char: cadence: correct reset value for baud rate registers
[qemu.git] / hw / char / cadence_uart.c
blobdef34cd0d2a1723848bc2bfd9388e22eb52c1e0b
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "sysemu/char.h"
22 #include "qemu/timer.h"
23 #include "qemu/log.h"
24 #include "hw/char/cadence_uart.h"
26 #ifdef CADENCE_UART_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28 fprintf(stderr, ": %s: ", __func__); \
29 fprintf(stderr, ## __VA_ARGS__); \
30 } while (0);
31 #else
32 #define DB_PRINT(...)
33 #endif
35 #define UART_SR_INTR_RTRIG 0x00000001
36 #define UART_SR_INTR_REMPTY 0x00000002
37 #define UART_SR_INTR_RFUL 0x00000004
38 #define UART_SR_INTR_TEMPTY 0x00000008
39 #define UART_SR_INTR_TFUL 0x00000010
40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41 #define UART_SR_TTRIG 0x00002000
42 #define UART_INTR_TTRIG 0x00000400
43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
44 * SR, then the same bit in CISR is set high too */
45 #define UART_SR_TO_CISR_MASK 0x0000001F
47 #define UART_INTR_ROVR 0x00000020
48 #define UART_INTR_FRAME 0x00000040
49 #define UART_INTR_PARE 0x00000080
50 #define UART_INTR_TIMEOUT 0x00000100
51 #define UART_INTR_DMSI 0x00000200
52 #define UART_INTR_TOVR 0x00001000
54 #define UART_SR_RACTIVE 0x00000400
55 #define UART_SR_TACTIVE 0x00000800
56 #define UART_SR_FDELT 0x00001000
58 #define UART_CR_RXRST 0x00000001
59 #define UART_CR_TXRST 0x00000002
60 #define UART_CR_RX_EN 0x00000004
61 #define UART_CR_RX_DIS 0x00000008
62 #define UART_CR_TX_EN 0x00000010
63 #define UART_CR_TX_DIS 0x00000020
64 #define UART_CR_RST_TO 0x00000040
65 #define UART_CR_STARTBRK 0x00000080
66 #define UART_CR_STOPBRK 0x00000100
68 #define UART_MR_CLKS 0x00000001
69 #define UART_MR_CHRL 0x00000006
70 #define UART_MR_CHRL_SH 1
71 #define UART_MR_PAR 0x00000038
72 #define UART_MR_PAR_SH 3
73 #define UART_MR_NBSTOP 0x000000C0
74 #define UART_MR_NBSTOP_SH 6
75 #define UART_MR_CHMODE 0x00000300
76 #define UART_MR_CHMODE_SH 8
77 #define UART_MR_UCLKEN 0x00000400
78 #define UART_MR_IRMODE 0x00000800
80 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
81 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
82 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
83 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
84 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
85 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
86 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
87 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
88 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
89 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
91 #define UART_INPUT_CLK 50000000
93 #define R_CR (0x00/4)
94 #define R_MR (0x04/4)
95 #define R_IER (0x08/4)
96 #define R_IDR (0x0C/4)
97 #define R_IMR (0x10/4)
98 #define R_CISR (0x14/4)
99 #define R_BRGR (0x18/4)
100 #define R_RTOR (0x1C/4)
101 #define R_RTRIG (0x20/4)
102 #define R_MCR (0x24/4)
103 #define R_MSR (0x28/4)
104 #define R_SR (0x2C/4)
105 #define R_TX_RX (0x30/4)
106 #define R_BDIV (0x34/4)
107 #define R_FDEL (0x38/4)
108 #define R_PMIN (0x3C/4)
109 #define R_PWID (0x40/4)
110 #define R_TTRIG (0x44/4)
113 static void uart_update_status(CadenceUARTState *s)
115 s->r[R_SR] = 0;
117 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118 : 0;
119 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
122 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123 : 0;
124 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
127 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
132 static void fifo_trigger_update(void *opaque)
134 CadenceUARTState *s = opaque;
136 s->r[R_CISR] |= UART_INTR_TIMEOUT;
138 uart_update_status(s);
141 static void uart_rx_reset(CadenceUARTState *s)
143 s->rx_wpos = 0;
144 s->rx_count = 0;
145 qemu_chr_fe_accept_input(&s->chr);
148 static void uart_tx_reset(CadenceUARTState *s)
150 s->tx_count = 0;
153 static void uart_send_breaks(CadenceUARTState *s)
155 int break_enabled = 1;
157 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
158 &break_enabled);
161 static void uart_parameters_setup(CadenceUARTState *s)
163 QEMUSerialSetParams ssp;
164 unsigned int baud_rate, packet_size;
166 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
167 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
169 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
170 packet_size = 1;
172 switch (s->r[R_MR] & UART_MR_PAR) {
173 case UART_PARITY_EVEN:
174 ssp.parity = 'E';
175 packet_size++;
176 break;
177 case UART_PARITY_ODD:
178 ssp.parity = 'O';
179 packet_size++;
180 break;
181 default:
182 ssp.parity = 'N';
183 break;
186 switch (s->r[R_MR] & UART_MR_CHRL) {
187 case UART_DATA_BITS_6:
188 ssp.data_bits = 6;
189 break;
190 case UART_DATA_BITS_7:
191 ssp.data_bits = 7;
192 break;
193 default:
194 ssp.data_bits = 8;
195 break;
198 switch (s->r[R_MR] & UART_MR_NBSTOP) {
199 case UART_STOP_BITS_1:
200 ssp.stop_bits = 1;
201 break;
202 default:
203 ssp.stop_bits = 2;
204 break;
207 packet_size += ssp.data_bits + ssp.stop_bits;
208 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
209 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
212 static int uart_can_receive(void *opaque)
214 CadenceUARTState *s = opaque;
215 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
216 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
218 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
219 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
221 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
222 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
224 return ret;
227 static void uart_ctrl_update(CadenceUARTState *s)
229 if (s->r[R_CR] & UART_CR_TXRST) {
230 uart_tx_reset(s);
233 if (s->r[R_CR] & UART_CR_RXRST) {
234 uart_rx_reset(s);
237 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
239 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
240 uart_send_breaks(s);
244 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
246 CadenceUARTState *s = opaque;
247 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
248 int i;
250 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
251 return;
254 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
255 s->r[R_CISR] |= UART_INTR_ROVR;
256 } else {
257 for (i = 0; i < size; i++) {
258 s->rx_fifo[s->rx_wpos] = buf[i];
259 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
260 s->rx_count++;
262 timer_mod(s->fifo_trigger_handle, new_rx_time +
263 (s->char_tx_time * 4));
265 uart_update_status(s);
268 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
269 void *opaque)
271 CadenceUARTState *s = opaque;
272 int ret;
274 /* instant drain the fifo when there's no back-end */
275 if (!qemu_chr_fe_get_driver(&s->chr)) {
276 s->tx_count = 0;
277 return FALSE;
280 if (!s->tx_count) {
281 return FALSE;
284 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
286 if (ret >= 0) {
287 s->tx_count -= ret;
288 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
291 if (s->tx_count) {
292 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
293 cadence_uart_xmit, s);
294 if (!r) {
295 s->tx_count = 0;
296 return FALSE;
300 uart_update_status(s);
301 return FALSE;
304 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
305 int size)
307 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
308 return;
311 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
312 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
314 * This can only be a guest error via a bad tx fifo register push,
315 * as can_receive() should stop remote loop and echo modes ever getting
316 * us to here.
318 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
319 s->r[R_CISR] |= UART_INTR_ROVR;
322 memcpy(s->tx_fifo + s->tx_count, buf, size);
323 s->tx_count += size;
325 cadence_uart_xmit(NULL, G_IO_OUT, s);
328 static void uart_receive(void *opaque, const uint8_t *buf, int size)
330 CadenceUARTState *s = opaque;
331 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
333 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
334 uart_write_rx_fifo(opaque, buf, size);
336 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
337 uart_write_tx_fifo(s, buf, size);
341 static void uart_event(void *opaque, int event)
343 CadenceUARTState *s = opaque;
344 uint8_t buf = '\0';
346 if (event == CHR_EVENT_BREAK) {
347 uart_write_rx_fifo(opaque, &buf, 1);
350 uart_update_status(s);
353 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
355 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
356 return;
359 if (s->rx_count) {
360 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
361 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
362 *c = s->rx_fifo[rx_rpos];
363 s->rx_count--;
365 qemu_chr_fe_accept_input(&s->chr);
366 } else {
367 *c = 0;
370 uart_update_status(s);
373 static void uart_write(void *opaque, hwaddr offset,
374 uint64_t value, unsigned size)
376 CadenceUARTState *s = opaque;
378 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
379 offset >>= 2;
380 if (offset >= CADENCE_UART_R_MAX) {
381 return;
383 switch (offset) {
384 case R_IER: /* ier (wts imr) */
385 s->r[R_IMR] |= value;
386 break;
387 case R_IDR: /* idr (wtc imr) */
388 s->r[R_IMR] &= ~value;
389 break;
390 case R_IMR: /* imr (read only) */
391 break;
392 case R_CISR: /* cisr (wtc) */
393 s->r[R_CISR] &= ~value;
394 break;
395 case R_TX_RX: /* UARTDR */
396 switch (s->r[R_MR] & UART_MR_CHMODE) {
397 case NORMAL_MODE:
398 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
399 break;
400 case LOCAL_LOOPBACK:
401 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
402 break;
404 break;
405 default:
406 s->r[offset] = value;
409 switch (offset) {
410 case R_CR:
411 uart_ctrl_update(s);
412 break;
413 case R_MR:
414 uart_parameters_setup(s);
415 break;
417 uart_update_status(s);
420 static uint64_t uart_read(void *opaque, hwaddr offset,
421 unsigned size)
423 CadenceUARTState *s = opaque;
424 uint32_t c = 0;
426 offset >>= 2;
427 if (offset >= CADENCE_UART_R_MAX) {
428 c = 0;
429 } else if (offset == R_TX_RX) {
430 uart_read_rx_fifo(s, &c);
431 } else {
432 c = s->r[offset];
435 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
436 return c;
439 static const MemoryRegionOps uart_ops = {
440 .read = uart_read,
441 .write = uart_write,
442 .endianness = DEVICE_NATIVE_ENDIAN,
445 static void cadence_uart_reset(DeviceState *dev)
447 CadenceUARTState *s = CADENCE_UART(dev);
449 s->r[R_CR] = 0x00000128;
450 s->r[R_IMR] = 0;
451 s->r[R_CISR] = 0;
452 s->r[R_RTRIG] = 0x00000020;
453 s->r[R_BRGR] = 0x0000028B;
454 s->r[R_BDIV] = 0x0000000F;
455 s->r[R_TTRIG] = 0x00000020;
457 uart_rx_reset(s);
458 uart_tx_reset(s);
460 uart_update_status(s);
463 static void cadence_uart_realize(DeviceState *dev, Error **errp)
465 CadenceUARTState *s = CADENCE_UART(dev);
467 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
468 fifo_trigger_update, s);
470 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
471 uart_event, s, NULL, true);
474 static void cadence_uart_init(Object *obj)
476 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
477 CadenceUARTState *s = CADENCE_UART(obj);
479 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
480 sysbus_init_mmio(sbd, &s->iomem);
481 sysbus_init_irq(sbd, &s->irq);
483 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
486 static int cadence_uart_post_load(void *opaque, int version_id)
488 CadenceUARTState *s = opaque;
490 uart_parameters_setup(s);
491 uart_update_status(s);
492 return 0;
495 static const VMStateDescription vmstate_cadence_uart = {
496 .name = "cadence_uart",
497 .version_id = 2,
498 .minimum_version_id = 2,
499 .post_load = cadence_uart_post_load,
500 .fields = (VMStateField[]) {
501 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
502 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
503 CADENCE_UART_RX_FIFO_SIZE),
504 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
505 CADENCE_UART_TX_FIFO_SIZE),
506 VMSTATE_UINT32(rx_count, CadenceUARTState),
507 VMSTATE_UINT32(tx_count, CadenceUARTState),
508 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
509 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
510 VMSTATE_END_OF_LIST()
514 static Property cadence_uart_properties[] = {
515 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
516 DEFINE_PROP_END_OF_LIST(),
519 static void cadence_uart_class_init(ObjectClass *klass, void *data)
521 DeviceClass *dc = DEVICE_CLASS(klass);
523 dc->realize = cadence_uart_realize;
524 dc->vmsd = &vmstate_cadence_uart;
525 dc->reset = cadence_uart_reset;
526 dc->props = cadence_uart_properties;
529 static const TypeInfo cadence_uart_info = {
530 .name = TYPE_CADENCE_UART,
531 .parent = TYPE_SYS_BUS_DEVICE,
532 .instance_size = sizeof(CadenceUARTState),
533 .instance_init = cadence_uart_init,
534 .class_init = cadence_uart_class_init,
537 static void cadence_uart_register_types(void)
539 type_register_static(&cadence_uart_info);
542 type_init(cadence_uart_register_types)