vmdk: push vmdk_read_desc up to caller
[qemu.git] / exec.c
blobb69fd295f923547799dd9900a81a865aa5dcfdec
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
53 #include "exec/ram_addr.h"
54 #include "qemu/cache-utils.h"
56 #include "qemu/range.h"
58 //#define DEBUG_SUBPAGE
60 #if !defined(CONFIG_USER_ONLY)
61 static bool in_migration;
63 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
65 static MemoryRegion *system_memory;
66 static MemoryRegion *system_io;
68 AddressSpace address_space_io;
69 AddressSpace address_space_memory;
71 MemoryRegion io_mem_rom, io_mem_notdirty;
72 static MemoryRegion io_mem_unassigned;
74 #endif
76 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
77 /* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
79 DEFINE_TLS(CPUState *, current_cpu);
80 /* 0 = Do not count executed instructions.
81 1 = Precise instruction counting.
82 2 = Adaptive rate instruction counting. */
83 int use_icount;
85 #if !defined(CONFIG_USER_ONLY)
87 typedef struct PhysPageEntry PhysPageEntry;
89 struct PhysPageEntry {
90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
91 uint32_t skip : 6;
92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
93 uint32_t ptr : 26;
96 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
98 /* Size of the L2 (and L3, etc) page tables. */
99 #define ADDR_SPACE_BITS 64
101 #define P_L2_BITS 9
102 #define P_L2_SIZE (1 << P_L2_BITS)
104 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
106 typedef PhysPageEntry Node[P_L2_SIZE];
108 typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115 } PhysPageMap;
117 struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
121 PhysPageEntry phys_map;
122 PhysPageMap map;
123 AddressSpace *as;
126 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127 typedef struct subpage_t {
128 MemoryRegion iomem;
129 AddressSpace *as;
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132 } subpage_t;
134 #define PHYS_SECTION_UNASSIGNED 0
135 #define PHYS_SECTION_NOTDIRTY 1
136 #define PHYS_SECTION_ROM 2
137 #define PHYS_SECTION_WATCH 3
139 static void io_mem_init(void);
140 static void memory_map_init(void);
141 static void tcg_commit(MemoryListener *listener);
143 static MemoryRegion io_mem_watch;
144 #endif
146 #if !defined(CONFIG_USER_ONLY)
148 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
150 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
152 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
153 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
157 static uint32_t phys_map_node_alloc(PhysPageMap *map)
159 unsigned i;
160 uint32_t ret;
162 ret = map->nodes_nb++;
163 assert(ret != PHYS_MAP_NODE_NIL);
164 assert(ret != map->nodes_nb_alloc);
165 for (i = 0; i < P_L2_SIZE; ++i) {
166 map->nodes[ret][i].skip = 1;
167 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
169 return ret;
172 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
173 hwaddr *index, hwaddr *nb, uint16_t leaf,
174 int level)
176 PhysPageEntry *p;
177 int i;
178 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
180 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
181 lp->ptr = phys_map_node_alloc(map);
182 p = map->nodes[lp->ptr];
183 if (level == 0) {
184 for (i = 0; i < P_L2_SIZE; i++) {
185 p[i].skip = 0;
186 p[i].ptr = PHYS_SECTION_UNASSIGNED;
189 } else {
190 p = map->nodes[lp->ptr];
192 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
194 while (*nb && lp < &p[P_L2_SIZE]) {
195 if ((*index & (step - 1)) == 0 && *nb >= step) {
196 lp->skip = 0;
197 lp->ptr = leaf;
198 *index += step;
199 *nb -= step;
200 } else {
201 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
203 ++lp;
207 static void phys_page_set(AddressSpaceDispatch *d,
208 hwaddr index, hwaddr nb,
209 uint16_t leaf)
211 /* Wildly overreserve - it doesn't matter much. */
212 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
214 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
217 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
218 * and update our entry so we can skip it and go directly to the destination.
220 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
222 unsigned valid_ptr = P_L2_SIZE;
223 int valid = 0;
224 PhysPageEntry *p;
225 int i;
227 if (lp->ptr == PHYS_MAP_NODE_NIL) {
228 return;
231 p = nodes[lp->ptr];
232 for (i = 0; i < P_L2_SIZE; i++) {
233 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
234 continue;
237 valid_ptr = i;
238 valid++;
239 if (p[i].skip) {
240 phys_page_compact(&p[i], nodes, compacted);
244 /* We can only compress if there's only one child. */
245 if (valid != 1) {
246 return;
249 assert(valid_ptr < P_L2_SIZE);
251 /* Don't compress if it won't fit in the # of bits we have. */
252 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
253 return;
256 lp->ptr = p[valid_ptr].ptr;
257 if (!p[valid_ptr].skip) {
258 /* If our only child is a leaf, make this a leaf. */
259 /* By design, we should have made this node a leaf to begin with so we
260 * should never reach here.
261 * But since it's so simple to handle this, let's do it just in case we
262 * change this rule.
264 lp->skip = 0;
265 } else {
266 lp->skip += p[valid_ptr].skip;
270 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
272 DECLARE_BITMAP(compacted, nodes_nb);
274 if (d->phys_map.skip) {
275 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
279 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
280 Node *nodes, MemoryRegionSection *sections)
282 PhysPageEntry *p;
283 hwaddr index = addr >> TARGET_PAGE_BITS;
284 int i;
286 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
287 if (lp.ptr == PHYS_MAP_NODE_NIL) {
288 return &sections[PHYS_SECTION_UNASSIGNED];
290 p = nodes[lp.ptr];
291 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
294 if (sections[lp.ptr].size.hi ||
295 range_covers_byte(sections[lp.ptr].offset_within_address_space,
296 sections[lp.ptr].size.lo, addr)) {
297 return &sections[lp.ptr];
298 } else {
299 return &sections[PHYS_SECTION_UNASSIGNED];
303 bool memory_region_is_unassigned(MemoryRegion *mr)
305 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
306 && mr != &io_mem_watch;
309 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
310 hwaddr addr,
311 bool resolve_subpage)
313 MemoryRegionSection *section;
314 subpage_t *subpage;
316 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
317 if (resolve_subpage && section->mr->subpage) {
318 subpage = container_of(section->mr, subpage_t, iomem);
319 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
321 return section;
324 static MemoryRegionSection *
325 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
326 hwaddr *plen, bool resolve_subpage)
328 MemoryRegionSection *section;
329 Int128 diff;
331 section = address_space_lookup_region(d, addr, resolve_subpage);
332 /* Compute offset within MemoryRegionSection */
333 addr -= section->offset_within_address_space;
335 /* Compute offset within MemoryRegion */
336 *xlat = addr + section->offset_within_region;
338 diff = int128_sub(section->mr->size, int128_make64(addr));
339 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
340 return section;
343 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
345 if (memory_region_is_ram(mr)) {
346 return !(is_write && mr->readonly);
348 if (memory_region_is_romd(mr)) {
349 return !is_write;
352 return false;
355 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
356 hwaddr *xlat, hwaddr *plen,
357 bool is_write)
359 IOMMUTLBEntry iotlb;
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 hwaddr len = *plen;
364 for (;;) {
365 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
366 mr = section->mr;
368 if (!mr->iommu_ops) {
369 break;
372 iotlb = mr->iommu_ops->translate(mr, addr);
373 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
374 | (addr & iotlb.addr_mask));
375 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
376 if (!(iotlb.perm & (1 << is_write))) {
377 mr = &io_mem_unassigned;
378 break;
381 as = iotlb.target_as;
384 if (memory_access_is_direct(mr, is_write)) {
385 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
386 len = MIN(page, len);
389 *plen = len;
390 *xlat = addr;
391 return mr;
394 MemoryRegionSection *
395 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
396 hwaddr *plen)
398 MemoryRegionSection *section;
399 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
401 assert(!section->mr->iommu_ops);
402 return section;
404 #endif
406 void cpu_exec_init_all(void)
408 #if !defined(CONFIG_USER_ONLY)
409 qemu_mutex_init(&ram_list.mutex);
410 memory_map_init();
411 io_mem_init();
412 #endif
415 #if !defined(CONFIG_USER_ONLY)
417 static int cpu_common_post_load(void *opaque, int version_id)
419 CPUState *cpu = opaque;
421 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
422 version_id is increased. */
423 cpu->interrupt_request &= ~0x01;
424 tlb_flush(cpu->env_ptr, 1);
426 return 0;
429 const VMStateDescription vmstate_cpu_common = {
430 .name = "cpu_common",
431 .version_id = 1,
432 .minimum_version_id = 1,
433 .minimum_version_id_old = 1,
434 .post_load = cpu_common_post_load,
435 .fields = (VMStateField []) {
436 VMSTATE_UINT32(halted, CPUState),
437 VMSTATE_UINT32(interrupt_request, CPUState),
438 VMSTATE_END_OF_LIST()
442 #endif
444 CPUState *qemu_get_cpu(int index)
446 CPUState *cpu;
448 CPU_FOREACH(cpu) {
449 if (cpu->cpu_index == index) {
450 return cpu;
454 return NULL;
457 #if !defined(CONFIG_USER_ONLY)
458 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
460 /* We only support one address space per cpu at the moment. */
461 assert(cpu->as == as);
463 if (cpu->tcg_as_listener) {
464 memory_listener_unregister(cpu->tcg_as_listener);
465 } else {
466 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
468 cpu->tcg_as_listener->commit = tcg_commit;
469 memory_listener_register(cpu->tcg_as_listener, as);
471 #endif
473 void cpu_exec_init(CPUArchState *env)
475 CPUState *cpu = ENV_GET_CPU(env);
476 CPUClass *cc = CPU_GET_CLASS(cpu);
477 CPUState *some_cpu;
478 int cpu_index;
480 #if defined(CONFIG_USER_ONLY)
481 cpu_list_lock();
482 #endif
483 cpu_index = 0;
484 CPU_FOREACH(some_cpu) {
485 cpu_index++;
487 cpu->cpu_index = cpu_index;
488 cpu->numa_node = 0;
489 QTAILQ_INIT(&env->breakpoints);
490 QTAILQ_INIT(&env->watchpoints);
491 #ifndef CONFIG_USER_ONLY
492 cpu->as = &address_space_memory;
493 cpu->thread_id = qemu_get_thread_id();
494 #endif
495 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
496 #if defined(CONFIG_USER_ONLY)
497 cpu_list_unlock();
498 #endif
499 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
500 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
502 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
503 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
504 cpu_save, cpu_load, env);
505 assert(cc->vmsd == NULL);
506 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
507 #endif
508 if (cc->vmsd != NULL) {
509 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
513 #if defined(TARGET_HAS_ICE)
514 #if defined(CONFIG_USER_ONLY)
515 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
517 tb_invalidate_phys_page_range(pc, pc + 1, 0);
519 #else
520 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
522 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
523 if (phys != -1) {
524 tb_invalidate_phys_addr(cpu->as,
525 phys | (pc & ~TARGET_PAGE_MASK));
528 #endif
529 #endif /* TARGET_HAS_ICE */
531 #if defined(CONFIG_USER_ONLY)
532 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
537 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
538 int flags, CPUWatchpoint **watchpoint)
540 return -ENOSYS;
542 #else
543 /* Add a watchpoint. */
544 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
545 int flags, CPUWatchpoint **watchpoint)
547 target_ulong len_mask = ~(len - 1);
548 CPUWatchpoint *wp;
550 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
551 if ((len & (len - 1)) || (addr & ~len_mask) ||
552 len == 0 || len > TARGET_PAGE_SIZE) {
553 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
554 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
555 return -EINVAL;
557 wp = g_malloc(sizeof(*wp));
559 wp->vaddr = addr;
560 wp->len_mask = len_mask;
561 wp->flags = flags;
563 /* keep all GDB-injected watchpoints in front */
564 if (flags & BP_GDB)
565 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
566 else
567 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
569 tlb_flush_page(env, addr);
571 if (watchpoint)
572 *watchpoint = wp;
573 return 0;
576 /* Remove a specific watchpoint. */
577 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
578 int flags)
580 target_ulong len_mask = ~(len - 1);
581 CPUWatchpoint *wp;
583 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
584 if (addr == wp->vaddr && len_mask == wp->len_mask
585 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
586 cpu_watchpoint_remove_by_ref(env, wp);
587 return 0;
590 return -ENOENT;
593 /* Remove a specific watchpoint by reference. */
594 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
596 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
598 tlb_flush_page(env, watchpoint->vaddr);
600 g_free(watchpoint);
603 /* Remove all matching watchpoints. */
604 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
606 CPUWatchpoint *wp, *next;
608 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
609 if (wp->flags & mask)
610 cpu_watchpoint_remove_by_ref(env, wp);
613 #endif
615 /* Add a breakpoint. */
616 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
617 CPUBreakpoint **breakpoint)
619 #if defined(TARGET_HAS_ICE)
620 CPUBreakpoint *bp;
622 bp = g_malloc(sizeof(*bp));
624 bp->pc = pc;
625 bp->flags = flags;
627 /* keep all GDB-injected breakpoints in front */
628 if (flags & BP_GDB) {
629 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
630 } else {
631 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
634 breakpoint_invalidate(ENV_GET_CPU(env), pc);
636 if (breakpoint) {
637 *breakpoint = bp;
639 return 0;
640 #else
641 return -ENOSYS;
642 #endif
645 /* Remove a specific breakpoint. */
646 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
648 #if defined(TARGET_HAS_ICE)
649 CPUBreakpoint *bp;
651 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
652 if (bp->pc == pc && bp->flags == flags) {
653 cpu_breakpoint_remove_by_ref(env, bp);
654 return 0;
657 return -ENOENT;
658 #else
659 return -ENOSYS;
660 #endif
663 /* Remove a specific breakpoint by reference. */
664 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
666 #if defined(TARGET_HAS_ICE)
667 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
669 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
671 g_free(breakpoint);
672 #endif
675 /* Remove all matching breakpoints. */
676 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
678 #if defined(TARGET_HAS_ICE)
679 CPUBreakpoint *bp, *next;
681 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
682 if (bp->flags & mask)
683 cpu_breakpoint_remove_by_ref(env, bp);
685 #endif
688 /* enable or disable single step mode. EXCP_DEBUG is returned by the
689 CPU loop after each instruction */
690 void cpu_single_step(CPUState *cpu, int enabled)
692 #if defined(TARGET_HAS_ICE)
693 if (cpu->singlestep_enabled != enabled) {
694 cpu->singlestep_enabled = enabled;
695 if (kvm_enabled()) {
696 kvm_update_guest_debug(cpu, 0);
697 } else {
698 /* must flush all the translated code to avoid inconsistencies */
699 /* XXX: only flush what is necessary */
700 CPUArchState *env = cpu->env_ptr;
701 tb_flush(env);
704 #endif
707 void cpu_abort(CPUArchState *env, const char *fmt, ...)
709 CPUState *cpu = ENV_GET_CPU(env);
710 va_list ap;
711 va_list ap2;
713 va_start(ap, fmt);
714 va_copy(ap2, ap);
715 fprintf(stderr, "qemu: fatal: ");
716 vfprintf(stderr, fmt, ap);
717 fprintf(stderr, "\n");
718 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
719 if (qemu_log_enabled()) {
720 qemu_log("qemu: fatal: ");
721 qemu_log_vprintf(fmt, ap2);
722 qemu_log("\n");
723 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
724 qemu_log_flush();
725 qemu_log_close();
727 va_end(ap2);
728 va_end(ap);
729 #if defined(CONFIG_USER_ONLY)
731 struct sigaction act;
732 sigfillset(&act.sa_mask);
733 act.sa_handler = SIG_DFL;
734 sigaction(SIGABRT, &act, NULL);
736 #endif
737 abort();
740 #if !defined(CONFIG_USER_ONLY)
741 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
743 RAMBlock *block;
745 /* The list is protected by the iothread lock here. */
746 block = ram_list.mru_block;
747 if (block && addr - block->offset < block->length) {
748 goto found;
750 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
751 if (addr - block->offset < block->length) {
752 goto found;
756 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
757 abort();
759 found:
760 ram_list.mru_block = block;
761 return block;
764 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
766 ram_addr_t start1;
767 RAMBlock *block;
768 ram_addr_t end;
770 end = TARGET_PAGE_ALIGN(start + length);
771 start &= TARGET_PAGE_MASK;
773 block = qemu_get_ram_block(start);
774 assert(block == qemu_get_ram_block(end - 1));
775 start1 = (uintptr_t)block->host + (start - block->offset);
776 cpu_tlb_reset_dirty_all(start1, length);
779 /* Note: start and end must be within the same ram block. */
780 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
781 unsigned client)
783 if (length == 0)
784 return;
785 cpu_physical_memory_clear_dirty_range(start, length, client);
787 if (tcg_enabled()) {
788 tlb_reset_dirty_range_all(start, length);
792 static void cpu_physical_memory_set_dirty_tracking(bool enable)
794 in_migration = enable;
797 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
798 MemoryRegionSection *section,
799 target_ulong vaddr,
800 hwaddr paddr, hwaddr xlat,
801 int prot,
802 target_ulong *address)
804 hwaddr iotlb;
805 CPUWatchpoint *wp;
807 if (memory_region_is_ram(section->mr)) {
808 /* Normal RAM. */
809 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
810 + xlat;
811 if (!section->readonly) {
812 iotlb |= PHYS_SECTION_NOTDIRTY;
813 } else {
814 iotlb |= PHYS_SECTION_ROM;
816 } else {
817 iotlb = section - section->address_space->dispatch->map.sections;
818 iotlb += xlat;
821 /* Make accesses to pages with watchpoints go via the
822 watchpoint trap routines. */
823 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
824 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
825 /* Avoid trapping reads of pages with a write breakpoint. */
826 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
827 iotlb = PHYS_SECTION_WATCH + paddr;
828 *address |= TLB_MMIO;
829 break;
834 return iotlb;
836 #endif /* defined(CONFIG_USER_ONLY) */
838 #if !defined(CONFIG_USER_ONLY)
840 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
841 uint16_t section);
842 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
844 static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
847 * Set a custom physical guest memory alloator.
848 * Accelerators with unusual needs may need this. Hopefully, we can
849 * get rid of it eventually.
851 void phys_mem_set_alloc(void *(*alloc)(size_t))
853 phys_mem_alloc = alloc;
856 static uint16_t phys_section_add(PhysPageMap *map,
857 MemoryRegionSection *section)
859 /* The physical section number is ORed with a page-aligned
860 * pointer to produce the iotlb entries. Thus it should
861 * never overflow into the page-aligned value.
863 assert(map->sections_nb < TARGET_PAGE_SIZE);
865 if (map->sections_nb == map->sections_nb_alloc) {
866 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
867 map->sections = g_renew(MemoryRegionSection, map->sections,
868 map->sections_nb_alloc);
870 map->sections[map->sections_nb] = *section;
871 memory_region_ref(section->mr);
872 return map->sections_nb++;
875 static void phys_section_destroy(MemoryRegion *mr)
877 memory_region_unref(mr);
879 if (mr->subpage) {
880 subpage_t *subpage = container_of(mr, subpage_t, iomem);
881 memory_region_destroy(&subpage->iomem);
882 g_free(subpage);
886 static void phys_sections_free(PhysPageMap *map)
888 while (map->sections_nb > 0) {
889 MemoryRegionSection *section = &map->sections[--map->sections_nb];
890 phys_section_destroy(section->mr);
892 g_free(map->sections);
893 g_free(map->nodes);
896 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
898 subpage_t *subpage;
899 hwaddr base = section->offset_within_address_space
900 & TARGET_PAGE_MASK;
901 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
902 d->map.nodes, d->map.sections);
903 MemoryRegionSection subsection = {
904 .offset_within_address_space = base,
905 .size = int128_make64(TARGET_PAGE_SIZE),
907 hwaddr start, end;
909 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
911 if (!(existing->mr->subpage)) {
912 subpage = subpage_init(d->as, base);
913 subsection.address_space = d->as;
914 subsection.mr = &subpage->iomem;
915 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
916 phys_section_add(&d->map, &subsection));
917 } else {
918 subpage = container_of(existing->mr, subpage_t, iomem);
920 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
921 end = start + int128_get64(section->size) - 1;
922 subpage_register(subpage, start, end,
923 phys_section_add(&d->map, section));
927 static void register_multipage(AddressSpaceDispatch *d,
928 MemoryRegionSection *section)
930 hwaddr start_addr = section->offset_within_address_space;
931 uint16_t section_index = phys_section_add(&d->map, section);
932 uint64_t num_pages = int128_get64(int128_rshift(section->size,
933 TARGET_PAGE_BITS));
935 assert(num_pages);
936 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
939 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
941 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
942 AddressSpaceDispatch *d = as->next_dispatch;
943 MemoryRegionSection now = *section, remain = *section;
944 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
946 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
947 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
948 - now.offset_within_address_space;
950 now.size = int128_min(int128_make64(left), now.size);
951 register_subpage(d, &now);
952 } else {
953 now.size = int128_zero();
955 while (int128_ne(remain.size, now.size)) {
956 remain.size = int128_sub(remain.size, now.size);
957 remain.offset_within_address_space += int128_get64(now.size);
958 remain.offset_within_region += int128_get64(now.size);
959 now = remain;
960 if (int128_lt(remain.size, page_size)) {
961 register_subpage(d, &now);
962 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
963 now.size = page_size;
964 register_subpage(d, &now);
965 } else {
966 now.size = int128_and(now.size, int128_neg(page_size));
967 register_multipage(d, &now);
972 void qemu_flush_coalesced_mmio_buffer(void)
974 if (kvm_enabled())
975 kvm_flush_coalesced_mmio_buffer();
978 void qemu_mutex_lock_ramlist(void)
980 qemu_mutex_lock(&ram_list.mutex);
983 void qemu_mutex_unlock_ramlist(void)
985 qemu_mutex_unlock(&ram_list.mutex);
988 #ifdef __linux__
990 #include <sys/vfs.h>
992 #define HUGETLBFS_MAGIC 0x958458f6
994 static long gethugepagesize(const char *path)
996 struct statfs fs;
997 int ret;
999 do {
1000 ret = statfs(path, &fs);
1001 } while (ret != 0 && errno == EINTR);
1003 if (ret != 0) {
1004 perror(path);
1005 return 0;
1008 if (fs.f_type != HUGETLBFS_MAGIC)
1009 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
1011 return fs.f_bsize;
1014 static sigjmp_buf sigjump;
1016 static void sigbus_handler(int signal)
1018 siglongjmp(sigjump, 1);
1021 static void *file_ram_alloc(RAMBlock *block,
1022 ram_addr_t memory,
1023 const char *path)
1025 char *filename;
1026 char *sanitized_name;
1027 char *c;
1028 void *area;
1029 int fd;
1030 unsigned long hpagesize;
1032 hpagesize = gethugepagesize(path);
1033 if (!hpagesize) {
1034 return NULL;
1037 if (memory < hpagesize) {
1038 return NULL;
1041 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1042 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1043 return NULL;
1046 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1047 sanitized_name = g_strdup(block->mr->name);
1048 for (c = sanitized_name; *c != '\0'; c++) {
1049 if (*c == '/')
1050 *c = '_';
1053 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1054 sanitized_name);
1055 g_free(sanitized_name);
1057 fd = mkstemp(filename);
1058 if (fd < 0) {
1059 perror("unable to create backing store for hugepages");
1060 g_free(filename);
1061 return NULL;
1063 unlink(filename);
1064 g_free(filename);
1066 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1069 * ftruncate is not supported by hugetlbfs in older
1070 * hosts, so don't bother bailing out on errors.
1071 * If anything goes wrong with it under other filesystems,
1072 * mmap will fail.
1074 if (ftruncate(fd, memory))
1075 perror("ftruncate");
1077 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1078 if (area == MAP_FAILED) {
1079 perror("file_ram_alloc: can't mmap RAM pages");
1080 close(fd);
1081 return (NULL);
1084 if (mem_prealloc) {
1085 int ret, i;
1086 struct sigaction act, oldact;
1087 sigset_t set, oldset;
1089 memset(&act, 0, sizeof(act));
1090 act.sa_handler = &sigbus_handler;
1091 act.sa_flags = 0;
1093 ret = sigaction(SIGBUS, &act, &oldact);
1094 if (ret) {
1095 perror("file_ram_alloc: failed to install signal handler");
1096 exit(1);
1099 /* unblock SIGBUS */
1100 sigemptyset(&set);
1101 sigaddset(&set, SIGBUS);
1102 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1104 if (sigsetjmp(sigjump, 1)) {
1105 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1106 exit(1);
1109 /* MAP_POPULATE silently ignores failures */
1110 for (i = 0; i < (memory/hpagesize); i++) {
1111 memset(area + (hpagesize*i), 0, 1);
1114 ret = sigaction(SIGBUS, &oldact, NULL);
1115 if (ret) {
1116 perror("file_ram_alloc: failed to reinstall signal handler");
1117 exit(1);
1120 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1123 block->fd = fd;
1124 return area;
1126 #else
1127 static void *file_ram_alloc(RAMBlock *block,
1128 ram_addr_t memory,
1129 const char *path)
1131 fprintf(stderr, "-mem-path not supported on this host\n");
1132 exit(1);
1134 #endif
1136 static ram_addr_t find_ram_offset(ram_addr_t size)
1138 RAMBlock *block, *next_block;
1139 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1141 assert(size != 0); /* it would hand out same offset multiple times */
1143 if (QTAILQ_EMPTY(&ram_list.blocks))
1144 return 0;
1146 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1147 ram_addr_t end, next = RAM_ADDR_MAX;
1149 end = block->offset + block->length;
1151 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1152 if (next_block->offset >= end) {
1153 next = MIN(next, next_block->offset);
1156 if (next - end >= size && next - end < mingap) {
1157 offset = end;
1158 mingap = next - end;
1162 if (offset == RAM_ADDR_MAX) {
1163 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1164 (uint64_t)size);
1165 abort();
1168 return offset;
1171 ram_addr_t last_ram_offset(void)
1173 RAMBlock *block;
1174 ram_addr_t last = 0;
1176 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1177 last = MAX(last, block->offset + block->length);
1179 return last;
1182 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1184 int ret;
1186 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1187 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1188 "dump-guest-core", true)) {
1189 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1190 if (ret) {
1191 perror("qemu_madvise");
1192 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1193 "but dump_guest_core=off specified\n");
1198 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1200 RAMBlock *new_block, *block;
1202 new_block = NULL;
1203 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1204 if (block->offset == addr) {
1205 new_block = block;
1206 break;
1209 assert(new_block);
1210 assert(!new_block->idstr[0]);
1212 if (dev) {
1213 char *id = qdev_get_dev_path(dev);
1214 if (id) {
1215 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1216 g_free(id);
1219 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
1223 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1224 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1225 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1226 new_block->idstr);
1227 abort();
1230 qemu_mutex_unlock_ramlist();
1233 static int memory_try_enable_merging(void *addr, size_t len)
1235 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1236 /* disabled by the user */
1237 return 0;
1240 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1243 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1244 MemoryRegion *mr)
1246 RAMBlock *block, *new_block;
1247 ram_addr_t old_ram_size, new_ram_size;
1249 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1251 size = TARGET_PAGE_ALIGN(size);
1252 new_block = g_malloc0(sizeof(*new_block));
1253 new_block->fd = -1;
1255 /* This assumes the iothread lock is taken here too. */
1256 qemu_mutex_lock_ramlist();
1257 new_block->mr = mr;
1258 new_block->offset = find_ram_offset(size);
1259 if (host) {
1260 new_block->host = host;
1261 new_block->flags |= RAM_PREALLOC_MASK;
1262 } else if (xen_enabled()) {
1263 if (mem_path) {
1264 fprintf(stderr, "-mem-path not supported with Xen\n");
1265 exit(1);
1267 xen_ram_alloc(new_block->offset, size, mr);
1268 } else {
1269 if (mem_path) {
1270 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1272 * file_ram_alloc() needs to allocate just like
1273 * phys_mem_alloc, but we haven't bothered to provide
1274 * a hook there.
1276 fprintf(stderr,
1277 "-mem-path not supported with this accelerator\n");
1278 exit(1);
1280 new_block->host = file_ram_alloc(new_block, size, mem_path);
1282 if (!new_block->host) {
1283 new_block->host = phys_mem_alloc(size);
1284 if (!new_block->host) {
1285 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1286 new_block->mr->name, strerror(errno));
1287 exit(1);
1289 memory_try_enable_merging(new_block->host, size);
1292 new_block->length = size;
1294 /* Keep the list sorted from biggest to smallest block. */
1295 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1296 if (block->length < new_block->length) {
1297 break;
1300 if (block) {
1301 QTAILQ_INSERT_BEFORE(block, new_block, next);
1302 } else {
1303 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1305 ram_list.mru_block = NULL;
1307 ram_list.version++;
1308 qemu_mutex_unlock_ramlist();
1310 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1312 if (new_ram_size > old_ram_size) {
1313 int i;
1314 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1315 ram_list.dirty_memory[i] =
1316 bitmap_zero_extend(ram_list.dirty_memory[i],
1317 old_ram_size, new_ram_size);
1320 cpu_physical_memory_set_dirty_range(new_block->offset, size);
1322 qemu_ram_setup_dump(new_block->host, size);
1323 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1324 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
1326 if (kvm_enabled())
1327 kvm_setup_guest_memory(new_block->host, size);
1329 return new_block->offset;
1332 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1334 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1337 void qemu_ram_free_from_ptr(ram_addr_t addr)
1339 RAMBlock *block;
1341 /* This assumes the iothread lock is taken here too. */
1342 qemu_mutex_lock_ramlist();
1343 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1344 if (addr == block->offset) {
1345 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1346 ram_list.mru_block = NULL;
1347 ram_list.version++;
1348 g_free(block);
1349 break;
1352 qemu_mutex_unlock_ramlist();
1355 void qemu_ram_free(ram_addr_t addr)
1357 RAMBlock *block;
1359 /* This assumes the iothread lock is taken here too. */
1360 qemu_mutex_lock_ramlist();
1361 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1362 if (addr == block->offset) {
1363 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1364 ram_list.mru_block = NULL;
1365 ram_list.version++;
1366 if (block->flags & RAM_PREALLOC_MASK) {
1368 } else if (xen_enabled()) {
1369 xen_invalidate_map_cache_entry(block->host);
1370 #ifndef _WIN32
1371 } else if (block->fd >= 0) {
1372 munmap(block->host, block->length);
1373 close(block->fd);
1374 #endif
1375 } else {
1376 qemu_anon_ram_free(block->host, block->length);
1378 g_free(block);
1379 break;
1382 qemu_mutex_unlock_ramlist();
1386 #ifndef _WIN32
1387 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1389 RAMBlock *block;
1390 ram_addr_t offset;
1391 int flags;
1392 void *area, *vaddr;
1394 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1395 offset = addr - block->offset;
1396 if (offset < block->length) {
1397 vaddr = block->host + offset;
1398 if (block->flags & RAM_PREALLOC_MASK) {
1400 } else if (xen_enabled()) {
1401 abort();
1402 } else {
1403 flags = MAP_FIXED;
1404 munmap(vaddr, length);
1405 if (block->fd >= 0) {
1406 #ifdef MAP_POPULATE
1407 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1408 MAP_PRIVATE;
1409 #else
1410 flags |= MAP_PRIVATE;
1411 #endif
1412 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1413 flags, block->fd, offset);
1414 } else {
1416 * Remap needs to match alloc. Accelerators that
1417 * set phys_mem_alloc never remap. If they did,
1418 * we'd need a remap hook here.
1420 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1422 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1423 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1424 flags, -1, 0);
1426 if (area != vaddr) {
1427 fprintf(stderr, "Could not remap addr: "
1428 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1429 length, addr);
1430 exit(1);
1432 memory_try_enable_merging(vaddr, length);
1433 qemu_ram_setup_dump(vaddr, length);
1435 return;
1439 #endif /* !_WIN32 */
1441 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1442 With the exception of the softmmu code in this file, this should
1443 only be used for local memory (e.g. video ram) that the device owns,
1444 and knows it isn't going to access beyond the end of the block.
1446 It should not be used for general purpose DMA.
1447 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1449 void *qemu_get_ram_ptr(ram_addr_t addr)
1451 RAMBlock *block = qemu_get_ram_block(addr);
1453 if (xen_enabled()) {
1454 /* We need to check if the requested address is in the RAM
1455 * because we don't want to map the entire memory in QEMU.
1456 * In that case just map until the end of the page.
1458 if (block->offset == 0) {
1459 return xen_map_cache(addr, 0, 0);
1460 } else if (block->host == NULL) {
1461 block->host =
1462 xen_map_cache(block->offset, block->length, 1);
1465 return block->host + (addr - block->offset);
1468 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1469 * but takes a size argument */
1470 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1472 if (*size == 0) {
1473 return NULL;
1475 if (xen_enabled()) {
1476 return xen_map_cache(addr, *size, 1);
1477 } else {
1478 RAMBlock *block;
1480 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1481 if (addr - block->offset < block->length) {
1482 if (addr - block->offset + *size > block->length)
1483 *size = block->length - addr + block->offset;
1484 return block->host + (addr - block->offset);
1488 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1489 abort();
1493 /* Some of the softmmu routines need to translate from a host pointer
1494 (typically a TLB entry) back to a ram offset. */
1495 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1497 RAMBlock *block;
1498 uint8_t *host = ptr;
1500 if (xen_enabled()) {
1501 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1502 return qemu_get_ram_block(*ram_addr)->mr;
1505 block = ram_list.mru_block;
1506 if (block && block->host && host - block->host < block->length) {
1507 goto found;
1510 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1511 /* This case append when the block is not mapped. */
1512 if (block->host == NULL) {
1513 continue;
1515 if (host - block->host < block->length) {
1516 goto found;
1520 return NULL;
1522 found:
1523 *ram_addr = block->offset + (host - block->host);
1524 return block->mr;
1527 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1528 uint64_t val, unsigned size)
1530 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1531 tb_invalidate_phys_page_fast(ram_addr, size);
1533 switch (size) {
1534 case 1:
1535 stb_p(qemu_get_ram_ptr(ram_addr), val);
1536 break;
1537 case 2:
1538 stw_p(qemu_get_ram_ptr(ram_addr), val);
1539 break;
1540 case 4:
1541 stl_p(qemu_get_ram_ptr(ram_addr), val);
1542 break;
1543 default:
1544 abort();
1546 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1547 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
1548 /* we remove the notdirty callback only if the code has been
1549 flushed */
1550 if (!cpu_physical_memory_is_clean(ram_addr)) {
1551 CPUArchState *env = current_cpu->env_ptr;
1552 tlb_set_dirty(env, env->mem_io_vaddr);
1556 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1557 unsigned size, bool is_write)
1559 return is_write;
1562 static const MemoryRegionOps notdirty_mem_ops = {
1563 .write = notdirty_mem_write,
1564 .valid.accepts = notdirty_mem_accepts,
1565 .endianness = DEVICE_NATIVE_ENDIAN,
1568 /* Generate a debug exception if a watchpoint has been hit. */
1569 static void check_watchpoint(int offset, int len_mask, int flags)
1571 CPUArchState *env = current_cpu->env_ptr;
1572 target_ulong pc, cs_base;
1573 target_ulong vaddr;
1574 CPUWatchpoint *wp;
1575 int cpu_flags;
1577 if (env->watchpoint_hit) {
1578 /* We re-entered the check after replacing the TB. Now raise
1579 * the debug interrupt so that is will trigger after the
1580 * current instruction. */
1581 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1582 return;
1584 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1585 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1586 if ((vaddr == (wp->vaddr & len_mask) ||
1587 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1588 wp->flags |= BP_WATCHPOINT_HIT;
1589 if (!env->watchpoint_hit) {
1590 env->watchpoint_hit = wp;
1591 tb_check_watchpoint(env);
1592 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1593 env->exception_index = EXCP_DEBUG;
1594 cpu_loop_exit(env);
1595 } else {
1596 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1597 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1598 cpu_resume_from_signal(env, NULL);
1601 } else {
1602 wp->flags &= ~BP_WATCHPOINT_HIT;
1607 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1608 so these check for a hit then pass through to the normal out-of-line
1609 phys routines. */
1610 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1611 unsigned size)
1613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1614 switch (size) {
1615 case 1: return ldub_phys(&address_space_memory, addr);
1616 case 2: return lduw_phys(&address_space_memory, addr);
1617 case 4: return ldl_phys(&address_space_memory, addr);
1618 default: abort();
1622 static void watch_mem_write(void *opaque, hwaddr addr,
1623 uint64_t val, unsigned size)
1625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1626 switch (size) {
1627 case 1:
1628 stb_phys(&address_space_memory, addr, val);
1629 break;
1630 case 2:
1631 stw_phys(&address_space_memory, addr, val);
1632 break;
1633 case 4:
1634 stl_phys(&address_space_memory, addr, val);
1635 break;
1636 default: abort();
1640 static const MemoryRegionOps watch_mem_ops = {
1641 .read = watch_mem_read,
1642 .write = watch_mem_write,
1643 .endianness = DEVICE_NATIVE_ENDIAN,
1646 static uint64_t subpage_read(void *opaque, hwaddr addr,
1647 unsigned len)
1649 subpage_t *subpage = opaque;
1650 uint8_t buf[4];
1652 #if defined(DEBUG_SUBPAGE)
1653 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1654 subpage, len, addr);
1655 #endif
1656 address_space_read(subpage->as, addr + subpage->base, buf, len);
1657 switch (len) {
1658 case 1:
1659 return ldub_p(buf);
1660 case 2:
1661 return lduw_p(buf);
1662 case 4:
1663 return ldl_p(buf);
1664 default:
1665 abort();
1669 static void subpage_write(void *opaque, hwaddr addr,
1670 uint64_t value, unsigned len)
1672 subpage_t *subpage = opaque;
1673 uint8_t buf[4];
1675 #if defined(DEBUG_SUBPAGE)
1676 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1677 " value %"PRIx64"\n",
1678 __func__, subpage, len, addr, value);
1679 #endif
1680 switch (len) {
1681 case 1:
1682 stb_p(buf, value);
1683 break;
1684 case 2:
1685 stw_p(buf, value);
1686 break;
1687 case 4:
1688 stl_p(buf, value);
1689 break;
1690 default:
1691 abort();
1693 address_space_write(subpage->as, addr + subpage->base, buf, len);
1696 static bool subpage_accepts(void *opaque, hwaddr addr,
1697 unsigned len, bool is_write)
1699 subpage_t *subpage = opaque;
1700 #if defined(DEBUG_SUBPAGE)
1701 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
1702 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1703 #endif
1705 return address_space_access_valid(subpage->as, addr + subpage->base,
1706 len, is_write);
1709 static const MemoryRegionOps subpage_ops = {
1710 .read = subpage_read,
1711 .write = subpage_write,
1712 .valid.accepts = subpage_accepts,
1713 .endianness = DEVICE_NATIVE_ENDIAN,
1716 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1717 uint16_t section)
1719 int idx, eidx;
1721 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1722 return -1;
1723 idx = SUBPAGE_IDX(start);
1724 eidx = SUBPAGE_IDX(end);
1725 #if defined(DEBUG_SUBPAGE)
1726 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1727 __func__, mmio, start, end, idx, eidx, section);
1728 #endif
1729 for (; idx <= eidx; idx++) {
1730 mmio->sub_section[idx] = section;
1733 return 0;
1736 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1738 subpage_t *mmio;
1740 mmio = g_malloc0(sizeof(subpage_t));
1742 mmio->as = as;
1743 mmio->base = base;
1744 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1745 "subpage", TARGET_PAGE_SIZE);
1746 mmio->iomem.subpage = true;
1747 #if defined(DEBUG_SUBPAGE)
1748 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1749 mmio, base, TARGET_PAGE_SIZE);
1750 #endif
1751 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1753 return mmio;
1756 static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
1758 MemoryRegionSection section = {
1759 .address_space = &address_space_memory,
1760 .mr = mr,
1761 .offset_within_address_space = 0,
1762 .offset_within_region = 0,
1763 .size = int128_2_64(),
1766 return phys_section_add(map, &section);
1769 MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
1771 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
1774 static void io_mem_init(void)
1776 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1777 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1778 "unassigned", UINT64_MAX);
1779 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1780 "notdirty", UINT64_MAX);
1781 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1782 "watch", UINT64_MAX);
1785 static void mem_begin(MemoryListener *listener)
1787 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1788 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1789 uint16_t n;
1791 n = dummy_section(&d->map, &io_mem_unassigned);
1792 assert(n == PHYS_SECTION_UNASSIGNED);
1793 n = dummy_section(&d->map, &io_mem_notdirty);
1794 assert(n == PHYS_SECTION_NOTDIRTY);
1795 n = dummy_section(&d->map, &io_mem_rom);
1796 assert(n == PHYS_SECTION_ROM);
1797 n = dummy_section(&d->map, &io_mem_watch);
1798 assert(n == PHYS_SECTION_WATCH);
1800 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
1801 d->as = as;
1802 as->next_dispatch = d;
1805 static void mem_commit(MemoryListener *listener)
1807 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1808 AddressSpaceDispatch *cur = as->dispatch;
1809 AddressSpaceDispatch *next = as->next_dispatch;
1811 phys_page_compact_all(next, next->map.nodes_nb);
1813 as->dispatch = next;
1815 if (cur) {
1816 phys_sections_free(&cur->map);
1817 g_free(cur);
1821 static void tcg_commit(MemoryListener *listener)
1823 CPUState *cpu;
1825 /* since each CPU stores ram addresses in its TLB cache, we must
1826 reset the modified entries */
1827 /* XXX: slow ! */
1828 CPU_FOREACH(cpu) {
1829 CPUArchState *env = cpu->env_ptr;
1831 /* FIXME: Disentangle the cpu.h circular files deps so we can
1832 directly get the right CPU from listener. */
1833 if (cpu->tcg_as_listener != listener) {
1834 continue;
1836 tlb_flush(env, 1);
1840 static void core_log_global_start(MemoryListener *listener)
1842 cpu_physical_memory_set_dirty_tracking(true);
1845 static void core_log_global_stop(MemoryListener *listener)
1847 cpu_physical_memory_set_dirty_tracking(false);
1850 static MemoryListener core_memory_listener = {
1851 .log_global_start = core_log_global_start,
1852 .log_global_stop = core_log_global_stop,
1853 .priority = 1,
1856 void address_space_init_dispatch(AddressSpace *as)
1858 as->dispatch = NULL;
1859 as->dispatch_listener = (MemoryListener) {
1860 .begin = mem_begin,
1861 .commit = mem_commit,
1862 .region_add = mem_add,
1863 .region_nop = mem_add,
1864 .priority = 0,
1866 memory_listener_register(&as->dispatch_listener, as);
1869 void address_space_destroy_dispatch(AddressSpace *as)
1871 AddressSpaceDispatch *d = as->dispatch;
1873 memory_listener_unregister(&as->dispatch_listener);
1874 g_free(d);
1875 as->dispatch = NULL;
1878 static void memory_map_init(void)
1880 system_memory = g_malloc(sizeof(*system_memory));
1882 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
1883 address_space_init(&address_space_memory, system_memory, "memory");
1885 system_io = g_malloc(sizeof(*system_io));
1886 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1887 65536);
1888 address_space_init(&address_space_io, system_io, "I/O");
1890 memory_listener_register(&core_memory_listener, &address_space_memory);
1893 MemoryRegion *get_system_memory(void)
1895 return system_memory;
1898 MemoryRegion *get_system_io(void)
1900 return system_io;
1903 #endif /* !defined(CONFIG_USER_ONLY) */
1905 /* physical memory access (slow version, mainly for debug) */
1906 #if defined(CONFIG_USER_ONLY)
1907 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1908 uint8_t *buf, int len, int is_write)
1910 int l, flags;
1911 target_ulong page;
1912 void * p;
1914 while (len > 0) {
1915 page = addr & TARGET_PAGE_MASK;
1916 l = (page + TARGET_PAGE_SIZE) - addr;
1917 if (l > len)
1918 l = len;
1919 flags = page_get_flags(page);
1920 if (!(flags & PAGE_VALID))
1921 return -1;
1922 if (is_write) {
1923 if (!(flags & PAGE_WRITE))
1924 return -1;
1925 /* XXX: this code should not depend on lock_user */
1926 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1927 return -1;
1928 memcpy(p, buf, l);
1929 unlock_user(p, addr, l);
1930 } else {
1931 if (!(flags & PAGE_READ))
1932 return -1;
1933 /* XXX: this code should not depend on lock_user */
1934 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1935 return -1;
1936 memcpy(buf, p, l);
1937 unlock_user(p, addr, 0);
1939 len -= l;
1940 buf += l;
1941 addr += l;
1943 return 0;
1946 #else
1948 static void invalidate_and_set_dirty(hwaddr addr,
1949 hwaddr length)
1951 if (cpu_physical_memory_is_clean(addr)) {
1952 /* invalidate code */
1953 tb_invalidate_phys_page_range(addr, addr + length, 0);
1954 /* set dirty bit */
1955 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1956 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
1958 xen_modified_memory(addr, length);
1961 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1963 unsigned access_size_max = mr->ops->valid.max_access_size;
1965 /* Regions are assumed to support 1-4 byte accesses unless
1966 otherwise specified. */
1967 if (access_size_max == 0) {
1968 access_size_max = 4;
1971 /* Bound the maximum access by the alignment of the address. */
1972 if (!mr->ops->impl.unaligned) {
1973 unsigned align_size_max = addr & -addr;
1974 if (align_size_max != 0 && align_size_max < access_size_max) {
1975 access_size_max = align_size_max;
1979 /* Don't attempt accesses larger than the maximum. */
1980 if (l > access_size_max) {
1981 l = access_size_max;
1983 if (l & (l - 1)) {
1984 l = 1 << (qemu_fls(l) - 1);
1987 return l;
1990 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1991 int len, bool is_write)
1993 hwaddr l;
1994 uint8_t *ptr;
1995 uint64_t val;
1996 hwaddr addr1;
1997 MemoryRegion *mr;
1998 bool error = false;
2000 while (len > 0) {
2001 l = len;
2002 mr = address_space_translate(as, addr, &addr1, &l, is_write);
2004 if (is_write) {
2005 if (!memory_access_is_direct(mr, is_write)) {
2006 l = memory_access_size(mr, l, addr1);
2007 /* XXX: could force current_cpu to NULL to avoid
2008 potential bugs */
2009 switch (l) {
2010 case 8:
2011 /* 64 bit write access */
2012 val = ldq_p(buf);
2013 error |= io_mem_write(mr, addr1, val, 8);
2014 break;
2015 case 4:
2016 /* 32 bit write access */
2017 val = ldl_p(buf);
2018 error |= io_mem_write(mr, addr1, val, 4);
2019 break;
2020 case 2:
2021 /* 16 bit write access */
2022 val = lduw_p(buf);
2023 error |= io_mem_write(mr, addr1, val, 2);
2024 break;
2025 case 1:
2026 /* 8 bit write access */
2027 val = ldub_p(buf);
2028 error |= io_mem_write(mr, addr1, val, 1);
2029 break;
2030 default:
2031 abort();
2033 } else {
2034 addr1 += memory_region_get_ram_addr(mr);
2035 /* RAM case */
2036 ptr = qemu_get_ram_ptr(addr1);
2037 memcpy(ptr, buf, l);
2038 invalidate_and_set_dirty(addr1, l);
2040 } else {
2041 if (!memory_access_is_direct(mr, is_write)) {
2042 /* I/O case */
2043 l = memory_access_size(mr, l, addr1);
2044 switch (l) {
2045 case 8:
2046 /* 64 bit read access */
2047 error |= io_mem_read(mr, addr1, &val, 8);
2048 stq_p(buf, val);
2049 break;
2050 case 4:
2051 /* 32 bit read access */
2052 error |= io_mem_read(mr, addr1, &val, 4);
2053 stl_p(buf, val);
2054 break;
2055 case 2:
2056 /* 16 bit read access */
2057 error |= io_mem_read(mr, addr1, &val, 2);
2058 stw_p(buf, val);
2059 break;
2060 case 1:
2061 /* 8 bit read access */
2062 error |= io_mem_read(mr, addr1, &val, 1);
2063 stb_p(buf, val);
2064 break;
2065 default:
2066 abort();
2068 } else {
2069 /* RAM case */
2070 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2071 memcpy(buf, ptr, l);
2074 len -= l;
2075 buf += l;
2076 addr += l;
2079 return error;
2082 bool address_space_write(AddressSpace *as, hwaddr addr,
2083 const uint8_t *buf, int len)
2085 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2088 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2090 return address_space_rw(as, addr, buf, len, false);
2094 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2095 int len, int is_write)
2097 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2100 enum write_rom_type {
2101 WRITE_DATA,
2102 FLUSH_CACHE,
2105 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2106 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2108 hwaddr l;
2109 uint8_t *ptr;
2110 hwaddr addr1;
2111 MemoryRegion *mr;
2113 while (len > 0) {
2114 l = len;
2115 mr = address_space_translate(as, addr, &addr1, &l, true);
2117 if (!(memory_region_is_ram(mr) ||
2118 memory_region_is_romd(mr))) {
2119 /* do nothing */
2120 } else {
2121 addr1 += memory_region_get_ram_addr(mr);
2122 /* ROM/RAM case */
2123 ptr = qemu_get_ram_ptr(addr1);
2124 switch (type) {
2125 case WRITE_DATA:
2126 memcpy(ptr, buf, l);
2127 invalidate_and_set_dirty(addr1, l);
2128 break;
2129 case FLUSH_CACHE:
2130 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2131 break;
2134 len -= l;
2135 buf += l;
2136 addr += l;
2140 /* used for ROM loading : can write in RAM and ROM */
2141 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2142 const uint8_t *buf, int len)
2144 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2147 void cpu_flush_icache_range(hwaddr start, int len)
2150 * This function should do the same thing as an icache flush that was
2151 * triggered from within the guest. For TCG we are always cache coherent,
2152 * so there is no need to flush anything. For KVM / Xen we need to flush
2153 * the host's instruction cache at least.
2155 if (tcg_enabled()) {
2156 return;
2159 cpu_physical_memory_write_rom_internal(&address_space_memory,
2160 start, NULL, len, FLUSH_CACHE);
2163 typedef struct {
2164 MemoryRegion *mr;
2165 void *buffer;
2166 hwaddr addr;
2167 hwaddr len;
2168 } BounceBuffer;
2170 static BounceBuffer bounce;
2172 typedef struct MapClient {
2173 void *opaque;
2174 void (*callback)(void *opaque);
2175 QLIST_ENTRY(MapClient) link;
2176 } MapClient;
2178 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2179 = QLIST_HEAD_INITIALIZER(map_client_list);
2181 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2183 MapClient *client = g_malloc(sizeof(*client));
2185 client->opaque = opaque;
2186 client->callback = callback;
2187 QLIST_INSERT_HEAD(&map_client_list, client, link);
2188 return client;
2191 static void cpu_unregister_map_client(void *_client)
2193 MapClient *client = (MapClient *)_client;
2195 QLIST_REMOVE(client, link);
2196 g_free(client);
2199 static void cpu_notify_map_clients(void)
2201 MapClient *client;
2203 while (!QLIST_EMPTY(&map_client_list)) {
2204 client = QLIST_FIRST(&map_client_list);
2205 client->callback(client->opaque);
2206 cpu_unregister_map_client(client);
2210 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2212 MemoryRegion *mr;
2213 hwaddr l, xlat;
2215 while (len > 0) {
2216 l = len;
2217 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2218 if (!memory_access_is_direct(mr, is_write)) {
2219 l = memory_access_size(mr, l, addr);
2220 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2221 return false;
2225 len -= l;
2226 addr += l;
2228 return true;
2231 /* Map a physical memory region into a host virtual address.
2232 * May map a subset of the requested range, given by and returned in *plen.
2233 * May return NULL if resources needed to perform the mapping are exhausted.
2234 * Use only for reads OR writes - not for read-modify-write operations.
2235 * Use cpu_register_map_client() to know when retrying the map operation is
2236 * likely to succeed.
2238 void *address_space_map(AddressSpace *as,
2239 hwaddr addr,
2240 hwaddr *plen,
2241 bool is_write)
2243 hwaddr len = *plen;
2244 hwaddr done = 0;
2245 hwaddr l, xlat, base;
2246 MemoryRegion *mr, *this_mr;
2247 ram_addr_t raddr;
2249 if (len == 0) {
2250 return NULL;
2253 l = len;
2254 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2255 if (!memory_access_is_direct(mr, is_write)) {
2256 if (bounce.buffer) {
2257 return NULL;
2259 /* Avoid unbounded allocations */
2260 l = MIN(l, TARGET_PAGE_SIZE);
2261 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2262 bounce.addr = addr;
2263 bounce.len = l;
2265 memory_region_ref(mr);
2266 bounce.mr = mr;
2267 if (!is_write) {
2268 address_space_read(as, addr, bounce.buffer, l);
2271 *plen = l;
2272 return bounce.buffer;
2275 base = xlat;
2276 raddr = memory_region_get_ram_addr(mr);
2278 for (;;) {
2279 len -= l;
2280 addr += l;
2281 done += l;
2282 if (len == 0) {
2283 break;
2286 l = len;
2287 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2288 if (this_mr != mr || xlat != base + done) {
2289 break;
2293 memory_region_ref(mr);
2294 *plen = done;
2295 return qemu_ram_ptr_length(raddr + base, plen);
2298 /* Unmaps a memory region previously mapped by address_space_map().
2299 * Will also mark the memory as dirty if is_write == 1. access_len gives
2300 * the amount of memory that was actually read or written by the caller.
2302 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2303 int is_write, hwaddr access_len)
2305 if (buffer != bounce.buffer) {
2306 MemoryRegion *mr;
2307 ram_addr_t addr1;
2309 mr = qemu_ram_addr_from_host(buffer, &addr1);
2310 assert(mr != NULL);
2311 if (is_write) {
2312 while (access_len) {
2313 unsigned l;
2314 l = TARGET_PAGE_SIZE;
2315 if (l > access_len)
2316 l = access_len;
2317 invalidate_and_set_dirty(addr1, l);
2318 addr1 += l;
2319 access_len -= l;
2322 if (xen_enabled()) {
2323 xen_invalidate_map_cache_entry(buffer);
2325 memory_region_unref(mr);
2326 return;
2328 if (is_write) {
2329 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2331 qemu_vfree(bounce.buffer);
2332 bounce.buffer = NULL;
2333 memory_region_unref(bounce.mr);
2334 cpu_notify_map_clients();
2337 void *cpu_physical_memory_map(hwaddr addr,
2338 hwaddr *plen,
2339 int is_write)
2341 return address_space_map(&address_space_memory, addr, plen, is_write);
2344 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2345 int is_write, hwaddr access_len)
2347 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2350 /* warning: addr must be aligned */
2351 static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
2352 enum device_endian endian)
2354 uint8_t *ptr;
2355 uint64_t val;
2356 MemoryRegion *mr;
2357 hwaddr l = 4;
2358 hwaddr addr1;
2360 mr = address_space_translate(as, addr, &addr1, &l, false);
2361 if (l < 4 || !memory_access_is_direct(mr, false)) {
2362 /* I/O case */
2363 io_mem_read(mr, addr1, &val, 4);
2364 #if defined(TARGET_WORDS_BIGENDIAN)
2365 if (endian == DEVICE_LITTLE_ENDIAN) {
2366 val = bswap32(val);
2368 #else
2369 if (endian == DEVICE_BIG_ENDIAN) {
2370 val = bswap32(val);
2372 #endif
2373 } else {
2374 /* RAM case */
2375 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2376 & TARGET_PAGE_MASK)
2377 + addr1);
2378 switch (endian) {
2379 case DEVICE_LITTLE_ENDIAN:
2380 val = ldl_le_p(ptr);
2381 break;
2382 case DEVICE_BIG_ENDIAN:
2383 val = ldl_be_p(ptr);
2384 break;
2385 default:
2386 val = ldl_p(ptr);
2387 break;
2390 return val;
2393 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
2395 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2398 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
2400 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2403 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
2405 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2408 /* warning: addr must be aligned */
2409 static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
2410 enum device_endian endian)
2412 uint8_t *ptr;
2413 uint64_t val;
2414 MemoryRegion *mr;
2415 hwaddr l = 8;
2416 hwaddr addr1;
2418 mr = address_space_translate(as, addr, &addr1, &l,
2419 false);
2420 if (l < 8 || !memory_access_is_direct(mr, false)) {
2421 /* I/O case */
2422 io_mem_read(mr, addr1, &val, 8);
2423 #if defined(TARGET_WORDS_BIGENDIAN)
2424 if (endian == DEVICE_LITTLE_ENDIAN) {
2425 val = bswap64(val);
2427 #else
2428 if (endian == DEVICE_BIG_ENDIAN) {
2429 val = bswap64(val);
2431 #endif
2432 } else {
2433 /* RAM case */
2434 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2435 & TARGET_PAGE_MASK)
2436 + addr1);
2437 switch (endian) {
2438 case DEVICE_LITTLE_ENDIAN:
2439 val = ldq_le_p(ptr);
2440 break;
2441 case DEVICE_BIG_ENDIAN:
2442 val = ldq_be_p(ptr);
2443 break;
2444 default:
2445 val = ldq_p(ptr);
2446 break;
2449 return val;
2452 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
2454 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2457 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
2459 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2462 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
2464 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2467 /* XXX: optimize */
2468 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
2470 uint8_t val;
2471 address_space_rw(as, addr, &val, 1, 0);
2472 return val;
2475 /* warning: addr must be aligned */
2476 static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
2477 enum device_endian endian)
2479 uint8_t *ptr;
2480 uint64_t val;
2481 MemoryRegion *mr;
2482 hwaddr l = 2;
2483 hwaddr addr1;
2485 mr = address_space_translate(as, addr, &addr1, &l,
2486 false);
2487 if (l < 2 || !memory_access_is_direct(mr, false)) {
2488 /* I/O case */
2489 io_mem_read(mr, addr1, &val, 2);
2490 #if defined(TARGET_WORDS_BIGENDIAN)
2491 if (endian == DEVICE_LITTLE_ENDIAN) {
2492 val = bswap16(val);
2494 #else
2495 if (endian == DEVICE_BIG_ENDIAN) {
2496 val = bswap16(val);
2498 #endif
2499 } else {
2500 /* RAM case */
2501 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2502 & TARGET_PAGE_MASK)
2503 + addr1);
2504 switch (endian) {
2505 case DEVICE_LITTLE_ENDIAN:
2506 val = lduw_le_p(ptr);
2507 break;
2508 case DEVICE_BIG_ENDIAN:
2509 val = lduw_be_p(ptr);
2510 break;
2511 default:
2512 val = lduw_p(ptr);
2513 break;
2516 return val;
2519 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
2521 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
2524 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
2526 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
2529 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
2531 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
2534 /* warning: addr must be aligned. The ram page is not masked as dirty
2535 and the code inside is not invalidated. It is useful if the dirty
2536 bits are used to track modified PTEs */
2537 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
2539 uint8_t *ptr;
2540 MemoryRegion *mr;
2541 hwaddr l = 4;
2542 hwaddr addr1;
2544 mr = address_space_translate(as, addr, &addr1, &l,
2545 true);
2546 if (l < 4 || !memory_access_is_direct(mr, true)) {
2547 io_mem_write(mr, addr1, val, 4);
2548 } else {
2549 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2550 ptr = qemu_get_ram_ptr(addr1);
2551 stl_p(ptr, val);
2553 if (unlikely(in_migration)) {
2554 if (cpu_physical_memory_is_clean(addr1)) {
2555 /* invalidate code */
2556 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2557 /* set dirty bit */
2558 cpu_physical_memory_set_dirty_flag(addr1,
2559 DIRTY_MEMORY_MIGRATION);
2560 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
2566 /* warning: addr must be aligned */
2567 static inline void stl_phys_internal(AddressSpace *as,
2568 hwaddr addr, uint32_t val,
2569 enum device_endian endian)
2571 uint8_t *ptr;
2572 MemoryRegion *mr;
2573 hwaddr l = 4;
2574 hwaddr addr1;
2576 mr = address_space_translate(as, addr, &addr1, &l,
2577 true);
2578 if (l < 4 || !memory_access_is_direct(mr, true)) {
2579 #if defined(TARGET_WORDS_BIGENDIAN)
2580 if (endian == DEVICE_LITTLE_ENDIAN) {
2581 val = bswap32(val);
2583 #else
2584 if (endian == DEVICE_BIG_ENDIAN) {
2585 val = bswap32(val);
2587 #endif
2588 io_mem_write(mr, addr1, val, 4);
2589 } else {
2590 /* RAM case */
2591 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2592 ptr = qemu_get_ram_ptr(addr1);
2593 switch (endian) {
2594 case DEVICE_LITTLE_ENDIAN:
2595 stl_le_p(ptr, val);
2596 break;
2597 case DEVICE_BIG_ENDIAN:
2598 stl_be_p(ptr, val);
2599 break;
2600 default:
2601 stl_p(ptr, val);
2602 break;
2604 invalidate_and_set_dirty(addr1, 4);
2608 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2610 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2613 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2615 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2618 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2620 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2623 /* XXX: optimize */
2624 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2626 uint8_t v = val;
2627 address_space_rw(as, addr, &v, 1, 1);
2630 /* warning: addr must be aligned */
2631 static inline void stw_phys_internal(AddressSpace *as,
2632 hwaddr addr, uint32_t val,
2633 enum device_endian endian)
2635 uint8_t *ptr;
2636 MemoryRegion *mr;
2637 hwaddr l = 2;
2638 hwaddr addr1;
2640 mr = address_space_translate(as, addr, &addr1, &l, true);
2641 if (l < 2 || !memory_access_is_direct(mr, true)) {
2642 #if defined(TARGET_WORDS_BIGENDIAN)
2643 if (endian == DEVICE_LITTLE_ENDIAN) {
2644 val = bswap16(val);
2646 #else
2647 if (endian == DEVICE_BIG_ENDIAN) {
2648 val = bswap16(val);
2650 #endif
2651 io_mem_write(mr, addr1, val, 2);
2652 } else {
2653 /* RAM case */
2654 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2655 ptr = qemu_get_ram_ptr(addr1);
2656 switch (endian) {
2657 case DEVICE_LITTLE_ENDIAN:
2658 stw_le_p(ptr, val);
2659 break;
2660 case DEVICE_BIG_ENDIAN:
2661 stw_be_p(ptr, val);
2662 break;
2663 default:
2664 stw_p(ptr, val);
2665 break;
2667 invalidate_and_set_dirty(addr1, 2);
2671 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2673 stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
2676 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2678 stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
2681 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
2683 stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
2686 /* XXX: optimize */
2687 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2689 val = tswap64(val);
2690 address_space_rw(as, addr, (void *) &val, 8, 1);
2693 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2695 val = cpu_to_le64(val);
2696 address_space_rw(as, addr, (void *) &val, 8, 1);
2699 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
2701 val = cpu_to_be64(val);
2702 address_space_rw(as, addr, (void *) &val, 8, 1);
2705 /* virtual memory access for debug (includes writing to ROM) */
2706 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2707 uint8_t *buf, int len, int is_write)
2709 int l;
2710 hwaddr phys_addr;
2711 target_ulong page;
2713 while (len > 0) {
2714 page = addr & TARGET_PAGE_MASK;
2715 phys_addr = cpu_get_phys_page_debug(cpu, page);
2716 /* if no physical page mapped, return an error */
2717 if (phys_addr == -1)
2718 return -1;
2719 l = (page + TARGET_PAGE_SIZE) - addr;
2720 if (l > len)
2721 l = len;
2722 phys_addr += (addr & ~TARGET_PAGE_MASK);
2723 if (is_write) {
2724 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
2725 } else {
2726 address_space_rw(cpu->as, phys_addr, buf, l, 0);
2728 len -= l;
2729 buf += l;
2730 addr += l;
2732 return 0;
2734 #endif
2736 #if !defined(CONFIG_USER_ONLY)
2739 * A helper function for the _utterly broken_ virtio device model to find out if
2740 * it's running on a big endian machine. Don't do this at home kids!
2742 bool virtio_is_big_endian(void);
2743 bool virtio_is_big_endian(void)
2745 #if defined(TARGET_WORDS_BIGENDIAN)
2746 return true;
2747 #else
2748 return false;
2749 #endif
2752 #endif
2754 #ifndef CONFIG_USER_ONLY
2755 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2757 MemoryRegion*mr;
2758 hwaddr l = 1;
2760 mr = address_space_translate(&address_space_memory,
2761 phys_addr, &phys_addr, &l, false);
2763 return !(memory_region_is_ram(mr) ||
2764 memory_region_is_romd(mr));
2767 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2769 RAMBlock *block;
2771 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2772 func(block->host, block->offset, block->length, opaque);
2775 #endif