isar.id_aa64isar1 = t;
1620 u = cpu->isar.mvfr0;
1621 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1622 cpu->isar.mvfr0 = u;
1624 /* Despite the name, this field covers both VFP and Neon */
1625 u = cpu->isar.mvfr1;
1626 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1627 cpu->isar.mvfr1 = u;
1630 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1631 uint32_t u;
1633 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1635 u = cpu->isar.id_isar1;
1636 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1637 cpu->isar.id_isar1 = u;
1639 u = cpu->isar.id_isar2;
1640 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1641 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1642 cpu->isar.id_isar2 = u;
1644 u = cpu->isar.id_isar3;
1645 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1646 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1647 cpu->isar.id_isar3 = u;
1650 /* Some features automatically imply others: */
1651 if (arm_feature(env, ARM_FEATURE_V8)) {
1652 if (arm_feature(env, ARM_FEATURE_M)) {
1653 set_feature(env, ARM_FEATURE_V7);
1654 } else {
1655 set_feature(env, ARM_FEATURE_V7VE);
1660 * There exist AArch64 cpus without AArch32 support. When KVM
1661 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1662 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1663 * As a general principle, we also do not make ID register
1664 * consistency checks anywhere unless using TCG, because only
1665 * for TCG would a consistency-check failure be a QEMU bug.
1667 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1668 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1671 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1672 /* v7 Virtualization Extensions. In real hardware this implies
1673 * EL2 and also the presence of the Security Extensions.
1674 * For QEMU, for backwards-compatibility we implement some
1675 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1676 * include the various other features that V7VE implies.
1677 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1678 * Security Extensions is ARM_FEATURE_EL3.
1680 assert(!tcg_enabled() || no_aa32 ||
1681 cpu_isar_feature(aa32_arm_div, cpu));
1682 set_feature(env, ARM_FEATURE_LPAE);
1683 set_feature(env, ARM_FEATURE_V7);
1685 if (arm_feature(env, ARM_FEATURE_V7)) {
1686 set_feature(env, ARM_FEATURE_VAPA);
1687 set_feature(env, ARM_FEATURE_THUMB2);
1688 set_feature(env, ARM_FEATURE_MPIDR);
1689 if (!arm_feature(env, ARM_FEATURE_M)) {
1690 set_feature(env, ARM_FEATURE_V6K);
1691 } else {
1692 set_feature(env, ARM_FEATURE_V6);
1695 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1696 * non-EL3 configs. This is needed by some legacy boards.
1698 set_feature(env, ARM_FEATURE_VBAR);
1700 if (arm_feature(env, ARM_FEATURE_V6K)) {
1701 set_feature(env, ARM_FEATURE_V6);
1702 set_feature(env, ARM_FEATURE_MVFR);
1704 if (arm_feature(env, ARM_FEATURE_V6)) {
1705 set_feature(env, ARM_FEATURE_V5);
1706 if (!arm_feature(env, ARM_FEATURE_M)) {
1707 assert(!tcg_enabled() || no_aa32 ||
1708 cpu_isar_feature(aa32_jazelle, cpu));
1709 set_feature(env, ARM_FEATURE_AUXCR);
1712 if (arm_feature(env, ARM_FEATURE_V5)) {
1713 set_feature(env, ARM_FEATURE_V4T);
1715 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1716 set_feature(env, ARM_FEATURE_V7MP);
1718 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1719 set_feature(env, ARM_FEATURE_CBAR);
1721 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1722 !arm_feature(env, ARM_FEATURE_M)) {
1723 set_feature(env, ARM_FEATURE_THUMB_DSP);
1727 * We rely on no XScale CPU having VFP so we can use the same bits in the
1728 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1730 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1731 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1732 !arm_feature(env, ARM_FEATURE_XSCALE));
1734 if (arm_feature(env, ARM_FEATURE_V7) &&
1735 !arm_feature(env, ARM_FEATURE_M) &&
1736 !arm_feature(env, ARM_FEATURE_PMSA)) {
1737 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1738 * can use 4K pages.
1740 pagebits = 12;
1741 } else {
1742 /* For CPUs which might have tiny 1K pages, or which have an
1743 * MPU and might have small region sizes, stick with 1K pages.
1745 pagebits = 10;
1747 if (!set_preferred_target_page_bits(pagebits)) {
1748 /* This can only ever happen for hotplugging a CPU, or if
1749 * the board code incorrectly creates a CPU which it has
1750 * promised via minimum_page_size that it will not.
1752 error_setg(errp, "This CPU requires a smaller page size than the "
1753 "system is using");
1754 return;
1757 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1758 * We don't support setting cluster ID ([16..23]) (known as Aff2
1759 * in later ARM ARM versions), or any of the higher affinity level fields,
1760 * so these bits always RAZ.
1762 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1763 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1764 ARM_DEFAULT_CPUS_PER_CLUSTER);
1767 if (cpu->reset_hivecs) {
1768 cpu->reset_sctlr |= (1 << 13);
1771 if (cpu->cfgend) {
1772 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1773 cpu->reset_sctlr |= SCTLR_EE;
1774 } else {
1775 cpu->reset_sctlr |= SCTLR_B;
1779 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1780 /* If the has_el3 CPU property is disabled then we need to disable the
1781 * feature.
1783 unset_feature(env, ARM_FEATURE_EL3);
1785 /* Disable the security extension feature bits in the processor feature
1786 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1788 cpu->isar.id_pfr1 &= ~0xf0;
1789 cpu->isar.id_aa64pfr0 &= ~0xf000;
1792 if (!cpu->has_el2) {
1793 unset_feature(env, ARM_FEATURE_EL2);
1796 if (!cpu->has_pmu) {
1797 unset_feature(env, ARM_FEATURE_PMU);
1799 if (arm_feature(env, ARM_FEATURE_PMU)) {
1800 pmu_init(cpu);
1802 if (!kvm_enabled()) {
1803 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1804 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1807 #ifndef CONFIG_USER_ONLY
1808 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1809 cpu);
1810 #endif
1811 } else {
1812 cpu->isar.id_aa64dfr0 =
1813 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1814 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1815 cpu->pmceid0 = 0;
1816 cpu->pmceid1 = 0;
1819 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1820 /* Disable the hypervisor feature bits in the processor feature
1821 * registers if we don't have EL2. These are id_pfr1[15:12] and
1822 * id_aa64pfr0_el1[11:8].
1824 cpu->isar.id_aa64pfr0 &= ~0xf00;
1825 cpu->isar.id_pfr1 &= ~0xf000;
1828 #ifndef CONFIG_USER_ONLY
1829 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1831 * Disable the MTE feature bits if we do not have tag-memory
1832 * provided by the machine.
1834 cpu->isar.id_aa64pfr1 =
1835 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1837 #endif
1839 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1840 * to false or by setting pmsav7-dregion to 0.
1842 if (!cpu->has_mpu) {
1843 cpu->pmsav7_dregion = 0;
1845 if (cpu->pmsav7_dregion == 0) {
1846 cpu->has_mpu = false;
1849 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1850 arm_feature(env, ARM_FEATURE_V7)) {
1851 uint32_t nr = cpu->pmsav7_dregion;
1853 if (nr > 0xff) {
1854 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1855 return;
1858 if (nr) {
1859 if (arm_feature(env, ARM_FEATURE_V8)) {
1860 /* PMSAv8 */
1861 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1862 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1863 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1864 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1865 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1867 } else {
1868 env->pmsav7.drbar = g_new0(uint32_t, nr);
1869 env->pmsav7.drsr = g_new0(uint32_t, nr);
1870 env->pmsav7.dracr = g_new0(uint32_t, nr);
1875 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1876 uint32_t nr = cpu->sau_sregion;
1878 if (nr > 0xff) {
1879 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1880 return;
1883 if (nr) {
1884 env->sau.rbar = g_new0(uint32_t, nr);
1885 env->sau.rlar = g_new0(uint32_t, nr);
1889 if (arm_feature(env, ARM_FEATURE_EL3)) {
1890 set_feature(env, ARM_FEATURE_VBAR);
1893 register_cp_regs_for_features(cpu);
1894 arm_cpu_register_gdb_regs_for_features(cpu);
1896 init_cpreg_list(cpu);
1898 #ifndef CONFIG_USER_ONLY
1899 MachineState *ms = MACHINE(qdev_get_machine());
1900 unsigned int smp_cpus = ms->smp.cpus;
1901 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1904 * We must set cs->num_ases to the final value before
1905 * the first call to cpu_address_space_init.
1907 if (cpu->tag_memory != NULL) {
1908 cs->num_ases = 3 + has_secure;
1909 } else {
1910 cs->num_ases = 1 + has_secure;
1913 if (has_secure) {
1914 if (!cpu->secure_memory) {
1915 cpu->secure_memory = cs->memory;
1917 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1918 cpu->secure_memory);
1921 if (cpu->tag_memory != NULL) {
1922 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1923 cpu->tag_memory);
1924 if (has_secure) {
1925 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1926 cpu->secure_tag_memory);
1930 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1932 /* No core_count specified, default to smp_cpus. */
1933 if (cpu->core_count == -1) {
1934 cpu->core_count = smp_cpus;
1936 #endif
1938 if (tcg_enabled()) {
1939 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1942 * We only support DCZ blocklen that fits on one page.
1944 * Architectually this is always true. However TARGET_PAGE_SIZE
1945 * is variable and, for compatibility with -machine virt-2.7,
1946 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1947 * But even then, while the largest architectural DCZ blocklen
1948 * is 2KiB, no cpu actually uses such a large blocklen.
1950 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1953 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1954 * both nibbles of each byte storing tag data may be written at once.
1955 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1957 if (cpu_isar_feature(aa64_mte, cpu)) {
1958 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1962 qemu_init_vcpu(cs);
1963 cpu_reset(cs);
1965 acc->parent_realize(dev, errp);
1968 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1970 ObjectClass *oc;
1971 char *typename;
1972 char **cpuname;
1973 const char *cpunamestr;
1975 cpuname = g_strsplit(cpu_model, ",", 1);
1976 cpunamestr = cpuname[0];
1977 #ifdef CONFIG_USER_ONLY
1978 /* For backwards compatibility usermode emulation allows "-cpu any",
1979 * which has the same semantics as "-cpu max".
1981 if (!strcmp(cpunamestr, "any")) {
1982 cpunamestr = "max";
1984 #endif
1985 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1986 oc = object_class_by_name(typename);
1987 g_strfreev(cpuname);
1988 g_free(typename);
1989 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1990 object_class_is_abstract(oc)) {
1991 return NULL;
1993 return oc;
1996 static Property arm_cpu_properties[] = {
1997 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1998 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1999 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2000 mp_affinity, ARM64_AFFINITY_INVALID),
2001 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2002 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2003 DEFINE_PROP_END_OF_LIST()
2006 static gchar *arm_gdb_arch_name(CPUState *cs)
2008 ARMCPU *cpu = ARM_CPU(cs);
2009 CPUARMState *env = &cpu->env;
2011 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2012 return g_strdup("iwmmxt");
2014 return g_strdup("arm");
2017 #ifndef CONFIG_USER_ONLY
2018 #include "hw/core/sysemu-cpu-ops.h"
2020 static const struct SysemuCPUOps arm_sysemu_ops = {
2021 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2022 .asidx_from_attrs = arm_asidx_from_attrs,
2023 .write_elf32_note = arm_cpu_write_elf32_note,
2024 .write_elf64_note = arm_cpu_write_elf64_note,
2025 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2026 .legacy_vmsd = &vmstate_arm_cpu,
2028 #endif
2030 #ifdef CONFIG_TCG
2031 static const struct TCGCPUOps arm_tcg_ops = {
2032 .initialize = arm_translate_init,
2033 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2034 .debug_excp_handler = arm_debug_excp_handler,
2036 #ifdef CONFIG_USER_ONLY
2037 .record_sigsegv = arm_cpu_record_sigsegv,
2038 .record_sigbus = arm_cpu_record_sigbus,
2039 #else
2040 .tlb_fill = arm_cpu_tlb_fill,
2041 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2042 .do_interrupt = arm_cpu_do_interrupt,
2043 .do_transaction_failed = arm_cpu_do_transaction_failed,
2044 .do_unaligned_access = arm_cpu_do_unaligned_access,
2045 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2046 .debug_check_watchpoint = arm_debug_check_watchpoint,
2047 .debug_check_breakpoint = arm_debug_check_breakpoint,
2048 #endif /* !CONFIG_USER_ONLY */
2050 #endif /* CONFIG_TCG */
2052 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2054 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2055 CPUClass *cc = CPU_CLASS(acc);
2056 DeviceClass *dc = DEVICE_CLASS(oc);
2058 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2059 &acc->parent_realize);
2061 device_class_set_props(dc, arm_cpu_properties);
2062 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2064 cc->class_by_name = arm_cpu_class_by_name;
2065 cc->has_work = arm_cpu_has_work;
2066 cc->dump_state = arm_cpu_dump_state;
2067 cc->set_pc = arm_cpu_set_pc;
2068 cc->gdb_read_register = arm_cpu_gdb_read_register;
2069 cc->gdb_write_register = arm_cpu_gdb_write_register;
2070 #ifndef CONFIG_USER_ONLY
2071 cc->sysemu_ops = &arm_sysemu_ops;
2072 #endif
2073 cc->gdb_num_core_regs = 26;
2074 cc->gdb_core_xml_file = "arm-core.xml";
2075 cc->gdb_arch_name = arm_gdb_arch_name;
2076 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2077 cc->gdb_stop_before_watchpoint = true;
2078 cc->disas_set_info = arm_disas_set_info;
2080 #ifdef CONFIG_TCG
2081 cc->tcg_ops = &arm_tcg_ops;
2082 #endif /* CONFIG_TCG */
2085 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2086 static void arm_host_initfn(Object *obj)
2088 ARMCPU *cpu = ARM_CPU(obj);
2090 #ifdef CONFIG_KVM
2091 kvm_arm_set_cpu_features_from_host(cpu);
2092 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2093 aarch64_add_sve_properties(obj);
2095 #else
2096 hvf_arm_set_cpu_features_from_host(cpu);
2097 #endif
2098 arm_cpu_post_init(obj);
2101 static const TypeInfo host_arm_cpu_type_info = {
2102 .name = TYPE_ARM_HOST_CPU,
2103 .parent = TYPE_AARCH64_CPU,
2104 .instance_init = arm_host_initfn,
2107 #endif
2109 static void arm_cpu_instance_init(Object *obj)
2111 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2113 acc->info->initfn(obj);
2114 arm_cpu_post_init(obj);
2117 static void cpu_register_class_init(ObjectClass *oc, void *data)
2119 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2121 acc->info = data;
2124 void arm_cpu_register(const ARMCPUInfo *info)
2126 TypeInfo type_info = {
2127 .parent = TYPE_ARM_CPU,
2128 .instance_size = sizeof(ARMCPU),
2129 .instance_align = __alignof__(ARMCPU),
2130 .instance_init = arm_cpu_instance_init,
2131 .class_size = sizeof(ARMCPUClass),
2132 .class_init = info->class_init ?: cpu_register_class_init,
2133 .class_data = (void *)info,
2136 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2137 type_register(&type_info);
2138 g_free((void *)type_info.name);
2141 static const TypeInfo arm_cpu_type_info = {
2142 .name = TYPE_ARM_CPU,
2143 .parent = TYPE_CPU,
2144 .instance_size = sizeof(ARMCPU),
2145 .instance_align = __alignof__(ARMCPU),
2146 .instance_init = arm_cpu_initfn,
2147 .instance_finalize = arm_cpu_finalizefn,
2148 .abstract = true,
2149 .class_size = sizeof(ARMCPUClass),
2150 .class_init = arm_cpu_class_init,
2153 static void arm_cpu_register_types(void)
2155 type_register_static(&arm_cpu_type_info);
2157 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2158 type_register_static(&host_arm_cpu_type_info);
2159 #endif
2162 type_init(arm_cpu_register_types)