4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
37 #include <sys/times.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
50 #include <linux/if_tun.h>
52 #include <arpa/inet.h>
55 #include <sys/select.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
97 #if defined(__OpenBSD__)
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
117 int qemu_main(int argc
, char **argv
, char **envp
);
118 int main(int argc
, char **argv
)
120 qemu_main(argc
, argv
, NULL
);
123 #define main qemu_main
125 #endif /* CONFIG_SDL */
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
133 #include "hw/boards.h"
135 #include "hw/pcmcia.h"
137 #include "hw/audiodev.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
155 #include "audio/audio.h"
156 #include "migration.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
173 //#define DEBUG_SLIRP
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 # define LOG_IOPORT(...) do { } while (0)
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir
= CONFIG_QEMU_SHAREDIR
;
194 const char *bios_name
= NULL
;
195 static void *ioport_opaque
[MAX_IOPORTS
];
196 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
197 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table
[MAX_DRIVES
+1];
202 static int vga_ram_size
;
203 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
204 static DisplayState
*display_state
;
208 const char* keyboard_layout
= NULL
;
209 int64_t ticks_per_sec
;
212 NICInfo nd_table
[MAX_NICS
];
214 static int autostart
;
215 static int rtc_utc
= 1;
216 static int rtc_date_offset
= -1; /* -1 means no change */
217 int cirrus_vga_enabled
= 1;
218 int std_vga_enabled
= 0;
219 int vmsvga_enabled
= 0;
220 int xenfb_enabled
= 0;
222 int graphic_width
= 1024;
223 int graphic_height
= 768;
224 int graphic_depth
= 8;
226 int graphic_width
= 800;
227 int graphic_height
= 600;
228 int graphic_depth
= 15;
230 static int full_screen
= 0;
232 static int no_frame
= 0;
235 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
236 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
237 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
239 int win2k_install_hack
= 0;
245 const char *vnc_display
;
246 int acpi_enabled
= 1;
252 int graphic_rotate
= 0;
256 WatchdogTimerModel
*watchdog
= NULL
;
257 int watchdog_action
= WDT_RESET
;
258 const char *option_rom
[MAX_OPTION_ROMS
];
260 int semihosting_enabled
= 0;
264 const char *qemu_name
;
266 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
267 unsigned int nb_prom_envs
= 0;
268 const char *prom_envs
[MAX_PROM_ENVS
];
271 struct drive_opt drives_opt
[MAX_DRIVES
];
274 uint64_t node_mem
[MAX_NODES
];
275 uint64_t node_cpumask
[MAX_NODES
];
277 static CPUState
*cur_cpu
;
278 static CPUState
*next_cpu
;
279 static int timer_alarm_pending
= 1;
280 /* Conversion factor from emulated instructions to virtual clock ticks. */
281 static int icount_time_shift
;
282 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
283 #define MAX_ICOUNT_SHIFT 10
284 /* Compensate for varying guest execution speed. */
285 static int64_t qemu_icount_bias
;
286 static QEMUTimer
*icount_rt_timer
;
287 static QEMUTimer
*icount_vm_timer
;
288 static QEMUTimer
*nographic_timer
;
290 uint8_t qemu_uuid
[16];
292 /***********************************************************/
293 /* x86 ISA bus support */
295 target_phys_addr_t isa_mem_base
= 0;
298 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
299 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
301 static uint32_t ioport_read(int index
, uint32_t address
)
303 static IOPortReadFunc
*default_func
[3] = {
304 default_ioport_readb
,
305 default_ioport_readw
,
308 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
310 func
= default_func
[index
];
311 return func(ioport_opaque
[address
], address
);
314 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
316 static IOPortWriteFunc
*default_func
[3] = {
317 default_ioport_writeb
,
318 default_ioport_writew
,
319 default_ioport_writel
321 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
323 func
= default_func
[index
];
324 func(ioport_opaque
[address
], address
, data
);
327 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
329 #ifdef DEBUG_UNUSED_IOPORT
330 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
335 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
337 #ifdef DEBUG_UNUSED_IOPORT
338 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
342 /* default is to make two byte accesses */
343 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
346 data
= ioport_read(0, address
);
347 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
348 data
|= ioport_read(0, address
) << 8;
352 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
354 ioport_write(0, address
, data
& 0xff);
355 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
356 ioport_write(0, address
, (data
>> 8) & 0xff);
359 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
361 #ifdef DEBUG_UNUSED_IOPORT
362 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
367 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
369 #ifdef DEBUG_UNUSED_IOPORT
370 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
374 /* size is the word size in byte */
375 int register_ioport_read(int start
, int length
, int size
,
376 IOPortReadFunc
*func
, void *opaque
)
382 } else if (size
== 2) {
384 } else if (size
== 4) {
387 hw_error("register_ioport_read: invalid size");
390 for(i
= start
; i
< start
+ length
; i
+= size
) {
391 ioport_read_table
[bsize
][i
] = func
;
392 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
393 hw_error("register_ioport_read: invalid opaque");
394 ioport_opaque
[i
] = opaque
;
399 /* size is the word size in byte */
400 int register_ioport_write(int start
, int length
, int size
,
401 IOPortWriteFunc
*func
, void *opaque
)
407 } else if (size
== 2) {
409 } else if (size
== 4) {
412 hw_error("register_ioport_write: invalid size");
415 for(i
= start
; i
< start
+ length
; i
+= size
) {
416 ioport_write_table
[bsize
][i
] = func
;
417 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
418 hw_error("register_ioport_write: invalid opaque");
419 ioport_opaque
[i
] = opaque
;
424 void isa_unassign_ioport(int start
, int length
)
428 for(i
= start
; i
< start
+ length
; i
++) {
429 ioport_read_table
[0][i
] = default_ioport_readb
;
430 ioport_read_table
[1][i
] = default_ioport_readw
;
431 ioport_read_table
[2][i
] = default_ioport_readl
;
433 ioport_write_table
[0][i
] = default_ioport_writeb
;
434 ioport_write_table
[1][i
] = default_ioport_writew
;
435 ioport_write_table
[2][i
] = default_ioport_writel
;
437 ioport_opaque
[i
] = NULL
;
441 /***********************************************************/
443 void cpu_outb(CPUState
*env
, int addr
, int val
)
445 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
446 ioport_write(0, addr
, val
);
449 env
->last_io_time
= cpu_get_time_fast();
453 void cpu_outw(CPUState
*env
, int addr
, int val
)
455 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
456 ioport_write(1, addr
, val
);
459 env
->last_io_time
= cpu_get_time_fast();
463 void cpu_outl(CPUState
*env
, int addr
, int val
)
465 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
466 ioport_write(2, addr
, val
);
469 env
->last_io_time
= cpu_get_time_fast();
473 int cpu_inb(CPUState
*env
, int addr
)
476 val
= ioport_read(0, addr
);
477 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
480 env
->last_io_time
= cpu_get_time_fast();
485 int cpu_inw(CPUState
*env
, int addr
)
488 val
= ioport_read(1, addr
);
489 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
492 env
->last_io_time
= cpu_get_time_fast();
497 int cpu_inl(CPUState
*env
, int addr
)
500 val
= ioport_read(2, addr
);
501 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
504 env
->last_io_time
= cpu_get_time_fast();
509 /***********************************************************/
510 void hw_error(const char *fmt
, ...)
516 fprintf(stderr
, "qemu: hardware error: ");
517 vfprintf(stderr
, fmt
, ap
);
518 fprintf(stderr
, "\n");
519 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
520 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
522 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
524 cpu_dump_state(env
, stderr
, fprintf
, 0);
534 static QEMUBalloonEvent
*qemu_balloon_event
;
535 void *qemu_balloon_event_opaque
;
537 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
539 qemu_balloon_event
= func
;
540 qemu_balloon_event_opaque
= opaque
;
543 void qemu_balloon(ram_addr_t target
)
545 if (qemu_balloon_event
)
546 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
549 ram_addr_t
qemu_balloon_status(void)
551 if (qemu_balloon_event
)
552 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
556 /***********************************************************/
559 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
560 static void *qemu_put_kbd_event_opaque
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
562 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
564 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
566 qemu_put_kbd_event_opaque
= opaque
;
567 qemu_put_kbd_event
= func
;
570 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
571 void *opaque
, int absolute
,
574 QEMUPutMouseEntry
*s
, *cursor
;
576 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
578 s
->qemu_put_mouse_event
= func
;
579 s
->qemu_put_mouse_event_opaque
= opaque
;
580 s
->qemu_put_mouse_event_absolute
= absolute
;
581 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
584 if (!qemu_put_mouse_event_head
) {
585 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
589 cursor
= qemu_put_mouse_event_head
;
590 while (cursor
->next
!= NULL
)
591 cursor
= cursor
->next
;
594 qemu_put_mouse_event_current
= s
;
599 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
601 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
603 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
606 cursor
= qemu_put_mouse_event_head
;
607 while (cursor
!= NULL
&& cursor
!= entry
) {
609 cursor
= cursor
->next
;
612 if (cursor
== NULL
) // does not exist or list empty
614 else if (prev
== NULL
) { // entry is head
615 qemu_put_mouse_event_head
= cursor
->next
;
616 if (qemu_put_mouse_event_current
== entry
)
617 qemu_put_mouse_event_current
= cursor
->next
;
618 qemu_free(entry
->qemu_put_mouse_event_name
);
623 prev
->next
= entry
->next
;
625 if (qemu_put_mouse_event_current
== entry
)
626 qemu_put_mouse_event_current
= prev
;
628 qemu_free(entry
->qemu_put_mouse_event_name
);
632 void kbd_put_keycode(int keycode
)
634 if (qemu_put_kbd_event
) {
635 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
639 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
641 QEMUPutMouseEvent
*mouse_event
;
642 void *mouse_event_opaque
;
645 if (!qemu_put_mouse_event_current
) {
650 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
652 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
655 if (graphic_rotate
) {
656 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
659 width
= graphic_width
- 1;
660 mouse_event(mouse_event_opaque
,
661 width
- dy
, dx
, dz
, buttons_state
);
663 mouse_event(mouse_event_opaque
,
664 dx
, dy
, dz
, buttons_state
);
668 int kbd_mouse_is_absolute(void)
670 if (!qemu_put_mouse_event_current
)
673 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
676 void do_info_mice(Monitor
*mon
)
678 QEMUPutMouseEntry
*cursor
;
681 if (!qemu_put_mouse_event_head
) {
682 monitor_printf(mon
, "No mouse devices connected\n");
686 monitor_printf(mon
, "Mouse devices available:\n");
687 cursor
= qemu_put_mouse_event_head
;
688 while (cursor
!= NULL
) {
689 monitor_printf(mon
, "%c Mouse #%d: %s\n",
690 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
691 index
, cursor
->qemu_put_mouse_event_name
);
693 cursor
= cursor
->next
;
697 void do_mouse_set(Monitor
*mon
, int index
)
699 QEMUPutMouseEntry
*cursor
;
702 if (!qemu_put_mouse_event_head
) {
703 monitor_printf(mon
, "No mouse devices connected\n");
707 cursor
= qemu_put_mouse_event_head
;
708 while (cursor
!= NULL
&& index
!= i
) {
710 cursor
= cursor
->next
;
714 qemu_put_mouse_event_current
= cursor
;
716 monitor_printf(mon
, "Mouse at given index not found\n");
719 /* compute with 96 bit intermediate result: (a*b)/c */
720 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
725 #ifdef WORDS_BIGENDIAN
735 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
736 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
739 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
743 /***********************************************************/
744 /* real time host monotonic timer */
746 #define QEMU_TIMER_BASE 1000000000LL
750 static int64_t clock_freq
;
752 static void init_get_clock(void)
756 ret
= QueryPerformanceFrequency(&freq
);
758 fprintf(stderr
, "Could not calibrate ticks\n");
761 clock_freq
= freq
.QuadPart
;
764 static int64_t get_clock(void)
767 QueryPerformanceCounter(&ti
);
768 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
773 static int use_rt_clock
;
775 static void init_get_clock(void)
778 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
779 || defined(__DragonFly__)
782 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
789 static int64_t get_clock(void)
791 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
792 || defined(__DragonFly__)
795 clock_gettime(CLOCK_MONOTONIC
, &ts
);
796 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
800 /* XXX: using gettimeofday leads to problems if the date
801 changes, so it should be avoided. */
803 gettimeofday(&tv
, NULL
);
804 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
809 /* Return the virtual CPU time, based on the instruction counter. */
810 static int64_t cpu_get_icount(void)
813 CPUState
*env
= cpu_single_env
;;
814 icount
= qemu_icount
;
817 fprintf(stderr
, "Bad clock read\n");
818 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
820 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
823 /***********************************************************/
824 /* guest cycle counter */
826 static int64_t cpu_ticks_prev
;
827 static int64_t cpu_ticks_offset
;
828 static int64_t cpu_clock_offset
;
829 static int cpu_ticks_enabled
;
831 /* return the host CPU cycle counter and handle stop/restart */
832 int64_t cpu_get_ticks(void)
835 return cpu_get_icount();
837 if (!cpu_ticks_enabled
) {
838 return cpu_ticks_offset
;
841 ticks
= cpu_get_real_ticks();
842 if (cpu_ticks_prev
> ticks
) {
843 /* Note: non increasing ticks may happen if the host uses
845 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
847 cpu_ticks_prev
= ticks
;
848 return ticks
+ cpu_ticks_offset
;
852 /* return the host CPU monotonic timer and handle stop/restart */
853 static int64_t cpu_get_clock(void)
856 if (!cpu_ticks_enabled
) {
857 return cpu_clock_offset
;
860 return ti
+ cpu_clock_offset
;
864 /* enable cpu_get_ticks() */
865 void cpu_enable_ticks(void)
867 if (!cpu_ticks_enabled
) {
868 cpu_ticks_offset
-= cpu_get_real_ticks();
869 cpu_clock_offset
-= get_clock();
870 cpu_ticks_enabled
= 1;
874 /* disable cpu_get_ticks() : the clock is stopped. You must not call
875 cpu_get_ticks() after that. */
876 void cpu_disable_ticks(void)
878 if (cpu_ticks_enabled
) {
879 cpu_ticks_offset
= cpu_get_ticks();
880 cpu_clock_offset
= cpu_get_clock();
881 cpu_ticks_enabled
= 0;
885 /***********************************************************/
888 #define QEMU_TIMER_REALTIME 0
889 #define QEMU_TIMER_VIRTUAL 1
893 /* XXX: add frequency */
901 struct QEMUTimer
*next
;
904 struct qemu_alarm_timer
{
908 int (*start
)(struct qemu_alarm_timer
*t
);
909 void (*stop
)(struct qemu_alarm_timer
*t
);
910 void (*rearm
)(struct qemu_alarm_timer
*t
);
914 #define ALARM_FLAG_DYNTICKS 0x1
915 #define ALARM_FLAG_EXPIRED 0x2
917 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
919 return t
->flags
& ALARM_FLAG_DYNTICKS
;
922 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
924 if (!alarm_has_dynticks(t
))
930 /* TODO: MIN_TIMER_REARM_US should be optimized */
931 #define MIN_TIMER_REARM_US 250
933 static struct qemu_alarm_timer
*alarm_timer
;
937 struct qemu_alarm_win32
{
940 } alarm_win32_data
= {0, -1};
942 static int win32_start_timer(struct qemu_alarm_timer
*t
);
943 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
944 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
948 static int unix_start_timer(struct qemu_alarm_timer
*t
);
949 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
953 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
955 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
957 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
958 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
960 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
961 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
963 #endif /* __linux__ */
967 /* Correlation between real and virtual time is always going to be
968 fairly approximate, so ignore small variation.
969 When the guest is idle real and virtual time will be aligned in
971 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
973 static void icount_adjust(void)
978 static int64_t last_delta
;
979 /* If the VM is not running, then do nothing. */
983 cur_time
= cpu_get_clock();
984 cur_icount
= qemu_get_clock(vm_clock
);
985 delta
= cur_icount
- cur_time
;
986 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
988 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
989 && icount_time_shift
> 0) {
990 /* The guest is getting too far ahead. Slow time down. */
994 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
995 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
996 /* The guest is getting too far behind. Speed time up. */
1000 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1003 static void icount_adjust_rt(void * opaque
)
1005 qemu_mod_timer(icount_rt_timer
,
1006 qemu_get_clock(rt_clock
) + 1000);
1010 static void icount_adjust_vm(void * opaque
)
1012 qemu_mod_timer(icount_vm_timer
,
1013 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1017 static void init_icount_adjust(void)
1019 /* Have both realtime and virtual time triggers for speed adjustment.
1020 The realtime trigger catches emulated time passing too slowly,
1021 the virtual time trigger catches emulated time passing too fast.
1022 Realtime triggers occur even when idle, so use them less frequently
1023 than VM triggers. */
1024 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1025 qemu_mod_timer(icount_rt_timer
,
1026 qemu_get_clock(rt_clock
) + 1000);
1027 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1028 qemu_mod_timer(icount_vm_timer
,
1029 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1032 static struct qemu_alarm_timer alarm_timers
[] = {
1035 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1036 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1037 /* HPET - if available - is preferred */
1038 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1039 /* ...otherwise try RTC */
1040 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1042 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1044 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1045 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1046 {"win32", 0, win32_start_timer
,
1047 win32_stop_timer
, NULL
, &alarm_win32_data
},
1052 static void show_available_alarms(void)
1056 printf("Available alarm timers, in order of precedence:\n");
1057 for (i
= 0; alarm_timers
[i
].name
; i
++)
1058 printf("%s\n", alarm_timers
[i
].name
);
1061 static void configure_alarms(char const *opt
)
1065 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1068 struct qemu_alarm_timer tmp
;
1070 if (!strcmp(opt
, "?")) {
1071 show_available_alarms();
1077 /* Reorder the array */
1078 name
= strtok(arg
, ",");
1080 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1081 if (!strcmp(alarm_timers
[i
].name
, name
))
1086 fprintf(stderr
, "Unknown clock %s\n", name
);
1095 tmp
= alarm_timers
[i
];
1096 alarm_timers
[i
] = alarm_timers
[cur
];
1097 alarm_timers
[cur
] = tmp
;
1101 name
= strtok(NULL
, ",");
1107 /* Disable remaining timers */
1108 for (i
= cur
; i
< count
; i
++)
1109 alarm_timers
[i
].name
= NULL
;
1111 show_available_alarms();
1116 QEMUClock
*rt_clock
;
1117 QEMUClock
*vm_clock
;
1119 static QEMUTimer
*active_timers
[2];
1121 static QEMUClock
*qemu_new_clock(int type
)
1124 clock
= qemu_mallocz(sizeof(QEMUClock
));
1129 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1133 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1136 ts
->opaque
= opaque
;
1140 void qemu_free_timer(QEMUTimer
*ts
)
1145 /* stop a timer, but do not dealloc it */
1146 void qemu_del_timer(QEMUTimer
*ts
)
1150 /* NOTE: this code must be signal safe because
1151 qemu_timer_expired() can be called from a signal. */
1152 pt
= &active_timers
[ts
->clock
->type
];
1165 /* modify the current timer so that it will be fired when current_time
1166 >= expire_time. The corresponding callback will be called. */
1167 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1173 /* add the timer in the sorted list */
1174 /* NOTE: this code must be signal safe because
1175 qemu_timer_expired() can be called from a signal. */
1176 pt
= &active_timers
[ts
->clock
->type
];
1181 if (t
->expire_time
> expire_time
)
1185 ts
->expire_time
= expire_time
;
1189 /* Rearm if necessary */
1190 if (pt
== &active_timers
[ts
->clock
->type
]) {
1191 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1192 qemu_rearm_alarm_timer(alarm_timer
);
1194 /* Interrupt execution to force deadline recalculation. */
1196 qemu_notify_event();
1200 int qemu_timer_pending(QEMUTimer
*ts
)
1203 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1210 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1214 return (timer_head
->expire_time
<= current_time
);
1217 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1223 if (!ts
|| ts
->expire_time
> current_time
)
1225 /* remove timer from the list before calling the callback */
1226 *ptimer_head
= ts
->next
;
1229 /* run the callback (the timer list can be modified) */
1234 int64_t qemu_get_clock(QEMUClock
*clock
)
1236 switch(clock
->type
) {
1237 case QEMU_TIMER_REALTIME
:
1238 return get_clock() / 1000000;
1240 case QEMU_TIMER_VIRTUAL
:
1242 return cpu_get_icount();
1244 return cpu_get_clock();
1249 static void init_timers(void)
1252 ticks_per_sec
= QEMU_TIMER_BASE
;
1253 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1254 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1258 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1260 uint64_t expire_time
;
1262 if (qemu_timer_pending(ts
)) {
1263 expire_time
= ts
->expire_time
;
1267 qemu_put_be64(f
, expire_time
);
1270 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1272 uint64_t expire_time
;
1274 expire_time
= qemu_get_be64(f
);
1275 if (expire_time
!= -1) {
1276 qemu_mod_timer(ts
, expire_time
);
1282 static void timer_save(QEMUFile
*f
, void *opaque
)
1284 if (cpu_ticks_enabled
) {
1285 hw_error("cannot save state if virtual timers are running");
1287 qemu_put_be64(f
, cpu_ticks_offset
);
1288 qemu_put_be64(f
, ticks_per_sec
);
1289 qemu_put_be64(f
, cpu_clock_offset
);
1292 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1294 if (version_id
!= 1 && version_id
!= 2)
1296 if (cpu_ticks_enabled
) {
1299 cpu_ticks_offset
=qemu_get_be64(f
);
1300 ticks_per_sec
=qemu_get_be64(f
);
1301 if (version_id
== 2) {
1302 cpu_clock_offset
=qemu_get_be64(f
);
1307 static void qemu_event_increment(void);
1310 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1311 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1314 static void host_alarm_handler(int host_signum
)
1318 #define DISP_FREQ 1000
1320 static int64_t delta_min
= INT64_MAX
;
1321 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1323 ti
= qemu_get_clock(vm_clock
);
1324 if (last_clock
!= 0) {
1325 delta
= ti
- last_clock
;
1326 if (delta
< delta_min
)
1328 if (delta
> delta_max
)
1331 if (++count
== DISP_FREQ
) {
1332 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1333 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1335 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1336 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1338 delta_min
= INT64_MAX
;
1346 if (alarm_has_dynticks(alarm_timer
) ||
1348 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1349 qemu_get_clock(vm_clock
))) ||
1350 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1351 qemu_get_clock(rt_clock
))) {
1352 qemu_event_increment();
1353 alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1355 #ifndef CONFIG_IOTHREAD
1357 /* stop the currently executing cpu because a timer occured */
1360 if (next_cpu
->kqemu_enabled
) {
1361 kqemu_cpu_interrupt(next_cpu
);
1366 timer_alarm_pending
= 1;
1367 qemu_notify_event();
1371 static int64_t qemu_next_deadline(void)
1375 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1376 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1377 qemu_get_clock(vm_clock
);
1379 /* To avoid problems with overflow limit this to 2^32. */
1389 #if defined(__linux__) || defined(_WIN32)
1390 static uint64_t qemu_next_deadline_dyntick(void)
1398 delta
= (qemu_next_deadline() + 999) / 1000;
1400 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1401 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1402 qemu_get_clock(rt_clock
))*1000;
1403 if (rtdelta
< delta
)
1407 if (delta
< MIN_TIMER_REARM_US
)
1408 delta
= MIN_TIMER_REARM_US
;
1416 /* Sets a specific flag */
1417 static int fcntl_setfl(int fd
, int flag
)
1421 flags
= fcntl(fd
, F_GETFL
);
1425 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1431 #if defined(__linux__)
1433 #define RTC_FREQ 1024
1435 static void enable_sigio_timer(int fd
)
1437 struct sigaction act
;
1440 sigfillset(&act
.sa_mask
);
1442 act
.sa_handler
= host_alarm_handler
;
1444 sigaction(SIGIO
, &act
, NULL
);
1445 fcntl_setfl(fd
, O_ASYNC
);
1446 fcntl(fd
, F_SETOWN
, getpid());
1449 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1451 struct hpet_info info
;
1454 fd
= open("/dev/hpet", O_RDONLY
);
1459 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1461 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1462 "error, but for better emulation accuracy type:\n"
1463 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1467 /* Check capabilities */
1468 r
= ioctl(fd
, HPET_INFO
, &info
);
1472 /* Enable periodic mode */
1473 r
= ioctl(fd
, HPET_EPI
, 0);
1474 if (info
.hi_flags
&& (r
< 0))
1477 /* Enable interrupt */
1478 r
= ioctl(fd
, HPET_IE_ON
, 0);
1482 enable_sigio_timer(fd
);
1483 t
->priv
= (void *)(long)fd
;
1491 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1493 int fd
= (long)t
->priv
;
1498 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1501 unsigned long current_rtc_freq
= 0;
1503 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1506 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1507 if (current_rtc_freq
!= RTC_FREQ
&&
1508 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1509 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1510 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1511 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1514 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1520 enable_sigio_timer(rtc_fd
);
1522 t
->priv
= (void *)(long)rtc_fd
;
1527 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1529 int rtc_fd
= (long)t
->priv
;
1534 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1538 struct sigaction act
;
1540 sigfillset(&act
.sa_mask
);
1542 act
.sa_handler
= host_alarm_handler
;
1544 sigaction(SIGALRM
, &act
, NULL
);
1546 ev
.sigev_value
.sival_int
= 0;
1547 ev
.sigev_notify
= SIGEV_SIGNAL
;
1548 ev
.sigev_signo
= SIGALRM
;
1550 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1551 perror("timer_create");
1553 /* disable dynticks */
1554 fprintf(stderr
, "Dynamic Ticks disabled\n");
1559 t
->priv
= (void *)(long)host_timer
;
1564 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1566 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1568 timer_delete(host_timer
);
1571 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1573 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1574 struct itimerspec timeout
;
1575 int64_t nearest_delta_us
= INT64_MAX
;
1578 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1579 !active_timers
[QEMU_TIMER_VIRTUAL
])
1582 nearest_delta_us
= qemu_next_deadline_dyntick();
1584 /* check whether a timer is already running */
1585 if (timer_gettime(host_timer
, &timeout
)) {
1587 fprintf(stderr
, "Internal timer error: aborting\n");
1590 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1591 if (current_us
&& current_us
<= nearest_delta_us
)
1594 timeout
.it_interval
.tv_sec
= 0;
1595 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1596 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1597 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1598 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1600 fprintf(stderr
, "Internal timer error: aborting\n");
1605 #endif /* defined(__linux__) */
1607 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1609 struct sigaction act
;
1610 struct itimerval itv
;
1614 sigfillset(&act
.sa_mask
);
1616 act
.sa_handler
= host_alarm_handler
;
1618 sigaction(SIGALRM
, &act
, NULL
);
1620 itv
.it_interval
.tv_sec
= 0;
1621 /* for i386 kernel 2.6 to get 1 ms */
1622 itv
.it_interval
.tv_usec
= 999;
1623 itv
.it_value
.tv_sec
= 0;
1624 itv
.it_value
.tv_usec
= 10 * 1000;
1626 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1633 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1635 struct itimerval itv
;
1637 memset(&itv
, 0, sizeof(itv
));
1638 setitimer(ITIMER_REAL
, &itv
, NULL
);
1641 #endif /* !defined(_WIN32) */
1646 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1649 struct qemu_alarm_win32
*data
= t
->priv
;
1652 memset(&tc
, 0, sizeof(tc
));
1653 timeGetDevCaps(&tc
, sizeof(tc
));
1655 if (data
->period
< tc
.wPeriodMin
)
1656 data
->period
= tc
.wPeriodMin
;
1658 timeBeginPeriod(data
->period
);
1660 flags
= TIME_CALLBACK_FUNCTION
;
1661 if (alarm_has_dynticks(t
))
1662 flags
|= TIME_ONESHOT
;
1664 flags
|= TIME_PERIODIC
;
1666 data
->timerId
= timeSetEvent(1, // interval (ms)
1667 data
->period
, // resolution
1668 host_alarm_handler
, // function
1669 (DWORD
)t
, // parameter
1672 if (!data
->timerId
) {
1673 perror("Failed to initialize win32 alarm timer");
1674 timeEndPeriod(data
->period
);
1681 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1683 struct qemu_alarm_win32
*data
= t
->priv
;
1685 timeKillEvent(data
->timerId
);
1686 timeEndPeriod(data
->period
);
1689 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1691 struct qemu_alarm_win32
*data
= t
->priv
;
1692 uint64_t nearest_delta_us
;
1694 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1695 !active_timers
[QEMU_TIMER_VIRTUAL
])
1698 nearest_delta_us
= qemu_next_deadline_dyntick();
1699 nearest_delta_us
/= 1000;
1701 timeKillEvent(data
->timerId
);
1703 data
->timerId
= timeSetEvent(1,
1707 TIME_ONESHOT
| TIME_PERIODIC
);
1709 if (!data
->timerId
) {
1710 perror("Failed to re-arm win32 alarm timer");
1712 timeEndPeriod(data
->period
);
1719 static int init_timer_alarm(void)
1721 struct qemu_alarm_timer
*t
= NULL
;
1724 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1725 t
= &alarm_timers
[i
];
1745 static void quit_timers(void)
1747 alarm_timer
->stop(alarm_timer
);
1751 /***********************************************************/
1752 /* host time/date access */
1753 void qemu_get_timedate(struct tm
*tm
, int offset
)
1760 if (rtc_date_offset
== -1) {
1764 ret
= localtime(&ti
);
1766 ti
-= rtc_date_offset
;
1770 memcpy(tm
, ret
, sizeof(struct tm
));
1773 int qemu_timedate_diff(struct tm
*tm
)
1777 if (rtc_date_offset
== -1)
1779 seconds
= mktimegm(tm
);
1781 seconds
= mktime(tm
);
1783 seconds
= mktimegm(tm
) + rtc_date_offset
;
1785 return seconds
- time(NULL
);
1789 static void socket_cleanup(void)
1794 static int socket_init(void)
1799 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1801 err
= WSAGetLastError();
1802 fprintf(stderr
, "WSAStartup: %d\n", err
);
1805 atexit(socket_cleanup
);
1810 const char *get_opt_name(char *buf
, int buf_size
, const char *p
, char delim
)
1815 while (*p
!= '\0' && *p
!= delim
) {
1816 if (q
&& (q
- buf
) < buf_size
- 1)
1826 const char *get_opt_value(char *buf
, int buf_size
, const char *p
)
1831 while (*p
!= '\0') {
1833 if (*(p
+ 1) != ',')
1837 if (q
&& (q
- buf
) < buf_size
- 1)
1847 int get_param_value(char *buf
, int buf_size
,
1848 const char *tag
, const char *str
)
1855 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1859 if (!strcmp(tag
, option
)) {
1860 (void)get_opt_value(buf
, buf_size
, p
);
1863 p
= get_opt_value(NULL
, 0, p
);
1872 int check_params(const char * const *params
, const char *str
)
1874 int name_buf_size
= 1;
1880 for (i
= 0; params
[i
] != NULL
; i
++) {
1881 len
= strlen(params
[i
]) + 1;
1882 if (len
> name_buf_size
) {
1883 name_buf_size
= len
;
1886 name_buf
= qemu_malloc(name_buf_size
);
1889 while (*p
!= '\0') {
1890 p
= get_opt_name(name_buf
, name_buf_size
, p
, '=');
1896 for(i
= 0; params
[i
] != NULL
; i
++)
1897 if (!strcmp(params
[i
], name_buf
))
1899 if (params
[i
] == NULL
) {
1903 p
= get_opt_value(NULL
, 0, p
);
1909 qemu_free(name_buf
);
1913 /***********************************************************/
1914 /* Bluetooth support */
1917 static struct HCIInfo
*hci_table
[MAX_NICS
];
1919 static struct bt_vlan_s
{
1920 struct bt_scatternet_s net
;
1922 struct bt_vlan_s
*next
;
1925 /* find or alloc a new bluetooth "VLAN" */
1926 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1928 struct bt_vlan_s
**pvlan
, *vlan
;
1929 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1933 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1935 pvlan
= &first_bt_vlan
;
1936 while (*pvlan
!= NULL
)
1937 pvlan
= &(*pvlan
)->next
;
1942 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1946 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1951 static struct HCIInfo null_hci
= {
1952 .cmd_send
= null_hci_send
,
1953 .sco_send
= null_hci_send
,
1954 .acl_send
= null_hci_send
,
1955 .bdaddr_set
= null_hci_addr_set
,
1958 struct HCIInfo
*qemu_next_hci(void)
1960 if (cur_hci
== nb_hcis
)
1963 return hci_table
[cur_hci
++];
1966 static struct HCIInfo
*hci_init(const char *str
)
1969 struct bt_scatternet_s
*vlan
= 0;
1971 if (!strcmp(str
, "null"))
1974 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1976 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1977 else if (!strncmp(str
, "hci", 3)) {
1980 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1981 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1986 vlan
= qemu_find_bt_vlan(0);
1988 return bt_new_hci(vlan
);
1991 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1996 static int bt_hci_parse(const char *str
)
1998 struct HCIInfo
*hci
;
2001 if (nb_hcis
>= MAX_NICS
) {
2002 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
2006 hci
= hci_init(str
);
2015 bdaddr
.b
[5] = 0x56 + nb_hcis
;
2016 hci
->bdaddr_set(hci
, bdaddr
.b
);
2018 hci_table
[nb_hcis
++] = hci
;
2023 static void bt_vhci_add(int vlan_id
)
2025 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
2028 fprintf(stderr
, "qemu: warning: adding a VHCI to "
2029 "an empty scatternet %i\n", vlan_id
);
2031 bt_vhci_init(bt_new_hci(vlan
));
2034 static struct bt_device_s
*bt_device_add(const char *opt
)
2036 struct bt_scatternet_s
*vlan
;
2038 char *endp
= strstr(opt
, ",vlan=");
2039 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
2042 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2045 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2047 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2052 vlan
= qemu_find_bt_vlan(vlan_id
);
2055 fprintf(stderr
, "qemu: warning: adding a slave device to "
2056 "an empty scatternet %i\n", vlan_id
);
2058 if (!strcmp(devname
, "keyboard"))
2059 return bt_keyboard_init(vlan
);
2061 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2065 static int bt_parse(const char *opt
)
2067 const char *endp
, *p
;
2070 if (strstart(opt
, "hci", &endp
)) {
2071 if (!*endp
|| *endp
== ',') {
2073 if (!strstart(endp
, ",vlan=", 0))
2076 return bt_hci_parse(opt
);
2078 } else if (strstart(opt
, "vhci", &endp
)) {
2079 if (!*endp
|| *endp
== ',') {
2081 if (strstart(endp
, ",vlan=", &p
)) {
2082 vlan
= strtol(p
, (char **) &endp
, 0);
2084 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2088 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2097 } else if (strstart(opt
, "device:", &endp
))
2098 return !bt_device_add(endp
);
2100 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2104 /***********************************************************/
2105 /* QEMU Block devices */
2107 #define HD_ALIAS "index=%d,media=disk"
2108 #define CDROM_ALIAS "index=2,media=cdrom"
2109 #define FD_ALIAS "index=%d,if=floppy"
2110 #define PFLASH_ALIAS "if=pflash"
2111 #define MTD_ALIAS "if=mtd"
2112 #define SD_ALIAS "index=0,if=sd"
2114 static int drive_opt_get_free_idx(void)
2118 for (index
= 0; index
< MAX_DRIVES
; index
++)
2119 if (!drives_opt
[index
].used
) {
2120 drives_opt
[index
].used
= 1;
2127 static int drive_get_free_idx(void)
2131 for (index
= 0; index
< MAX_DRIVES
; index
++)
2132 if (!drives_table
[index
].used
) {
2133 drives_table
[index
].used
= 1;
2140 int drive_add(const char *file
, const char *fmt
, ...)
2143 int index
= drive_opt_get_free_idx();
2145 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2146 fprintf(stderr
, "qemu: too many drives\n");
2150 drives_opt
[index
].file
= file
;
2152 vsnprintf(drives_opt
[index
].opt
,
2153 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2160 void drive_remove(int index
)
2162 drives_opt
[index
].used
= 0;
2166 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2170 /* seek interface, bus and unit */
2172 for (index
= 0; index
< MAX_DRIVES
; index
++)
2173 if (drives_table
[index
].type
== type
&&
2174 drives_table
[index
].bus
== bus
&&
2175 drives_table
[index
].unit
== unit
&&
2176 drives_table
[index
].used
)
2182 int drive_get_max_bus(BlockInterfaceType type
)
2188 for (index
= 0; index
< nb_drives
; index
++) {
2189 if(drives_table
[index
].type
== type
&&
2190 drives_table
[index
].bus
> max_bus
)
2191 max_bus
= drives_table
[index
].bus
;
2196 const char *drive_get_serial(BlockDriverState
*bdrv
)
2200 for (index
= 0; index
< nb_drives
; index
++)
2201 if (drives_table
[index
].bdrv
== bdrv
)
2202 return drives_table
[index
].serial
;
2207 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2211 for (index
= 0; index
< nb_drives
; index
++)
2212 if (drives_table
[index
].bdrv
== bdrv
)
2213 return drives_table
[index
].onerror
;
2215 return BLOCK_ERR_STOP_ENOSPC
;
2218 static void bdrv_format_print(void *opaque
, const char *name
)
2220 fprintf(stderr
, " %s", name
);
2223 void drive_uninit(BlockDriverState
*bdrv
)
2227 for (i
= 0; i
< MAX_DRIVES
; i
++)
2228 if (drives_table
[i
].bdrv
== bdrv
) {
2229 drives_table
[i
].bdrv
= NULL
;
2230 drives_table
[i
].used
= 0;
2231 drive_remove(drives_table
[i
].drive_opt_idx
);
2237 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2243 const char *mediastr
= "";
2244 BlockInterfaceType type
;
2245 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2246 int bus_id
, unit_id
;
2247 int cyls
, heads
, secs
, translation
;
2248 BlockDriverState
*bdrv
;
2249 BlockDriver
*drv
= NULL
;
2250 QEMUMachine
*machine
= opaque
;
2254 int bdrv_flags
, onerror
;
2255 int drives_table_idx
;
2256 char *str
= arg
->opt
;
2257 static const char * const params
[] = { "bus", "unit", "if", "index",
2258 "cyls", "heads", "secs", "trans",
2259 "media", "snapshot", "file",
2260 "cache", "format", "serial", "werror",
2263 if (check_params(params
, str
) < 0) {
2264 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2270 cyls
= heads
= secs
= 0;
2273 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2277 if (machine
->use_scsi
) {
2279 max_devs
= MAX_SCSI_DEVS
;
2280 pstrcpy(devname
, sizeof(devname
), "scsi");
2283 max_devs
= MAX_IDE_DEVS
;
2284 pstrcpy(devname
, sizeof(devname
), "ide");
2288 /* extract parameters */
2290 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2291 bus_id
= strtol(buf
, NULL
, 0);
2293 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2298 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2299 unit_id
= strtol(buf
, NULL
, 0);
2301 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2306 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2307 pstrcpy(devname
, sizeof(devname
), buf
);
2308 if (!strcmp(buf
, "ide")) {
2310 max_devs
= MAX_IDE_DEVS
;
2311 } else if (!strcmp(buf
, "scsi")) {
2313 max_devs
= MAX_SCSI_DEVS
;
2314 } else if (!strcmp(buf
, "floppy")) {
2317 } else if (!strcmp(buf
, "pflash")) {
2320 } else if (!strcmp(buf
, "mtd")) {
2323 } else if (!strcmp(buf
, "sd")) {
2326 } else if (!strcmp(buf
, "virtio")) {
2329 } else if (!strcmp(buf
, "xen")) {
2333 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2338 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2339 index
= strtol(buf
, NULL
, 0);
2341 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2346 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2347 cyls
= strtol(buf
, NULL
, 0);
2350 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2351 heads
= strtol(buf
, NULL
, 0);
2354 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2355 secs
= strtol(buf
, NULL
, 0);
2358 if (cyls
|| heads
|| secs
) {
2359 if (cyls
< 1 || cyls
> 16383) {
2360 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2363 if (heads
< 1 || heads
> 16) {
2364 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2367 if (secs
< 1 || secs
> 63) {
2368 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2373 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2376 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2380 if (!strcmp(buf
, "none"))
2381 translation
= BIOS_ATA_TRANSLATION_NONE
;
2382 else if (!strcmp(buf
, "lba"))
2383 translation
= BIOS_ATA_TRANSLATION_LBA
;
2384 else if (!strcmp(buf
, "auto"))
2385 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2387 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2392 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2393 if (!strcmp(buf
, "disk")) {
2395 } else if (!strcmp(buf
, "cdrom")) {
2396 if (cyls
|| secs
|| heads
) {
2398 "qemu: '%s' invalid physical CHS format\n", str
);
2401 media
= MEDIA_CDROM
;
2403 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2408 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2409 if (!strcmp(buf
, "on"))
2411 else if (!strcmp(buf
, "off"))
2414 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2419 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2420 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2422 else if (!strcmp(buf
, "writethrough"))
2424 else if (!strcmp(buf
, "writeback"))
2427 fprintf(stderr
, "qemu: invalid cache option\n");
2432 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2433 if (strcmp(buf
, "?") == 0) {
2434 fprintf(stderr
, "qemu: Supported formats:");
2435 bdrv_iterate_format(bdrv_format_print
, NULL
);
2436 fprintf(stderr
, "\n");
2439 drv
= bdrv_find_format(buf
);
2441 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2446 if (arg
->file
== NULL
)
2447 get_param_value(file
, sizeof(file
), "file", str
);
2449 pstrcpy(file
, sizeof(file
), arg
->file
);
2451 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2452 memset(serial
, 0, sizeof(serial
));
2454 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2455 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2456 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2457 fprintf(stderr
, "werror is no supported by this format\n");
2460 if (!strcmp(buf
, "ignore"))
2461 onerror
= BLOCK_ERR_IGNORE
;
2462 else if (!strcmp(buf
, "enospc"))
2463 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2464 else if (!strcmp(buf
, "stop"))
2465 onerror
= BLOCK_ERR_STOP_ANY
;
2466 else if (!strcmp(buf
, "report"))
2467 onerror
= BLOCK_ERR_REPORT
;
2469 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2474 /* compute bus and unit according index */
2477 if (bus_id
!= 0 || unit_id
!= -1) {
2479 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2487 unit_id
= index
% max_devs
;
2488 bus_id
= index
/ max_devs
;
2492 /* if user doesn't specify a unit_id,
2493 * try to find the first free
2496 if (unit_id
== -1) {
2498 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2500 if (max_devs
&& unit_id
>= max_devs
) {
2501 unit_id
-= max_devs
;
2509 if (max_devs
&& unit_id
>= max_devs
) {
2510 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2511 str
, unit_id
, max_devs
- 1);
2516 * ignore multiple definitions
2519 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2524 if (type
== IF_IDE
|| type
== IF_SCSI
)
2525 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2527 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2528 devname
, bus_id
, mediastr
, unit_id
);
2530 snprintf(buf
, sizeof(buf
), "%s%s%i",
2531 devname
, mediastr
, unit_id
);
2532 bdrv
= bdrv_new(buf
);
2533 drives_table_idx
= drive_get_free_idx();
2534 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2535 drives_table
[drives_table_idx
].type
= type
;
2536 drives_table
[drives_table_idx
].bus
= bus_id
;
2537 drives_table
[drives_table_idx
].unit
= unit_id
;
2538 drives_table
[drives_table_idx
].onerror
= onerror
;
2539 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2540 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2550 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2551 bdrv_set_translation_hint(bdrv
, translation
);
2555 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2560 /* FIXME: This isn't really a floppy, but it's a reasonable
2563 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2574 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2575 cache
= 2; /* always use write-back with snapshot */
2577 if (cache
== 0) /* no caching */
2578 bdrv_flags
|= BDRV_O_NOCACHE
;
2579 else if (cache
== 2) /* write-back */
2580 bdrv_flags
|= BDRV_O_CACHE_WB
;
2581 else if (cache
== 3) /* not specified */
2582 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2583 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2584 fprintf(stderr
, "qemu: could not open disk image %s\n",
2588 if (bdrv_key_required(bdrv
))
2590 return drives_table_idx
;
2593 static void numa_add(const char *optarg
)
2597 unsigned long long value
, endvalue
;
2600 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2601 if (!strcmp(option
, "node")) {
2602 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2603 nodenr
= nb_numa_nodes
;
2605 nodenr
= strtoull(option
, NULL
, 10);
2608 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2609 node_mem
[nodenr
] = 0;
2611 value
= strtoull(option
, &endptr
, 0);
2613 case 0: case 'M': case 'm':
2620 node_mem
[nodenr
] = value
;
2622 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2623 node_cpumask
[nodenr
] = 0;
2625 value
= strtoull(option
, &endptr
, 10);
2628 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2630 if (*endptr
== '-') {
2631 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2632 if (endvalue
>= 63) {
2635 "only 63 CPUs in NUMA mode supported.\n");
2637 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2642 node_cpumask
[nodenr
] = value
;
2649 /***********************************************************/
2652 static USBPort
*used_usb_ports
;
2653 static USBPort
*free_usb_ports
;
2655 /* ??? Maybe change this to register a hub to keep track of the topology. */
2656 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2657 usb_attachfn attach
)
2659 port
->opaque
= opaque
;
2660 port
->index
= index
;
2661 port
->attach
= attach
;
2662 port
->next
= free_usb_ports
;
2663 free_usb_ports
= port
;
2666 int usb_device_add_dev(USBDevice
*dev
)
2670 /* Find a USB port to add the device to. */
2671 port
= free_usb_ports
;
2675 /* Create a new hub and chain it on. */
2676 free_usb_ports
= NULL
;
2677 port
->next
= used_usb_ports
;
2678 used_usb_ports
= port
;
2680 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2681 usb_attach(port
, hub
);
2682 port
= free_usb_ports
;
2685 free_usb_ports
= port
->next
;
2686 port
->next
= used_usb_ports
;
2687 used_usb_ports
= port
;
2688 usb_attach(port
, dev
);
2692 static void usb_msd_password_cb(void *opaque
, int err
)
2694 USBDevice
*dev
= opaque
;
2697 usb_device_add_dev(dev
);
2699 dev
->handle_destroy(dev
);
2702 static int usb_device_add(const char *devname
, int is_hotplug
)
2707 if (!free_usb_ports
)
2710 if (strstart(devname
, "host:", &p
)) {
2711 dev
= usb_host_device_open(p
);
2712 } else if (!strcmp(devname
, "mouse")) {
2713 dev
= usb_mouse_init();
2714 } else if (!strcmp(devname
, "tablet")) {
2715 dev
= usb_tablet_init();
2716 } else if (!strcmp(devname
, "keyboard")) {
2717 dev
= usb_keyboard_init();
2718 } else if (strstart(devname
, "disk:", &p
)) {
2719 BlockDriverState
*bs
;
2721 dev
= usb_msd_init(p
);
2724 bs
= usb_msd_get_bdrv(dev
);
2725 if (bdrv_key_required(bs
)) {
2728 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2733 } else if (!strcmp(devname
, "wacom-tablet")) {
2734 dev
= usb_wacom_init();
2735 } else if (strstart(devname
, "serial:", &p
)) {
2736 dev
= usb_serial_init(p
);
2737 #ifdef CONFIG_BRLAPI
2738 } else if (!strcmp(devname
, "braille")) {
2739 dev
= usb_baum_init();
2741 } else if (strstart(devname
, "net:", &p
)) {
2744 if (net_client_init("nic", p
) < 0)
2746 nd_table
[nic
].model
= "usb";
2747 dev
= usb_net_init(&nd_table
[nic
]);
2748 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2749 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2750 bt_new_hci(qemu_find_bt_vlan(0)));
2757 return usb_device_add_dev(dev
);
2760 int usb_device_del_addr(int bus_num
, int addr
)
2766 if (!used_usb_ports
)
2772 lastp
= &used_usb_ports
;
2773 port
= used_usb_ports
;
2774 while (port
&& port
->dev
->addr
!= addr
) {
2775 lastp
= &port
->next
;
2783 *lastp
= port
->next
;
2784 usb_attach(port
, NULL
);
2785 dev
->handle_destroy(dev
);
2786 port
->next
= free_usb_ports
;
2787 free_usb_ports
= port
;
2791 static int usb_device_del(const char *devname
)
2796 if (strstart(devname
, "host:", &p
))
2797 return usb_host_device_close(p
);
2799 if (!used_usb_ports
)
2802 p
= strchr(devname
, '.');
2805 bus_num
= strtoul(devname
, NULL
, 0);
2806 addr
= strtoul(p
+ 1, NULL
, 0);
2808 return usb_device_del_addr(bus_num
, addr
);
2811 void do_usb_add(Monitor
*mon
, const char *devname
)
2813 usb_device_add(devname
, 1);
2816 void do_usb_del(Monitor
*mon
, const char *devname
)
2818 usb_device_del(devname
);
2821 void usb_info(Monitor
*mon
)
2825 const char *speed_str
;
2828 monitor_printf(mon
, "USB support not enabled\n");
2832 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2836 switch(dev
->speed
) {
2840 case USB_SPEED_FULL
:
2843 case USB_SPEED_HIGH
:
2850 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2851 0, dev
->addr
, speed_str
, dev
->devname
);
2855 /***********************************************************/
2856 /* PCMCIA/Cardbus */
2858 static struct pcmcia_socket_entry_s
{
2859 struct pcmcia_socket_s
*socket
;
2860 struct pcmcia_socket_entry_s
*next
;
2861 } *pcmcia_sockets
= 0;
2863 void pcmcia_socket_register(struct pcmcia_socket_s
*socket
)
2865 struct pcmcia_socket_entry_s
*entry
;
2867 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2868 entry
->socket
= socket
;
2869 entry
->next
= pcmcia_sockets
;
2870 pcmcia_sockets
= entry
;
2873 void pcmcia_socket_unregister(struct pcmcia_socket_s
*socket
)
2875 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2877 ptr
= &pcmcia_sockets
;
2878 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2879 if (entry
->socket
== socket
) {
2885 void pcmcia_info(Monitor
*mon
)
2887 struct pcmcia_socket_entry_s
*iter
;
2889 if (!pcmcia_sockets
)
2890 monitor_printf(mon
, "No PCMCIA sockets\n");
2892 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2893 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2894 iter
->socket
->attached
? iter
->socket
->card_string
:
2898 /***********************************************************/
2899 /* register display */
2901 struct DisplayAllocator default_allocator
= {
2902 defaultallocator_create_displaysurface
,
2903 defaultallocator_resize_displaysurface
,
2904 defaultallocator_free_displaysurface
2907 void register_displaystate(DisplayState
*ds
)
2917 DisplayState
*get_displaystate(void)
2919 return display_state
;
2922 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2924 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2925 return ds
->allocator
;
2930 static void dumb_display_init(void)
2932 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2933 ds
->allocator
= &default_allocator
;
2934 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2935 register_displaystate(ds
);
2938 /***********************************************************/
2941 typedef struct IOHandlerRecord
{
2943 IOCanRWHandler
*fd_read_poll
;
2945 IOHandler
*fd_write
;
2948 /* temporary data */
2950 struct IOHandlerRecord
*next
;
2953 static IOHandlerRecord
*first_io_handler
;
2955 /* XXX: fd_read_poll should be suppressed, but an API change is
2956 necessary in the character devices to suppress fd_can_read(). */
2957 int qemu_set_fd_handler2(int fd
,
2958 IOCanRWHandler
*fd_read_poll
,
2960 IOHandler
*fd_write
,
2963 IOHandlerRecord
**pioh
, *ioh
;
2965 if (!fd_read
&& !fd_write
) {
2966 pioh
= &first_io_handler
;
2971 if (ioh
->fd
== fd
) {
2978 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2982 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2983 ioh
->next
= first_io_handler
;
2984 first_io_handler
= ioh
;
2987 ioh
->fd_read_poll
= fd_read_poll
;
2988 ioh
->fd_read
= fd_read
;
2989 ioh
->fd_write
= fd_write
;
2990 ioh
->opaque
= opaque
;
2996 int qemu_set_fd_handler(int fd
,
2998 IOHandler
*fd_write
,
3001 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
3005 /***********************************************************/
3006 /* Polling handling */
3008 typedef struct PollingEntry
{
3011 struct PollingEntry
*next
;
3014 static PollingEntry
*first_polling_entry
;
3016 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
3018 PollingEntry
**ppe
, *pe
;
3019 pe
= qemu_mallocz(sizeof(PollingEntry
));
3021 pe
->opaque
= opaque
;
3022 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
3027 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
3029 PollingEntry
**ppe
, *pe
;
3030 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
3032 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
3040 /***********************************************************/
3041 /* Wait objects support */
3042 typedef struct WaitObjects
{
3044 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3045 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3046 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3049 static WaitObjects wait_objects
= {0};
3051 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3053 WaitObjects
*w
= &wait_objects
;
3055 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3057 w
->events
[w
->num
] = handle
;
3058 w
->func
[w
->num
] = func
;
3059 w
->opaque
[w
->num
] = opaque
;
3064 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3067 WaitObjects
*w
= &wait_objects
;
3070 for (i
= 0; i
< w
->num
; i
++) {
3071 if (w
->events
[i
] == handle
)
3074 w
->events
[i
] = w
->events
[i
+ 1];
3075 w
->func
[i
] = w
->func
[i
+ 1];
3076 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3084 /***********************************************************/
3085 /* ram save/restore */
3087 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3091 v
= qemu_get_byte(f
);
3094 if (qemu_get_buffer(f
, buf
, len
) != len
)
3098 v
= qemu_get_byte(f
);
3099 memset(buf
, v
, len
);
3105 if (qemu_file_has_error(f
))
3111 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3116 if (qemu_get_be32(f
) != last_ram_offset
)
3118 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3119 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3126 #define BDRV_HASH_BLOCK_SIZE 1024
3127 #define IOBUF_SIZE 4096
3128 #define RAM_CBLOCK_MAGIC 0xfabe
3130 typedef struct RamDecompressState
{
3133 uint8_t buf
[IOBUF_SIZE
];
3134 } RamDecompressState
;
3136 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3139 memset(s
, 0, sizeof(*s
));
3141 ret
= inflateInit(&s
->zstream
);
3147 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3151 s
->zstream
.avail_out
= len
;
3152 s
->zstream
.next_out
= buf
;
3153 while (s
->zstream
.avail_out
> 0) {
3154 if (s
->zstream
.avail_in
== 0) {
3155 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3157 clen
= qemu_get_be16(s
->f
);
3158 if (clen
> IOBUF_SIZE
)
3160 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3161 s
->zstream
.avail_in
= clen
;
3162 s
->zstream
.next_in
= s
->buf
;
3164 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3165 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3172 static void ram_decompress_close(RamDecompressState
*s
)
3174 inflateEnd(&s
->zstream
);
3177 #define RAM_SAVE_FLAG_FULL 0x01
3178 #define RAM_SAVE_FLAG_COMPRESS 0x02
3179 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3180 #define RAM_SAVE_FLAG_PAGE 0x08
3181 #define RAM_SAVE_FLAG_EOS 0x10
3183 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3185 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3186 uint32_t *array
= (uint32_t *)page
;
3189 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3190 if (array
[i
] != val
)
3197 static int ram_save_block(QEMUFile
*f
)
3199 static ram_addr_t current_addr
= 0;
3200 ram_addr_t saved_addr
= current_addr
;
3201 ram_addr_t addr
= 0;
3204 while (addr
< last_ram_offset
) {
3205 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3208 cpu_physical_memory_reset_dirty(current_addr
,
3209 current_addr
+ TARGET_PAGE_SIZE
,
3210 MIGRATION_DIRTY_FLAG
);
3212 p
= qemu_get_ram_ptr(current_addr
);
3214 if (is_dup_page(p
, *p
)) {
3215 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3216 qemu_put_byte(f
, *p
);
3218 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3219 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3225 addr
+= TARGET_PAGE_SIZE
;
3226 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3232 static ram_addr_t ram_save_threshold
= 10;
3234 static ram_addr_t
ram_save_remaining(void)
3237 ram_addr_t count
= 0;
3239 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3240 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3247 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3252 /* Make sure all dirty bits are set */
3253 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3254 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3255 cpu_physical_memory_set_dirty(addr
);
3258 /* Enable dirty memory tracking */
3259 cpu_physical_memory_set_dirty_tracking(1);
3261 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3264 while (!qemu_file_rate_limit(f
)) {
3267 ret
= ram_save_block(f
);
3268 if (ret
== 0) /* no more blocks */
3272 /* try transferring iterative blocks of memory */
3276 /* flush all remaining blocks regardless of rate limiting */
3277 while (ram_save_block(f
) != 0);
3278 cpu_physical_memory_set_dirty_tracking(0);
3281 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3283 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3286 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3288 RamDecompressState s1
, *s
= &s1
;
3292 if (ram_decompress_open(s
, f
) < 0)
3294 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3295 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3296 fprintf(stderr
, "Error while reading ram block header\n");
3300 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3301 BDRV_HASH_BLOCK_SIZE
) < 0) {
3302 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3307 printf("Error block header\n");
3311 ram_decompress_close(s
);
3316 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3321 if (version_id
== 1)
3322 return ram_load_v1(f
, opaque
);
3324 if (version_id
== 2) {
3325 if (qemu_get_be32(f
) != last_ram_offset
)
3327 return ram_load_dead(f
, opaque
);
3330 if (version_id
!= 3)
3334 addr
= qemu_get_be64(f
);
3336 flags
= addr
& ~TARGET_PAGE_MASK
;
3337 addr
&= TARGET_PAGE_MASK
;
3339 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3340 if (addr
!= last_ram_offset
)
3344 if (flags
& RAM_SAVE_FLAG_FULL
) {
3345 if (ram_load_dead(f
, opaque
) < 0)
3349 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3350 uint8_t ch
= qemu_get_byte(f
);
3351 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3352 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3353 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3354 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3359 void qemu_service_io(void)
3361 qemu_notify_event();
3364 /***********************************************************/
3365 /* bottom halves (can be seen as timers which expire ASAP) */
3376 static QEMUBH
*first_bh
= NULL
;
3378 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3381 bh
= qemu_mallocz(sizeof(QEMUBH
));
3383 bh
->opaque
= opaque
;
3384 bh
->next
= first_bh
;
3389 int qemu_bh_poll(void)
3395 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3396 if (!bh
->deleted
&& bh
->scheduled
) {
3405 /* remove deleted bhs */
3419 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3427 void qemu_bh_schedule(QEMUBH
*bh
)
3433 /* stop the currently executing CPU to execute the BH ASAP */
3434 qemu_notify_event();
3437 void qemu_bh_cancel(QEMUBH
*bh
)
3442 void qemu_bh_delete(QEMUBH
*bh
)
3448 static void qemu_bh_update_timeout(int *timeout
)
3452 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3453 if (!bh
->deleted
&& bh
->scheduled
) {
3455 /* idle bottom halves will be polled at least
3457 *timeout
= MIN(10, *timeout
);
3459 /* non-idle bottom halves will be executed
3468 /***********************************************************/
3469 /* machine registration */
3471 static QEMUMachine
*first_machine
= NULL
;
3472 QEMUMachine
*current_machine
= NULL
;
3474 int qemu_register_machine(QEMUMachine
*m
)
3477 pm
= &first_machine
;
3485 static QEMUMachine
*find_machine(const char *name
)
3489 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3490 if (!strcmp(m
->name
, name
))
3496 /***********************************************************/
3497 /* main execution loop */
3499 static void gui_update(void *opaque
)
3501 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3502 DisplayState
*ds
= opaque
;
3503 DisplayChangeListener
*dcl
= ds
->listeners
;
3507 while (dcl
!= NULL
) {
3508 if (dcl
->gui_timer_interval
&&
3509 dcl
->gui_timer_interval
< interval
)
3510 interval
= dcl
->gui_timer_interval
;
3513 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3516 static void nographic_update(void *opaque
)
3518 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3520 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3523 struct vm_change_state_entry
{
3524 VMChangeStateHandler
*cb
;
3526 LIST_ENTRY (vm_change_state_entry
) entries
;
3529 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3531 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3534 VMChangeStateEntry
*e
;
3536 e
= qemu_mallocz(sizeof (*e
));
3540 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3544 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3546 LIST_REMOVE (e
, entries
);
3550 static void vm_state_notify(int running
, int reason
)
3552 VMChangeStateEntry
*e
;
3554 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3555 e
->cb(e
->opaque
, running
, reason
);
3559 static void resume_all_vcpus(void);
3560 static void pause_all_vcpus(void);
3567 vm_state_notify(1, 0);
3568 qemu_rearm_alarm_timer(alarm_timer
);
3573 /* reset/shutdown handler */
3575 typedef struct QEMUResetEntry
{
3576 QEMUResetHandler
*func
;
3578 struct QEMUResetEntry
*next
;
3581 static QEMUResetEntry
*first_reset_entry
;
3582 static int reset_requested
;
3583 static int shutdown_requested
;
3584 static int powerdown_requested
;
3585 static int debug_requested
;
3586 static int vmstop_requested
;
3588 int qemu_shutdown_requested(void)
3590 int r
= shutdown_requested
;
3591 shutdown_requested
= 0;
3595 int qemu_reset_requested(void)
3597 int r
= reset_requested
;
3598 reset_requested
= 0;
3602 int qemu_powerdown_requested(void)
3604 int r
= powerdown_requested
;
3605 powerdown_requested
= 0;
3609 static int qemu_debug_requested(void)
3611 int r
= debug_requested
;
3612 debug_requested
= 0;
3616 static int qemu_vmstop_requested(void)
3618 int r
= vmstop_requested
;
3619 vmstop_requested
= 0;
3623 static void do_vm_stop(int reason
)
3626 cpu_disable_ticks();
3629 vm_state_notify(0, reason
);
3633 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3635 QEMUResetEntry
**pre
, *re
;
3637 pre
= &first_reset_entry
;
3638 while (*pre
!= NULL
)
3639 pre
= &(*pre
)->next
;
3640 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3642 re
->opaque
= opaque
;
3647 void qemu_system_reset(void)
3651 /* reset all devices */
3652 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3653 re
->func(re
->opaque
);
3659 void qemu_system_reset_request(void)
3662 shutdown_requested
= 1;
3664 reset_requested
= 1;
3666 qemu_notify_event();
3669 void qemu_system_shutdown_request(void)
3671 shutdown_requested
= 1;
3672 qemu_notify_event();
3675 void qemu_system_powerdown_request(void)
3677 powerdown_requested
= 1;
3678 qemu_notify_event();
3681 #ifdef CONFIG_IOTHREAD
3682 static void qemu_system_vmstop_request(int reason
)
3684 vmstop_requested
= reason
;
3685 qemu_notify_event();
3690 static int io_thread_fd
= -1;
3692 static void qemu_event_increment(void)
3694 static const char byte
= 0;
3696 if (io_thread_fd
== -1)
3699 write(io_thread_fd
, &byte
, sizeof(byte
));
3702 static void qemu_event_read(void *opaque
)
3704 int fd
= (unsigned long)opaque
;
3707 /* Drain the notify pipe */
3710 len
= read(fd
, buffer
, sizeof(buffer
));
3711 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3714 static int qemu_event_init(void)
3723 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3727 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3731 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3732 (void *)(unsigned long)fds
[0]);
3734 io_thread_fd
= fds
[1];
3743 HANDLE qemu_event_handle
;
3745 static void dummy_event_handler(void *opaque
)
3749 static int qemu_event_init(void)
3751 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3752 if (!qemu_event_handle
) {
3753 perror("Failed CreateEvent");
3756 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3760 static void qemu_event_increment(void)
3762 SetEvent(qemu_event_handle
);
3766 static int cpu_can_run(CPUState
*env
)
3775 #ifndef CONFIG_IOTHREAD
3776 static int qemu_init_main_loop(void)
3778 return qemu_event_init();
3781 void qemu_init_vcpu(void *_env
)
3783 CPUState
*env
= _env
;
3790 int qemu_cpu_self(void *env
)
3795 static void resume_all_vcpus(void)
3799 static void pause_all_vcpus(void)
3803 void qemu_cpu_kick(void *env
)
3808 void qemu_notify_event(void)
3810 CPUState
*env
= cpu_single_env
;
3815 if (env
->kqemu_enabled
)
3816 kqemu_cpu_interrupt(env
);
3821 #define qemu_mutex_lock_iothread() do { } while (0)
3822 #define qemu_mutex_unlock_iothread() do { } while (0)
3824 void vm_stop(int reason
)
3829 #else /* CONFIG_IOTHREAD */
3831 #include "qemu-thread.h"
3833 QemuMutex qemu_global_mutex
;
3834 static QemuMutex qemu_fair_mutex
;
3836 static QemuThread io_thread
;
3838 static QemuThread
*tcg_cpu_thread
;
3839 static QemuCond
*tcg_halt_cond
;
3841 static int qemu_system_ready
;
3843 static QemuCond qemu_cpu_cond
;
3845 static QemuCond qemu_system_cond
;
3846 static QemuCond qemu_pause_cond
;
3848 static void block_io_signals(void);
3849 static void unblock_io_signals(void);
3850 static int tcg_has_work(void);
3852 static int qemu_init_main_loop(void)
3856 ret
= qemu_event_init();
3860 qemu_cond_init(&qemu_pause_cond
);
3861 qemu_mutex_init(&qemu_fair_mutex
);
3862 qemu_mutex_init(&qemu_global_mutex
);
3863 qemu_mutex_lock(&qemu_global_mutex
);
3865 unblock_io_signals();
3866 qemu_thread_self(&io_thread
);
3871 static void qemu_wait_io_event(CPUState
*env
)
3873 while (!tcg_has_work())
3874 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3876 qemu_mutex_unlock(&qemu_global_mutex
);
3879 * Users of qemu_global_mutex can be starved, having no chance
3880 * to acquire it since this path will get to it first.
3881 * So use another lock to provide fairness.
3883 qemu_mutex_lock(&qemu_fair_mutex
);
3884 qemu_mutex_unlock(&qemu_fair_mutex
);
3886 qemu_mutex_lock(&qemu_global_mutex
);
3890 qemu_cond_signal(&qemu_pause_cond
);
3894 static int qemu_cpu_exec(CPUState
*env
);
3896 static void *kvm_cpu_thread_fn(void *arg
)
3898 CPUState
*env
= arg
;
3901 qemu_thread_self(env
->thread
);
3903 /* signal CPU creation */
3904 qemu_mutex_lock(&qemu_global_mutex
);
3906 qemu_cond_signal(&qemu_cpu_cond
);
3908 /* and wait for machine initialization */
3909 while (!qemu_system_ready
)
3910 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3913 if (cpu_can_run(env
))
3915 qemu_wait_io_event(env
);
3921 static void tcg_cpu_exec(void);
3923 static void *tcg_cpu_thread_fn(void *arg
)
3925 CPUState
*env
= arg
;
3928 qemu_thread_self(env
->thread
);
3930 /* signal CPU creation */
3931 qemu_mutex_lock(&qemu_global_mutex
);
3932 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3934 qemu_cond_signal(&qemu_cpu_cond
);
3936 /* and wait for machine initialization */
3937 while (!qemu_system_ready
)
3938 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3942 qemu_wait_io_event(cur_cpu
);
3948 void qemu_cpu_kick(void *_env
)
3950 CPUState
*env
= _env
;
3951 qemu_cond_broadcast(env
->halt_cond
);
3953 qemu_thread_signal(env
->thread
, SIGUSR1
);
3956 int qemu_cpu_self(void *env
)
3958 return (cpu_single_env
!= NULL
);
3961 static void cpu_signal(int sig
)
3964 cpu_exit(cpu_single_env
);
3967 static void block_io_signals(void)
3970 struct sigaction sigact
;
3973 sigaddset(&set
, SIGUSR2
);
3974 sigaddset(&set
, SIGIO
);
3975 sigaddset(&set
, SIGALRM
);
3976 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3979 sigaddset(&set
, SIGUSR1
);
3980 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3982 memset(&sigact
, 0, sizeof(sigact
));
3983 sigact
.sa_handler
= cpu_signal
;
3984 sigaction(SIGUSR1
, &sigact
, NULL
);
3987 static void unblock_io_signals(void)
3992 sigaddset(&set
, SIGUSR2
);
3993 sigaddset(&set
, SIGIO
);
3994 sigaddset(&set
, SIGALRM
);
3995 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3998 sigaddset(&set
, SIGUSR1
);
3999 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4002 static void qemu_signal_lock(unsigned int msecs
)
4004 qemu_mutex_lock(&qemu_fair_mutex
);
4006 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4007 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4008 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4011 qemu_mutex_unlock(&qemu_fair_mutex
);
4014 static void qemu_mutex_lock_iothread(void)
4016 if (kvm_enabled()) {
4017 qemu_mutex_lock(&qemu_fair_mutex
);
4018 qemu_mutex_lock(&qemu_global_mutex
);
4019 qemu_mutex_unlock(&qemu_fair_mutex
);
4021 qemu_signal_lock(100);
4024 static void qemu_mutex_unlock_iothread(void)
4026 qemu_mutex_unlock(&qemu_global_mutex
);
4029 static int all_vcpus_paused(void)
4031 CPUState
*penv
= first_cpu
;
4036 penv
= (CPUState
*)penv
->next_cpu
;
4042 static void pause_all_vcpus(void)
4044 CPUState
*penv
= first_cpu
;
4048 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4049 qemu_cpu_kick(penv
);
4050 penv
= (CPUState
*)penv
->next_cpu
;
4053 while (!all_vcpus_paused()) {
4054 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4057 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4058 penv
= (CPUState
*)penv
->next_cpu
;
4063 static void resume_all_vcpus(void)
4065 CPUState
*penv
= first_cpu
;
4070 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4071 qemu_cpu_kick(penv
);
4072 penv
= (CPUState
*)penv
->next_cpu
;
4076 static void tcg_init_vcpu(void *_env
)
4078 CPUState
*env
= _env
;
4079 /* share a single thread for all cpus with TCG */
4080 if (!tcg_cpu_thread
) {
4081 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4082 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4083 qemu_cond_init(env
->halt_cond
);
4084 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4085 while (env
->created
== 0)
4086 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4087 tcg_cpu_thread
= env
->thread
;
4088 tcg_halt_cond
= env
->halt_cond
;
4090 env
->thread
= tcg_cpu_thread
;
4091 env
->halt_cond
= tcg_halt_cond
;
4095 static void kvm_start_vcpu(CPUState
*env
)
4098 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4099 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4100 qemu_cond_init(env
->halt_cond
);
4101 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4102 while (env
->created
== 0)
4103 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4106 void qemu_init_vcpu(void *_env
)
4108 CPUState
*env
= _env
;
4111 kvm_start_vcpu(env
);
4116 void qemu_notify_event(void)
4118 qemu_event_increment();
4121 void vm_stop(int reason
)
4124 qemu_thread_self(&me
);
4126 if (!qemu_thread_equal(&me
, &io_thread
)) {
4127 qemu_system_vmstop_request(reason
);
4129 * FIXME: should not return to device code in case
4130 * vm_stop() has been requested.
4132 if (cpu_single_env
) {
4133 cpu_exit(cpu_single_env
);
4134 cpu_single_env
->stop
= 1;
4145 static void host_main_loop_wait(int *timeout
)
4151 /* XXX: need to suppress polling by better using win32 events */
4153 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4154 ret
|= pe
->func(pe
->opaque
);
4158 WaitObjects
*w
= &wait_objects
;
4160 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4161 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4162 if (w
->func
[ret
- WAIT_OBJECT_0
])
4163 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4165 /* Check for additional signaled events */
4166 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4168 /* Check if event is signaled */
4169 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4170 if(ret2
== WAIT_OBJECT_0
) {
4172 w
->func
[i
](w
->opaque
[i
]);
4173 } else if (ret2
== WAIT_TIMEOUT
) {
4175 err
= GetLastError();
4176 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4179 } else if (ret
== WAIT_TIMEOUT
) {
4181 err
= GetLastError();
4182 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4189 static void host_main_loop_wait(int *timeout
)
4194 void main_loop_wait(int timeout
)
4196 IOHandlerRecord
*ioh
;
4197 fd_set rfds
, wfds
, xfds
;
4201 qemu_bh_update_timeout(&timeout
);
4203 host_main_loop_wait(&timeout
);
4205 /* poll any events */
4206 /* XXX: separate device handlers from system ones */
4211 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4215 (!ioh
->fd_read_poll
||
4216 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4217 FD_SET(ioh
->fd
, &rfds
);
4221 if (ioh
->fd_write
) {
4222 FD_SET(ioh
->fd
, &wfds
);
4228 tv
.tv_sec
= timeout
/ 1000;
4229 tv
.tv_usec
= (timeout
% 1000) * 1000;
4231 #if defined(CONFIG_SLIRP)
4232 if (slirp_is_inited()) {
4233 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4236 qemu_mutex_unlock_iothread();
4237 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4238 qemu_mutex_lock_iothread();
4240 IOHandlerRecord
**pioh
;
4242 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4243 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4244 ioh
->fd_read(ioh
->opaque
);
4246 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4247 ioh
->fd_write(ioh
->opaque
);
4251 /* remove deleted IO handlers */
4252 pioh
= &first_io_handler
;
4262 #if defined(CONFIG_SLIRP)
4263 if (slirp_is_inited()) {
4269 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4273 /* rearm timer, if not periodic */
4274 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4275 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4276 qemu_rearm_alarm_timer(alarm_timer
);
4279 /* vm time timers */
4281 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4282 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4283 qemu_get_clock(vm_clock
));
4286 /* real time timers */
4287 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4288 qemu_get_clock(rt_clock
));
4290 /* Check bottom-halves last in case any of the earlier events triggered
4296 static int qemu_cpu_exec(CPUState
*env
)
4299 #ifdef CONFIG_PROFILER
4303 #ifdef CONFIG_PROFILER
4304 ti
= profile_getclock();
4309 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4310 env
->icount_decr
.u16
.low
= 0;
4311 env
->icount_extra
= 0;
4312 count
= qemu_next_deadline();
4313 count
= (count
+ (1 << icount_time_shift
) - 1)
4314 >> icount_time_shift
;
4315 qemu_icount
+= count
;
4316 decr
= (count
> 0xffff) ? 0xffff : count
;
4318 env
->icount_decr
.u16
.low
= decr
;
4319 env
->icount_extra
= count
;
4321 ret
= cpu_exec(env
);
4322 #ifdef CONFIG_PROFILER
4323 qemu_time
+= profile_getclock() - ti
;
4326 /* Fold pending instructions back into the
4327 instruction counter, and clear the interrupt flag. */
4328 qemu_icount
-= (env
->icount_decr
.u16
.low
4329 + env
->icount_extra
);
4330 env
->icount_decr
.u32
= 0;
4331 env
->icount_extra
= 0;
4336 static void tcg_cpu_exec(void)
4340 if (next_cpu
== NULL
)
4341 next_cpu
= first_cpu
;
4342 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4343 CPUState
*env
= cur_cpu
= next_cpu
;
4347 if (timer_alarm_pending
) {
4348 timer_alarm_pending
= 0;
4351 if (cpu_can_run(env
))
4352 ret
= qemu_cpu_exec(env
);
4353 #ifndef CONFIG_GDBSTUB
4354 if (ret
== EXCP_DEBUG
) {
4355 gdb_set_stop_cpu(env
);
4356 debug_requested
= 1;
4363 static int cpu_has_work(CPUState
*env
)
4371 if (qemu_cpu_has_work(env
))
4376 static int tcg_has_work(void)
4380 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4381 if (cpu_has_work(env
))
4386 static int qemu_calculate_timeout(void)
4392 else if (tcg_has_work())
4394 else if (!use_icount
)
4397 /* XXX: use timeout computed from timers */
4400 /* Advance virtual time to the next event. */
4401 if (use_icount
== 1) {
4402 /* When not using an adaptive execution frequency
4403 we tend to get badly out of sync with real time,
4404 so just delay for a reasonable amount of time. */
4407 delta
= cpu_get_icount() - cpu_get_clock();
4410 /* If virtual time is ahead of real time then just
4412 timeout
= (delta
/ 1000000) + 1;
4414 /* Wait for either IO to occur or the next
4416 add
= qemu_next_deadline();
4417 /* We advance the timer before checking for IO.
4418 Limit the amount we advance so that early IO
4419 activity won't get the guest too far ahead. */
4423 add
= (add
+ (1 << icount_time_shift
) - 1)
4424 >> icount_time_shift
;
4426 timeout
= delta
/ 1000000;
4435 static int vm_can_run(void)
4437 if (powerdown_requested
)
4439 if (reset_requested
)
4441 if (shutdown_requested
)
4443 if (debug_requested
)
4448 static void main_loop(void)
4452 #ifdef CONFIG_IOTHREAD
4453 qemu_system_ready
= 1;
4454 qemu_cond_broadcast(&qemu_system_cond
);
4459 #ifdef CONFIG_PROFILER
4462 #ifndef CONFIG_IOTHREAD
4465 #ifdef CONFIG_PROFILER
4466 ti
= profile_getclock();
4468 #ifdef CONFIG_IOTHREAD
4469 main_loop_wait(1000);
4471 main_loop_wait(qemu_calculate_timeout());
4473 #ifdef CONFIG_PROFILER
4474 dev_time
+= profile_getclock() - ti
;
4476 } while (vm_can_run());
4478 if (qemu_debug_requested())
4479 vm_stop(EXCP_DEBUG
);
4480 if (qemu_shutdown_requested()) {
4487 if (qemu_reset_requested()) {
4489 qemu_system_reset();
4492 if (qemu_powerdown_requested())
4493 qemu_system_powerdown();
4494 if ((r
= qemu_vmstop_requested()))
4500 static void version(void)
4502 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4505 static void help(int exitcode
)
4508 printf("usage: %s [options] [disk_image]\n"
4510 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4512 #define DEF(option, opt_arg, opt_enum, opt_help) \
4514 #define DEFHEADING(text) stringify(text) "\n"
4515 #include "qemu-options.h"
4520 "During emulation, the following keys are useful:\n"
4521 "ctrl-alt-f toggle full screen\n"
4522 "ctrl-alt-n switch to virtual console 'n'\n"
4523 "ctrl-alt toggle mouse and keyboard grab\n"
4525 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4530 DEFAULT_NETWORK_SCRIPT
,
4531 DEFAULT_NETWORK_DOWN_SCRIPT
,
4533 DEFAULT_GDBSTUB_PORT
,
4538 #define HAS_ARG 0x0001
4541 #define DEF(option, opt_arg, opt_enum, opt_help) \
4543 #define DEFHEADING(text)
4544 #include "qemu-options.h"
4550 typedef struct QEMUOption
{
4556 static const QEMUOption qemu_options
[] = {
4557 { "h", 0, QEMU_OPTION_h
},
4558 #define DEF(option, opt_arg, opt_enum, opt_help) \
4559 { option, opt_arg, opt_enum },
4560 #define DEFHEADING(text)
4561 #include "qemu-options.h"
4569 struct soundhw soundhw
[] = {
4570 #ifdef HAS_AUDIO_CHOICE
4571 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4577 { .init_isa
= pcspk_audio_init
}
4584 "Creative Sound Blaster 16",
4587 { .init_isa
= SB16_init
}
4591 #ifdef CONFIG_CS4231A
4597 { .init_isa
= cs4231a_init
}
4605 "Yamaha YMF262 (OPL3)",
4607 "Yamaha YM3812 (OPL2)",
4611 { .init_isa
= Adlib_init
}
4618 "Gravis Ultrasound GF1",
4621 { .init_isa
= GUS_init
}
4628 "Intel 82801AA AC97 Audio",
4631 { .init_pci
= ac97_init
}
4635 #ifdef CONFIG_ES1370
4638 "ENSONIQ AudioPCI ES1370",
4641 { .init_pci
= es1370_init
}
4645 #endif /* HAS_AUDIO_CHOICE */
4647 { NULL
, NULL
, 0, 0, { NULL
} }
4650 static void select_soundhw (const char *optarg
)
4654 if (*optarg
== '?') {
4657 printf ("Valid sound card names (comma separated):\n");
4658 for (c
= soundhw
; c
->name
; ++c
) {
4659 printf ("%-11s %s\n", c
->name
, c
->descr
);
4661 printf ("\n-soundhw all will enable all of the above\n");
4662 exit (*optarg
!= '?');
4670 if (!strcmp (optarg
, "all")) {
4671 for (c
= soundhw
; c
->name
; ++c
) {
4679 e
= strchr (p
, ',');
4680 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4682 for (c
= soundhw
; c
->name
; ++c
) {
4683 if (!strncmp (c
->name
, p
, l
)) {
4692 "Unknown sound card name (too big to show)\n");
4695 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4700 p
+= l
+ (e
!= NULL
);
4704 goto show_valid_cards
;
4709 static void select_vgahw (const char *p
)
4713 cirrus_vga_enabled
= 0;
4714 std_vga_enabled
= 0;
4717 if (strstart(p
, "std", &opts
)) {
4718 std_vga_enabled
= 1;
4719 } else if (strstart(p
, "cirrus", &opts
)) {
4720 cirrus_vga_enabled
= 1;
4721 } else if (strstart(p
, "vmware", &opts
)) {
4723 } else if (strstart(p
, "xenfb", &opts
)) {
4725 } else if (!strstart(p
, "none", &opts
)) {
4727 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4731 const char *nextopt
;
4733 if (strstart(opts
, ",retrace=", &nextopt
)) {
4735 if (strstart(opts
, "dumb", &nextopt
))
4736 vga_retrace_method
= VGA_RETRACE_DUMB
;
4737 else if (strstart(opts
, "precise", &nextopt
))
4738 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4739 else goto invalid_vga
;
4740 } else goto invalid_vga
;
4746 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4748 exit(STATUS_CONTROL_C_EXIT
);
4753 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4757 if(strlen(str
) != 36)
4760 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4761 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4762 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4768 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4774 #define MAX_NET_CLIENTS 32
4778 static void termsig_handler(int signal
)
4780 qemu_system_shutdown_request();
4783 static void termsig_setup(void)
4785 struct sigaction act
;
4787 memset(&act
, 0, sizeof(act
));
4788 act
.sa_handler
= termsig_handler
;
4789 sigaction(SIGINT
, &act
, NULL
);
4790 sigaction(SIGHUP
, &act
, NULL
);
4791 sigaction(SIGTERM
, &act
, NULL
);
4796 int main(int argc
, char **argv
, char **envp
)
4798 #ifdef CONFIG_GDBSTUB
4799 const char *gdbstub_dev
= NULL
;
4801 uint32_t boot_devices_bitmap
= 0;
4803 int snapshot
, linux_boot
, net_boot
;
4804 const char *initrd_filename
;
4805 const char *kernel_filename
, *kernel_cmdline
;
4806 const char *boot_devices
= "";
4808 DisplayChangeListener
*dcl
;
4809 int cyls
, heads
, secs
, translation
;
4810 const char *net_clients
[MAX_NET_CLIENTS
];
4812 const char *bt_opts
[MAX_BT_CMDLINE
];
4816 const char *r
, *optarg
;
4817 CharDriverState
*monitor_hd
= NULL
;
4818 const char *monitor_device
;
4819 const char *serial_devices
[MAX_SERIAL_PORTS
];
4820 int serial_device_index
;
4821 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4822 int parallel_device_index
;
4823 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4824 int virtio_console_index
;
4825 const char *loadvm
= NULL
;
4826 QEMUMachine
*machine
;
4827 const char *cpu_model
;
4828 const char *usb_devices
[MAX_USB_CMDLINE
];
4829 int usb_devices_index
;
4834 const char *pid_file
= NULL
;
4835 const char *incoming
= NULL
;
4838 struct passwd
*pwd
= NULL
;
4839 const char *chroot_dir
= NULL
;
4840 const char *run_as
= NULL
;
4844 qemu_cache_utils_init(envp
);
4846 LIST_INIT (&vm_change_state_head
);
4849 struct sigaction act
;
4850 sigfillset(&act
.sa_mask
);
4852 act
.sa_handler
= SIG_IGN
;
4853 sigaction(SIGPIPE
, &act
, NULL
);
4856 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4857 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4858 QEMU to run on a single CPU */
4863 h
= GetCurrentProcess();
4864 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4865 for(i
= 0; i
< 32; i
++) {
4866 if (mask
& (1 << i
))
4871 SetProcessAffinityMask(h
, mask
);
4877 register_machines();
4878 machine
= first_machine
;
4880 initrd_filename
= NULL
;
4882 vga_ram_size
= VGA_RAM_SIZE
;
4886 kernel_filename
= NULL
;
4887 kernel_cmdline
= "";
4888 cyls
= heads
= secs
= 0;
4889 translation
= BIOS_ATA_TRANSLATION_AUTO
;
4890 monitor_device
= "vc:80Cx24C";
4892 serial_devices
[0] = "vc:80Cx24C";
4893 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
4894 serial_devices
[i
] = NULL
;
4895 serial_device_index
= 0;
4897 parallel_devices
[0] = "vc:80Cx24C";
4898 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
4899 parallel_devices
[i
] = NULL
;
4900 parallel_device_index
= 0;
4902 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
4903 virtio_consoles
[i
] = NULL
;
4904 virtio_console_index
= 0;
4906 for (i
= 0; i
< MAX_NODES
; i
++) {
4908 node_cpumask
[i
] = 0;
4911 usb_devices_index
= 0;
4925 register_watchdogs();
4933 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
4935 const QEMUOption
*popt
;
4938 /* Treat --foo the same as -foo. */
4941 popt
= qemu_options
;
4944 fprintf(stderr
, "%s: invalid option -- '%s'\n",
4948 if (!strcmp(popt
->name
, r
+ 1))
4952 if (popt
->flags
& HAS_ARG
) {
4953 if (optind
>= argc
) {
4954 fprintf(stderr
, "%s: option '%s' requires an argument\n",
4958 optarg
= argv
[optind
++];
4963 switch(popt
->index
) {
4965 machine
= find_machine(optarg
);
4968 printf("Supported machines are:\n");
4969 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
4970 printf("%-10s %s%s\n",
4972 m
== first_machine
? " (default)" : "");
4974 exit(*optarg
!= '?');
4977 case QEMU_OPTION_cpu
:
4978 /* hw initialization will check this */
4979 if (*optarg
== '?') {
4980 /* XXX: implement xxx_cpu_list for targets that still miss it */
4981 #if defined(cpu_list)
4982 cpu_list(stdout
, &fprintf
);
4989 case QEMU_OPTION_initrd
:
4990 initrd_filename
= optarg
;
4992 case QEMU_OPTION_hda
:
4994 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
4996 hda_index
= drive_add(optarg
, HD_ALIAS
4997 ",cyls=%d,heads=%d,secs=%d%s",
4998 0, cyls
, heads
, secs
,
4999 translation
== BIOS_ATA_TRANSLATION_LBA
?
5001 translation
== BIOS_ATA_TRANSLATION_NONE
?
5002 ",trans=none" : "");
5004 case QEMU_OPTION_hdb
:
5005 case QEMU_OPTION_hdc
:
5006 case QEMU_OPTION_hdd
:
5007 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5009 case QEMU_OPTION_drive
:
5010 drive_add(NULL
, "%s", optarg
);
5012 case QEMU_OPTION_mtdblock
:
5013 drive_add(optarg
, MTD_ALIAS
);
5015 case QEMU_OPTION_sd
:
5016 drive_add(optarg
, SD_ALIAS
);
5018 case QEMU_OPTION_pflash
:
5019 drive_add(optarg
, PFLASH_ALIAS
);
5021 case QEMU_OPTION_snapshot
:
5024 case QEMU_OPTION_hdachs
:
5028 cyls
= strtol(p
, (char **)&p
, 0);
5029 if (cyls
< 1 || cyls
> 16383)
5034 heads
= strtol(p
, (char **)&p
, 0);
5035 if (heads
< 1 || heads
> 16)
5040 secs
= strtol(p
, (char **)&p
, 0);
5041 if (secs
< 1 || secs
> 63)
5045 if (!strcmp(p
, "none"))
5046 translation
= BIOS_ATA_TRANSLATION_NONE
;
5047 else if (!strcmp(p
, "lba"))
5048 translation
= BIOS_ATA_TRANSLATION_LBA
;
5049 else if (!strcmp(p
, "auto"))
5050 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5053 } else if (*p
!= '\0') {
5055 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5058 if (hda_index
!= -1)
5059 snprintf(drives_opt
[hda_index
].opt
,
5060 sizeof(drives_opt
[hda_index
].opt
),
5061 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5062 0, cyls
, heads
, secs
,
5063 translation
== BIOS_ATA_TRANSLATION_LBA
?
5065 translation
== BIOS_ATA_TRANSLATION_NONE
?
5066 ",trans=none" : "");
5069 case QEMU_OPTION_numa
:
5070 if (nb_numa_nodes
>= MAX_NODES
) {
5071 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5076 case QEMU_OPTION_nographic
:
5079 #ifdef CONFIG_CURSES
5080 case QEMU_OPTION_curses
:
5084 case QEMU_OPTION_portrait
:
5087 case QEMU_OPTION_kernel
:
5088 kernel_filename
= optarg
;
5090 case QEMU_OPTION_append
:
5091 kernel_cmdline
= optarg
;
5093 case QEMU_OPTION_cdrom
:
5094 drive_add(optarg
, CDROM_ALIAS
);
5096 case QEMU_OPTION_boot
:
5097 boot_devices
= optarg
;
5098 /* We just do some generic consistency checks */
5100 /* Could easily be extended to 64 devices if needed */
5103 boot_devices_bitmap
= 0;
5104 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5105 /* Allowed boot devices are:
5106 * a b : floppy disk drives
5107 * c ... f : IDE disk drives
5108 * g ... m : machine implementation dependant drives
5109 * n ... p : network devices
5110 * It's up to each machine implementation to check
5111 * if the given boot devices match the actual hardware
5112 * implementation and firmware features.
5114 if (*p
< 'a' || *p
> 'q') {
5115 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5118 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5120 "Boot device '%c' was given twice\n",*p
);
5123 boot_devices_bitmap
|= 1 << (*p
- 'a');
5127 case QEMU_OPTION_fda
:
5128 case QEMU_OPTION_fdb
:
5129 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5132 case QEMU_OPTION_no_fd_bootchk
:
5136 case QEMU_OPTION_net
:
5137 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5138 fprintf(stderr
, "qemu: too many network clients\n");
5141 net_clients
[nb_net_clients
] = optarg
;
5145 case QEMU_OPTION_tftp
:
5146 tftp_prefix
= optarg
;
5148 case QEMU_OPTION_bootp
:
5149 bootp_filename
= optarg
;
5152 case QEMU_OPTION_smb
:
5153 net_slirp_smb(optarg
);
5156 case QEMU_OPTION_redir
:
5157 net_slirp_redir(NULL
, optarg
);
5160 case QEMU_OPTION_bt
:
5161 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5162 fprintf(stderr
, "qemu: too many bluetooth options\n");
5165 bt_opts
[nb_bt_opts
++] = optarg
;
5168 case QEMU_OPTION_audio_help
:
5172 case QEMU_OPTION_soundhw
:
5173 select_soundhw (optarg
);
5179 case QEMU_OPTION_version
:
5183 case QEMU_OPTION_m
: {
5187 value
= strtoul(optarg
, &ptr
, 10);
5189 case 0: case 'M': case 'm':
5196 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5200 /* On 32-bit hosts, QEMU is limited by virtual address space */
5201 if (value
> (2047 << 20)
5202 #ifndef CONFIG_KQEMU
5203 && HOST_LONG_BITS
== 32
5206 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5209 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5210 fprintf(stderr
, "qemu: ram size too large\n");
5219 const CPULogItem
*item
;
5221 mask
= cpu_str_to_log_mask(optarg
);
5223 printf("Log items (comma separated):\n");
5224 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5225 printf("%-10s %s\n", item
->name
, item
->help
);
5232 #ifdef CONFIG_GDBSTUB
5234 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5236 case QEMU_OPTION_gdb
:
5237 gdbstub_dev
= optarg
;
5243 case QEMU_OPTION_bios
:
5246 case QEMU_OPTION_singlestep
:
5254 keyboard_layout
= optarg
;
5257 case QEMU_OPTION_localtime
:
5260 case QEMU_OPTION_vga
:
5261 select_vgahw (optarg
);
5263 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5269 w
= strtol(p
, (char **)&p
, 10);
5272 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5278 h
= strtol(p
, (char **)&p
, 10);
5283 depth
= strtol(p
, (char **)&p
, 10);
5284 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5285 depth
!= 24 && depth
!= 32)
5287 } else if (*p
== '\0') {
5288 depth
= graphic_depth
;
5295 graphic_depth
= depth
;
5299 case QEMU_OPTION_echr
:
5302 term_escape_char
= strtol(optarg
, &r
, 0);
5304 printf("Bad argument to echr\n");
5307 case QEMU_OPTION_monitor
:
5308 monitor_device
= optarg
;
5310 case QEMU_OPTION_serial
:
5311 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5312 fprintf(stderr
, "qemu: too many serial ports\n");
5315 serial_devices
[serial_device_index
] = optarg
;
5316 serial_device_index
++;
5318 case QEMU_OPTION_watchdog
:
5319 i
= select_watchdog(optarg
);
5321 exit (i
== 1 ? 1 : 0);
5323 case QEMU_OPTION_watchdog_action
:
5324 if (select_watchdog_action(optarg
) == -1) {
5325 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5329 case QEMU_OPTION_virtiocon
:
5330 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5331 fprintf(stderr
, "qemu: too many virtio consoles\n");
5334 virtio_consoles
[virtio_console_index
] = optarg
;
5335 virtio_console_index
++;
5337 case QEMU_OPTION_parallel
:
5338 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5339 fprintf(stderr
, "qemu: too many parallel ports\n");
5342 parallel_devices
[parallel_device_index
] = optarg
;
5343 parallel_device_index
++;
5345 case QEMU_OPTION_loadvm
:
5348 case QEMU_OPTION_full_screen
:
5352 case QEMU_OPTION_no_frame
:
5355 case QEMU_OPTION_alt_grab
:
5358 case QEMU_OPTION_no_quit
:
5361 case QEMU_OPTION_sdl
:
5365 case QEMU_OPTION_pidfile
:
5369 case QEMU_OPTION_win2k_hack
:
5370 win2k_install_hack
= 1;
5372 case QEMU_OPTION_rtc_td_hack
:
5375 case QEMU_OPTION_acpitable
:
5376 if(acpi_table_add(optarg
) < 0) {
5377 fprintf(stderr
, "Wrong acpi table provided\n");
5381 case QEMU_OPTION_smbios
:
5382 if(smbios_entry_add(optarg
) < 0) {
5383 fprintf(stderr
, "Wrong smbios provided\n");
5389 case QEMU_OPTION_no_kqemu
:
5392 case QEMU_OPTION_kernel_kqemu
:
5397 case QEMU_OPTION_enable_kvm
:
5404 case QEMU_OPTION_usb
:
5407 case QEMU_OPTION_usbdevice
:
5409 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5410 fprintf(stderr
, "Too many USB devices\n");
5413 usb_devices
[usb_devices_index
] = optarg
;
5414 usb_devices_index
++;
5416 case QEMU_OPTION_smp
:
5417 smp_cpus
= atoi(optarg
);
5419 fprintf(stderr
, "Invalid number of CPUs\n");
5423 case QEMU_OPTION_vnc
:
5424 vnc_display
= optarg
;
5427 case QEMU_OPTION_no_acpi
:
5430 case QEMU_OPTION_no_hpet
:
5434 case QEMU_OPTION_no_reboot
:
5437 case QEMU_OPTION_no_shutdown
:
5440 case QEMU_OPTION_show_cursor
:
5443 case QEMU_OPTION_uuid
:
5444 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5445 fprintf(stderr
, "Fail to parse UUID string."
5446 " Wrong format.\n");
5451 case QEMU_OPTION_daemonize
:
5455 case QEMU_OPTION_option_rom
:
5456 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5457 fprintf(stderr
, "Too many option ROMs\n");
5460 option_rom
[nb_option_roms
] = optarg
;
5463 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5464 case QEMU_OPTION_semihosting
:
5465 semihosting_enabled
= 1;
5468 case QEMU_OPTION_name
:
5471 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5472 case QEMU_OPTION_prom_env
:
5473 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5474 fprintf(stderr
, "Too many prom variables\n");
5477 prom_envs
[nb_prom_envs
] = optarg
;
5482 case QEMU_OPTION_old_param
:
5486 case QEMU_OPTION_clock
:
5487 configure_alarms(optarg
);
5489 case QEMU_OPTION_startdate
:
5492 time_t rtc_start_date
;
5493 if (!strcmp(optarg
, "now")) {
5494 rtc_date_offset
= -1;
5496 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5504 } else if (sscanf(optarg
, "%d-%d-%d",
5507 &tm
.tm_mday
) == 3) {
5516 rtc_start_date
= mktimegm(&tm
);
5517 if (rtc_start_date
== -1) {
5519 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5520 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5523 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5527 case QEMU_OPTION_tb_size
:
5528 tb_size
= strtol(optarg
, NULL
, 0);
5532 case QEMU_OPTION_icount
:
5534 if (strcmp(optarg
, "auto") == 0) {
5535 icount_time_shift
= -1;
5537 icount_time_shift
= strtol(optarg
, NULL
, 0);
5540 case QEMU_OPTION_incoming
:
5544 case QEMU_OPTION_chroot
:
5545 chroot_dir
= optarg
;
5547 case QEMU_OPTION_runas
:
5552 case QEMU_OPTION_xen_domid
:
5553 xen_domid
= atoi(optarg
);
5555 case QEMU_OPTION_xen_create
:
5556 xen_mode
= XEN_CREATE
;
5558 case QEMU_OPTION_xen_attach
:
5559 xen_mode
= XEN_ATTACH
;
5566 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5567 if (kvm_allowed
&& kqemu_allowed
) {
5569 "You can not enable both KVM and kqemu at the same time\n");
5574 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5575 if (smp_cpus
> machine
->max_cpus
) {
5576 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5577 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5583 if (serial_device_index
== 0)
5584 serial_devices
[0] = "stdio";
5585 if (parallel_device_index
== 0)
5586 parallel_devices
[0] = "null";
5587 if (strncmp(monitor_device
, "vc", 2) == 0)
5588 monitor_device
= "stdio";
5595 if (pipe(fds
) == -1)
5606 len
= read(fds
[0], &status
, 1);
5607 if (len
== -1 && (errno
== EINTR
))
5612 else if (status
== 1) {
5613 fprintf(stderr
, "Could not acquire pidfile\n");
5630 signal(SIGTSTP
, SIG_IGN
);
5631 signal(SIGTTOU
, SIG_IGN
);
5632 signal(SIGTTIN
, SIG_IGN
);
5635 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5638 write(fds
[1], &status
, 1);
5640 fprintf(stderr
, "Could not acquire pid file\n");
5649 if (qemu_init_main_loop()) {
5650 fprintf(stderr
, "qemu_init_main_loop failed\n");
5653 linux_boot
= (kernel_filename
!= NULL
);
5654 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5656 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5657 fprintf(stderr
, "-append only allowed with -kernel option\n");
5661 if (!linux_boot
&& initrd_filename
!= NULL
) {
5662 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5666 /* boot to floppy or the default cd if no hard disk defined yet */
5667 if (!boot_devices
[0]) {
5668 boot_devices
= "cad";
5670 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5673 if (init_timer_alarm() < 0) {
5674 fprintf(stderr
, "could not initialize alarm timer\n");
5677 if (use_icount
&& icount_time_shift
< 0) {
5679 /* 125MIPS seems a reasonable initial guess at the guest speed.
5680 It will be corrected fairly quickly anyway. */
5681 icount_time_shift
= 3;
5682 init_icount_adjust();
5689 /* init network clients */
5690 if (nb_net_clients
== 0) {
5691 /* if no clients, we use a default config */
5692 net_clients
[nb_net_clients
++] = "nic";
5694 net_clients
[nb_net_clients
++] = "user";
5698 for(i
= 0;i
< nb_net_clients
; i
++) {
5699 if (net_client_parse(net_clients
[i
]) < 0)
5705 /* XXX: this should be moved in the PC machine instantiation code */
5706 if (net_boot
!= 0) {
5708 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5709 const char *model
= nd_table
[i
].model
;
5711 if (net_boot
& (1 << i
)) {
5714 snprintf(buf
, sizeof(buf
), "%s/pxe-%s.bin", bios_dir
, model
);
5715 if (get_image_size(buf
) > 0) {
5716 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5717 fprintf(stderr
, "Too many option ROMs\n");
5720 option_rom
[nb_option_roms
] = strdup(buf
);
5727 fprintf(stderr
, "No valid PXE rom found for network device\n");
5733 /* init the bluetooth world */
5734 for (i
= 0; i
< nb_bt_opts
; i
++)
5735 if (bt_parse(bt_opts
[i
]))
5738 /* init the memory */
5740 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5743 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5744 guest ram allocation. It needs to go away. */
5745 if (kqemu_allowed
) {
5746 kqemu_phys_ram_size
= ram_size
+ VGA_RAM_SIZE
+ 4 * 1024 * 1024;
5747 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5748 if (!kqemu_phys_ram_base
) {
5749 fprintf(stderr
, "Could not allocate physical memory\n");
5755 /* init the dynamic translator */
5756 cpu_exec_init_all(tb_size
* 1024 * 1024);
5761 /* we always create the cdrom drive, even if no disk is there */
5763 if (nb_drives_opt
< MAX_DRIVES
)
5764 drive_add(NULL
, CDROM_ALIAS
);
5766 /* we always create at least one floppy */
5768 if (nb_drives_opt
< MAX_DRIVES
)
5769 drive_add(NULL
, FD_ALIAS
, 0);
5771 /* we always create one sd slot, even if no card is in it */
5773 if (nb_drives_opt
< MAX_DRIVES
)
5774 drive_add(NULL
, SD_ALIAS
);
5776 /* open the virtual block devices */
5778 for(i
= 0; i
< nb_drives_opt
; i
++)
5779 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5782 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5783 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5786 /* must be after terminal init, SDL library changes signal handlers */
5790 /* Maintain compatibility with multiple stdio monitors */
5791 if (!strcmp(monitor_device
,"stdio")) {
5792 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5793 const char *devname
= serial_devices
[i
];
5794 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5795 monitor_device
= NULL
;
5797 } else if (devname
&& !strcmp(devname
,"stdio")) {
5798 monitor_device
= NULL
;
5799 serial_devices
[i
] = "mon:stdio";
5805 if (nb_numa_nodes
> 0) {
5808 if (nb_numa_nodes
> smp_cpus
) {
5809 nb_numa_nodes
= smp_cpus
;
5812 /* If no memory size if given for any node, assume the default case
5813 * and distribute the available memory equally across all nodes
5815 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5816 if (node_mem
[i
] != 0)
5819 if (i
== nb_numa_nodes
) {
5820 uint64_t usedmem
= 0;
5822 /* On Linux, the each node's border has to be 8MB aligned,
5823 * the final node gets the rest.
5825 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5826 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5827 usedmem
+= node_mem
[i
];
5829 node_mem
[i
] = ram_size
- usedmem
;
5832 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5833 if (node_cpumask
[i
] != 0)
5836 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5837 * must cope with this anyway, because there are BIOSes out there in
5838 * real machines which also use this scheme.
5840 if (i
== nb_numa_nodes
) {
5841 for (i
= 0; i
< smp_cpus
; i
++) {
5842 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5847 if (kvm_enabled()) {
5850 ret
= kvm_init(smp_cpus
);
5852 fprintf(stderr
, "failed to initialize KVM\n");
5857 if (monitor_device
) {
5858 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5860 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5865 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5866 const char *devname
= serial_devices
[i
];
5867 if (devname
&& strcmp(devname
, "none")) {
5869 snprintf(label
, sizeof(label
), "serial%d", i
);
5870 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5871 if (!serial_hds
[i
]) {
5872 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
5879 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5880 const char *devname
= parallel_devices
[i
];
5881 if (devname
&& strcmp(devname
, "none")) {
5883 snprintf(label
, sizeof(label
), "parallel%d", i
);
5884 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5885 if (!parallel_hds
[i
]) {
5886 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
5893 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5894 const char *devname
= virtio_consoles
[i
];
5895 if (devname
&& strcmp(devname
, "none")) {
5897 snprintf(label
, sizeof(label
), "virtcon%d", i
);
5898 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5899 if (!virtcon_hds
[i
]) {
5900 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
5907 machine
->init(ram_size
, vga_ram_size
, boot_devices
,
5908 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
5911 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
5912 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5913 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
5919 current_machine
= machine
;
5921 /* Set KVM's vcpu state to qemu's initial CPUState. */
5922 if (kvm_enabled()) {
5925 ret
= kvm_sync_vcpus();
5927 fprintf(stderr
, "failed to initialize vcpus\n");
5932 /* init USB devices */
5934 for(i
= 0; i
< usb_devices_index
; i
++) {
5935 if (usb_device_add(usb_devices
[i
], 0) < 0) {
5936 fprintf(stderr
, "Warning: could not add USB device %s\n",
5943 dumb_display_init();
5944 /* just use the first displaystate for the moment */
5949 fprintf(stderr
, "fatal: -nographic can't be used with -curses\n");
5953 #if defined(CONFIG_CURSES)
5955 /* At the moment curses cannot be used with other displays */
5956 curses_display_init(ds
, full_screen
);
5960 if (vnc_display
!= NULL
) {
5961 vnc_display_init(ds
);
5962 if (vnc_display_open(ds
, vnc_display
) < 0)
5965 #if defined(CONFIG_SDL)
5966 if (sdl
|| !vnc_display
)
5967 sdl_display_init(ds
, full_screen
, no_frame
);
5968 #elif defined(CONFIG_COCOA)
5969 if (sdl
|| !vnc_display
)
5970 cocoa_display_init(ds
, full_screen
);
5976 dcl
= ds
->listeners
;
5977 while (dcl
!= NULL
) {
5978 if (dcl
->dpy_refresh
!= NULL
) {
5979 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
5980 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
5985 if (nographic
|| (vnc_display
&& !sdl
)) {
5986 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
5987 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
5990 text_consoles_set_display(display_state
);
5991 qemu_chr_initial_reset();
5993 if (monitor_device
&& monitor_hd
)
5994 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
5996 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5997 const char *devname
= serial_devices
[i
];
5998 if (devname
&& strcmp(devname
, "none")) {
6000 snprintf(label
, sizeof(label
), "serial%d", i
);
6001 if (strstart(devname
, "vc", 0))
6002 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6006 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6007 const char *devname
= parallel_devices
[i
];
6008 if (devname
&& strcmp(devname
, "none")) {
6010 snprintf(label
, sizeof(label
), "parallel%d", i
);
6011 if (strstart(devname
, "vc", 0))
6012 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6016 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6017 const char *devname
= virtio_consoles
[i
];
6018 if (virtcon_hds
[i
] && devname
) {
6020 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6021 if (strstart(devname
, "vc", 0))
6022 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6026 #ifdef CONFIG_GDBSTUB
6027 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6028 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6035 do_loadvm(cur_mon
, loadvm
);
6038 autostart
= 0; /* fixme how to deal with -daemonize */
6039 qemu_start_incoming_migration(incoming
);
6051 len
= write(fds
[1], &status
, 1);
6052 if (len
== -1 && (errno
== EINTR
))
6059 TFR(fd
= open("/dev/null", O_RDWR
));
6065 pwd
= getpwnam(run_as
);
6067 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6073 if (chroot(chroot_dir
) < 0) {
6074 fprintf(stderr
, "chroot failed\n");
6081 if (setgid(pwd
->pw_gid
) < 0) {
6082 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6085 if (setuid(pwd
->pw_uid
) < 0) {
6086 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6089 if (setuid(0) != -1) {
6090 fprintf(stderr
, "Dropping privileges failed\n");