4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/cpu_ldst.h"
25 #define SIGNBIT (uint32_t)0x80000000
26 #define SIGNBIT64 ((uint64_t)1 << 63)
28 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
29 uint32_t syndrome
, uint32_t target_el
)
31 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
33 assert(!excp_is_internal(excp
));
34 cs
->exception_index
= excp
;
35 env
->exception
.syndrome
= syndrome
;
36 env
->exception
.target_el
= target_el
;
40 static int exception_target_el(CPUARMState
*env
)
42 int target_el
= MAX(1, arm_current_el(env
));
44 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
45 * to EL3 in this case.
47 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
54 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
55 uint32_t rn
, uint32_t maxindex
)
62 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
64 for (shift
= 0; shift
< 32; shift
+= 8) {
65 index
= (ireg
>> shift
) & 0xff;
66 if (index
< maxindex
) {
67 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
70 val
|= def
& (0xff << shift
);
76 #if !defined(CONFIG_USER_ONLY)
78 /* try to fill the TLB and return an exception if error. If retaddr is
79 * NULL, it means that the function was called in C code (i.e. not
80 * from generated code or from helper.c)
82 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
87 ARMMMUFaultInfo fi
= {};
89 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
, &fi
);
91 ARMCPU
*cpu
= ARM_CPU(cs
);
92 CPUARMState
*env
= &cpu
->env
;
94 unsigned int target_el
;
98 /* now we have a real cpu fault */
99 cpu_restore_state(cs
, retaddr
);
102 target_el
= exception_target_el(env
);
105 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
107 same_el
= arm_current_el(env
) == target_el
;
108 /* AArch64 syndrome does not have an LPAE bit */
109 syn
= fsr
& ~(1 << 9);
111 /* For insn and data aborts we assume there is no instruction syndrome
112 * information; this is always true for exceptions reported to EL1.
115 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
116 exc
= EXCP_PREFETCH_ABORT
;
118 syn
= syn_data_abort(same_el
, 0, 0, fi
.s1ptw
, is_write
== 1, syn
);
119 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
122 exc
= EXCP_DATA_ABORT
;
125 env
->exception
.vaddress
= addr
;
126 env
->exception
.fsr
= fsr
;
127 raise_exception(env
, exc
, syn
, target_el
);
131 /* Raise a data fault alignment exception for the specified virtual address */
132 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
, int is_write
,
133 int is_user
, uintptr_t retaddr
)
135 ARMCPU
*cpu
= ARM_CPU(cs
);
136 CPUARMState
*env
= &cpu
->env
;
141 /* now we have a real cpu fault */
142 cpu_restore_state(cs
, retaddr
);
145 target_el
= exception_target_el(env
);
146 same_el
= (arm_current_el(env
) == target_el
);
148 env
->exception
.vaddress
= vaddr
;
150 /* the DFSR for an alignment fault depends on whether we're using
151 * the LPAE long descriptor format, or the short descriptor format
153 if (arm_s1_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
154 env
->exception
.fsr
= 0x21;
156 env
->exception
.fsr
= 0x1;
159 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
160 env
->exception
.fsr
|= (1 << 11);
163 raise_exception(env
, EXCP_DATA_ABORT
,
164 syn_data_abort(same_el
, 0, 0, 0, is_write
== 1, 0x21),
168 #endif /* !defined(CONFIG_USER_ONLY) */
170 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
172 uint32_t res
= a
+ b
;
173 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
178 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
180 uint32_t res
= a
+ b
;
181 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
183 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
188 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
190 uint32_t res
= a
- b
;
191 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
193 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
198 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
201 if (val
>= 0x40000000) {
204 } else if (val
<= (int32_t)0xc0000000) {
213 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
215 uint32_t res
= a
+ b
;
223 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
225 uint32_t res
= a
- b
;
233 /* Signed saturation. */
234 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
240 mask
= (1u << shift
) - 1;
244 } else if (top
< -1) {
251 /* Unsigned saturation. */
252 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
256 max
= (1u << shift
) - 1;
260 } else if (val
> max
) {
267 /* Signed saturate. */
268 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
270 return do_ssat(env
, x
, shift
);
273 /* Dual halfword signed saturate. */
274 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
278 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
279 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
283 /* Unsigned saturate. */
284 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
286 return do_usat(env
, x
, shift
);
289 /* Dual halfword unsigned saturate. */
290 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
294 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
295 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
299 void HELPER(setend
)(CPUARMState
*env
)
301 env
->uncached_cpsr
^= CPSR_E
;
304 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
305 * The function returns the target EL (1-3) if the instruction is to be trapped;
306 * otherwise it returns 0 indicating it is not trapped.
308 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
310 int cur_el
= arm_current_el(env
);
313 /* If we are currently in EL0 then we need to check if SCTLR is set up for
314 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
316 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
319 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
320 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
321 /* Secure EL0 and Secure PL1 is at EL3 */
327 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
332 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
333 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
334 * bits will be zero indicating no trap.
336 if (cur_el
< 2 && !arm_is_secure(env
)) {
337 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
338 if (env
->cp15
.hcr_el2
& mask
) {
343 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
345 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
346 if (env
->cp15
.scr_el3
& mask
) {
354 void HELPER(wfi
)(CPUARMState
*env
)
356 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
357 int target_el
= check_wfx_trap(env
, false);
359 if (cpu_has_work(cs
)) {
360 /* Don't bother to go into our "low power state" if
361 * we would just wake up immediately.
368 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
371 cs
->exception_index
= EXCP_HLT
;
376 void HELPER(wfe
)(CPUARMState
*env
)
378 /* This is a hint instruction that is semantically different
379 * from YIELD even though we currently implement it identically.
380 * Don't actually halt the CPU, just yield back to top
381 * level loop. This is not going into a "low power state"
382 * (ie halting until some event occurs), so we never take
383 * a configurable trap to a different exception level.
388 void HELPER(yield
)(CPUARMState
*env
)
390 ARMCPU
*cpu
= arm_env_get_cpu(env
);
391 CPUState
*cs
= CPU(cpu
);
393 /* This is a non-trappable hint instruction that generally indicates
394 * that the guest is currently busy-looping. Yield control back to the
395 * top level loop so that a more deserving VCPU has a chance to run.
397 cs
->exception_index
= EXCP_YIELD
;
401 /* Raise an internal-to-QEMU exception. This is limited to only
402 * those EXCP values which are special cases for QEMU to interrupt
403 * execution and not to be used for exceptions which are passed to
404 * the guest (those must all have syndrome information and thus should
405 * use exception_with_syndrome).
407 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
409 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
411 assert(excp_is_internal(excp
));
412 cs
->exception_index
= excp
;
416 /* Raise an exception with the specified syndrome register value */
417 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
418 uint32_t syndrome
, uint32_t target_el
)
420 raise_exception(env
, excp
, syndrome
, target_el
);
423 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
425 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
428 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
430 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
433 /* Write the CPSR for a 32-bit exception return */
434 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
436 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
439 /* Access to user mode registers from privileged modes. */
440 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
445 val
= env
->banked_r13
[BANK_USRSYS
];
446 } else if (regno
== 14) {
447 val
= env
->banked_r14
[BANK_USRSYS
];
448 } else if (regno
>= 8
449 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
450 val
= env
->usr_regs
[regno
- 8];
452 val
= env
->regs
[regno
];
457 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
460 env
->banked_r13
[BANK_USRSYS
] = val
;
461 } else if (regno
== 14) {
462 env
->banked_r14
[BANK_USRSYS
] = val
;
463 } else if (regno
>= 8
464 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
465 env
->usr_regs
[regno
- 8] = val
;
467 env
->regs
[regno
] = val
;
471 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
473 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
476 env
->banked_r13
[bank_number(mode
)] = val
;
480 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
482 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
483 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
484 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
486 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
487 exception_target_el(env
));
490 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
491 return env
->regs
[13];
493 return env
->banked_r13
[bank_number(mode
)];
497 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
500 /* Raise an exception if the requested access is one of the UNPREDICTABLE
501 * cases; otherwise return. This broadly corresponds to the pseudocode
502 * BankedRegisterAccessValid() and SPSRAccessValid(),
503 * except that we have already handled some cases at translate time.
505 int curmode
= env
->uncached_cpsr
& CPSR_M
;
507 if (curmode
== tgtmode
) {
511 if (tgtmode
== ARM_CPU_MODE_USR
) {
514 if (curmode
!= ARM_CPU_MODE_FIQ
) {
519 if (curmode
== ARM_CPU_MODE_SYS
) {
524 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
533 if (tgtmode
== ARM_CPU_MODE_HYP
) {
535 case 17: /* ELR_Hyp */
536 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
541 if (curmode
!= ARM_CPU_MODE_MON
) {
551 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
552 exception_target_el(env
));
555 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
558 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
562 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
564 case 17: /* ELR_Hyp */
565 env
->elr_el
[2] = value
;
568 env
->banked_r13
[bank_number(tgtmode
)] = value
;
571 env
->banked_r14
[bank_number(tgtmode
)] = value
;
575 case ARM_CPU_MODE_USR
:
576 env
->usr_regs
[regno
- 8] = value
;
578 case ARM_CPU_MODE_FIQ
:
579 env
->fiq_regs
[regno
- 8] = value
;
582 g_assert_not_reached();
586 g_assert_not_reached();
590 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
592 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
596 return env
->banked_spsr
[bank_number(tgtmode
)];
597 case 17: /* ELR_Hyp */
598 return env
->elr_el
[2];
600 return env
->banked_r13
[bank_number(tgtmode
)];
602 return env
->banked_r14
[bank_number(tgtmode
)];
605 case ARM_CPU_MODE_USR
:
606 return env
->usr_regs
[regno
- 8];
607 case ARM_CPU_MODE_FIQ
:
608 return env
->fiq_regs
[regno
- 8];
610 g_assert_not_reached();
613 g_assert_not_reached();
617 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
620 const ARMCPRegInfo
*ri
= rip
;
623 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
624 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
625 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
632 switch (ri
->accessfn(env
, ri
, isread
)) {
636 target_el
= exception_target_el(env
);
638 case CP_ACCESS_TRAP_EL2
:
639 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
640 * a bug in the access function.
642 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
645 case CP_ACCESS_TRAP_EL3
:
648 case CP_ACCESS_TRAP_UNCATEGORIZED
:
649 target_el
= exception_target_el(env
);
650 syndrome
= syn_uncategorized();
652 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
654 syndrome
= syn_uncategorized();
656 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
658 syndrome
= syn_uncategorized();
660 case CP_ACCESS_TRAP_FP_EL2
:
662 /* Since we are an implementation that takes exceptions on a trapped
663 * conditional insn only if the insn has passed its condition code
664 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
665 * (which is also the required value for AArch64 traps).
667 syndrome
= syn_fp_access_trap(1, 0xe, false);
669 case CP_ACCESS_TRAP_FP_EL3
:
671 syndrome
= syn_fp_access_trap(1, 0xe, false);
674 g_assert_not_reached();
677 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
680 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
682 const ARMCPRegInfo
*ri
= rip
;
684 ri
->writefn(env
, ri
, value
);
687 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
689 const ARMCPRegInfo
*ri
= rip
;
691 return ri
->readfn(env
, ri
);
694 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
696 const ARMCPRegInfo
*ri
= rip
;
698 ri
->writefn(env
, ri
, value
);
701 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
703 const ARMCPRegInfo
*ri
= rip
;
705 return ri
->readfn(env
, ri
);
708 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
710 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
711 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
712 * to catch that case at translate time.
714 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
715 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
716 extract32(op
, 3, 3), 4,
718 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
722 case 0x05: /* SPSel */
723 update_spsel(env
, imm
);
725 case 0x1e: /* DAIFSet */
726 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
728 case 0x1f: /* DAIFClear */
729 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
732 g_assert_not_reached();
736 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
738 env
->pstate
&= ~PSTATE_SS
;
741 void HELPER(pre_hvc
)(CPUARMState
*env
)
743 ARMCPU
*cpu
= arm_env_get_cpu(env
);
744 int cur_el
= arm_current_el(env
);
745 /* FIXME: Use actual secure state. */
749 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
750 /* If PSCI is enabled and this looks like a valid PSCI call then
751 * that overrides the architecturally mandated HVC behaviour.
756 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
757 /* If EL2 doesn't exist, HVC always UNDEFs */
759 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
760 /* EL3.HCE has priority over EL2.HCD. */
761 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
763 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
766 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
767 * For ARMv8/AArch64, HVC is allowed in EL3.
768 * Note that we've already trapped HVC from EL0 at translation
771 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
776 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
777 exception_target_el(env
));
781 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
783 ARMCPU
*cpu
= arm_env_get_cpu(env
);
784 int cur_el
= arm_current_el(env
);
785 bool secure
= arm_is_secure(env
);
786 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
787 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
788 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
789 * extensions, SMD only applies to NS state.
790 * On ARMv7 without the Virtualization extensions, the SMD bit
791 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
792 * so we need not special case this here.
794 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
796 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
797 /* If PSCI is enabled and this looks like a valid PSCI call then
798 * that overrides the architecturally mandated SMC behaviour.
803 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
804 /* If we have no EL3 then SMC always UNDEFs */
806 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
807 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
808 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
812 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
813 exception_target_el(env
));
817 static int el_from_spsr(uint32_t spsr
)
819 /* Return the exception level that this SPSR is requesting a return to,
820 * or -1 if it is invalid (an illegal return)
822 if (spsr
& PSTATE_nRW
) {
823 switch (spsr
& CPSR_M
) {
824 case ARM_CPU_MODE_USR
:
826 case ARM_CPU_MODE_HYP
:
828 case ARM_CPU_MODE_FIQ
:
829 case ARM_CPU_MODE_IRQ
:
830 case ARM_CPU_MODE_SVC
:
831 case ARM_CPU_MODE_ABT
:
832 case ARM_CPU_MODE_UND
:
833 case ARM_CPU_MODE_SYS
:
835 case ARM_CPU_MODE_MON
:
836 /* Returning to Mon from AArch64 is never possible,
837 * so this is an illegal return.
843 if (extract32(spsr
, 1, 1)) {
844 /* Return with reserved M[1] bit set */
847 if (extract32(spsr
, 0, 4) == 1) {
848 /* return to EL0 with M[0] bit set */
851 return extract32(spsr
, 2, 2);
855 void HELPER(exception_return
)(CPUARMState
*env
)
857 int cur_el
= arm_current_el(env
);
858 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
859 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
861 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
863 aarch64_save_sp(env
, cur_el
);
865 env
->exclusive_addr
= -1;
867 /* We must squash the PSTATE.SS bit to zero unless both of the
869 * 1. debug exceptions are currently disabled
870 * 2. singlestep will be active in the EL we return to
871 * We check 1 here and 2 after we've done the pstate/cpsr write() to
872 * transition to the EL we're going to.
874 if (arm_generate_debug_exceptions(env
)) {
878 new_el
= el_from_spsr(spsr
);
883 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
884 /* Disallow return to an EL which is unimplemented or higher
885 * than the current one.
890 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
891 /* Return to an EL which is configured for a different register width */
895 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
896 /* Return to the non-existent secure-EL2 */
900 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
901 && !arm_is_secure_below_el3(env
)) {
905 if (!return_to_aa64
) {
907 /* We do a raw CPSR write because aarch64_sync_64_to_32()
908 * will sort the register banks out for us, and we've already
909 * caught all the bad-mode cases in el_from_spsr().
911 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
912 if (!arm_singlestep_active(env
)) {
913 env
->uncached_cpsr
&= ~PSTATE_SS
;
915 aarch64_sync_64_to_32(env
);
918 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
920 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
924 pstate_write(env
, spsr
);
925 if (!arm_singlestep_active(env
)) {
926 env
->pstate
&= ~PSTATE_SS
;
928 aarch64_restore_sp(env
, new_el
);
929 env
->pc
= env
->elr_el
[cur_el
];
935 /* Illegal return events of various kinds have architecturally
936 * mandated behaviour:
937 * restore NZCV and DAIF from SPSR_ELx
939 * restore PC from ELR_ELx
940 * no change to exception level, execution state or stack pointer
942 env
->pstate
|= PSTATE_IL
;
943 env
->pc
= env
->elr_el
[cur_el
];
944 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
945 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
946 pstate_write(env
, spsr
);
947 if (!arm_singlestep_active(env
)) {
948 env
->pstate
&= ~PSTATE_SS
;
952 /* Return true if the linked breakpoint entry lbn passes its checks */
953 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
955 CPUARMState
*env
= &cpu
->env
;
956 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
957 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
958 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
962 /* Links to unimplemented or non-context aware breakpoints are
963 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
964 * as if linked to an UNKNOWN context-aware breakpoint (in which
965 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
966 * We choose the former.
968 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
972 bcr
= env
->cp15
.dbgbcr
[lbn
];
974 if (extract64(bcr
, 0, 1) == 0) {
975 /* Linked breakpoint disabled : generate no events */
979 bt
= extract64(bcr
, 20, 4);
981 /* We match the whole register even if this is AArch32 using the
982 * short descriptor format (in which case it holds both PROCID and ASID),
983 * since we don't implement the optional v7 context ID masking.
985 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
988 case 3: /* linked context ID match */
989 if (arm_current_el(env
) > 1) {
990 /* Context matches never fire in EL2 or (AArch64) EL3 */
993 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
994 case 5: /* linked address mismatch (reserved in AArch64) */
995 case 9: /* linked VMID match (reserved if no EL2) */
996 case 11: /* linked context ID and VMID match (reserved if no EL2) */
998 /* Links to Unlinked context breakpoints must generate no
999 * events; we choose to do the same for reserved values too.
1007 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1009 CPUARMState
*env
= &cpu
->env
;
1011 int pac
, hmc
, ssc
, wt
, lbn
;
1012 /* Note that for watchpoints the check is against the CPU security
1013 * state, not the S/NS attribute on the offending data access.
1015 bool is_secure
= arm_is_secure(env
);
1016 int access_el
= arm_current_el(env
);
1019 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1021 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1024 cr
= env
->cp15
.dbgwcr
[n
];
1025 if (wp
->hitattrs
.user
) {
1026 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1027 * match watchpoints as if they were accesses done at EL0, even if
1028 * the CPU is at EL1 or higher.
1033 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1035 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1038 cr
= env
->cp15
.dbgbcr
[n
];
1040 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1041 * enabled and that the address and access type match; for breakpoints
1042 * we know the address matched; check the remaining fields, including
1043 * linked breakpoints. We rely on WCR and BCR having the same layout
1044 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1045 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1046 * must act either like some valid combination or as if the watchpoint
1047 * were disabled. We choose the former, and use this together with
1048 * the fact that EL3 must always be Secure and EL2 must always be
1049 * Non-Secure to simplify the code slightly compared to the full
1050 * table in the ARM ARM.
1052 pac
= extract64(cr
, 1, 2);
1053 hmc
= extract64(cr
, 13, 1);
1054 ssc
= extract64(cr
, 14, 2);
1072 switch (access_el
) {
1080 if (extract32(pac
, 0, 1) == 0) {
1085 if (extract32(pac
, 1, 1) == 0) {
1090 g_assert_not_reached();
1093 wt
= extract64(cr
, 20, 1);
1094 lbn
= extract64(cr
, 16, 4);
1096 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1103 static bool check_watchpoints(ARMCPU
*cpu
)
1105 CPUARMState
*env
= &cpu
->env
;
1108 /* If watchpoints are disabled globally or we can't take debug
1109 * exceptions here then watchpoint firings are ignored.
1111 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1112 || !arm_generate_debug_exceptions(env
)) {
1116 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1117 if (bp_wp_matches(cpu
, n
, true)) {
1124 static bool check_breakpoints(ARMCPU
*cpu
)
1126 CPUARMState
*env
= &cpu
->env
;
1129 /* If breakpoints are disabled globally or we can't take debug
1130 * exceptions here then breakpoint firings are ignored.
1132 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1133 || !arm_generate_debug_exceptions(env
)) {
1137 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1138 if (bp_wp_matches(cpu
, n
, false)) {
1145 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1147 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1149 if (check_breakpoints(cpu
)) {
1150 HELPER(exception_internal(env
, EXCP_DEBUG
));
1154 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1156 /* Called by core code when a CPU watchpoint fires; need to check if this
1157 * is also an architectural watchpoint match.
1159 ARMCPU
*cpu
= ARM_CPU(cs
);
1161 return check_watchpoints(cpu
);
1164 void arm_debug_excp_handler(CPUState
*cs
)
1166 /* Called by core code when a watchpoint or breakpoint fires;
1167 * need to check which one and raise the appropriate exception.
1169 ARMCPU
*cpu
= ARM_CPU(cs
);
1170 CPUARMState
*env
= &cpu
->env
;
1171 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1174 if (wp_hit
->flags
& BP_CPU
) {
1175 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1176 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1178 cs
->watchpoint_hit
= NULL
;
1180 if (extended_addresses_enabled(env
)) {
1181 env
->exception
.fsr
= (1 << 9) | 0x22;
1183 env
->exception
.fsr
= 0x2;
1185 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1186 raise_exception(env
, EXCP_DATA_ABORT
,
1187 syn_watchpoint(same_el
, 0, wnr
),
1188 arm_debug_target_el(env
));
1191 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1192 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1194 /* (1) GDB breakpoints should be handled first.
1195 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1196 * since singlestep is also done by generating a debug internal
1199 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1200 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1204 if (extended_addresses_enabled(env
)) {
1205 env
->exception
.fsr
= (1 << 9) | 0x22;
1207 env
->exception
.fsr
= 0x2;
1209 /* FAR is UNKNOWN, so doesn't need setting */
1210 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1211 syn_breakpoint(same_el
),
1212 arm_debug_target_el(env
));
1216 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1217 The only way to do that in TCG is a conditional branch, which clobbers
1218 all our temporaries. For now implement these as helper functions. */
1220 /* Similarly for variable shift instructions. */
1222 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1224 int shift
= i
& 0xff;
1231 } else if (shift
!= 0) {
1232 env
->CF
= (x
>> (32 - shift
)) & 1;
1238 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1240 int shift
= i
& 0xff;
1243 env
->CF
= (x
>> 31) & 1;
1247 } else if (shift
!= 0) {
1248 env
->CF
= (x
>> (shift
- 1)) & 1;
1254 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1256 int shift
= i
& 0xff;
1258 env
->CF
= (x
>> 31) & 1;
1259 return (int32_t)x
>> 31;
1260 } else if (shift
!= 0) {
1261 env
->CF
= (x
>> (shift
- 1)) & 1;
1262 return (int32_t)x
>> shift
;
1267 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1271 shift
= shift1
& 0x1f;
1274 env
->CF
= (x
>> 31) & 1;
1277 env
->CF
= (x
>> (shift
- 1)) & 1;
1278 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));