scripts/make-release: ship u-boot source as a tarball
[qemu.git] / exec.c
blob03238a3449d99860c4cee407254540ff6a740dbb
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
124 bool set_preferred_target_page_bits(int bits)
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
137 target_page_bits = bits;
139 #endif
140 return true;
143 #if !defined(CONFIG_USER_ONLY)
145 static void finalize_target_page_bits(void)
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
151 target_page_bits_decided = true;
152 #endif
155 typedef struct PhysPageEntry PhysPageEntry;
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
174 typedef PhysPageEntry Node[P_L2_SIZE];
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
192 PhysPageEntry phys_map;
193 PhysPageMap map;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
213 static MemoryRegion io_mem_watch;
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
235 #endif
237 #if !defined(CONFIG_USER_ONLY)
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
267 return ret;
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
292 ++lp;
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
338 assert(valid_ptr < P_L2_SIZE);
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
400 bool memory_region_is_unassigned(MemoryRegion *mr)
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
414 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
415 !section_covers_addr(section, addr)) {
416 section = phys_page_find(d, addr);
417 atomic_set(&d->mru_section, section);
419 if (resolve_subpage && section->mr->subpage) {
420 subpage = container_of(section->mr, subpage_t, iomem);
421 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
423 return section;
426 /* Called from RCU critical section */
427 static MemoryRegionSection *
428 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
429 hwaddr *plen, bool resolve_subpage)
431 MemoryRegionSection *section;
432 MemoryRegion *mr;
433 Int128 diff;
435 section = address_space_lookup_region(d, addr, resolve_subpage);
436 /* Compute offset within MemoryRegionSection */
437 addr -= section->offset_within_address_space;
439 /* Compute offset within MemoryRegion */
440 *xlat = addr + section->offset_within_region;
442 mr = section->mr;
444 /* MMIO registers can be expected to perform full-width accesses based only
445 * on their address, without considering adjacent registers that could
446 * decode to completely different MemoryRegions. When such registers
447 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
448 * regions overlap wildly. For this reason we cannot clamp the accesses
449 * here.
451 * If the length is small (as is the case for address_space_ldl/stl),
452 * everything works fine. If the incoming length is large, however,
453 * the caller really has to do the clamping through memory_access_size.
455 if (memory_region_is_ram(mr)) {
456 diff = int128_sub(section->size, int128_make64(addr));
457 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
459 return section;
463 * flatview_do_translate - translate an address in FlatView
465 * @fv: the flat view that we want to translate on
466 * @addr: the address to be translated in above address space
467 * @xlat: the translated address offset within memory region. It
468 * cannot be @NULL.
469 * @plen_out: valid read/write length of the translated address. It
470 * can be @NULL when we don't care about it.
471 * @page_mask_out: page mask for the translated address. This
472 * should only be meaningful for IOMMU translated
473 * addresses, since there may be huge pages that this bit
474 * would tell. It can be @NULL if we don't care about it.
475 * @is_write: whether the translation operation is for write
476 * @is_mmio: whether this can be MMIO, set true if it can
478 * This function is called from RCU critical section
480 static MemoryRegionSection flatview_do_translate(FlatView *fv,
481 hwaddr addr,
482 hwaddr *xlat,
483 hwaddr *plen_out,
484 hwaddr *page_mask_out,
485 bool is_write,
486 bool is_mmio,
487 AddressSpace **target_as)
489 IOMMUTLBEntry iotlb;
490 MemoryRegionSection *section;
491 IOMMUMemoryRegion *iommu_mr;
492 IOMMUMemoryRegionClass *imrc;
493 hwaddr page_mask = (hwaddr)(-1);
494 hwaddr plen = (hwaddr)(-1);
496 if (plen_out) {
497 plen = *plen_out;
500 for (;;) {
501 section = address_space_translate_internal(
502 flatview_to_dispatch(fv), addr, &addr,
503 &plen, is_mmio);
505 iommu_mr = memory_region_get_iommu(section->mr);
506 if (!iommu_mr) {
507 break;
509 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO);
513 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
514 | (addr & iotlb.addr_mask));
515 page_mask &= iotlb.addr_mask;
516 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
517 if (!(iotlb.perm & (1 << is_write))) {
518 goto translate_fail;
521 fv = address_space_to_flatview(iotlb.target_as);
522 *target_as = iotlb.target_as;
525 *xlat = addr;
527 if (page_mask == (hwaddr)(-1)) {
528 /* Not behind an IOMMU, use default page size. */
529 page_mask = ~TARGET_PAGE_MASK;
532 if (page_mask_out) {
533 *page_mask_out = page_mask;
536 if (plen_out) {
537 *plen_out = plen;
540 return *section;
542 translate_fail:
543 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
546 /* Called from RCU critical section */
547 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
548 bool is_write)
550 MemoryRegionSection section;
551 hwaddr xlat, page_mask;
554 * This can never be MMIO, and we don't really care about plen,
555 * but page mask.
557 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
558 NULL, &page_mask, is_write, false, &as);
560 /* Illegal translation */
561 if (section.mr == &io_mem_unassigned) {
562 goto iotlb_fail;
565 /* Convert memory region offset into address space offset */
566 xlat += section.offset_within_address_space -
567 section.offset_within_region;
569 return (IOMMUTLBEntry) {
570 .target_as = as,
571 .iova = addr & ~page_mask,
572 .translated_addr = xlat & ~page_mask,
573 .addr_mask = page_mask,
574 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
575 .perm = IOMMU_RW,
578 iotlb_fail:
579 return (IOMMUTLBEntry) {0};
582 /* Called from RCU critical section */
583 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
584 hwaddr *plen, bool is_write)
586 MemoryRegion *mr;
587 MemoryRegionSection section;
588 AddressSpace *as = NULL;
590 /* This can be MMIO, so setup MMIO bit. */
591 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
592 is_write, true, &as);
593 mr = section.mr;
595 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
596 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
597 *plen = MIN(page, *plen);
600 return mr;
603 /* Called from RCU critical section */
604 MemoryRegionSection *
605 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
606 hwaddr *xlat, hwaddr *plen)
608 MemoryRegionSection *section;
609 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
611 section = address_space_translate_internal(d, addr, xlat, plen, false);
613 assert(!memory_region_is_iommu(section->mr));
614 return section;
616 #endif
618 #if !defined(CONFIG_USER_ONLY)
620 static int cpu_common_post_load(void *opaque, int version_id)
622 CPUState *cpu = opaque;
624 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
625 version_id is increased. */
626 cpu->interrupt_request &= ~0x01;
627 tlb_flush(cpu);
629 return 0;
632 static int cpu_common_pre_load(void *opaque)
634 CPUState *cpu = opaque;
636 cpu->exception_index = -1;
638 return 0;
641 static bool cpu_common_exception_index_needed(void *opaque)
643 CPUState *cpu = opaque;
645 return tcg_enabled() && cpu->exception_index != -1;
648 static const VMStateDescription vmstate_cpu_common_exception_index = {
649 .name = "cpu_common/exception_index",
650 .version_id = 1,
651 .minimum_version_id = 1,
652 .needed = cpu_common_exception_index_needed,
653 .fields = (VMStateField[]) {
654 VMSTATE_INT32(exception_index, CPUState),
655 VMSTATE_END_OF_LIST()
659 static bool cpu_common_crash_occurred_needed(void *opaque)
661 CPUState *cpu = opaque;
663 return cpu->crash_occurred;
666 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
667 .name = "cpu_common/crash_occurred",
668 .version_id = 1,
669 .minimum_version_id = 1,
670 .needed = cpu_common_crash_occurred_needed,
671 .fields = (VMStateField[]) {
672 VMSTATE_BOOL(crash_occurred, CPUState),
673 VMSTATE_END_OF_LIST()
677 const VMStateDescription vmstate_cpu_common = {
678 .name = "cpu_common",
679 .version_id = 1,
680 .minimum_version_id = 1,
681 .pre_load = cpu_common_pre_load,
682 .post_load = cpu_common_post_load,
683 .fields = (VMStateField[]) {
684 VMSTATE_UINT32(halted, CPUState),
685 VMSTATE_UINT32(interrupt_request, CPUState),
686 VMSTATE_END_OF_LIST()
688 .subsections = (const VMStateDescription*[]) {
689 &vmstate_cpu_common_exception_index,
690 &vmstate_cpu_common_crash_occurred,
691 NULL
695 #endif
697 CPUState *qemu_get_cpu(int index)
699 CPUState *cpu;
701 CPU_FOREACH(cpu) {
702 if (cpu->cpu_index == index) {
703 return cpu;
707 return NULL;
710 #if !defined(CONFIG_USER_ONLY)
711 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
713 CPUAddressSpace *newas;
715 /* Target code should have set num_ases before calling us */
716 assert(asidx < cpu->num_ases);
718 if (asidx == 0) {
719 /* address space 0 gets the convenience alias */
720 cpu->as = as;
723 /* KVM cannot currently support multiple address spaces. */
724 assert(asidx == 0 || !kvm_enabled());
726 if (!cpu->cpu_ases) {
727 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
730 newas = &cpu->cpu_ases[asidx];
731 newas->cpu = cpu;
732 newas->as = as;
733 if (tcg_enabled()) {
734 newas->tcg_as_listener.commit = tcg_commit;
735 memory_listener_register(&newas->tcg_as_listener, as);
739 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
741 /* Return the AddressSpace corresponding to the specified index */
742 return cpu->cpu_ases[asidx].as;
744 #endif
746 void cpu_exec_unrealizefn(CPUState *cpu)
748 CPUClass *cc = CPU_GET_CLASS(cpu);
750 cpu_list_remove(cpu);
752 if (cc->vmsd != NULL) {
753 vmstate_unregister(NULL, cc->vmsd, cpu);
755 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
756 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
760 Property cpu_common_props[] = {
761 #ifndef CONFIG_USER_ONLY
762 /* Create a memory property for softmmu CPU object,
763 * so users can wire up its memory. (This can't go in qom/cpu.c
764 * because that file is compiled only once for both user-mode
765 * and system builds.) The default if no link is set up is to use
766 * the system address space.
768 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
769 MemoryRegion *),
770 #endif
771 DEFINE_PROP_END_OF_LIST(),
774 void cpu_exec_initfn(CPUState *cpu)
776 cpu->as = NULL;
777 cpu->num_ases = 0;
779 #ifndef CONFIG_USER_ONLY
780 cpu->thread_id = qemu_get_thread_id();
781 cpu->memory = system_memory;
782 object_ref(OBJECT(cpu->memory));
783 #endif
786 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
788 CPUClass *cc = CPU_GET_CLASS(cpu);
789 static bool tcg_target_initialized;
791 cpu_list_add(cpu);
793 if (tcg_enabled() && !tcg_target_initialized) {
794 tcg_target_initialized = true;
795 cc->tcg_initialize();
798 #ifndef CONFIG_USER_ONLY
799 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
800 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
802 if (cc->vmsd != NULL) {
803 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
805 #endif
808 #if defined(CONFIG_USER_ONLY)
809 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
811 mmap_lock();
812 tb_lock();
813 tb_invalidate_phys_page_range(pc, pc + 1, 0);
814 tb_unlock();
815 mmap_unlock();
817 #else
818 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
820 MemTxAttrs attrs;
821 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
822 int asidx = cpu_asidx_from_attrs(cpu, attrs);
823 if (phys != -1) {
824 /* Locks grabbed by tb_invalidate_phys_addr */
825 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
826 phys | (pc & ~TARGET_PAGE_MASK));
829 #endif
831 #if defined(CONFIG_USER_ONLY)
832 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
837 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
838 int flags)
840 return -ENOSYS;
843 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
847 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
848 int flags, CPUWatchpoint **watchpoint)
850 return -ENOSYS;
852 #else
853 /* Add a watchpoint. */
854 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
855 int flags, CPUWatchpoint **watchpoint)
857 CPUWatchpoint *wp;
859 /* forbid ranges which are empty or run off the end of the address space */
860 if (len == 0 || (addr + len - 1) < addr) {
861 error_report("tried to set invalid watchpoint at %"
862 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
863 return -EINVAL;
865 wp = g_malloc(sizeof(*wp));
867 wp->vaddr = addr;
868 wp->len = len;
869 wp->flags = flags;
871 /* keep all GDB-injected watchpoints in front */
872 if (flags & BP_GDB) {
873 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
874 } else {
875 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
878 tlb_flush_page(cpu, addr);
880 if (watchpoint)
881 *watchpoint = wp;
882 return 0;
885 /* Remove a specific watchpoint. */
886 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
887 int flags)
889 CPUWatchpoint *wp;
891 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
892 if (addr == wp->vaddr && len == wp->len
893 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
894 cpu_watchpoint_remove_by_ref(cpu, wp);
895 return 0;
898 return -ENOENT;
901 /* Remove a specific watchpoint by reference. */
902 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
904 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
906 tlb_flush_page(cpu, watchpoint->vaddr);
908 g_free(watchpoint);
911 /* Remove all matching watchpoints. */
912 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
914 CPUWatchpoint *wp, *next;
916 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
917 if (wp->flags & mask) {
918 cpu_watchpoint_remove_by_ref(cpu, wp);
923 /* Return true if this watchpoint address matches the specified
924 * access (ie the address range covered by the watchpoint overlaps
925 * partially or completely with the address range covered by the
926 * access).
928 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
929 vaddr addr,
930 vaddr len)
932 /* We know the lengths are non-zero, but a little caution is
933 * required to avoid errors in the case where the range ends
934 * exactly at the top of the address space and so addr + len
935 * wraps round to zero.
937 vaddr wpend = wp->vaddr + wp->len - 1;
938 vaddr addrend = addr + len - 1;
940 return !(addr > wpend || wp->vaddr > addrend);
943 #endif
945 /* Add a breakpoint. */
946 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
947 CPUBreakpoint **breakpoint)
949 CPUBreakpoint *bp;
951 bp = g_malloc(sizeof(*bp));
953 bp->pc = pc;
954 bp->flags = flags;
956 /* keep all GDB-injected breakpoints in front */
957 if (flags & BP_GDB) {
958 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
959 } else {
960 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
963 breakpoint_invalidate(cpu, pc);
965 if (breakpoint) {
966 *breakpoint = bp;
968 return 0;
971 /* Remove a specific breakpoint. */
972 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
974 CPUBreakpoint *bp;
976 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
977 if (bp->pc == pc && bp->flags == flags) {
978 cpu_breakpoint_remove_by_ref(cpu, bp);
979 return 0;
982 return -ENOENT;
985 /* Remove a specific breakpoint by reference. */
986 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
988 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
990 breakpoint_invalidate(cpu, breakpoint->pc);
992 g_free(breakpoint);
995 /* Remove all matching breakpoints. */
996 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
998 CPUBreakpoint *bp, *next;
1000 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1001 if (bp->flags & mask) {
1002 cpu_breakpoint_remove_by_ref(cpu, bp);
1007 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1008 CPU loop after each instruction */
1009 void cpu_single_step(CPUState *cpu, int enabled)
1011 if (cpu->singlestep_enabled != enabled) {
1012 cpu->singlestep_enabled = enabled;
1013 if (kvm_enabled()) {
1014 kvm_update_guest_debug(cpu, 0);
1015 } else {
1016 /* must flush all the translated code to avoid inconsistencies */
1017 /* XXX: only flush what is necessary */
1018 tb_flush(cpu);
1023 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1025 va_list ap;
1026 va_list ap2;
1028 va_start(ap, fmt);
1029 va_copy(ap2, ap);
1030 fprintf(stderr, "qemu: fatal: ");
1031 vfprintf(stderr, fmt, ap);
1032 fprintf(stderr, "\n");
1033 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1034 if (qemu_log_separate()) {
1035 qemu_log_lock();
1036 qemu_log("qemu: fatal: ");
1037 qemu_log_vprintf(fmt, ap2);
1038 qemu_log("\n");
1039 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1040 qemu_log_flush();
1041 qemu_log_unlock();
1042 qemu_log_close();
1044 va_end(ap2);
1045 va_end(ap);
1046 replay_finish();
1047 #if defined(CONFIG_USER_ONLY)
1049 struct sigaction act;
1050 sigfillset(&act.sa_mask);
1051 act.sa_handler = SIG_DFL;
1052 sigaction(SIGABRT, &act, NULL);
1054 #endif
1055 abort();
1058 #if !defined(CONFIG_USER_ONLY)
1059 /* Called from RCU critical section */
1060 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1062 RAMBlock *block;
1064 block = atomic_rcu_read(&ram_list.mru_block);
1065 if (block && addr - block->offset < block->max_length) {
1066 return block;
1068 RAMBLOCK_FOREACH(block) {
1069 if (addr - block->offset < block->max_length) {
1070 goto found;
1074 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1075 abort();
1077 found:
1078 /* It is safe to write mru_block outside the iothread lock. This
1079 * is what happens:
1081 * mru_block = xxx
1082 * rcu_read_unlock()
1083 * xxx removed from list
1084 * rcu_read_lock()
1085 * read mru_block
1086 * mru_block = NULL;
1087 * call_rcu(reclaim_ramblock, xxx);
1088 * rcu_read_unlock()
1090 * atomic_rcu_set is not needed here. The block was already published
1091 * when it was placed into the list. Here we're just making an extra
1092 * copy of the pointer.
1094 ram_list.mru_block = block;
1095 return block;
1098 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1100 CPUState *cpu;
1101 ram_addr_t start1;
1102 RAMBlock *block;
1103 ram_addr_t end;
1105 end = TARGET_PAGE_ALIGN(start + length);
1106 start &= TARGET_PAGE_MASK;
1108 rcu_read_lock();
1109 block = qemu_get_ram_block(start);
1110 assert(block == qemu_get_ram_block(end - 1));
1111 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1112 CPU_FOREACH(cpu) {
1113 tlb_reset_dirty(cpu, start1, length);
1115 rcu_read_unlock();
1118 /* Note: start and end must be within the same ram block. */
1119 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1120 ram_addr_t length,
1121 unsigned client)
1123 DirtyMemoryBlocks *blocks;
1124 unsigned long end, page;
1125 bool dirty = false;
1127 if (length == 0) {
1128 return false;
1131 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1132 page = start >> TARGET_PAGE_BITS;
1134 rcu_read_lock();
1136 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1138 while (page < end) {
1139 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1140 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1141 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1143 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1144 offset, num);
1145 page += num;
1148 rcu_read_unlock();
1150 if (dirty && tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1154 return dirty;
1157 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1158 (ram_addr_t start, ram_addr_t length, unsigned client)
1160 DirtyMemoryBlocks *blocks;
1161 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1162 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1163 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1164 DirtyBitmapSnapshot *snap;
1165 unsigned long page, end, dest;
1167 snap = g_malloc0(sizeof(*snap) +
1168 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1169 snap->start = first;
1170 snap->end = last;
1172 page = first >> TARGET_PAGE_BITS;
1173 end = last >> TARGET_PAGE_BITS;
1174 dest = 0;
1176 rcu_read_lock();
1178 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1180 while (page < end) {
1181 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1182 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1183 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1185 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1186 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1187 offset >>= BITS_PER_LEVEL;
1189 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1190 blocks->blocks[idx] + offset,
1191 num);
1192 page += num;
1193 dest += num >> BITS_PER_LEVEL;
1196 rcu_read_unlock();
1198 if (tcg_enabled()) {
1199 tlb_reset_dirty_range_all(start, length);
1202 return snap;
1205 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1206 ram_addr_t start,
1207 ram_addr_t length)
1209 unsigned long page, end;
1211 assert(start >= snap->start);
1212 assert(start + length <= snap->end);
1214 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1215 page = (start - snap->start) >> TARGET_PAGE_BITS;
1217 while (page < end) {
1218 if (test_bit(page, snap->dirty)) {
1219 return true;
1221 page++;
1223 return false;
1226 /* Called from RCU critical section */
1227 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1228 MemoryRegionSection *section,
1229 target_ulong vaddr,
1230 hwaddr paddr, hwaddr xlat,
1231 int prot,
1232 target_ulong *address)
1234 hwaddr iotlb;
1235 CPUWatchpoint *wp;
1237 if (memory_region_is_ram(section->mr)) {
1238 /* Normal RAM. */
1239 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1240 if (!section->readonly) {
1241 iotlb |= PHYS_SECTION_NOTDIRTY;
1242 } else {
1243 iotlb |= PHYS_SECTION_ROM;
1245 } else {
1246 AddressSpaceDispatch *d;
1248 d = flatview_to_dispatch(section->fv);
1249 iotlb = section - d->map.sections;
1250 iotlb += xlat;
1253 /* Make accesses to pages with watchpoints go via the
1254 watchpoint trap routines. */
1255 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1256 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1257 /* Avoid trapping reads of pages with a write breakpoint. */
1258 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1259 iotlb = PHYS_SECTION_WATCH + paddr;
1260 *address |= TLB_MMIO;
1261 break;
1266 return iotlb;
1268 #endif /* defined(CONFIG_USER_ONLY) */
1270 #if !defined(CONFIG_USER_ONLY)
1272 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1273 uint16_t section);
1274 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1276 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1277 qemu_anon_ram_alloc;
1280 * Set a custom physical guest memory alloator.
1281 * Accelerators with unusual needs may need this. Hopefully, we can
1282 * get rid of it eventually.
1284 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1286 phys_mem_alloc = alloc;
1289 static uint16_t phys_section_add(PhysPageMap *map,
1290 MemoryRegionSection *section)
1292 /* The physical section number is ORed with a page-aligned
1293 * pointer to produce the iotlb entries. Thus it should
1294 * never overflow into the page-aligned value.
1296 assert(map->sections_nb < TARGET_PAGE_SIZE);
1298 if (map->sections_nb == map->sections_nb_alloc) {
1299 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1300 map->sections = g_renew(MemoryRegionSection, map->sections,
1301 map->sections_nb_alloc);
1303 map->sections[map->sections_nb] = *section;
1304 memory_region_ref(section->mr);
1305 return map->sections_nb++;
1308 static void phys_section_destroy(MemoryRegion *mr)
1310 bool have_sub_page = mr->subpage;
1312 memory_region_unref(mr);
1314 if (have_sub_page) {
1315 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1316 object_unref(OBJECT(&subpage->iomem));
1317 g_free(subpage);
1321 static void phys_sections_free(PhysPageMap *map)
1323 while (map->sections_nb > 0) {
1324 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1325 phys_section_destroy(section->mr);
1327 g_free(map->sections);
1328 g_free(map->nodes);
1331 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1333 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1334 subpage_t *subpage;
1335 hwaddr base = section->offset_within_address_space
1336 & TARGET_PAGE_MASK;
1337 MemoryRegionSection *existing = phys_page_find(d, base);
1338 MemoryRegionSection subsection = {
1339 .offset_within_address_space = base,
1340 .size = int128_make64(TARGET_PAGE_SIZE),
1342 hwaddr start, end;
1344 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1346 if (!(existing->mr->subpage)) {
1347 subpage = subpage_init(fv, base);
1348 subsection.fv = fv;
1349 subsection.mr = &subpage->iomem;
1350 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1351 phys_section_add(&d->map, &subsection));
1352 } else {
1353 subpage = container_of(existing->mr, subpage_t, iomem);
1355 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1356 end = start + int128_get64(section->size) - 1;
1357 subpage_register(subpage, start, end,
1358 phys_section_add(&d->map, section));
1362 static void register_multipage(FlatView *fv,
1363 MemoryRegionSection *section)
1365 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1366 hwaddr start_addr = section->offset_within_address_space;
1367 uint16_t section_index = phys_section_add(&d->map, section);
1368 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1369 TARGET_PAGE_BITS));
1371 assert(num_pages);
1372 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1375 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1377 MemoryRegionSection now = *section, remain = *section;
1378 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1380 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1381 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1382 - now.offset_within_address_space;
1384 now.size = int128_min(int128_make64(left), now.size);
1385 register_subpage(fv, &now);
1386 } else {
1387 now.size = int128_zero();
1389 while (int128_ne(remain.size, now.size)) {
1390 remain.size = int128_sub(remain.size, now.size);
1391 remain.offset_within_address_space += int128_get64(now.size);
1392 remain.offset_within_region += int128_get64(now.size);
1393 now = remain;
1394 if (int128_lt(remain.size, page_size)) {
1395 register_subpage(fv, &now);
1396 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1397 now.size = page_size;
1398 register_subpage(fv, &now);
1399 } else {
1400 now.size = int128_and(now.size, int128_neg(page_size));
1401 register_multipage(fv, &now);
1406 void qemu_flush_coalesced_mmio_buffer(void)
1408 if (kvm_enabled())
1409 kvm_flush_coalesced_mmio_buffer();
1412 void qemu_mutex_lock_ramlist(void)
1414 qemu_mutex_lock(&ram_list.mutex);
1417 void qemu_mutex_unlock_ramlist(void)
1419 qemu_mutex_unlock(&ram_list.mutex);
1422 void ram_block_dump(Monitor *mon)
1424 RAMBlock *block;
1425 char *psize;
1427 rcu_read_lock();
1428 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1429 "Block Name", "PSize", "Offset", "Used", "Total");
1430 RAMBLOCK_FOREACH(block) {
1431 psize = size_to_str(block->page_size);
1432 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1433 " 0x%016" PRIx64 "\n", block->idstr, psize,
1434 (uint64_t)block->offset,
1435 (uint64_t)block->used_length,
1436 (uint64_t)block->max_length);
1437 g_free(psize);
1439 rcu_read_unlock();
1442 #ifdef __linux__
1444 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1445 * may or may not name the same files / on the same filesystem now as
1446 * when we actually open and map them. Iterate over the file
1447 * descriptors instead, and use qemu_fd_getpagesize().
1449 static int find_max_supported_pagesize(Object *obj, void *opaque)
1451 char *mem_path;
1452 long *hpsize_min = opaque;
1454 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1455 mem_path = object_property_get_str(obj, "mem-path", NULL);
1456 if (mem_path) {
1457 long hpsize = qemu_mempath_getpagesize(mem_path);
1458 if (hpsize < *hpsize_min) {
1459 *hpsize_min = hpsize;
1461 } else {
1462 *hpsize_min = getpagesize();
1466 return 0;
1469 long qemu_getrampagesize(void)
1471 long hpsize = LONG_MAX;
1472 long mainrampagesize;
1473 Object *memdev_root;
1475 if (mem_path) {
1476 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1477 } else {
1478 mainrampagesize = getpagesize();
1481 /* it's possible we have memory-backend objects with
1482 * hugepage-backed RAM. these may get mapped into system
1483 * address space via -numa parameters or memory hotplug
1484 * hooks. we want to take these into account, but we
1485 * also want to make sure these supported hugepage
1486 * sizes are applicable across the entire range of memory
1487 * we may boot from, so we take the min across all
1488 * backends, and assume normal pages in cases where a
1489 * backend isn't backed by hugepages.
1491 memdev_root = object_resolve_path("/objects", NULL);
1492 if (memdev_root) {
1493 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1495 if (hpsize == LONG_MAX) {
1496 /* No additional memory regions found ==> Report main RAM page size */
1497 return mainrampagesize;
1500 /* If NUMA is disabled or the NUMA nodes are not backed with a
1501 * memory-backend, then there is at least one node using "normal" RAM,
1502 * so if its page size is smaller we have got to report that size instead.
1504 if (hpsize > mainrampagesize &&
1505 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1506 static bool warned;
1507 if (!warned) {
1508 error_report("Huge page support disabled (n/a for main memory).");
1509 warned = true;
1511 return mainrampagesize;
1514 return hpsize;
1516 #else
1517 long qemu_getrampagesize(void)
1519 return getpagesize();
1521 #endif
1523 #ifdef __linux__
1524 static int64_t get_file_size(int fd)
1526 int64_t size = lseek(fd, 0, SEEK_END);
1527 if (size < 0) {
1528 return -errno;
1530 return size;
1533 static int file_ram_open(const char *path,
1534 const char *region_name,
1535 bool *created,
1536 Error **errp)
1538 char *filename;
1539 char *sanitized_name;
1540 char *c;
1541 int fd = -1;
1543 *created = false;
1544 for (;;) {
1545 fd = open(path, O_RDWR);
1546 if (fd >= 0) {
1547 /* @path names an existing file, use it */
1548 break;
1550 if (errno == ENOENT) {
1551 /* @path names a file that doesn't exist, create it */
1552 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1553 if (fd >= 0) {
1554 *created = true;
1555 break;
1557 } else if (errno == EISDIR) {
1558 /* @path names a directory, create a file there */
1559 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1560 sanitized_name = g_strdup(region_name);
1561 for (c = sanitized_name; *c != '\0'; c++) {
1562 if (*c == '/') {
1563 *c = '_';
1567 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1568 sanitized_name);
1569 g_free(sanitized_name);
1571 fd = mkstemp(filename);
1572 if (fd >= 0) {
1573 unlink(filename);
1574 g_free(filename);
1575 break;
1577 g_free(filename);
1579 if (errno != EEXIST && errno != EINTR) {
1580 error_setg_errno(errp, errno,
1581 "can't open backing store %s for guest RAM",
1582 path);
1583 return -1;
1586 * Try again on EINTR and EEXIST. The latter happens when
1587 * something else creates the file between our two open().
1591 return fd;
1594 static void *file_ram_alloc(RAMBlock *block,
1595 ram_addr_t memory,
1596 int fd,
1597 bool truncate,
1598 Error **errp)
1600 void *area;
1602 block->page_size = qemu_fd_getpagesize(fd);
1603 block->mr->align = block->page_size;
1604 #if defined(__s390x__)
1605 if (kvm_enabled()) {
1606 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1608 #endif
1610 if (memory < block->page_size) {
1611 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1612 "or larger than page size 0x%zx",
1613 memory, block->page_size);
1614 return NULL;
1617 memory = ROUND_UP(memory, block->page_size);
1620 * ftruncate is not supported by hugetlbfs in older
1621 * hosts, so don't bother bailing out on errors.
1622 * If anything goes wrong with it under other filesystems,
1623 * mmap will fail.
1625 * Do not truncate the non-empty backend file to avoid corrupting
1626 * the existing data in the file. Disabling shrinking is not
1627 * enough. For example, the current vNVDIMM implementation stores
1628 * the guest NVDIMM labels at the end of the backend file. If the
1629 * backend file is later extended, QEMU will not be able to find
1630 * those labels. Therefore, extending the non-empty backend file
1631 * is disabled as well.
1633 if (truncate && ftruncate(fd, memory)) {
1634 perror("ftruncate");
1637 area = qemu_ram_mmap(fd, memory, block->mr->align,
1638 block->flags & RAM_SHARED);
1639 if (area == MAP_FAILED) {
1640 error_setg_errno(errp, errno,
1641 "unable to map backing store for guest RAM");
1642 return NULL;
1645 if (mem_prealloc) {
1646 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1647 if (errp && *errp) {
1648 qemu_ram_munmap(area, memory);
1649 return NULL;
1653 block->fd = fd;
1654 return area;
1656 #endif
1658 /* Called with the ramlist lock held. */
1659 static ram_addr_t find_ram_offset(ram_addr_t size)
1661 RAMBlock *block, *next_block;
1662 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1664 assert(size != 0); /* it would hand out same offset multiple times */
1666 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1667 return 0;
1670 RAMBLOCK_FOREACH(block) {
1671 ram_addr_t end, next = RAM_ADDR_MAX;
1673 end = block->offset + block->max_length;
1675 RAMBLOCK_FOREACH(next_block) {
1676 if (next_block->offset >= end) {
1677 next = MIN(next, next_block->offset);
1680 if (next - end >= size && next - end < mingap) {
1681 offset = end;
1682 mingap = next - end;
1686 if (offset == RAM_ADDR_MAX) {
1687 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1688 (uint64_t)size);
1689 abort();
1692 return offset;
1695 unsigned long last_ram_page(void)
1697 RAMBlock *block;
1698 ram_addr_t last = 0;
1700 rcu_read_lock();
1701 RAMBLOCK_FOREACH(block) {
1702 last = MAX(last, block->offset + block->max_length);
1704 rcu_read_unlock();
1705 return last >> TARGET_PAGE_BITS;
1708 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1710 int ret;
1712 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1713 if (!machine_dump_guest_core(current_machine)) {
1714 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1715 if (ret) {
1716 perror("qemu_madvise");
1717 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1718 "but dump_guest_core=off specified\n");
1723 const char *qemu_ram_get_idstr(RAMBlock *rb)
1725 return rb->idstr;
1728 bool qemu_ram_is_shared(RAMBlock *rb)
1730 return rb->flags & RAM_SHARED;
1733 /* Called with iothread lock held. */
1734 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1736 RAMBlock *block;
1738 assert(new_block);
1739 assert(!new_block->idstr[0]);
1741 if (dev) {
1742 char *id = qdev_get_dev_path(dev);
1743 if (id) {
1744 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1745 g_free(id);
1748 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1750 rcu_read_lock();
1751 RAMBLOCK_FOREACH(block) {
1752 if (block != new_block &&
1753 !strcmp(block->idstr, new_block->idstr)) {
1754 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1755 new_block->idstr);
1756 abort();
1759 rcu_read_unlock();
1762 /* Called with iothread lock held. */
1763 void qemu_ram_unset_idstr(RAMBlock *block)
1765 /* FIXME: arch_init.c assumes that this is not called throughout
1766 * migration. Ignore the problem since hot-unplug during migration
1767 * does not work anyway.
1769 if (block) {
1770 memset(block->idstr, 0, sizeof(block->idstr));
1774 size_t qemu_ram_pagesize(RAMBlock *rb)
1776 return rb->page_size;
1779 /* Returns the largest size of page in use */
1780 size_t qemu_ram_pagesize_largest(void)
1782 RAMBlock *block;
1783 size_t largest = 0;
1785 RAMBLOCK_FOREACH(block) {
1786 largest = MAX(largest, qemu_ram_pagesize(block));
1789 return largest;
1792 static int memory_try_enable_merging(void *addr, size_t len)
1794 if (!machine_mem_merge(current_machine)) {
1795 /* disabled by the user */
1796 return 0;
1799 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1802 /* Only legal before guest might have detected the memory size: e.g. on
1803 * incoming migration, or right after reset.
1805 * As memory core doesn't know how is memory accessed, it is up to
1806 * resize callback to update device state and/or add assertions to detect
1807 * misuse, if necessary.
1809 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1811 assert(block);
1813 newsize = HOST_PAGE_ALIGN(newsize);
1815 if (block->used_length == newsize) {
1816 return 0;
1819 if (!(block->flags & RAM_RESIZEABLE)) {
1820 error_setg_errno(errp, EINVAL,
1821 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1822 " in != 0x" RAM_ADDR_FMT, block->idstr,
1823 newsize, block->used_length);
1824 return -EINVAL;
1827 if (block->max_length < newsize) {
1828 error_setg_errno(errp, EINVAL,
1829 "Length too large: %s: 0x" RAM_ADDR_FMT
1830 " > 0x" RAM_ADDR_FMT, block->idstr,
1831 newsize, block->max_length);
1832 return -EINVAL;
1835 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1836 block->used_length = newsize;
1837 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1838 DIRTY_CLIENTS_ALL);
1839 memory_region_set_size(block->mr, newsize);
1840 if (block->resized) {
1841 block->resized(block->idstr, newsize, block->host);
1843 return 0;
1846 /* Called with ram_list.mutex held */
1847 static void dirty_memory_extend(ram_addr_t old_ram_size,
1848 ram_addr_t new_ram_size)
1850 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1851 DIRTY_MEMORY_BLOCK_SIZE);
1852 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1853 DIRTY_MEMORY_BLOCK_SIZE);
1854 int i;
1856 /* Only need to extend if block count increased */
1857 if (new_num_blocks <= old_num_blocks) {
1858 return;
1861 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1862 DirtyMemoryBlocks *old_blocks;
1863 DirtyMemoryBlocks *new_blocks;
1864 int j;
1866 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1867 new_blocks = g_malloc(sizeof(*new_blocks) +
1868 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1870 if (old_num_blocks) {
1871 memcpy(new_blocks->blocks, old_blocks->blocks,
1872 old_num_blocks * sizeof(old_blocks->blocks[0]));
1875 for (j = old_num_blocks; j < new_num_blocks; j++) {
1876 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1879 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1881 if (old_blocks) {
1882 g_free_rcu(old_blocks, rcu);
1887 static void ram_block_add(RAMBlock *new_block, Error **errp)
1889 RAMBlock *block;
1890 RAMBlock *last_block = NULL;
1891 ram_addr_t old_ram_size, new_ram_size;
1892 Error *err = NULL;
1894 old_ram_size = last_ram_page();
1896 qemu_mutex_lock_ramlist();
1897 new_block->offset = find_ram_offset(new_block->max_length);
1899 if (!new_block->host) {
1900 if (xen_enabled()) {
1901 xen_ram_alloc(new_block->offset, new_block->max_length,
1902 new_block->mr, &err);
1903 if (err) {
1904 error_propagate(errp, err);
1905 qemu_mutex_unlock_ramlist();
1906 return;
1908 } else {
1909 new_block->host = phys_mem_alloc(new_block->max_length,
1910 &new_block->mr->align);
1911 if (!new_block->host) {
1912 error_setg_errno(errp, errno,
1913 "cannot set up guest memory '%s'",
1914 memory_region_name(new_block->mr));
1915 qemu_mutex_unlock_ramlist();
1916 return;
1918 memory_try_enable_merging(new_block->host, new_block->max_length);
1922 new_ram_size = MAX(old_ram_size,
1923 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1924 if (new_ram_size > old_ram_size) {
1925 dirty_memory_extend(old_ram_size, new_ram_size);
1927 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1928 * QLIST (which has an RCU-friendly variant) does not have insertion at
1929 * tail, so save the last element in last_block.
1931 RAMBLOCK_FOREACH(block) {
1932 last_block = block;
1933 if (block->max_length < new_block->max_length) {
1934 break;
1937 if (block) {
1938 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1939 } else if (last_block) {
1940 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1941 } else { /* list is empty */
1942 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1944 ram_list.mru_block = NULL;
1946 /* Write list before version */
1947 smp_wmb();
1948 ram_list.version++;
1949 qemu_mutex_unlock_ramlist();
1951 cpu_physical_memory_set_dirty_range(new_block->offset,
1952 new_block->used_length,
1953 DIRTY_CLIENTS_ALL);
1955 if (new_block->host) {
1956 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1957 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1958 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1959 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1960 ram_block_notify_add(new_block->host, new_block->max_length);
1964 #ifdef __linux__
1965 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1966 bool share, int fd,
1967 Error **errp)
1969 RAMBlock *new_block;
1970 Error *local_err = NULL;
1971 int64_t file_size;
1973 if (xen_enabled()) {
1974 error_setg(errp, "-mem-path not supported with Xen");
1975 return NULL;
1978 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1979 error_setg(errp,
1980 "host lacks kvm mmu notifiers, -mem-path unsupported");
1981 return NULL;
1984 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1986 * file_ram_alloc() needs to allocate just like
1987 * phys_mem_alloc, but we haven't bothered to provide
1988 * a hook there.
1990 error_setg(errp,
1991 "-mem-path not supported with this accelerator");
1992 return NULL;
1995 size = HOST_PAGE_ALIGN(size);
1996 file_size = get_file_size(fd);
1997 if (file_size > 0 && file_size < size) {
1998 error_setg(errp, "backing store %s size 0x%" PRIx64
1999 " does not match 'size' option 0x" RAM_ADDR_FMT,
2000 mem_path, file_size, size);
2001 return NULL;
2004 new_block = g_malloc0(sizeof(*new_block));
2005 new_block->mr = mr;
2006 new_block->used_length = size;
2007 new_block->max_length = size;
2008 new_block->flags = share ? RAM_SHARED : 0;
2009 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2010 if (!new_block->host) {
2011 g_free(new_block);
2012 return NULL;
2015 ram_block_add(new_block, &local_err);
2016 if (local_err) {
2017 g_free(new_block);
2018 error_propagate(errp, local_err);
2019 return NULL;
2021 return new_block;
2026 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2027 bool share, const char *mem_path,
2028 Error **errp)
2030 int fd;
2031 bool created;
2032 RAMBlock *block;
2034 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2035 if (fd < 0) {
2036 return NULL;
2039 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2040 if (!block) {
2041 if (created) {
2042 unlink(mem_path);
2044 close(fd);
2045 return NULL;
2048 return block;
2050 #endif
2052 static
2053 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2054 void (*resized)(const char*,
2055 uint64_t length,
2056 void *host),
2057 void *host, bool resizeable,
2058 MemoryRegion *mr, Error **errp)
2060 RAMBlock *new_block;
2061 Error *local_err = NULL;
2063 size = HOST_PAGE_ALIGN(size);
2064 max_size = HOST_PAGE_ALIGN(max_size);
2065 new_block = g_malloc0(sizeof(*new_block));
2066 new_block->mr = mr;
2067 new_block->resized = resized;
2068 new_block->used_length = size;
2069 new_block->max_length = max_size;
2070 assert(max_size >= size);
2071 new_block->fd = -1;
2072 new_block->page_size = getpagesize();
2073 new_block->host = host;
2074 if (host) {
2075 new_block->flags |= RAM_PREALLOC;
2077 if (resizeable) {
2078 new_block->flags |= RAM_RESIZEABLE;
2080 ram_block_add(new_block, &local_err);
2081 if (local_err) {
2082 g_free(new_block);
2083 error_propagate(errp, local_err);
2084 return NULL;
2086 return new_block;
2089 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2090 MemoryRegion *mr, Error **errp)
2092 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2095 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2097 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2100 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2101 void (*resized)(const char*,
2102 uint64_t length,
2103 void *host),
2104 MemoryRegion *mr, Error **errp)
2106 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2109 static void reclaim_ramblock(RAMBlock *block)
2111 if (block->flags & RAM_PREALLOC) {
2113 } else if (xen_enabled()) {
2114 xen_invalidate_map_cache_entry(block->host);
2115 #ifndef _WIN32
2116 } else if (block->fd >= 0) {
2117 qemu_ram_munmap(block->host, block->max_length);
2118 close(block->fd);
2119 #endif
2120 } else {
2121 qemu_anon_ram_free(block->host, block->max_length);
2123 g_free(block);
2126 void qemu_ram_free(RAMBlock *block)
2128 if (!block) {
2129 return;
2132 if (block->host) {
2133 ram_block_notify_remove(block->host, block->max_length);
2136 qemu_mutex_lock_ramlist();
2137 QLIST_REMOVE_RCU(block, next);
2138 ram_list.mru_block = NULL;
2139 /* Write list before version */
2140 smp_wmb();
2141 ram_list.version++;
2142 call_rcu(block, reclaim_ramblock, rcu);
2143 qemu_mutex_unlock_ramlist();
2146 #ifndef _WIN32
2147 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2149 RAMBlock *block;
2150 ram_addr_t offset;
2151 int flags;
2152 void *area, *vaddr;
2154 RAMBLOCK_FOREACH(block) {
2155 offset = addr - block->offset;
2156 if (offset < block->max_length) {
2157 vaddr = ramblock_ptr(block, offset);
2158 if (block->flags & RAM_PREALLOC) {
2160 } else if (xen_enabled()) {
2161 abort();
2162 } else {
2163 flags = MAP_FIXED;
2164 if (block->fd >= 0) {
2165 flags |= (block->flags & RAM_SHARED ?
2166 MAP_SHARED : MAP_PRIVATE);
2167 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2168 flags, block->fd, offset);
2169 } else {
2171 * Remap needs to match alloc. Accelerators that
2172 * set phys_mem_alloc never remap. If they did,
2173 * we'd need a remap hook here.
2175 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2177 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2178 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2179 flags, -1, 0);
2181 if (area != vaddr) {
2182 fprintf(stderr, "Could not remap addr: "
2183 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2184 length, addr);
2185 exit(1);
2187 memory_try_enable_merging(vaddr, length);
2188 qemu_ram_setup_dump(vaddr, length);
2193 #endif /* !_WIN32 */
2195 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2196 * This should not be used for general purpose DMA. Use address_space_map
2197 * or address_space_rw instead. For local memory (e.g. video ram) that the
2198 * device owns, use memory_region_get_ram_ptr.
2200 * Called within RCU critical section.
2202 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2204 RAMBlock *block = ram_block;
2206 if (block == NULL) {
2207 block = qemu_get_ram_block(addr);
2208 addr -= block->offset;
2211 if (xen_enabled() && block->host == NULL) {
2212 /* We need to check if the requested address is in the RAM
2213 * because we don't want to map the entire memory in QEMU.
2214 * In that case just map until the end of the page.
2216 if (block->offset == 0) {
2217 return xen_map_cache(addr, 0, 0, false);
2220 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2222 return ramblock_ptr(block, addr);
2225 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2226 * but takes a size argument.
2228 * Called within RCU critical section.
2230 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2231 hwaddr *size, bool lock)
2233 RAMBlock *block = ram_block;
2234 if (*size == 0) {
2235 return NULL;
2238 if (block == NULL) {
2239 block = qemu_get_ram_block(addr);
2240 addr -= block->offset;
2242 *size = MIN(*size, block->max_length - addr);
2244 if (xen_enabled() && block->host == NULL) {
2245 /* We need to check if the requested address is in the RAM
2246 * because we don't want to map the entire memory in QEMU.
2247 * In that case just map the requested area.
2249 if (block->offset == 0) {
2250 return xen_map_cache(addr, *size, lock, lock);
2253 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2256 return ramblock_ptr(block, addr);
2260 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2261 * in that RAMBlock.
2263 * ptr: Host pointer to look up
2264 * round_offset: If true round the result offset down to a page boundary
2265 * *ram_addr: set to result ram_addr
2266 * *offset: set to result offset within the RAMBlock
2268 * Returns: RAMBlock (or NULL if not found)
2270 * By the time this function returns, the returned pointer is not protected
2271 * by RCU anymore. If the caller is not within an RCU critical section and
2272 * does not hold the iothread lock, it must have other means of protecting the
2273 * pointer, such as a reference to the region that includes the incoming
2274 * ram_addr_t.
2276 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2277 ram_addr_t *offset)
2279 RAMBlock *block;
2280 uint8_t *host = ptr;
2282 if (xen_enabled()) {
2283 ram_addr_t ram_addr;
2284 rcu_read_lock();
2285 ram_addr = xen_ram_addr_from_mapcache(ptr);
2286 block = qemu_get_ram_block(ram_addr);
2287 if (block) {
2288 *offset = ram_addr - block->offset;
2290 rcu_read_unlock();
2291 return block;
2294 rcu_read_lock();
2295 block = atomic_rcu_read(&ram_list.mru_block);
2296 if (block && block->host && host - block->host < block->max_length) {
2297 goto found;
2300 RAMBLOCK_FOREACH(block) {
2301 /* This case append when the block is not mapped. */
2302 if (block->host == NULL) {
2303 continue;
2305 if (host - block->host < block->max_length) {
2306 goto found;
2310 rcu_read_unlock();
2311 return NULL;
2313 found:
2314 *offset = (host - block->host);
2315 if (round_offset) {
2316 *offset &= TARGET_PAGE_MASK;
2318 rcu_read_unlock();
2319 return block;
2323 * Finds the named RAMBlock
2325 * name: The name of RAMBlock to find
2327 * Returns: RAMBlock (or NULL if not found)
2329 RAMBlock *qemu_ram_block_by_name(const char *name)
2331 RAMBlock *block;
2333 RAMBLOCK_FOREACH(block) {
2334 if (!strcmp(name, block->idstr)) {
2335 return block;
2339 return NULL;
2342 /* Some of the softmmu routines need to translate from a host pointer
2343 (typically a TLB entry) back to a ram offset. */
2344 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2346 RAMBlock *block;
2347 ram_addr_t offset;
2349 block = qemu_ram_block_from_host(ptr, false, &offset);
2350 if (!block) {
2351 return RAM_ADDR_INVALID;
2354 return block->offset + offset;
2357 /* Called within RCU critical section. */
2358 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2359 CPUState *cpu,
2360 vaddr mem_vaddr,
2361 ram_addr_t ram_addr,
2362 unsigned size)
2364 ndi->cpu = cpu;
2365 ndi->ram_addr = ram_addr;
2366 ndi->mem_vaddr = mem_vaddr;
2367 ndi->size = size;
2368 ndi->locked = false;
2370 assert(tcg_enabled());
2371 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2372 ndi->locked = true;
2373 tb_lock();
2374 tb_invalidate_phys_page_fast(ram_addr, size);
2378 /* Called within RCU critical section. */
2379 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2381 if (ndi->locked) {
2382 tb_unlock();
2385 /* Set both VGA and migration bits for simplicity and to remove
2386 * the notdirty callback faster.
2388 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2389 DIRTY_CLIENTS_NOCODE);
2390 /* we remove the notdirty callback only if the code has been
2391 flushed */
2392 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2393 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2397 /* Called within RCU critical section. */
2398 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2399 uint64_t val, unsigned size)
2401 NotDirtyInfo ndi;
2403 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2404 ram_addr, size);
2406 switch (size) {
2407 case 1:
2408 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2409 break;
2410 case 2:
2411 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2412 break;
2413 case 4:
2414 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2415 break;
2416 case 8:
2417 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2418 break;
2419 default:
2420 abort();
2422 memory_notdirty_write_complete(&ndi);
2425 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2426 unsigned size, bool is_write)
2428 return is_write;
2431 static const MemoryRegionOps notdirty_mem_ops = {
2432 .write = notdirty_mem_write,
2433 .valid.accepts = notdirty_mem_accepts,
2434 .endianness = DEVICE_NATIVE_ENDIAN,
2435 .valid = {
2436 .min_access_size = 1,
2437 .max_access_size = 8,
2438 .unaligned = false,
2440 .impl = {
2441 .min_access_size = 1,
2442 .max_access_size = 8,
2443 .unaligned = false,
2447 /* Generate a debug exception if a watchpoint has been hit. */
2448 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2450 CPUState *cpu = current_cpu;
2451 CPUClass *cc = CPU_GET_CLASS(cpu);
2452 target_ulong vaddr;
2453 CPUWatchpoint *wp;
2455 assert(tcg_enabled());
2456 if (cpu->watchpoint_hit) {
2457 /* We re-entered the check after replacing the TB. Now raise
2458 * the debug interrupt so that is will trigger after the
2459 * current instruction. */
2460 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2461 return;
2463 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2464 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2465 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2466 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2467 && (wp->flags & flags)) {
2468 if (flags == BP_MEM_READ) {
2469 wp->flags |= BP_WATCHPOINT_HIT_READ;
2470 } else {
2471 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2473 wp->hitaddr = vaddr;
2474 wp->hitattrs = attrs;
2475 if (!cpu->watchpoint_hit) {
2476 if (wp->flags & BP_CPU &&
2477 !cc->debug_check_watchpoint(cpu, wp)) {
2478 wp->flags &= ~BP_WATCHPOINT_HIT;
2479 continue;
2481 cpu->watchpoint_hit = wp;
2483 /* Both tb_lock and iothread_mutex will be reset when
2484 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2485 * back into the cpu_exec main loop.
2487 tb_lock();
2488 tb_check_watchpoint(cpu);
2489 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2490 cpu->exception_index = EXCP_DEBUG;
2491 cpu_loop_exit(cpu);
2492 } else {
2493 /* Force execution of one insn next time. */
2494 cpu->cflags_next_tb = 1 | curr_cflags();
2495 cpu_loop_exit_noexc(cpu);
2498 } else {
2499 wp->flags &= ~BP_WATCHPOINT_HIT;
2504 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2505 so these check for a hit then pass through to the normal out-of-line
2506 phys routines. */
2507 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2508 unsigned size, MemTxAttrs attrs)
2510 MemTxResult res;
2511 uint64_t data;
2512 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2513 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2515 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2516 switch (size) {
2517 case 1:
2518 data = address_space_ldub(as, addr, attrs, &res);
2519 break;
2520 case 2:
2521 data = address_space_lduw(as, addr, attrs, &res);
2522 break;
2523 case 4:
2524 data = address_space_ldl(as, addr, attrs, &res);
2525 break;
2526 case 8:
2527 data = address_space_ldq(as, addr, attrs, &res);
2528 break;
2529 default: abort();
2531 *pdata = data;
2532 return res;
2535 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2536 uint64_t val, unsigned size,
2537 MemTxAttrs attrs)
2539 MemTxResult res;
2540 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2541 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2543 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2544 switch (size) {
2545 case 1:
2546 address_space_stb(as, addr, val, attrs, &res);
2547 break;
2548 case 2:
2549 address_space_stw(as, addr, val, attrs, &res);
2550 break;
2551 case 4:
2552 address_space_stl(as, addr, val, attrs, &res);
2553 break;
2554 case 8:
2555 address_space_stq(as, addr, val, attrs, &res);
2556 break;
2557 default: abort();
2559 return res;
2562 static const MemoryRegionOps watch_mem_ops = {
2563 .read_with_attrs = watch_mem_read,
2564 .write_with_attrs = watch_mem_write,
2565 .endianness = DEVICE_NATIVE_ENDIAN,
2566 .valid = {
2567 .min_access_size = 1,
2568 .max_access_size = 8,
2569 .unaligned = false,
2571 .impl = {
2572 .min_access_size = 1,
2573 .max_access_size = 8,
2574 .unaligned = false,
2578 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2579 const uint8_t *buf, int len);
2580 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2581 bool is_write);
2583 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2584 unsigned len, MemTxAttrs attrs)
2586 subpage_t *subpage = opaque;
2587 uint8_t buf[8];
2588 MemTxResult res;
2590 #if defined(DEBUG_SUBPAGE)
2591 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2592 subpage, len, addr);
2593 #endif
2594 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2595 if (res) {
2596 return res;
2598 switch (len) {
2599 case 1:
2600 *data = ldub_p(buf);
2601 return MEMTX_OK;
2602 case 2:
2603 *data = lduw_p(buf);
2604 return MEMTX_OK;
2605 case 4:
2606 *data = ldl_p(buf);
2607 return MEMTX_OK;
2608 case 8:
2609 *data = ldq_p(buf);
2610 return MEMTX_OK;
2611 default:
2612 abort();
2616 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2617 uint64_t value, unsigned len, MemTxAttrs attrs)
2619 subpage_t *subpage = opaque;
2620 uint8_t buf[8];
2622 #if defined(DEBUG_SUBPAGE)
2623 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2624 " value %"PRIx64"\n",
2625 __func__, subpage, len, addr, value);
2626 #endif
2627 switch (len) {
2628 case 1:
2629 stb_p(buf, value);
2630 break;
2631 case 2:
2632 stw_p(buf, value);
2633 break;
2634 case 4:
2635 stl_p(buf, value);
2636 break;
2637 case 8:
2638 stq_p(buf, value);
2639 break;
2640 default:
2641 abort();
2643 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2646 static bool subpage_accepts(void *opaque, hwaddr addr,
2647 unsigned len, bool is_write)
2649 subpage_t *subpage = opaque;
2650 #if defined(DEBUG_SUBPAGE)
2651 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2652 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2653 #endif
2655 return flatview_access_valid(subpage->fv, addr + subpage->base,
2656 len, is_write);
2659 static const MemoryRegionOps subpage_ops = {
2660 .read_with_attrs = subpage_read,
2661 .write_with_attrs = subpage_write,
2662 .impl.min_access_size = 1,
2663 .impl.max_access_size = 8,
2664 .valid.min_access_size = 1,
2665 .valid.max_access_size = 8,
2666 .valid.accepts = subpage_accepts,
2667 .endianness = DEVICE_NATIVE_ENDIAN,
2670 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2671 uint16_t section)
2673 int idx, eidx;
2675 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2676 return -1;
2677 idx = SUBPAGE_IDX(start);
2678 eidx = SUBPAGE_IDX(end);
2679 #if defined(DEBUG_SUBPAGE)
2680 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2681 __func__, mmio, start, end, idx, eidx, section);
2682 #endif
2683 for (; idx <= eidx; idx++) {
2684 mmio->sub_section[idx] = section;
2687 return 0;
2690 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2692 subpage_t *mmio;
2694 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2695 mmio->fv = fv;
2696 mmio->base = base;
2697 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2698 NULL, TARGET_PAGE_SIZE);
2699 mmio->iomem.subpage = true;
2700 #if defined(DEBUG_SUBPAGE)
2701 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2702 mmio, base, TARGET_PAGE_SIZE);
2703 #endif
2704 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2706 return mmio;
2709 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2711 assert(fv);
2712 MemoryRegionSection section = {
2713 .fv = fv,
2714 .mr = mr,
2715 .offset_within_address_space = 0,
2716 .offset_within_region = 0,
2717 .size = int128_2_64(),
2720 return phys_section_add(map, &section);
2723 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2725 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2726 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2727 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2728 MemoryRegionSection *sections = d->map.sections;
2730 return sections[index & ~TARGET_PAGE_MASK].mr;
2733 static void io_mem_init(void)
2735 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2736 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2737 NULL, UINT64_MAX);
2739 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2740 * which can be called without the iothread mutex.
2742 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2743 NULL, UINT64_MAX);
2744 memory_region_clear_global_locking(&io_mem_notdirty);
2746 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2747 NULL, UINT64_MAX);
2750 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2752 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2753 uint16_t n;
2755 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2756 assert(n == PHYS_SECTION_UNASSIGNED);
2757 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2758 assert(n == PHYS_SECTION_NOTDIRTY);
2759 n = dummy_section(&d->map, fv, &io_mem_rom);
2760 assert(n == PHYS_SECTION_ROM);
2761 n = dummy_section(&d->map, fv, &io_mem_watch);
2762 assert(n == PHYS_SECTION_WATCH);
2764 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2766 return d;
2769 void address_space_dispatch_free(AddressSpaceDispatch *d)
2771 phys_sections_free(&d->map);
2772 g_free(d);
2775 static void tcg_commit(MemoryListener *listener)
2777 CPUAddressSpace *cpuas;
2778 AddressSpaceDispatch *d;
2780 /* since each CPU stores ram addresses in its TLB cache, we must
2781 reset the modified entries */
2782 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2783 cpu_reloading_memory_map();
2784 /* The CPU and TLB are protected by the iothread lock.
2785 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2786 * may have split the RCU critical section.
2788 d = address_space_to_dispatch(cpuas->as);
2789 atomic_rcu_set(&cpuas->memory_dispatch, d);
2790 tlb_flush(cpuas->cpu);
2793 static void memory_map_init(void)
2795 system_memory = g_malloc(sizeof(*system_memory));
2797 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2798 address_space_init(&address_space_memory, system_memory, "memory");
2800 system_io = g_malloc(sizeof(*system_io));
2801 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2802 65536);
2803 address_space_init(&address_space_io, system_io, "I/O");
2806 MemoryRegion *get_system_memory(void)
2808 return system_memory;
2811 MemoryRegion *get_system_io(void)
2813 return system_io;
2816 #endif /* !defined(CONFIG_USER_ONLY) */
2818 /* physical memory access (slow version, mainly for debug) */
2819 #if defined(CONFIG_USER_ONLY)
2820 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2821 uint8_t *buf, int len, int is_write)
2823 int l, flags;
2824 target_ulong page;
2825 void * p;
2827 while (len > 0) {
2828 page = addr & TARGET_PAGE_MASK;
2829 l = (page + TARGET_PAGE_SIZE) - addr;
2830 if (l > len)
2831 l = len;
2832 flags = page_get_flags(page);
2833 if (!(flags & PAGE_VALID))
2834 return -1;
2835 if (is_write) {
2836 if (!(flags & PAGE_WRITE))
2837 return -1;
2838 /* XXX: this code should not depend on lock_user */
2839 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2840 return -1;
2841 memcpy(p, buf, l);
2842 unlock_user(p, addr, l);
2843 } else {
2844 if (!(flags & PAGE_READ))
2845 return -1;
2846 /* XXX: this code should not depend on lock_user */
2847 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2848 return -1;
2849 memcpy(buf, p, l);
2850 unlock_user(p, addr, 0);
2852 len -= l;
2853 buf += l;
2854 addr += l;
2856 return 0;
2859 #else
2861 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2862 hwaddr length)
2864 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2865 addr += memory_region_get_ram_addr(mr);
2867 /* No early return if dirty_log_mask is or becomes 0, because
2868 * cpu_physical_memory_set_dirty_range will still call
2869 * xen_modified_memory.
2871 if (dirty_log_mask) {
2872 dirty_log_mask =
2873 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2875 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2876 assert(tcg_enabled());
2877 tb_lock();
2878 tb_invalidate_phys_range(addr, addr + length);
2879 tb_unlock();
2880 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2882 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2885 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2887 unsigned access_size_max = mr->ops->valid.max_access_size;
2889 /* Regions are assumed to support 1-4 byte accesses unless
2890 otherwise specified. */
2891 if (access_size_max == 0) {
2892 access_size_max = 4;
2895 /* Bound the maximum access by the alignment of the address. */
2896 if (!mr->ops->impl.unaligned) {
2897 unsigned align_size_max = addr & -addr;
2898 if (align_size_max != 0 && align_size_max < access_size_max) {
2899 access_size_max = align_size_max;
2903 /* Don't attempt accesses larger than the maximum. */
2904 if (l > access_size_max) {
2905 l = access_size_max;
2907 l = pow2floor(l);
2909 return l;
2912 static bool prepare_mmio_access(MemoryRegion *mr)
2914 bool unlocked = !qemu_mutex_iothread_locked();
2915 bool release_lock = false;
2917 if (unlocked && mr->global_locking) {
2918 qemu_mutex_lock_iothread();
2919 unlocked = false;
2920 release_lock = true;
2922 if (mr->flush_coalesced_mmio) {
2923 if (unlocked) {
2924 qemu_mutex_lock_iothread();
2926 qemu_flush_coalesced_mmio_buffer();
2927 if (unlocked) {
2928 qemu_mutex_unlock_iothread();
2932 return release_lock;
2935 /* Called within RCU critical section. */
2936 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2937 MemTxAttrs attrs,
2938 const uint8_t *buf,
2939 int len, hwaddr addr1,
2940 hwaddr l, MemoryRegion *mr)
2942 uint8_t *ptr;
2943 uint64_t val;
2944 MemTxResult result = MEMTX_OK;
2945 bool release_lock = false;
2947 for (;;) {
2948 if (!memory_access_is_direct(mr, true)) {
2949 release_lock |= prepare_mmio_access(mr);
2950 l = memory_access_size(mr, l, addr1);
2951 /* XXX: could force current_cpu to NULL to avoid
2952 potential bugs */
2953 switch (l) {
2954 case 8:
2955 /* 64 bit write access */
2956 val = ldq_p(buf);
2957 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2958 attrs);
2959 break;
2960 case 4:
2961 /* 32 bit write access */
2962 val = (uint32_t)ldl_p(buf);
2963 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2964 attrs);
2965 break;
2966 case 2:
2967 /* 16 bit write access */
2968 val = lduw_p(buf);
2969 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2970 attrs);
2971 break;
2972 case 1:
2973 /* 8 bit write access */
2974 val = ldub_p(buf);
2975 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2976 attrs);
2977 break;
2978 default:
2979 abort();
2981 } else {
2982 /* RAM case */
2983 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2984 memcpy(ptr, buf, l);
2985 invalidate_and_set_dirty(mr, addr1, l);
2988 if (release_lock) {
2989 qemu_mutex_unlock_iothread();
2990 release_lock = false;
2993 len -= l;
2994 buf += l;
2995 addr += l;
2997 if (!len) {
2998 break;
3001 l = len;
3002 mr = flatview_translate(fv, addr, &addr1, &l, true);
3005 return result;
3008 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3009 const uint8_t *buf, int len)
3011 hwaddr l;
3012 hwaddr addr1;
3013 MemoryRegion *mr;
3014 MemTxResult result = MEMTX_OK;
3016 if (len > 0) {
3017 rcu_read_lock();
3018 l = len;
3019 mr = flatview_translate(fv, addr, &addr1, &l, true);
3020 result = flatview_write_continue(fv, addr, attrs, buf, len,
3021 addr1, l, mr);
3022 rcu_read_unlock();
3025 return result;
3028 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3029 MemTxAttrs attrs,
3030 const uint8_t *buf, int len)
3032 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3035 /* Called within RCU critical section. */
3036 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3037 MemTxAttrs attrs, uint8_t *buf,
3038 int len, hwaddr addr1, hwaddr l,
3039 MemoryRegion *mr)
3041 uint8_t *ptr;
3042 uint64_t val;
3043 MemTxResult result = MEMTX_OK;
3044 bool release_lock = false;
3046 for (;;) {
3047 if (!memory_access_is_direct(mr, false)) {
3048 /* I/O case */
3049 release_lock |= prepare_mmio_access(mr);
3050 l = memory_access_size(mr, l, addr1);
3051 switch (l) {
3052 case 8:
3053 /* 64 bit read access */
3054 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3055 attrs);
3056 stq_p(buf, val);
3057 break;
3058 case 4:
3059 /* 32 bit read access */
3060 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3061 attrs);
3062 stl_p(buf, val);
3063 break;
3064 case 2:
3065 /* 16 bit read access */
3066 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3067 attrs);
3068 stw_p(buf, val);
3069 break;
3070 case 1:
3071 /* 8 bit read access */
3072 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3073 attrs);
3074 stb_p(buf, val);
3075 break;
3076 default:
3077 abort();
3079 } else {
3080 /* RAM case */
3081 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3082 memcpy(buf, ptr, l);
3085 if (release_lock) {
3086 qemu_mutex_unlock_iothread();
3087 release_lock = false;
3090 len -= l;
3091 buf += l;
3092 addr += l;
3094 if (!len) {
3095 break;
3098 l = len;
3099 mr = flatview_translate(fv, addr, &addr1, &l, false);
3102 return result;
3105 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3106 MemTxAttrs attrs, uint8_t *buf, int len)
3108 hwaddr l;
3109 hwaddr addr1;
3110 MemoryRegion *mr;
3111 MemTxResult result = MEMTX_OK;
3113 if (len > 0) {
3114 rcu_read_lock();
3115 l = len;
3116 mr = flatview_translate(fv, addr, &addr1, &l, false);
3117 result = flatview_read_continue(fv, addr, attrs, buf, len,
3118 addr1, l, mr);
3119 rcu_read_unlock();
3122 return result;
3125 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3126 uint8_t *buf, int len, bool is_write)
3128 if (is_write) {
3129 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3130 } else {
3131 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3135 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3136 MemTxAttrs attrs, uint8_t *buf,
3137 int len, bool is_write)
3139 return flatview_rw(address_space_to_flatview(as),
3140 addr, attrs, buf, len, is_write);
3143 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3144 int len, int is_write)
3146 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3147 buf, len, is_write);
3150 enum write_rom_type {
3151 WRITE_DATA,
3152 FLUSH_CACHE,
3155 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3156 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3158 hwaddr l;
3159 uint8_t *ptr;
3160 hwaddr addr1;
3161 MemoryRegion *mr;
3163 rcu_read_lock();
3164 while (len > 0) {
3165 l = len;
3166 mr = address_space_translate(as, addr, &addr1, &l, true);
3168 if (!(memory_region_is_ram(mr) ||
3169 memory_region_is_romd(mr))) {
3170 l = memory_access_size(mr, l, addr1);
3171 } else {
3172 /* ROM/RAM case */
3173 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3174 switch (type) {
3175 case WRITE_DATA:
3176 memcpy(ptr, buf, l);
3177 invalidate_and_set_dirty(mr, addr1, l);
3178 break;
3179 case FLUSH_CACHE:
3180 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3181 break;
3184 len -= l;
3185 buf += l;
3186 addr += l;
3188 rcu_read_unlock();
3191 /* used for ROM loading : can write in RAM and ROM */
3192 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3193 const uint8_t *buf, int len)
3195 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3198 void cpu_flush_icache_range(hwaddr start, int len)
3201 * This function should do the same thing as an icache flush that was
3202 * triggered from within the guest. For TCG we are always cache coherent,
3203 * so there is no need to flush anything. For KVM / Xen we need to flush
3204 * the host's instruction cache at least.
3206 if (tcg_enabled()) {
3207 return;
3210 cpu_physical_memory_write_rom_internal(&address_space_memory,
3211 start, NULL, len, FLUSH_CACHE);
3214 typedef struct {
3215 MemoryRegion *mr;
3216 void *buffer;
3217 hwaddr addr;
3218 hwaddr len;
3219 bool in_use;
3220 } BounceBuffer;
3222 static BounceBuffer bounce;
3224 typedef struct MapClient {
3225 QEMUBH *bh;
3226 QLIST_ENTRY(MapClient) link;
3227 } MapClient;
3229 QemuMutex map_client_list_lock;
3230 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3231 = QLIST_HEAD_INITIALIZER(map_client_list);
3233 static void cpu_unregister_map_client_do(MapClient *client)
3235 QLIST_REMOVE(client, link);
3236 g_free(client);
3239 static void cpu_notify_map_clients_locked(void)
3241 MapClient *client;
3243 while (!QLIST_EMPTY(&map_client_list)) {
3244 client = QLIST_FIRST(&map_client_list);
3245 qemu_bh_schedule(client->bh);
3246 cpu_unregister_map_client_do(client);
3250 void cpu_register_map_client(QEMUBH *bh)
3252 MapClient *client = g_malloc(sizeof(*client));
3254 qemu_mutex_lock(&map_client_list_lock);
3255 client->bh = bh;
3256 QLIST_INSERT_HEAD(&map_client_list, client, link);
3257 if (!atomic_read(&bounce.in_use)) {
3258 cpu_notify_map_clients_locked();
3260 qemu_mutex_unlock(&map_client_list_lock);
3263 void cpu_exec_init_all(void)
3265 qemu_mutex_init(&ram_list.mutex);
3266 /* The data structures we set up here depend on knowing the page size,
3267 * so no more changes can be made after this point.
3268 * In an ideal world, nothing we did before we had finished the
3269 * machine setup would care about the target page size, and we could
3270 * do this much later, rather than requiring board models to state
3271 * up front what their requirements are.
3273 finalize_target_page_bits();
3274 io_mem_init();
3275 memory_map_init();
3276 qemu_mutex_init(&map_client_list_lock);
3279 void cpu_unregister_map_client(QEMUBH *bh)
3281 MapClient *client;
3283 qemu_mutex_lock(&map_client_list_lock);
3284 QLIST_FOREACH(client, &map_client_list, link) {
3285 if (client->bh == bh) {
3286 cpu_unregister_map_client_do(client);
3287 break;
3290 qemu_mutex_unlock(&map_client_list_lock);
3293 static void cpu_notify_map_clients(void)
3295 qemu_mutex_lock(&map_client_list_lock);
3296 cpu_notify_map_clients_locked();
3297 qemu_mutex_unlock(&map_client_list_lock);
3300 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3301 bool is_write)
3303 MemoryRegion *mr;
3304 hwaddr l, xlat;
3306 rcu_read_lock();
3307 while (len > 0) {
3308 l = len;
3309 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3310 if (!memory_access_is_direct(mr, is_write)) {
3311 l = memory_access_size(mr, l, addr);
3312 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3313 rcu_read_unlock();
3314 return false;
3318 len -= l;
3319 addr += l;
3321 rcu_read_unlock();
3322 return true;
3325 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3326 int len, bool is_write)
3328 return flatview_access_valid(address_space_to_flatview(as),
3329 addr, len, is_write);
3332 static hwaddr
3333 flatview_extend_translation(FlatView *fv, hwaddr addr,
3334 hwaddr target_len,
3335 MemoryRegion *mr, hwaddr base, hwaddr len,
3336 bool is_write)
3338 hwaddr done = 0;
3339 hwaddr xlat;
3340 MemoryRegion *this_mr;
3342 for (;;) {
3343 target_len -= len;
3344 addr += len;
3345 done += len;
3346 if (target_len == 0) {
3347 return done;
3350 len = target_len;
3351 this_mr = flatview_translate(fv, addr, &xlat,
3352 &len, is_write);
3353 if (this_mr != mr || xlat != base + done) {
3354 return done;
3359 /* Map a physical memory region into a host virtual address.
3360 * May map a subset of the requested range, given by and returned in *plen.
3361 * May return NULL if resources needed to perform the mapping are exhausted.
3362 * Use only for reads OR writes - not for read-modify-write operations.
3363 * Use cpu_register_map_client() to know when retrying the map operation is
3364 * likely to succeed.
3366 void *address_space_map(AddressSpace *as,
3367 hwaddr addr,
3368 hwaddr *plen,
3369 bool is_write)
3371 hwaddr len = *plen;
3372 hwaddr l, xlat;
3373 MemoryRegion *mr;
3374 void *ptr;
3375 FlatView *fv = address_space_to_flatview(as);
3377 if (len == 0) {
3378 return NULL;
3381 l = len;
3382 rcu_read_lock();
3383 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3385 if (!memory_access_is_direct(mr, is_write)) {
3386 if (atomic_xchg(&bounce.in_use, true)) {
3387 rcu_read_unlock();
3388 return NULL;
3390 /* Avoid unbounded allocations */
3391 l = MIN(l, TARGET_PAGE_SIZE);
3392 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3393 bounce.addr = addr;
3394 bounce.len = l;
3396 memory_region_ref(mr);
3397 bounce.mr = mr;
3398 if (!is_write) {
3399 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3400 bounce.buffer, l);
3403 rcu_read_unlock();
3404 *plen = l;
3405 return bounce.buffer;
3409 memory_region_ref(mr);
3410 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3411 l, is_write);
3412 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3413 rcu_read_unlock();
3415 return ptr;
3418 /* Unmaps a memory region previously mapped by address_space_map().
3419 * Will also mark the memory as dirty if is_write == 1. access_len gives
3420 * the amount of memory that was actually read or written by the caller.
3422 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3423 int is_write, hwaddr access_len)
3425 if (buffer != bounce.buffer) {
3426 MemoryRegion *mr;
3427 ram_addr_t addr1;
3429 mr = memory_region_from_host(buffer, &addr1);
3430 assert(mr != NULL);
3431 if (is_write) {
3432 invalidate_and_set_dirty(mr, addr1, access_len);
3434 if (xen_enabled()) {
3435 xen_invalidate_map_cache_entry(buffer);
3437 memory_region_unref(mr);
3438 return;
3440 if (is_write) {
3441 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3442 bounce.buffer, access_len);
3444 qemu_vfree(bounce.buffer);
3445 bounce.buffer = NULL;
3446 memory_region_unref(bounce.mr);
3447 atomic_mb_set(&bounce.in_use, false);
3448 cpu_notify_map_clients();
3451 void *cpu_physical_memory_map(hwaddr addr,
3452 hwaddr *plen,
3453 int is_write)
3455 return address_space_map(&address_space_memory, addr, plen, is_write);
3458 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3459 int is_write, hwaddr access_len)
3461 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3464 #define ARG1_DECL AddressSpace *as
3465 #define ARG1 as
3466 #define SUFFIX
3467 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3468 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3469 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3470 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3471 #define RCU_READ_LOCK(...) rcu_read_lock()
3472 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3473 #include "memory_ldst.inc.c"
3475 int64_t address_space_cache_init(MemoryRegionCache *cache,
3476 AddressSpace *as,
3477 hwaddr addr,
3478 hwaddr len,
3479 bool is_write)
3481 cache->len = len;
3482 cache->as = as;
3483 cache->xlat = addr;
3484 return len;
3487 void address_space_cache_invalidate(MemoryRegionCache *cache,
3488 hwaddr addr,
3489 hwaddr access_len)
3493 void address_space_cache_destroy(MemoryRegionCache *cache)
3495 cache->as = NULL;
3498 #define ARG1_DECL MemoryRegionCache *cache
3499 #define ARG1 cache
3500 #define SUFFIX _cached
3501 #define TRANSLATE(addr, ...) \
3502 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3503 #define IS_DIRECT(mr, is_write) true
3504 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3505 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3506 #define RCU_READ_LOCK() rcu_read_lock()
3507 #define RCU_READ_UNLOCK() rcu_read_unlock()
3508 #include "memory_ldst.inc.c"
3510 /* virtual memory access for debug (includes writing to ROM) */
3511 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3512 uint8_t *buf, int len, int is_write)
3514 int l;
3515 hwaddr phys_addr;
3516 target_ulong page;
3518 cpu_synchronize_state(cpu);
3519 while (len > 0) {
3520 int asidx;
3521 MemTxAttrs attrs;
3523 page = addr & TARGET_PAGE_MASK;
3524 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3525 asidx = cpu_asidx_from_attrs(cpu, attrs);
3526 /* if no physical page mapped, return an error */
3527 if (phys_addr == -1)
3528 return -1;
3529 l = (page + TARGET_PAGE_SIZE) - addr;
3530 if (l > len)
3531 l = len;
3532 phys_addr += (addr & ~TARGET_PAGE_MASK);
3533 if (is_write) {
3534 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3535 phys_addr, buf, l);
3536 } else {
3537 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3538 MEMTXATTRS_UNSPECIFIED,
3539 buf, l, 0);
3541 len -= l;
3542 buf += l;
3543 addr += l;
3545 return 0;
3549 * Allows code that needs to deal with migration bitmaps etc to still be built
3550 * target independent.
3552 size_t qemu_target_page_size(void)
3554 return TARGET_PAGE_SIZE;
3557 int qemu_target_page_bits(void)
3559 return TARGET_PAGE_BITS;
3562 int qemu_target_page_bits_min(void)
3564 return TARGET_PAGE_BITS_MIN;
3566 #endif
3569 * A helper function for the _utterly broken_ virtio device model to find out if
3570 * it's running on a big endian machine. Don't do this at home kids!
3572 bool target_words_bigendian(void);
3573 bool target_words_bigendian(void)
3575 #if defined(TARGET_WORDS_BIGENDIAN)
3576 return true;
3577 #else
3578 return false;
3579 #endif
3582 #ifndef CONFIG_USER_ONLY
3583 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3585 MemoryRegion*mr;
3586 hwaddr l = 1;
3587 bool res;
3589 rcu_read_lock();
3590 mr = address_space_translate(&address_space_memory,
3591 phys_addr, &phys_addr, &l, false);
3593 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3594 rcu_read_unlock();
3595 return res;
3598 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3600 RAMBlock *block;
3601 int ret = 0;
3603 rcu_read_lock();
3604 RAMBLOCK_FOREACH(block) {
3605 ret = func(block->idstr, block->host, block->offset,
3606 block->used_length, opaque);
3607 if (ret) {
3608 break;
3611 rcu_read_unlock();
3612 return ret;
3616 * Unmap pages of memory from start to start+length such that
3617 * they a) read as 0, b) Trigger whatever fault mechanism
3618 * the OS provides for postcopy.
3619 * The pages must be unmapped by the end of the function.
3620 * Returns: 0 on success, none-0 on failure
3623 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3625 int ret = -1;
3627 uint8_t *host_startaddr = rb->host + start;
3629 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3630 error_report("ram_block_discard_range: Unaligned start address: %p",
3631 host_startaddr);
3632 goto err;
3635 if ((start + length) <= rb->used_length) {
3636 uint8_t *host_endaddr = host_startaddr + length;
3637 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3638 error_report("ram_block_discard_range: Unaligned end address: %p",
3639 host_endaddr);
3640 goto err;
3643 errno = ENOTSUP; /* If we are missing MADVISE etc */
3645 if (rb->page_size == qemu_host_page_size) {
3646 #if defined(CONFIG_MADVISE)
3647 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3648 * freeing the page.
3650 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3651 #endif
3652 } else {
3653 /* Huge page case - unfortunately it can't do DONTNEED, but
3654 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3655 * huge page file.
3657 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3658 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3659 start, length);
3660 #endif
3662 if (ret) {
3663 ret = -errno;
3664 error_report("ram_block_discard_range: Failed to discard range "
3665 "%s:%" PRIx64 " +%zx (%d)",
3666 rb->idstr, start, length, ret);
3668 } else {
3669 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3670 "/%zx/" RAM_ADDR_FMT")",
3671 rb->idstr, start, length, rb->used_length);
3674 err:
3675 return ret;
3678 #endif
3680 void page_size_init(void)
3682 /* NOTE: we can always suppose that qemu_host_page_size >=
3683 TARGET_PAGE_SIZE */
3684 if (qemu_host_page_size == 0) {
3685 qemu_host_page_size = qemu_real_host_page_size;
3687 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3688 qemu_host_page_size = TARGET_PAGE_SIZE;
3690 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3693 #if !defined(CONFIG_USER_ONLY)
3695 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3696 int start, int end, int skip, int ptr)
3698 if (start == end - 1) {
3699 mon(f, "\t%3d ", start);
3700 } else {
3701 mon(f, "\t%3d..%-3d ", start, end - 1);
3703 mon(f, " skip=%d ", skip);
3704 if (ptr == PHYS_MAP_NODE_NIL) {
3705 mon(f, " ptr=NIL");
3706 } else if (!skip) {
3707 mon(f, " ptr=#%d", ptr);
3708 } else {
3709 mon(f, " ptr=[%d]", ptr);
3711 mon(f, "\n");
3714 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3715 int128_sub((size), int128_one())) : 0)
3717 void mtree_print_dispatch(fprintf_function mon, void *f,
3718 AddressSpaceDispatch *d, MemoryRegion *root)
3720 int i;
3722 mon(f, " Dispatch\n");
3723 mon(f, " Physical sections\n");
3725 for (i = 0; i < d->map.sections_nb; ++i) {
3726 MemoryRegionSection *s = d->map.sections + i;
3727 const char *names[] = { " [unassigned]", " [not dirty]",
3728 " [ROM]", " [watch]" };
3730 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3732 s->offset_within_address_space,
3733 s->offset_within_address_space + MR_SIZE(s->mr->size),
3734 s->mr->name ? s->mr->name : "(noname)",
3735 i < ARRAY_SIZE(names) ? names[i] : "",
3736 s->mr == root ? " [ROOT]" : "",
3737 s == d->mru_section ? " [MRU]" : "",
3738 s->mr->is_iommu ? " [iommu]" : "");
3740 if (s->mr->alias) {
3741 mon(f, " alias=%s", s->mr->alias->name ?
3742 s->mr->alias->name : "noname");
3744 mon(f, "\n");
3747 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3748 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3749 for (i = 0; i < d->map.nodes_nb; ++i) {
3750 int j, jprev;
3751 PhysPageEntry prev;
3752 Node *n = d->map.nodes + i;
3754 mon(f, " [%d]\n", i);
3756 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3757 PhysPageEntry *pe = *n + j;
3759 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3760 continue;
3763 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3765 jprev = j;
3766 prev = *pe;
3769 if (jprev != ARRAY_SIZE(*n)) {
3770 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3775 #endif