target-ppc: Add missing 'static' and 'const' attributes
[qemu.git] / target-ppc / fpu_helper.c
blobfd91239d372219df53ac7fe6986143eae1695dbb
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "helper.h"
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
26 CPU_FloatU f;
27 CPU_DoubleU d;
29 f.l = arg;
30 d.d = float32_to_float64(f.f, &env->fp_status);
31 return d.ll;
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
36 CPU_FloatU f;
37 CPU_DoubleU d;
39 d.ll = arg;
40 f.f = float64_to_float32(d.d, &env->fp_status);
41 return f.l;
44 static inline int isden(float64 d)
46 CPU_DoubleU u;
48 u.d = d;
50 return ((u.ll >> 52) & 0x7FF) == 0;
53 static inline int ppc_float32_get_unbiased_exp(float32 f)
55 return ((f >> 23) & 0xFF) - 127;
58 static inline int ppc_float64_get_unbiased_exp(float64 f)
60 return ((f >> 52) & 0x7FF) - 1023;
63 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
65 CPU_DoubleU farg;
66 int isneg;
67 int ret;
69 farg.ll = arg;
70 isneg = float64_is_neg(farg.d);
71 if (unlikely(float64_is_any_nan(farg.d))) {
72 if (float64_is_signaling_nan(farg.d)) {
73 /* Signaling NaN: flags are undefined */
74 ret = 0x00;
75 } else {
76 /* Quiet NaN */
77 ret = 0x11;
79 } else if (unlikely(float64_is_infinity(farg.d))) {
80 /* +/- infinity */
81 if (isneg) {
82 ret = 0x09;
83 } else {
84 ret = 0x05;
86 } else {
87 if (float64_is_zero(farg.d)) {
88 /* +/- zero */
89 if (isneg) {
90 ret = 0x12;
91 } else {
92 ret = 0x02;
94 } else {
95 if (isden(farg.d)) {
96 /* Denormalized numbers */
97 ret = 0x10;
98 } else {
99 /* Normalized numbers */
100 ret = 0x00;
102 if (isneg) {
103 ret |= 0x08;
104 } else {
105 ret |= 0x04;
109 if (set_fprf) {
110 /* We update FPSCR_FPRF */
111 env->fpscr &= ~(0x1F << FPSCR_FPRF);
112 env->fpscr |= ret << FPSCR_FPRF;
114 /* We just need fpcc to update Rc1 */
115 return ret & 0xF;
118 /* Floating-point invalid operations exception */
119 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
120 int set_fpcc)
122 CPUState *cs = CPU(ppc_env_get_cpu(env));
123 uint64_t ret = 0;
124 int ve;
126 ve = fpscr_ve;
127 switch (op) {
128 case POWERPC_EXCP_FP_VXSNAN:
129 env->fpscr |= 1 << FPSCR_VXSNAN;
130 break;
131 case POWERPC_EXCP_FP_VXSOFT:
132 env->fpscr |= 1 << FPSCR_VXSOFT;
133 break;
134 case POWERPC_EXCP_FP_VXISI:
135 /* Magnitude subtraction of infinities */
136 env->fpscr |= 1 << FPSCR_VXISI;
137 goto update_arith;
138 case POWERPC_EXCP_FP_VXIDI:
139 /* Division of infinity by infinity */
140 env->fpscr |= 1 << FPSCR_VXIDI;
141 goto update_arith;
142 case POWERPC_EXCP_FP_VXZDZ:
143 /* Division of zero by zero */
144 env->fpscr |= 1 << FPSCR_VXZDZ;
145 goto update_arith;
146 case POWERPC_EXCP_FP_VXIMZ:
147 /* Multiplication of zero by infinity */
148 env->fpscr |= 1 << FPSCR_VXIMZ;
149 goto update_arith;
150 case POWERPC_EXCP_FP_VXVC:
151 /* Ordered comparison of NaN */
152 env->fpscr |= 1 << FPSCR_VXVC;
153 if (set_fpcc) {
154 env->fpscr &= ~(0xF << FPSCR_FPCC);
155 env->fpscr |= 0x11 << FPSCR_FPCC;
157 /* We must update the target FPR before raising the exception */
158 if (ve != 0) {
159 cs->exception_index = POWERPC_EXCP_PROGRAM;
160 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
161 /* Update the floating-point enabled exception summary */
162 env->fpscr |= 1 << FPSCR_FEX;
163 /* Exception is differed */
164 ve = 0;
166 break;
167 case POWERPC_EXCP_FP_VXSQRT:
168 /* Square root of a negative number */
169 env->fpscr |= 1 << FPSCR_VXSQRT;
170 update_arith:
171 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
172 if (ve == 0) {
173 /* Set the result to quiet NaN */
174 ret = 0x7FF8000000000000ULL;
175 if (set_fpcc) {
176 env->fpscr &= ~(0xF << FPSCR_FPCC);
177 env->fpscr |= 0x11 << FPSCR_FPCC;
180 break;
181 case POWERPC_EXCP_FP_VXCVI:
182 /* Invalid conversion */
183 env->fpscr |= 1 << FPSCR_VXCVI;
184 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
185 if (ve == 0) {
186 /* Set the result to quiet NaN */
187 ret = 0x7FF8000000000000ULL;
188 if (set_fpcc) {
189 env->fpscr &= ~(0xF << FPSCR_FPCC);
190 env->fpscr |= 0x11 << FPSCR_FPCC;
193 break;
195 /* Update the floating-point invalid operation summary */
196 env->fpscr |= 1 << FPSCR_VX;
197 /* Update the floating-point exception summary */
198 env->fpscr |= 1 << FPSCR_FX;
199 if (ve != 0) {
200 /* Update the floating-point enabled exception summary */
201 env->fpscr |= 1 << FPSCR_FEX;
202 if (msr_fe0 != 0 || msr_fe1 != 0) {
203 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
204 POWERPC_EXCP_FP | op);
207 return ret;
210 static inline void float_zero_divide_excp(CPUPPCState *env)
212 env->fpscr |= 1 << FPSCR_ZX;
213 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
214 /* Update the floating-point exception summary */
215 env->fpscr |= 1 << FPSCR_FX;
216 if (fpscr_ze != 0) {
217 /* Update the floating-point enabled exception summary */
218 env->fpscr |= 1 << FPSCR_FEX;
219 if (msr_fe0 != 0 || msr_fe1 != 0) {
220 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
221 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
226 static inline void float_overflow_excp(CPUPPCState *env)
228 CPUState *cs = CPU(ppc_env_get_cpu(env));
230 env->fpscr |= 1 << FPSCR_OX;
231 /* Update the floating-point exception summary */
232 env->fpscr |= 1 << FPSCR_FX;
233 if (fpscr_oe != 0) {
234 /* XXX: should adjust the result */
235 /* Update the floating-point enabled exception summary */
236 env->fpscr |= 1 << FPSCR_FEX;
237 /* We must update the target FPR before raising the exception */
238 cs->exception_index = POWERPC_EXCP_PROGRAM;
239 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
240 } else {
241 env->fpscr |= 1 << FPSCR_XX;
242 env->fpscr |= 1 << FPSCR_FI;
246 static inline void float_underflow_excp(CPUPPCState *env)
248 CPUState *cs = CPU(ppc_env_get_cpu(env));
250 env->fpscr |= 1 << FPSCR_UX;
251 /* Update the floating-point exception summary */
252 env->fpscr |= 1 << FPSCR_FX;
253 if (fpscr_ue != 0) {
254 /* XXX: should adjust the result */
255 /* Update the floating-point enabled exception summary */
256 env->fpscr |= 1 << FPSCR_FEX;
257 /* We must update the target FPR before raising the exception */
258 cs->exception_index = POWERPC_EXCP_PROGRAM;
259 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
263 static inline void float_inexact_excp(CPUPPCState *env)
265 CPUState *cs = CPU(ppc_env_get_cpu(env));
267 env->fpscr |= 1 << FPSCR_XX;
268 /* Update the floating-point exception summary */
269 env->fpscr |= 1 << FPSCR_FX;
270 if (fpscr_xe != 0) {
271 /* Update the floating-point enabled exception summary */
272 env->fpscr |= 1 << FPSCR_FEX;
273 /* We must update the target FPR before raising the exception */
274 cs->exception_index = POWERPC_EXCP_PROGRAM;
275 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
279 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
281 int rnd_type;
283 /* Set rounding mode */
284 switch (fpscr_rn) {
285 case 0:
286 /* Best approximation (round to nearest) */
287 rnd_type = float_round_nearest_even;
288 break;
289 case 1:
290 /* Smaller magnitude (round toward zero) */
291 rnd_type = float_round_to_zero;
292 break;
293 case 2:
294 /* Round toward +infinite */
295 rnd_type = float_round_up;
296 break;
297 default:
298 case 3:
299 /* Round toward -infinite */
300 rnd_type = float_round_down;
301 break;
303 set_float_rounding_mode(rnd_type, &env->fp_status);
306 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
308 int prev;
310 prev = (env->fpscr >> bit) & 1;
311 env->fpscr &= ~(1 << bit);
312 if (prev == 1) {
313 switch (bit) {
314 case FPSCR_RN1:
315 case FPSCR_RN:
316 fpscr_set_rounding_mode(env);
317 break;
318 default:
319 break;
324 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
326 CPUState *cs = CPU(ppc_env_get_cpu(env));
327 int prev;
329 prev = (env->fpscr >> bit) & 1;
330 env->fpscr |= 1 << bit;
331 if (prev == 0) {
332 switch (bit) {
333 case FPSCR_VX:
334 env->fpscr |= 1 << FPSCR_FX;
335 if (fpscr_ve) {
336 goto raise_ve;
338 break;
339 case FPSCR_OX:
340 env->fpscr |= 1 << FPSCR_FX;
341 if (fpscr_oe) {
342 goto raise_oe;
344 break;
345 case FPSCR_UX:
346 env->fpscr |= 1 << FPSCR_FX;
347 if (fpscr_ue) {
348 goto raise_ue;
350 break;
351 case FPSCR_ZX:
352 env->fpscr |= 1 << FPSCR_FX;
353 if (fpscr_ze) {
354 goto raise_ze;
356 break;
357 case FPSCR_XX:
358 env->fpscr |= 1 << FPSCR_FX;
359 if (fpscr_xe) {
360 goto raise_xe;
362 break;
363 case FPSCR_VXSNAN:
364 case FPSCR_VXISI:
365 case FPSCR_VXIDI:
366 case FPSCR_VXZDZ:
367 case FPSCR_VXIMZ:
368 case FPSCR_VXVC:
369 case FPSCR_VXSOFT:
370 case FPSCR_VXSQRT:
371 case FPSCR_VXCVI:
372 env->fpscr |= 1 << FPSCR_VX;
373 env->fpscr |= 1 << FPSCR_FX;
374 if (fpscr_ve != 0) {
375 goto raise_ve;
377 break;
378 case FPSCR_VE:
379 if (fpscr_vx != 0) {
380 raise_ve:
381 env->error_code = POWERPC_EXCP_FP;
382 if (fpscr_vxsnan) {
383 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
385 if (fpscr_vxisi) {
386 env->error_code |= POWERPC_EXCP_FP_VXISI;
388 if (fpscr_vxidi) {
389 env->error_code |= POWERPC_EXCP_FP_VXIDI;
391 if (fpscr_vxzdz) {
392 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
394 if (fpscr_vximz) {
395 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
397 if (fpscr_vxvc) {
398 env->error_code |= POWERPC_EXCP_FP_VXVC;
400 if (fpscr_vxsoft) {
401 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
403 if (fpscr_vxsqrt) {
404 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
406 if (fpscr_vxcvi) {
407 env->error_code |= POWERPC_EXCP_FP_VXCVI;
409 goto raise_excp;
411 break;
412 case FPSCR_OE:
413 if (fpscr_ox != 0) {
414 raise_oe:
415 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
416 goto raise_excp;
418 break;
419 case FPSCR_UE:
420 if (fpscr_ux != 0) {
421 raise_ue:
422 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
423 goto raise_excp;
425 break;
426 case FPSCR_ZE:
427 if (fpscr_zx != 0) {
428 raise_ze:
429 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
430 goto raise_excp;
432 break;
433 case FPSCR_XE:
434 if (fpscr_xx != 0) {
435 raise_xe:
436 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
437 goto raise_excp;
439 break;
440 case FPSCR_RN1:
441 case FPSCR_RN:
442 fpscr_set_rounding_mode(env);
443 break;
444 default:
445 break;
446 raise_excp:
447 /* Update the floating-point enabled exception summary */
448 env->fpscr |= 1 << FPSCR_FEX;
449 /* We have to update Rc1 before raising the exception */
450 cs->exception_index = POWERPC_EXCP_PROGRAM;
451 break;
456 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
458 CPUState *cs = CPU(ppc_env_get_cpu(env));
459 target_ulong prev, new;
460 int i;
462 prev = env->fpscr;
463 new = (target_ulong)arg;
464 new &= ~0x60000000LL;
465 new |= prev & 0x60000000LL;
466 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
467 if (mask & (1 << i)) {
468 env->fpscr &= ~(0xFLL << (4 * i));
469 env->fpscr |= new & (0xFLL << (4 * i));
472 /* Update VX and FEX */
473 if (fpscr_ix != 0) {
474 env->fpscr |= 1 << FPSCR_VX;
475 } else {
476 env->fpscr &= ~(1 << FPSCR_VX);
478 if ((fpscr_ex & fpscr_eex) != 0) {
479 env->fpscr |= 1 << FPSCR_FEX;
480 cs->exception_index = POWERPC_EXCP_PROGRAM;
481 /* XXX: we should compute it properly */
482 env->error_code = POWERPC_EXCP_FP;
483 } else {
484 env->fpscr &= ~(1 << FPSCR_FEX);
486 fpscr_set_rounding_mode(env);
489 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
491 helper_store_fpscr(env, arg, mask);
494 void helper_float_check_status(CPUPPCState *env)
496 CPUState *cs = CPU(ppc_env_get_cpu(env));
497 int status = get_float_exception_flags(&env->fp_status);
499 if (status & float_flag_divbyzero) {
500 float_zero_divide_excp(env);
501 } else if (status & float_flag_overflow) {
502 float_overflow_excp(env);
503 } else if (status & float_flag_underflow) {
504 float_underflow_excp(env);
505 } else if (status & float_flag_inexact) {
506 float_inexact_excp(env);
509 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
510 (env->error_code & POWERPC_EXCP_FP)) {
511 /* Differred floating-point exception after target FPR update */
512 if (msr_fe0 != 0 || msr_fe1 != 0) {
513 helper_raise_exception_err(env, cs->exception_index,
514 env->error_code);
519 void helper_reset_fpstatus(CPUPPCState *env)
521 set_float_exception_flags(0, &env->fp_status);
524 /* fadd - fadd. */
525 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
527 CPU_DoubleU farg1, farg2;
529 farg1.ll = arg1;
530 farg2.ll = arg2;
532 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
533 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
534 /* Magnitude subtraction of infinities */
535 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
536 } else {
537 if (unlikely(float64_is_signaling_nan(farg1.d) ||
538 float64_is_signaling_nan(farg2.d))) {
539 /* sNaN addition */
540 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
542 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
545 return farg1.ll;
548 /* fsub - fsub. */
549 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
551 CPU_DoubleU farg1, farg2;
553 farg1.ll = arg1;
554 farg2.ll = arg2;
556 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
557 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
558 /* Magnitude subtraction of infinities */
559 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
560 } else {
561 if (unlikely(float64_is_signaling_nan(farg1.d) ||
562 float64_is_signaling_nan(farg2.d))) {
563 /* sNaN subtraction */
564 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
566 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
569 return farg1.ll;
572 /* fmul - fmul. */
573 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
575 CPU_DoubleU farg1, farg2;
577 farg1.ll = arg1;
578 farg2.ll = arg2;
580 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
581 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
582 /* Multiplication of zero by infinity */
583 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
584 } else {
585 if (unlikely(float64_is_signaling_nan(farg1.d) ||
586 float64_is_signaling_nan(farg2.d))) {
587 /* sNaN multiplication */
588 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
590 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
593 return farg1.ll;
596 /* fdiv - fdiv. */
597 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
599 CPU_DoubleU farg1, farg2;
601 farg1.ll = arg1;
602 farg2.ll = arg2;
604 if (unlikely(float64_is_infinity(farg1.d) &&
605 float64_is_infinity(farg2.d))) {
606 /* Division of infinity by infinity */
607 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
608 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
609 /* Division of zero by zero */
610 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
611 } else {
612 if (unlikely(float64_is_signaling_nan(farg1.d) ||
613 float64_is_signaling_nan(farg2.d))) {
614 /* sNaN division */
615 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
617 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
620 return farg1.ll;
624 #define FPU_FCTI(op, cvt, nanval) \
625 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
627 CPU_DoubleU farg; \
629 farg.ll = arg; \
630 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
632 if (unlikely(env->fp_status.float_exception_flags)) { \
633 if (float64_is_any_nan(arg)) { \
634 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
635 if (float64_is_signaling_nan(arg)) { \
636 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
638 farg.ll = nanval; \
639 } else if (env->fp_status.float_exception_flags & \
640 float_flag_invalid) { \
641 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
643 helper_float_check_status(env); \
645 return farg.ll; \
648 FPU_FCTI(fctiw, int32, 0x80000000U)
649 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
650 FPU_FCTI(fctiwu, uint32, 0x00000000U)
651 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
652 #if defined(TARGET_PPC64)
653 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
654 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
655 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
656 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
657 #endif
659 #if defined(TARGET_PPC64)
661 #define FPU_FCFI(op, cvtr, is_single) \
662 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
664 CPU_DoubleU farg; \
666 if (is_single) { \
667 float32 tmp = cvtr(arg, &env->fp_status); \
668 farg.d = float32_to_float64(tmp, &env->fp_status); \
669 } else { \
670 farg.d = cvtr(arg, &env->fp_status); \
672 helper_float_check_status(env); \
673 return farg.ll; \
676 FPU_FCFI(fcfid, int64_to_float64, 0)
677 FPU_FCFI(fcfids, int64_to_float32, 1)
678 FPU_FCFI(fcfidu, uint64_to_float64, 0)
679 FPU_FCFI(fcfidus, uint64_to_float32, 1)
681 #endif
683 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
684 int rounding_mode)
686 CPU_DoubleU farg;
688 farg.ll = arg;
690 if (unlikely(float64_is_signaling_nan(farg.d))) {
691 /* sNaN round */
692 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
693 farg.ll = arg | 0x0008000000000000ULL;
694 } else {
695 int inexact = get_float_exception_flags(&env->fp_status) &
696 float_flag_inexact;
697 set_float_rounding_mode(rounding_mode, &env->fp_status);
698 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
699 /* Restore rounding mode from FPSCR */
700 fpscr_set_rounding_mode(env);
702 /* fri* does not set FPSCR[XX] */
703 if (!inexact) {
704 env->fp_status.float_exception_flags &= ~float_flag_inexact;
707 helper_float_check_status(env);
708 return farg.ll;
711 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
713 return do_fri(env, arg, float_round_ties_away);
716 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
718 return do_fri(env, arg, float_round_to_zero);
721 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
723 return do_fri(env, arg, float_round_up);
726 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
728 return do_fri(env, arg, float_round_down);
731 /* fmadd - fmadd. */
732 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
733 uint64_t arg3)
735 CPU_DoubleU farg1, farg2, farg3;
737 farg1.ll = arg1;
738 farg2.ll = arg2;
739 farg3.ll = arg3;
741 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
742 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
743 /* Multiplication of zero by infinity */
744 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
745 } else {
746 if (unlikely(float64_is_signaling_nan(farg1.d) ||
747 float64_is_signaling_nan(farg2.d) ||
748 float64_is_signaling_nan(farg3.d))) {
749 /* sNaN operation */
750 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
752 /* This is the way the PowerPC specification defines it */
753 float128 ft0_128, ft1_128;
755 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
756 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
757 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
758 if (unlikely(float128_is_infinity(ft0_128) &&
759 float64_is_infinity(farg3.d) &&
760 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
761 /* Magnitude subtraction of infinities */
762 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
763 } else {
764 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
765 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
766 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
770 return farg1.ll;
773 /* fmsub - fmsub. */
774 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
775 uint64_t arg3)
777 CPU_DoubleU farg1, farg2, farg3;
779 farg1.ll = arg1;
780 farg2.ll = arg2;
781 farg3.ll = arg3;
783 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
784 (float64_is_zero(farg1.d) &&
785 float64_is_infinity(farg2.d)))) {
786 /* Multiplication of zero by infinity */
787 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
788 } else {
789 if (unlikely(float64_is_signaling_nan(farg1.d) ||
790 float64_is_signaling_nan(farg2.d) ||
791 float64_is_signaling_nan(farg3.d))) {
792 /* sNaN operation */
793 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
795 /* This is the way the PowerPC specification defines it */
796 float128 ft0_128, ft1_128;
798 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
799 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
800 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
801 if (unlikely(float128_is_infinity(ft0_128) &&
802 float64_is_infinity(farg3.d) &&
803 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
804 /* Magnitude subtraction of infinities */
805 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
806 } else {
807 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
808 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
809 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
812 return farg1.ll;
815 /* fnmadd - fnmadd. */
816 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
817 uint64_t arg3)
819 CPU_DoubleU farg1, farg2, farg3;
821 farg1.ll = arg1;
822 farg2.ll = arg2;
823 farg3.ll = arg3;
825 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
826 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
827 /* Multiplication of zero by infinity */
828 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
829 } else {
830 if (unlikely(float64_is_signaling_nan(farg1.d) ||
831 float64_is_signaling_nan(farg2.d) ||
832 float64_is_signaling_nan(farg3.d))) {
833 /* sNaN operation */
834 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
836 /* This is the way the PowerPC specification defines it */
837 float128 ft0_128, ft1_128;
839 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
840 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
841 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
842 if (unlikely(float128_is_infinity(ft0_128) &&
843 float64_is_infinity(farg3.d) &&
844 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
845 /* Magnitude subtraction of infinities */
846 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
847 } else {
848 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
849 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
850 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
852 if (likely(!float64_is_any_nan(farg1.d))) {
853 farg1.d = float64_chs(farg1.d);
856 return farg1.ll;
859 /* fnmsub - fnmsub. */
860 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
861 uint64_t arg3)
863 CPU_DoubleU farg1, farg2, farg3;
865 farg1.ll = arg1;
866 farg2.ll = arg2;
867 farg3.ll = arg3;
869 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
870 (float64_is_zero(farg1.d) &&
871 float64_is_infinity(farg2.d)))) {
872 /* Multiplication of zero by infinity */
873 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
874 } else {
875 if (unlikely(float64_is_signaling_nan(farg1.d) ||
876 float64_is_signaling_nan(farg2.d) ||
877 float64_is_signaling_nan(farg3.d))) {
878 /* sNaN operation */
879 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
881 /* This is the way the PowerPC specification defines it */
882 float128 ft0_128, ft1_128;
884 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
885 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
886 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
887 if (unlikely(float128_is_infinity(ft0_128) &&
888 float64_is_infinity(farg3.d) &&
889 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
890 /* Magnitude subtraction of infinities */
891 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
892 } else {
893 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
894 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
895 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
897 if (likely(!float64_is_any_nan(farg1.d))) {
898 farg1.d = float64_chs(farg1.d);
901 return farg1.ll;
904 /* frsp - frsp. */
905 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
907 CPU_DoubleU farg;
908 float32 f32;
910 farg.ll = arg;
912 if (unlikely(float64_is_signaling_nan(farg.d))) {
913 /* sNaN square root */
914 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
916 f32 = float64_to_float32(farg.d, &env->fp_status);
917 farg.d = float32_to_float64(f32, &env->fp_status);
919 return farg.ll;
922 /* fsqrt - fsqrt. */
923 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
925 CPU_DoubleU farg;
927 farg.ll = arg;
929 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
930 /* Square root of a negative nonzero number */
931 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
932 } else {
933 if (unlikely(float64_is_signaling_nan(farg.d))) {
934 /* sNaN square root */
935 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
937 farg.d = float64_sqrt(farg.d, &env->fp_status);
939 return farg.ll;
942 /* fre - fre. */
943 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
945 CPU_DoubleU farg;
947 farg.ll = arg;
949 if (unlikely(float64_is_signaling_nan(farg.d))) {
950 /* sNaN reciprocal */
951 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
953 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
954 return farg.d;
957 /* fres - fres. */
958 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
960 CPU_DoubleU farg;
961 float32 f32;
963 farg.ll = arg;
965 if (unlikely(float64_is_signaling_nan(farg.d))) {
966 /* sNaN reciprocal */
967 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
969 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
970 f32 = float64_to_float32(farg.d, &env->fp_status);
971 farg.d = float32_to_float64(f32, &env->fp_status);
973 return farg.ll;
976 /* frsqrte - frsqrte. */
977 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
979 CPU_DoubleU farg;
980 float32 f32;
982 farg.ll = arg;
984 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
985 /* Reciprocal square root of a negative nonzero number */
986 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
987 } else {
988 if (unlikely(float64_is_signaling_nan(farg.d))) {
989 /* sNaN reciprocal square root */
990 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
992 farg.d = float64_sqrt(farg.d, &env->fp_status);
993 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
994 f32 = float64_to_float32(farg.d, &env->fp_status);
995 farg.d = float32_to_float64(f32, &env->fp_status);
997 return farg.ll;
1000 /* fsel - fsel. */
1001 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1002 uint64_t arg3)
1004 CPU_DoubleU farg1;
1006 farg1.ll = arg1;
1008 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1009 !float64_is_any_nan(farg1.d)) {
1010 return arg2;
1011 } else {
1012 return arg3;
1016 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1018 int fe_flag = 0;
1019 int fg_flag = 0;
1021 if (unlikely(float64_is_infinity(fra) ||
1022 float64_is_infinity(frb) ||
1023 float64_is_zero(frb))) {
1024 fe_flag = 1;
1025 fg_flag = 1;
1026 } else {
1027 int e_a = ppc_float64_get_unbiased_exp(fra);
1028 int e_b = ppc_float64_get_unbiased_exp(frb);
1030 if (unlikely(float64_is_any_nan(fra) ||
1031 float64_is_any_nan(frb))) {
1032 fe_flag = 1;
1033 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1034 fe_flag = 1;
1035 } else if (!float64_is_zero(fra) &&
1036 (((e_a - e_b) >= 1023) ||
1037 ((e_a - e_b) <= -1021) ||
1038 (e_a <= -970))) {
1039 fe_flag = 1;
1042 if (unlikely(float64_is_zero_or_denormal(frb))) {
1043 /* XB is not zero because of the above check and */
1044 /* so must be denormalized. */
1045 fg_flag = 1;
1049 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1052 uint32_t helper_ftsqrt(uint64_t frb)
1054 int fe_flag = 0;
1055 int fg_flag = 0;
1057 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1058 fe_flag = 1;
1059 fg_flag = 1;
1060 } else {
1061 int e_b = ppc_float64_get_unbiased_exp(frb);
1063 if (unlikely(float64_is_any_nan(frb))) {
1064 fe_flag = 1;
1065 } else if (unlikely(float64_is_zero(frb))) {
1066 fe_flag = 1;
1067 } else if (unlikely(float64_is_neg(frb))) {
1068 fe_flag = 1;
1069 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1070 fe_flag = 1;
1073 if (unlikely(float64_is_zero_or_denormal(frb))) {
1074 /* XB is not zero because of the above check and */
1075 /* therefore must be denormalized. */
1076 fg_flag = 1;
1080 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1083 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1084 uint32_t crfD)
1086 CPU_DoubleU farg1, farg2;
1087 uint32_t ret = 0;
1089 farg1.ll = arg1;
1090 farg2.ll = arg2;
1092 if (unlikely(float64_is_any_nan(farg1.d) ||
1093 float64_is_any_nan(farg2.d))) {
1094 ret = 0x01UL;
1095 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1096 ret = 0x08UL;
1097 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1098 ret = 0x04UL;
1099 } else {
1100 ret = 0x02UL;
1103 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1104 env->fpscr |= ret << FPSCR_FPRF;
1105 env->crf[crfD] = ret;
1106 if (unlikely(ret == 0x01UL
1107 && (float64_is_signaling_nan(farg1.d) ||
1108 float64_is_signaling_nan(farg2.d)))) {
1109 /* sNaN comparison */
1110 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1114 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1115 uint32_t crfD)
1117 CPU_DoubleU farg1, farg2;
1118 uint32_t ret = 0;
1120 farg1.ll = arg1;
1121 farg2.ll = arg2;
1123 if (unlikely(float64_is_any_nan(farg1.d) ||
1124 float64_is_any_nan(farg2.d))) {
1125 ret = 0x01UL;
1126 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1127 ret = 0x08UL;
1128 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1129 ret = 0x04UL;
1130 } else {
1131 ret = 0x02UL;
1134 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1135 env->fpscr |= ret << FPSCR_FPRF;
1136 env->crf[crfD] = ret;
1137 if (unlikely(ret == 0x01UL)) {
1138 if (float64_is_signaling_nan(farg1.d) ||
1139 float64_is_signaling_nan(farg2.d)) {
1140 /* sNaN comparison */
1141 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1142 POWERPC_EXCP_FP_VXVC, 1);
1143 } else {
1144 /* qNaN comparison */
1145 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1150 /* Single-precision floating-point conversions */
1151 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1153 CPU_FloatU u;
1155 u.f = int32_to_float32(val, &env->vec_status);
1157 return u.l;
1160 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1162 CPU_FloatU u;
1164 u.f = uint32_to_float32(val, &env->vec_status);
1166 return u.l;
1169 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1171 CPU_FloatU u;
1173 u.l = val;
1174 /* NaN are not treated the same way IEEE 754 does */
1175 if (unlikely(float32_is_quiet_nan(u.f))) {
1176 return 0;
1179 return float32_to_int32(u.f, &env->vec_status);
1182 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1184 CPU_FloatU u;
1186 u.l = val;
1187 /* NaN are not treated the same way IEEE 754 does */
1188 if (unlikely(float32_is_quiet_nan(u.f))) {
1189 return 0;
1192 return float32_to_uint32(u.f, &env->vec_status);
1195 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1197 CPU_FloatU u;
1199 u.l = val;
1200 /* NaN are not treated the same way IEEE 754 does */
1201 if (unlikely(float32_is_quiet_nan(u.f))) {
1202 return 0;
1205 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1208 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1210 CPU_FloatU u;
1212 u.l = val;
1213 /* NaN are not treated the same way IEEE 754 does */
1214 if (unlikely(float32_is_quiet_nan(u.f))) {
1215 return 0;
1218 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1221 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1223 CPU_FloatU u;
1224 float32 tmp;
1226 u.f = int32_to_float32(val, &env->vec_status);
1227 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1228 u.f = float32_div(u.f, tmp, &env->vec_status);
1230 return u.l;
1233 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1235 CPU_FloatU u;
1236 float32 tmp;
1238 u.f = uint32_to_float32(val, &env->vec_status);
1239 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1240 u.f = float32_div(u.f, tmp, &env->vec_status);
1242 return u.l;
1245 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1247 CPU_FloatU u;
1248 float32 tmp;
1250 u.l = val;
1251 /* NaN are not treated the same way IEEE 754 does */
1252 if (unlikely(float32_is_quiet_nan(u.f))) {
1253 return 0;
1255 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1256 u.f = float32_mul(u.f, tmp, &env->vec_status);
1258 return float32_to_int32(u.f, &env->vec_status);
1261 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1263 CPU_FloatU u;
1264 float32 tmp;
1266 u.l = val;
1267 /* NaN are not treated the same way IEEE 754 does */
1268 if (unlikely(float32_is_quiet_nan(u.f))) {
1269 return 0;
1271 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1272 u.f = float32_mul(u.f, tmp, &env->vec_status);
1274 return float32_to_uint32(u.f, &env->vec_status);
1277 #define HELPER_SPE_SINGLE_CONV(name) \
1278 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1280 return e##name(env, val); \
1282 /* efscfsi */
1283 HELPER_SPE_SINGLE_CONV(fscfsi);
1284 /* efscfui */
1285 HELPER_SPE_SINGLE_CONV(fscfui);
1286 /* efscfuf */
1287 HELPER_SPE_SINGLE_CONV(fscfuf);
1288 /* efscfsf */
1289 HELPER_SPE_SINGLE_CONV(fscfsf);
1290 /* efsctsi */
1291 HELPER_SPE_SINGLE_CONV(fsctsi);
1292 /* efsctui */
1293 HELPER_SPE_SINGLE_CONV(fsctui);
1294 /* efsctsiz */
1295 HELPER_SPE_SINGLE_CONV(fsctsiz);
1296 /* efsctuiz */
1297 HELPER_SPE_SINGLE_CONV(fsctuiz);
1298 /* efsctsf */
1299 HELPER_SPE_SINGLE_CONV(fsctsf);
1300 /* efsctuf */
1301 HELPER_SPE_SINGLE_CONV(fsctuf);
1303 #define HELPER_SPE_VECTOR_CONV(name) \
1304 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1306 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1307 (uint64_t)e##name(env, val); \
1309 /* evfscfsi */
1310 HELPER_SPE_VECTOR_CONV(fscfsi);
1311 /* evfscfui */
1312 HELPER_SPE_VECTOR_CONV(fscfui);
1313 /* evfscfuf */
1314 HELPER_SPE_VECTOR_CONV(fscfuf);
1315 /* evfscfsf */
1316 HELPER_SPE_VECTOR_CONV(fscfsf);
1317 /* evfsctsi */
1318 HELPER_SPE_VECTOR_CONV(fsctsi);
1319 /* evfsctui */
1320 HELPER_SPE_VECTOR_CONV(fsctui);
1321 /* evfsctsiz */
1322 HELPER_SPE_VECTOR_CONV(fsctsiz);
1323 /* evfsctuiz */
1324 HELPER_SPE_VECTOR_CONV(fsctuiz);
1325 /* evfsctsf */
1326 HELPER_SPE_VECTOR_CONV(fsctsf);
1327 /* evfsctuf */
1328 HELPER_SPE_VECTOR_CONV(fsctuf);
1330 /* Single-precision floating-point arithmetic */
1331 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1333 CPU_FloatU u1, u2;
1335 u1.l = op1;
1336 u2.l = op2;
1337 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1338 return u1.l;
1341 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1343 CPU_FloatU u1, u2;
1345 u1.l = op1;
1346 u2.l = op2;
1347 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1348 return u1.l;
1351 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1353 CPU_FloatU u1, u2;
1355 u1.l = op1;
1356 u2.l = op2;
1357 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1358 return u1.l;
1361 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1363 CPU_FloatU u1, u2;
1365 u1.l = op1;
1366 u2.l = op2;
1367 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1368 return u1.l;
1371 #define HELPER_SPE_SINGLE_ARITH(name) \
1372 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1374 return e##name(env, op1, op2); \
1376 /* efsadd */
1377 HELPER_SPE_SINGLE_ARITH(fsadd);
1378 /* efssub */
1379 HELPER_SPE_SINGLE_ARITH(fssub);
1380 /* efsmul */
1381 HELPER_SPE_SINGLE_ARITH(fsmul);
1382 /* efsdiv */
1383 HELPER_SPE_SINGLE_ARITH(fsdiv);
1385 #define HELPER_SPE_VECTOR_ARITH(name) \
1386 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1388 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1389 (uint64_t)e##name(env, op1, op2); \
1391 /* evfsadd */
1392 HELPER_SPE_VECTOR_ARITH(fsadd);
1393 /* evfssub */
1394 HELPER_SPE_VECTOR_ARITH(fssub);
1395 /* evfsmul */
1396 HELPER_SPE_VECTOR_ARITH(fsmul);
1397 /* evfsdiv */
1398 HELPER_SPE_VECTOR_ARITH(fsdiv);
1400 /* Single-precision floating-point comparisons */
1401 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1403 CPU_FloatU u1, u2;
1405 u1.l = op1;
1406 u2.l = op2;
1407 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1410 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1412 CPU_FloatU u1, u2;
1414 u1.l = op1;
1415 u2.l = op2;
1416 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1419 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1421 CPU_FloatU u1, u2;
1423 u1.l = op1;
1424 u2.l = op2;
1425 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1428 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1430 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1431 return efscmplt(env, op1, op2);
1434 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1436 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1437 return efscmpgt(env, op1, op2);
1440 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1442 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1443 return efscmpeq(env, op1, op2);
1446 #define HELPER_SINGLE_SPE_CMP(name) \
1447 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1449 return e##name(env, op1, op2) << 2; \
1451 /* efststlt */
1452 HELPER_SINGLE_SPE_CMP(fststlt);
1453 /* efststgt */
1454 HELPER_SINGLE_SPE_CMP(fststgt);
1455 /* efststeq */
1456 HELPER_SINGLE_SPE_CMP(fststeq);
1457 /* efscmplt */
1458 HELPER_SINGLE_SPE_CMP(fscmplt);
1459 /* efscmpgt */
1460 HELPER_SINGLE_SPE_CMP(fscmpgt);
1461 /* efscmpeq */
1462 HELPER_SINGLE_SPE_CMP(fscmpeq);
1464 static inline uint32_t evcmp_merge(int t0, int t1)
1466 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1469 #define HELPER_VECTOR_SPE_CMP(name) \
1470 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1472 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1473 e##name(env, op1, op2)); \
1475 /* evfststlt */
1476 HELPER_VECTOR_SPE_CMP(fststlt);
1477 /* evfststgt */
1478 HELPER_VECTOR_SPE_CMP(fststgt);
1479 /* evfststeq */
1480 HELPER_VECTOR_SPE_CMP(fststeq);
1481 /* evfscmplt */
1482 HELPER_VECTOR_SPE_CMP(fscmplt);
1483 /* evfscmpgt */
1484 HELPER_VECTOR_SPE_CMP(fscmpgt);
1485 /* evfscmpeq */
1486 HELPER_VECTOR_SPE_CMP(fscmpeq);
1488 /* Double-precision floating-point conversion */
1489 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1491 CPU_DoubleU u;
1493 u.d = int32_to_float64(val, &env->vec_status);
1495 return u.ll;
1498 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1500 CPU_DoubleU u;
1502 u.d = int64_to_float64(val, &env->vec_status);
1504 return u.ll;
1507 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1509 CPU_DoubleU u;
1511 u.d = uint32_to_float64(val, &env->vec_status);
1513 return u.ll;
1516 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1518 CPU_DoubleU u;
1520 u.d = uint64_to_float64(val, &env->vec_status);
1522 return u.ll;
1525 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1527 CPU_DoubleU u;
1529 u.ll = val;
1530 /* NaN are not treated the same way IEEE 754 does */
1531 if (unlikely(float64_is_any_nan(u.d))) {
1532 return 0;
1535 return float64_to_int32(u.d, &env->vec_status);
1538 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1540 CPU_DoubleU u;
1542 u.ll = val;
1543 /* NaN are not treated the same way IEEE 754 does */
1544 if (unlikely(float64_is_any_nan(u.d))) {
1545 return 0;
1548 return float64_to_uint32(u.d, &env->vec_status);
1551 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1553 CPU_DoubleU u;
1555 u.ll = val;
1556 /* NaN are not treated the same way IEEE 754 does */
1557 if (unlikely(float64_is_any_nan(u.d))) {
1558 return 0;
1561 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1564 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1566 CPU_DoubleU u;
1568 u.ll = val;
1569 /* NaN are not treated the same way IEEE 754 does */
1570 if (unlikely(float64_is_any_nan(u.d))) {
1571 return 0;
1574 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1577 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1579 CPU_DoubleU u;
1581 u.ll = val;
1582 /* NaN are not treated the same way IEEE 754 does */
1583 if (unlikely(float64_is_any_nan(u.d))) {
1584 return 0;
1587 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1590 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1592 CPU_DoubleU u;
1594 u.ll = val;
1595 /* NaN are not treated the same way IEEE 754 does */
1596 if (unlikely(float64_is_any_nan(u.d))) {
1597 return 0;
1600 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1603 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1605 CPU_DoubleU u;
1606 float64 tmp;
1608 u.d = int32_to_float64(val, &env->vec_status);
1609 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1610 u.d = float64_div(u.d, tmp, &env->vec_status);
1612 return u.ll;
1615 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1617 CPU_DoubleU u;
1618 float64 tmp;
1620 u.d = uint32_to_float64(val, &env->vec_status);
1621 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1622 u.d = float64_div(u.d, tmp, &env->vec_status);
1624 return u.ll;
1627 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1629 CPU_DoubleU u;
1630 float64 tmp;
1632 u.ll = val;
1633 /* NaN are not treated the same way IEEE 754 does */
1634 if (unlikely(float64_is_any_nan(u.d))) {
1635 return 0;
1637 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1638 u.d = float64_mul(u.d, tmp, &env->vec_status);
1640 return float64_to_int32(u.d, &env->vec_status);
1643 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1645 CPU_DoubleU u;
1646 float64 tmp;
1648 u.ll = val;
1649 /* NaN are not treated the same way IEEE 754 does */
1650 if (unlikely(float64_is_any_nan(u.d))) {
1651 return 0;
1653 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1654 u.d = float64_mul(u.d, tmp, &env->vec_status);
1656 return float64_to_uint32(u.d, &env->vec_status);
1659 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1661 CPU_DoubleU u1;
1662 CPU_FloatU u2;
1664 u1.ll = val;
1665 u2.f = float64_to_float32(u1.d, &env->vec_status);
1667 return u2.l;
1670 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1672 CPU_DoubleU u2;
1673 CPU_FloatU u1;
1675 u1.l = val;
1676 u2.d = float32_to_float64(u1.f, &env->vec_status);
1678 return u2.ll;
1681 /* Double precision fixed-point arithmetic */
1682 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1684 CPU_DoubleU u1, u2;
1686 u1.ll = op1;
1687 u2.ll = op2;
1688 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1689 return u1.ll;
1692 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1694 CPU_DoubleU u1, u2;
1696 u1.ll = op1;
1697 u2.ll = op2;
1698 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1699 return u1.ll;
1702 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1704 CPU_DoubleU u1, u2;
1706 u1.ll = op1;
1707 u2.ll = op2;
1708 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1709 return u1.ll;
1712 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1714 CPU_DoubleU u1, u2;
1716 u1.ll = op1;
1717 u2.ll = op2;
1718 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1719 return u1.ll;
1722 /* Double precision floating point helpers */
1723 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1725 CPU_DoubleU u1, u2;
1727 u1.ll = op1;
1728 u2.ll = op2;
1729 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1732 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1734 CPU_DoubleU u1, u2;
1736 u1.ll = op1;
1737 u2.ll = op2;
1738 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1741 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1743 CPU_DoubleU u1, u2;
1745 u1.ll = op1;
1746 u2.ll = op2;
1747 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1750 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1752 /* XXX: TODO: test special values (NaN, infinites, ...) */
1753 return helper_efdtstlt(env, op1, op2);
1756 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1758 /* XXX: TODO: test special values (NaN, infinites, ...) */
1759 return helper_efdtstgt(env, op1, op2);
1762 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1764 /* XXX: TODO: test special values (NaN, infinites, ...) */
1765 return helper_efdtsteq(env, op1, op2);
1768 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1769 (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
1770 (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1772 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1773 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1774 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1775 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5)
1776 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1778 typedef union _ppc_vsr_t {
1779 uint64_t u64[2];
1780 uint32_t u32[4];
1781 float32 f32[4];
1782 float64 f64[2];
1783 } ppc_vsr_t;
1785 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1787 if (n < 32) {
1788 vsr->f64[0] = env->fpr[n];
1789 vsr->u64[1] = env->vsr[n];
1790 } else {
1791 vsr->u64[0] = env->avr[n-32].u64[0];
1792 vsr->u64[1] = env->avr[n-32].u64[1];
1796 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1798 if (n < 32) {
1799 env->fpr[n] = vsr->f64[0];
1800 env->vsr[n] = vsr->u64[1];
1801 } else {
1802 env->avr[n-32].u64[0] = vsr->u64[0];
1803 env->avr[n-32].u64[1] = vsr->u64[1];
1807 #define float64_to_float64(x, env) x
1810 /* VSX_ADD_SUB - VSX floating point add/subract
1811 * name - instruction mnemonic
1812 * op - operation (add or sub)
1813 * nels - number of elements (1, 2 or 4)
1814 * tp - type (float32 or float64)
1815 * fld - vsr_t field (f32 or f64)
1816 * sfprf - set FPRF
1818 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1819 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1821 ppc_vsr_t xt, xa, xb; \
1822 int i; \
1824 getVSR(xA(opcode), &xa, env); \
1825 getVSR(xB(opcode), &xb, env); \
1826 getVSR(xT(opcode), &xt, env); \
1827 helper_reset_fpstatus(env); \
1829 for (i = 0; i < nels; i++) { \
1830 float_status tstat = env->fp_status; \
1831 set_float_exception_flags(0, &tstat); \
1832 xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &tstat); \
1833 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1835 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1836 if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) {\
1837 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1838 } else if (tp##_is_signaling_nan(xa.fld[i]) || \
1839 tp##_is_signaling_nan(xb.fld[i])) { \
1840 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1844 if (r2sp) { \
1845 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
1848 if (sfprf) { \
1849 helper_compute_fprf(env, xt.fld[i], sfprf); \
1852 putVSR(xT(opcode), &xt, env); \
1853 helper_float_check_status(env); \
1856 VSX_ADD_SUB(xsadddp, add, 1, float64, f64, 1, 0)
1857 VSX_ADD_SUB(xsaddsp, add, 1, float64, f64, 1, 1)
1858 VSX_ADD_SUB(xvadddp, add, 2, float64, f64, 0, 0)
1859 VSX_ADD_SUB(xvaddsp, add, 4, float32, f32, 0, 0)
1860 VSX_ADD_SUB(xssubdp, sub, 1, float64, f64, 1, 0)
1861 VSX_ADD_SUB(xssubsp, sub, 1, float64, f64, 1, 1)
1862 VSX_ADD_SUB(xvsubdp, sub, 2, float64, f64, 0, 0)
1863 VSX_ADD_SUB(xvsubsp, sub, 4, float32, f32, 0, 0)
1865 /* VSX_MUL - VSX floating point multiply
1866 * op - instruction mnemonic
1867 * nels - number of elements (1, 2 or 4)
1868 * tp - type (float32 or float64)
1869 * fld - vsr_t field (f32 or f64)
1870 * sfprf - set FPRF
1872 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1873 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1875 ppc_vsr_t xt, xa, xb; \
1876 int i; \
1878 getVSR(xA(opcode), &xa, env); \
1879 getVSR(xB(opcode), &xb, env); \
1880 getVSR(xT(opcode), &xt, env); \
1881 helper_reset_fpstatus(env); \
1883 for (i = 0; i < nels; i++) { \
1884 float_status tstat = env->fp_status; \
1885 set_float_exception_flags(0, &tstat); \
1886 xt.fld[i] = tp##_mul(xa.fld[i], xb.fld[i], &tstat); \
1887 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1889 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1890 if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(xb.fld[i])) || \
1891 (tp##_is_infinity(xb.fld[i]) && tp##_is_zero(xa.fld[i]))) { \
1892 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1893 } else if (tp##_is_signaling_nan(xa.fld[i]) || \
1894 tp##_is_signaling_nan(xb.fld[i])) { \
1895 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1899 if (r2sp) { \
1900 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
1903 if (sfprf) { \
1904 helper_compute_fprf(env, xt.fld[i], sfprf); \
1908 putVSR(xT(opcode), &xt, env); \
1909 helper_float_check_status(env); \
1912 VSX_MUL(xsmuldp, 1, float64, f64, 1, 0)
1913 VSX_MUL(xsmulsp, 1, float64, f64, 1, 1)
1914 VSX_MUL(xvmuldp, 2, float64, f64, 0, 0)
1915 VSX_MUL(xvmulsp, 4, float32, f32, 0, 0)
1917 /* VSX_DIV - VSX floating point divide
1918 * op - instruction mnemonic
1919 * nels - number of elements (1, 2 or 4)
1920 * tp - type (float32 or float64)
1921 * fld - vsr_t field (f32 or f64)
1922 * sfprf - set FPRF
1924 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1925 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1927 ppc_vsr_t xt, xa, xb; \
1928 int i; \
1930 getVSR(xA(opcode), &xa, env); \
1931 getVSR(xB(opcode), &xb, env); \
1932 getVSR(xT(opcode), &xt, env); \
1933 helper_reset_fpstatus(env); \
1935 for (i = 0; i < nels; i++) { \
1936 float_status tstat = env->fp_status; \
1937 set_float_exception_flags(0, &tstat); \
1938 xt.fld[i] = tp##_div(xa.fld[i], xb.fld[i], &tstat); \
1939 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1941 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1942 if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) { \
1943 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1944 } else if (tp##_is_zero(xa.fld[i]) && \
1945 tp##_is_zero(xb.fld[i])) { \
1946 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1947 } else if (tp##_is_signaling_nan(xa.fld[i]) || \
1948 tp##_is_signaling_nan(xb.fld[i])) { \
1949 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1953 if (r2sp) { \
1954 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
1957 if (sfprf) { \
1958 helper_compute_fprf(env, xt.fld[i], sfprf); \
1962 putVSR(xT(opcode), &xt, env); \
1963 helper_float_check_status(env); \
1966 VSX_DIV(xsdivdp, 1, float64, f64, 1, 0)
1967 VSX_DIV(xsdivsp, 1, float64, f64, 1, 1)
1968 VSX_DIV(xvdivdp, 2, float64, f64, 0, 0)
1969 VSX_DIV(xvdivsp, 4, float32, f32, 0, 0)
1971 /* VSX_RE - VSX floating point reciprocal estimate
1972 * op - instruction mnemonic
1973 * nels - number of elements (1, 2 or 4)
1974 * tp - type (float32 or float64)
1975 * fld - vsr_t field (f32 or f64)
1976 * sfprf - set FPRF
1978 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1979 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1981 ppc_vsr_t xt, xb; \
1982 int i; \
1984 getVSR(xB(opcode), &xb, env); \
1985 getVSR(xT(opcode), &xt, env); \
1986 helper_reset_fpstatus(env); \
1988 for (i = 0; i < nels; i++) { \
1989 if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \
1990 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1992 xt.fld[i] = tp##_div(tp##_one, xb.fld[i], &env->fp_status); \
1994 if (r2sp) { \
1995 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
1998 if (sfprf) { \
1999 helper_compute_fprf(env, xt.fld[0], sfprf); \
2003 putVSR(xT(opcode), &xt, env); \
2004 helper_float_check_status(env); \
2007 VSX_RE(xsredp, 1, float64, f64, 1, 0)
2008 VSX_RE(xsresp, 1, float64, f64, 1, 1)
2009 VSX_RE(xvredp, 2, float64, f64, 0, 0)
2010 VSX_RE(xvresp, 4, float32, f32, 0, 0)
2012 /* VSX_SQRT - VSX floating point square root
2013 * op - instruction mnemonic
2014 * nels - number of elements (1, 2 or 4)
2015 * tp - type (float32 or float64)
2016 * fld - vsr_t field (f32 or f64)
2017 * sfprf - set FPRF
2019 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2020 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2022 ppc_vsr_t xt, xb; \
2023 int i; \
2025 getVSR(xB(opcode), &xb, env); \
2026 getVSR(xT(opcode), &xt, env); \
2027 helper_reset_fpstatus(env); \
2029 for (i = 0; i < nels; i++) { \
2030 float_status tstat = env->fp_status; \
2031 set_float_exception_flags(0, &tstat); \
2032 xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \
2033 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2035 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2036 if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \
2037 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2038 } else if (tp##_is_signaling_nan(xb.fld[i])) { \
2039 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2043 if (r2sp) { \
2044 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
2047 if (sfprf) { \
2048 helper_compute_fprf(env, xt.fld[i], sfprf); \
2052 putVSR(xT(opcode), &xt, env); \
2053 helper_float_check_status(env); \
2056 VSX_SQRT(xssqrtdp, 1, float64, f64, 1, 0)
2057 VSX_SQRT(xssqrtsp, 1, float64, f64, 1, 1)
2058 VSX_SQRT(xvsqrtdp, 2, float64, f64, 0, 0)
2059 VSX_SQRT(xvsqrtsp, 4, float32, f32, 0, 0)
2061 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2062 * op - instruction mnemonic
2063 * nels - number of elements (1, 2 or 4)
2064 * tp - type (float32 or float64)
2065 * fld - vsr_t field (f32 or f64)
2066 * sfprf - set FPRF
2068 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2069 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2071 ppc_vsr_t xt, xb; \
2072 int i; \
2074 getVSR(xB(opcode), &xb, env); \
2075 getVSR(xT(opcode), &xt, env); \
2076 helper_reset_fpstatus(env); \
2078 for (i = 0; i < nels; i++) { \
2079 float_status tstat = env->fp_status; \
2080 set_float_exception_flags(0, &tstat); \
2081 xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \
2082 xt.fld[i] = tp##_div(tp##_one, xt.fld[i], &tstat); \
2083 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2085 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2086 if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \
2087 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2088 } else if (tp##_is_signaling_nan(xb.fld[i])) { \
2089 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2093 if (r2sp) { \
2094 xt.fld[i] = helper_frsp(env, xt.fld[i]); \
2097 if (sfprf) { \
2098 helper_compute_fprf(env, xt.fld[i], sfprf); \
2102 putVSR(xT(opcode), &xt, env); \
2103 helper_float_check_status(env); \
2106 VSX_RSQRTE(xsrsqrtedp, 1, float64, f64, 1, 0)
2107 VSX_RSQRTE(xsrsqrtesp, 1, float64, f64, 1, 1)
2108 VSX_RSQRTE(xvrsqrtedp, 2, float64, f64, 0, 0)
2109 VSX_RSQRTE(xvrsqrtesp, 4, float32, f32, 0, 0)
2111 /* VSX_TDIV - VSX floating point test for divide
2112 * op - instruction mnemonic
2113 * nels - number of elements (1, 2 or 4)
2114 * tp - type (float32 or float64)
2115 * fld - vsr_t field (f32 or f64)
2116 * emin - minimum unbiased exponent
2117 * emax - maximum unbiased exponent
2118 * nbits - number of fraction bits
2120 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2121 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2123 ppc_vsr_t xa, xb; \
2124 int i; \
2125 int fe_flag = 0; \
2126 int fg_flag = 0; \
2128 getVSR(xA(opcode), &xa, env); \
2129 getVSR(xB(opcode), &xb, env); \
2131 for (i = 0; i < nels; i++) { \
2132 if (unlikely(tp##_is_infinity(xa.fld[i]) || \
2133 tp##_is_infinity(xb.fld[i]) || \
2134 tp##_is_zero(xb.fld[i]))) { \
2135 fe_flag = 1; \
2136 fg_flag = 1; \
2137 } else { \
2138 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld[i]); \
2139 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \
2141 if (unlikely(tp##_is_any_nan(xa.fld[i]) || \
2142 tp##_is_any_nan(xb.fld[i]))) { \
2143 fe_flag = 1; \
2144 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2145 fe_flag = 1; \
2146 } else if (!tp##_is_zero(xa.fld[i]) && \
2147 (((e_a - e_b) >= emax) || \
2148 ((e_a - e_b) <= (emin+1)) || \
2149 (e_a <= (emin+nbits)))) { \
2150 fe_flag = 1; \
2153 if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \
2154 /* XB is not zero because of the above check and */ \
2155 /* so must be denormalized. */ \
2156 fg_flag = 1; \
2161 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2164 VSX_TDIV(xstdivdp, 1, float64, f64, -1022, 1023, 52)
2165 VSX_TDIV(xvtdivdp, 2, float64, f64, -1022, 1023, 52)
2166 VSX_TDIV(xvtdivsp, 4, float32, f32, -126, 127, 23)
2168 /* VSX_TSQRT - VSX floating point test for square root
2169 * op - instruction mnemonic
2170 * nels - number of elements (1, 2 or 4)
2171 * tp - type (float32 or float64)
2172 * fld - vsr_t field (f32 or f64)
2173 * emin - minimum unbiased exponent
2174 * emax - maximum unbiased exponent
2175 * nbits - number of fraction bits
2177 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2178 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2180 ppc_vsr_t xa, xb; \
2181 int i; \
2182 int fe_flag = 0; \
2183 int fg_flag = 0; \
2185 getVSR(xA(opcode), &xa, env); \
2186 getVSR(xB(opcode), &xb, env); \
2188 for (i = 0; i < nels; i++) { \
2189 if (unlikely(tp##_is_infinity(xb.fld[i]) || \
2190 tp##_is_zero(xb.fld[i]))) { \
2191 fe_flag = 1; \
2192 fg_flag = 1; \
2193 } else { \
2194 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \
2196 if (unlikely(tp##_is_any_nan(xb.fld[i]))) { \
2197 fe_flag = 1; \
2198 } else if (unlikely(tp##_is_zero(xb.fld[i]))) { \
2199 fe_flag = 1; \
2200 } else if (unlikely(tp##_is_neg(xb.fld[i]))) { \
2201 fe_flag = 1; \
2202 } else if (!tp##_is_zero(xb.fld[i]) && \
2203 (e_b <= (emin+nbits))) { \
2204 fe_flag = 1; \
2207 if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \
2208 /* XB is not zero because of the above check and */ \
2209 /* therefore must be denormalized. */ \
2210 fg_flag = 1; \
2215 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2218 VSX_TSQRT(xstsqrtdp, 1, float64, f64, -1022, 52)
2219 VSX_TSQRT(xvtsqrtdp, 2, float64, f64, -1022, 52)
2220 VSX_TSQRT(xvtsqrtsp, 4, float32, f32, -126, 23)
2222 /* VSX_MADD - VSX floating point muliply/add variations
2223 * op - instruction mnemonic
2224 * nels - number of elements (1, 2 or 4)
2225 * tp - type (float32 or float64)
2226 * fld - vsr_t field (f32 or f64)
2227 * maddflgs - flags for the float*muladd routine that control the
2228 * various forms (madd, msub, nmadd, nmsub)
2229 * afrm - A form (1=A, 0=M)
2230 * sfprf - set FPRF
2232 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2233 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2235 ppc_vsr_t xt_in, xa, xb, xt_out; \
2236 ppc_vsr_t *b, *c; \
2237 int i; \
2239 if (afrm) { /* AxB + T */ \
2240 b = &xb; \
2241 c = &xt_in; \
2242 } else { /* AxT + B */ \
2243 b = &xt_in; \
2244 c = &xb; \
2247 getVSR(xA(opcode), &xa, env); \
2248 getVSR(xB(opcode), &xb, env); \
2249 getVSR(xT(opcode), &xt_in, env); \
2251 xt_out = xt_in; \
2253 helper_reset_fpstatus(env); \
2255 for (i = 0; i < nels; i++) { \
2256 float_status tstat = env->fp_status; \
2257 set_float_exception_flags(0, &tstat); \
2258 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2259 /* Avoid double rounding errors by rounding the intermediate */ \
2260 /* result to odd. */ \
2261 set_float_rounding_mode(float_round_to_zero, &tstat); \
2262 xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \
2263 maddflgs, &tstat); \
2264 xt_out.fld[i] |= (get_float_exception_flags(&tstat) & \
2265 float_flag_inexact) != 0; \
2266 } else { \
2267 xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \
2268 maddflgs, &tstat); \
2270 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2272 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2273 if (tp##_is_signaling_nan(xa.fld[i]) || \
2274 tp##_is_signaling_nan(b->fld[i]) || \
2275 tp##_is_signaling_nan(c->fld[i])) { \
2276 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2277 tstat.float_exception_flags &= ~float_flag_invalid; \
2279 if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(b->fld[i])) || \
2280 (tp##_is_zero(xa.fld[i]) && tp##_is_infinity(b->fld[i]))) { \
2281 xt_out.fld[i] = float64_to_##tp(fload_invalid_op_excp(env, \
2282 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2283 tstat.float_exception_flags &= ~float_flag_invalid; \
2285 if ((tstat.float_exception_flags & float_flag_invalid) && \
2286 ((tp##_is_infinity(xa.fld[i]) || \
2287 tp##_is_infinity(b->fld[i])) && \
2288 tp##_is_infinity(c->fld[i]))) { \
2289 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2293 if (r2sp) { \
2294 xt_out.fld[i] = helper_frsp(env, xt_out.fld[i]); \
2297 if (sfprf) { \
2298 helper_compute_fprf(env, xt_out.fld[i], sfprf); \
2301 putVSR(xT(opcode), &xt_out, env); \
2302 helper_float_check_status(env); \
2305 #define MADD_FLGS 0
2306 #define MSUB_FLGS float_muladd_negate_c
2307 #define NMADD_FLGS float_muladd_negate_result
2308 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2310 VSX_MADD(xsmaddadp, 1, float64, f64, MADD_FLGS, 1, 1, 0)
2311 VSX_MADD(xsmaddmdp, 1, float64, f64, MADD_FLGS, 0, 1, 0)
2312 VSX_MADD(xsmsubadp, 1, float64, f64, MSUB_FLGS, 1, 1, 0)
2313 VSX_MADD(xsmsubmdp, 1, float64, f64, MSUB_FLGS, 0, 1, 0)
2314 VSX_MADD(xsnmaddadp, 1, float64, f64, NMADD_FLGS, 1, 1, 0)
2315 VSX_MADD(xsnmaddmdp, 1, float64, f64, NMADD_FLGS, 0, 1, 0)
2316 VSX_MADD(xsnmsubadp, 1, float64, f64, NMSUB_FLGS, 1, 1, 0)
2317 VSX_MADD(xsnmsubmdp, 1, float64, f64, NMSUB_FLGS, 0, 1, 0)
2319 VSX_MADD(xsmaddasp, 1, float64, f64, MADD_FLGS, 1, 1, 1)
2320 VSX_MADD(xsmaddmsp, 1, float64, f64, MADD_FLGS, 0, 1, 1)
2321 VSX_MADD(xsmsubasp, 1, float64, f64, MSUB_FLGS, 1, 1, 1)
2322 VSX_MADD(xsmsubmsp, 1, float64, f64, MSUB_FLGS, 0, 1, 1)
2323 VSX_MADD(xsnmaddasp, 1, float64, f64, NMADD_FLGS, 1, 1, 1)
2324 VSX_MADD(xsnmaddmsp, 1, float64, f64, NMADD_FLGS, 0, 1, 1)
2325 VSX_MADD(xsnmsubasp, 1, float64, f64, NMSUB_FLGS, 1, 1, 1)
2326 VSX_MADD(xsnmsubmsp, 1, float64, f64, NMSUB_FLGS, 0, 1, 1)
2328 VSX_MADD(xvmaddadp, 2, float64, f64, MADD_FLGS, 1, 0, 0)
2329 VSX_MADD(xvmaddmdp, 2, float64, f64, MADD_FLGS, 0, 0, 0)
2330 VSX_MADD(xvmsubadp, 2, float64, f64, MSUB_FLGS, 1, 0, 0)
2331 VSX_MADD(xvmsubmdp, 2, float64, f64, MSUB_FLGS, 0, 0, 0)
2332 VSX_MADD(xvnmaddadp, 2, float64, f64, NMADD_FLGS, 1, 0, 0)
2333 VSX_MADD(xvnmaddmdp, 2, float64, f64, NMADD_FLGS, 0, 0, 0)
2334 VSX_MADD(xvnmsubadp, 2, float64, f64, NMSUB_FLGS, 1, 0, 0)
2335 VSX_MADD(xvnmsubmdp, 2, float64, f64, NMSUB_FLGS, 0, 0, 0)
2337 VSX_MADD(xvmaddasp, 4, float32, f32, MADD_FLGS, 1, 0, 0)
2338 VSX_MADD(xvmaddmsp, 4, float32, f32, MADD_FLGS, 0, 0, 0)
2339 VSX_MADD(xvmsubasp, 4, float32, f32, MSUB_FLGS, 1, 0, 0)
2340 VSX_MADD(xvmsubmsp, 4, float32, f32, MSUB_FLGS, 0, 0, 0)
2341 VSX_MADD(xvnmaddasp, 4, float32, f32, NMADD_FLGS, 1, 0, 0)
2342 VSX_MADD(xvnmaddmsp, 4, float32, f32, NMADD_FLGS, 0, 0, 0)
2343 VSX_MADD(xvnmsubasp, 4, float32, f32, NMSUB_FLGS, 1, 0, 0)
2344 VSX_MADD(xvnmsubmsp, 4, float32, f32, NMSUB_FLGS, 0, 0, 0)
2346 #define VSX_SCALAR_CMP(op, ordered) \
2347 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2349 ppc_vsr_t xa, xb; \
2350 uint32_t cc = 0; \
2352 getVSR(xA(opcode), &xa, env); \
2353 getVSR(xB(opcode), &xb, env); \
2355 if (unlikely(float64_is_any_nan(xa.f64[0]) || \
2356 float64_is_any_nan(xb.f64[0]))) { \
2357 if (float64_is_signaling_nan(xa.f64[0]) || \
2358 float64_is_signaling_nan(xb.f64[0])) { \
2359 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2361 if (ordered) { \
2362 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2364 cc = 1; \
2365 } else { \
2366 if (float64_lt(xa.f64[0], xb.f64[0], &env->fp_status)) { \
2367 cc = 8; \
2368 } else if (!float64_le(xa.f64[0], xb.f64[0], &env->fp_status)) { \
2369 cc = 4; \
2370 } else { \
2371 cc = 2; \
2375 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2376 env->fpscr |= cc << FPSCR_FPRF; \
2377 env->crf[BF(opcode)] = cc; \
2379 helper_float_check_status(env); \
2382 VSX_SCALAR_CMP(xscmpodp, 1)
2383 VSX_SCALAR_CMP(xscmpudp, 0)
2385 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
2386 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
2388 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2389 * name - instruction mnemonic
2390 * op - operation (max or min)
2391 * nels - number of elements (1, 2 or 4)
2392 * tp - type (float32 or float64)
2393 * fld - vsr_t field (f32 or f64)
2395 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2396 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2398 ppc_vsr_t xt, xa, xb; \
2399 int i; \
2401 getVSR(xA(opcode), &xa, env); \
2402 getVSR(xB(opcode), &xb, env); \
2403 getVSR(xT(opcode), &xt, env); \
2405 for (i = 0; i < nels; i++) { \
2406 xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &env->fp_status); \
2407 if (unlikely(tp##_is_signaling_nan(xa.fld[i]) || \
2408 tp##_is_signaling_nan(xb.fld[i]))) { \
2409 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2413 putVSR(xT(opcode), &xt, env); \
2414 helper_float_check_status(env); \
2417 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, f64)
2418 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, f64)
2419 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, f32)
2420 VSX_MAX_MIN(xsmindp, minnum, 1, float64, f64)
2421 VSX_MAX_MIN(xvmindp, minnum, 2, float64, f64)
2422 VSX_MAX_MIN(xvminsp, minnum, 4, float32, f32)
2424 /* VSX_CMP - VSX floating point compare
2425 * op - instruction mnemonic
2426 * nels - number of elements (1, 2 or 4)
2427 * tp - type (float32 or float64)
2428 * fld - vsr_t field (f32 or f64)
2429 * cmp - comparison operation
2430 * svxvc - set VXVC bit
2432 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \
2433 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2435 ppc_vsr_t xt, xa, xb; \
2436 int i; \
2437 int all_true = 1; \
2438 int all_false = 1; \
2440 getVSR(xA(opcode), &xa, env); \
2441 getVSR(xB(opcode), &xb, env); \
2442 getVSR(xT(opcode), &xt, env); \
2444 for (i = 0; i < nels; i++) { \
2445 if (unlikely(tp##_is_any_nan(xa.fld[i]) || \
2446 tp##_is_any_nan(xb.fld[i]))) { \
2447 if (tp##_is_signaling_nan(xa.fld[i]) || \
2448 tp##_is_signaling_nan(xb.fld[i])) { \
2449 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2451 if (svxvc) { \
2452 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2454 xt.fld[i] = 0; \
2455 all_true = 0; \
2456 } else { \
2457 if (tp##_##cmp(xb.fld[i], xa.fld[i], &env->fp_status) == 1) { \
2458 xt.fld[i] = -1; \
2459 all_false = 0; \
2460 } else { \
2461 xt.fld[i] = 0; \
2462 all_true = 0; \
2467 putVSR(xT(opcode), &xt, env); \
2468 if ((opcode >> (31-21)) & 1) { \
2469 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2471 helper_float_check_status(env); \
2474 VSX_CMP(xvcmpeqdp, 2, float64, f64, eq, 0)
2475 VSX_CMP(xvcmpgedp, 2, float64, f64, le, 1)
2476 VSX_CMP(xvcmpgtdp, 2, float64, f64, lt, 1)
2477 VSX_CMP(xvcmpeqsp, 4, float32, f32, eq, 0)
2478 VSX_CMP(xvcmpgesp, 4, float32, f32, le, 1)
2479 VSX_CMP(xvcmpgtsp, 4, float32, f32, lt, 1)
2481 #if defined(HOST_WORDS_BIGENDIAN)
2482 #define JOFFSET 0
2483 #else
2484 #define JOFFSET 1
2485 #endif
2487 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2488 * op - instruction mnemonic
2489 * nels - number of elements (1, 2 or 4)
2490 * stp - source type (float32 or float64)
2491 * ttp - target type (float32 or float64)
2492 * sfld - source vsr_t field
2493 * tfld - target vsr_t field (f32 or f64)
2494 * sfprf - set FPRF
2496 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2497 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2499 ppc_vsr_t xt, xb; \
2500 int i; \
2502 getVSR(xB(opcode), &xb, env); \
2503 getVSR(xT(opcode), &xt, env); \
2505 for (i = 0; i < nels; i++) { \
2506 int j = 2*i + JOFFSET; \
2507 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2508 if (unlikely(stp##_is_signaling_nan(xb.sfld))) { \
2509 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2510 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2512 if (sfprf) { \
2513 helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \
2514 &env->fp_status), sfprf); \
2518 putVSR(xT(opcode), &xt, env); \
2519 helper_float_check_status(env); \
2522 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, f64[i], f32[j], 1)
2523 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, f32[j], f64[i], 1)
2524 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, f64[i], f32[j], 0)
2525 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, f32[j], f64[i], 0)
2527 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2529 float_status tstat = env->fp_status;
2530 set_float_exception_flags(0, &tstat);
2532 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2535 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2537 float_status tstat = env->fp_status;
2538 set_float_exception_flags(0, &tstat);
2540 return float32_to_float64(xb >> 32, &tstat);
2543 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2544 * op - instruction mnemonic
2545 * nels - number of elements (1, 2 or 4)
2546 * stp - source type (float32 or float64)
2547 * ttp - target type (int32, uint32, int64 or uint64)
2548 * sfld - source vsr_t field
2549 * tfld - target vsr_t field
2550 * jdef - definition of the j index (i or 2*i)
2551 * rnan - resulting NaN
2553 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, jdef, rnan) \
2554 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2556 ppc_vsr_t xt, xb; \
2557 int i; \
2559 getVSR(xB(opcode), &xb, env); \
2560 getVSR(xT(opcode), &xt, env); \
2562 for (i = 0; i < nels; i++) { \
2563 int j = jdef; \
2564 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2565 if (stp##_is_signaling_nan(xb.sfld)) { \
2566 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2568 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2569 xt.tfld = rnan; \
2570 } else { \
2571 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2572 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2573 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2578 putVSR(xT(opcode), &xt, env); \
2579 helper_float_check_status(env); \
2582 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, f64[j], u64[i], i, \
2583 0x8000000000000000ULL)
2584 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, f64[i], u32[j], \
2585 2*i + JOFFSET, 0x80000000U)
2586 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, f64[j], u64[i], i, 0ULL)
2587 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, f64[i], u32[j], \
2588 2*i + JOFFSET, 0U)
2589 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, f64[j], u64[i], i, \
2590 0x8000000000000000ULL)
2591 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, f64[i], u32[j], \
2592 2*i + JOFFSET, 0x80000000U)
2593 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, f64[j], u64[i], i, 0ULL)
2594 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, f64[i], u32[j], \
2595 2*i + JOFFSET, 0U)
2596 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, f32[j], u64[i], \
2597 2*i + JOFFSET, 0x8000000000000000ULL)
2598 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, f32[j], u32[j], i, \
2599 0x80000000U)
2600 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, f32[j], u64[i], \
2601 2*i + JOFFSET, 0ULL)
2602 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, f32[j], u32[i], i, 0U)
2604 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2605 * op - instruction mnemonic
2606 * nels - number of elements (1, 2 or 4)
2607 * stp - source type (int32, uint32, int64 or uint64)
2608 * ttp - target type (float32 or float64)
2609 * sfld - source vsr_t field
2610 * tfld - target vsr_t field
2611 * jdef - definition of the j index (i or 2*i)
2612 * sfprf - set FPRF
2614 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, jdef, sfprf, r2sp) \
2615 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2617 ppc_vsr_t xt, xb; \
2618 int i; \
2620 getVSR(xB(opcode), &xb, env); \
2621 getVSR(xT(opcode), &xt, env); \
2623 for (i = 0; i < nels; i++) { \
2624 int j = jdef; \
2625 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2626 if (r2sp) { \
2627 xt.tfld = helper_frsp(env, xt.tfld); \
2629 if (sfprf) { \
2630 helper_compute_fprf(env, xt.tfld, sfprf); \
2634 putVSR(xT(opcode), &xt, env); \
2635 helper_float_check_status(env); \
2638 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, u64[j], f64[i], i, 1, 0)
2639 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, u64[j], f64[i], i, 1, 0)
2640 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, u64[j], f64[i], i, 1, 1)
2641 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, u64[j], f64[i], i, 1, 1)
2642 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, u64[j], f64[i], i, 0, 0)
2643 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, u64[j], f64[i], i, 0, 0)
2644 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, u32[j], f64[i], \
2645 2*i + JOFFSET, 0, 0)
2646 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, u32[j], f64[i], \
2647 2*i + JOFFSET, 0, 0)
2648 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, u64[i], f32[j], \
2649 2*i + JOFFSET, 0, 0)
2650 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, u64[i], f32[j], \
2651 2*i + JOFFSET, 0, 0)
2652 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, u32[j], f32[i], i, 0, 0)
2653 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, u32[j], f32[i], i, 0, 0)
2655 /* For "use current rounding mode", define a value that will not be one of
2656 * the existing rounding model enums.
2658 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2659 float_round_up + float_round_to_zero)
2661 /* VSX_ROUND - VSX floating point round
2662 * op - instruction mnemonic
2663 * nels - number of elements (1, 2 or 4)
2664 * tp - type (float32 or float64)
2665 * fld - vsr_t field (f32 or f64)
2666 * rmode - rounding mode
2667 * sfprf - set FPRF
2669 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2670 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2672 ppc_vsr_t xt, xb; \
2673 int i; \
2674 getVSR(xB(opcode), &xb, env); \
2675 getVSR(xT(opcode), &xt, env); \
2677 if (rmode != FLOAT_ROUND_CURRENT) { \
2678 set_float_rounding_mode(rmode, &env->fp_status); \
2681 for (i = 0; i < nels; i++) { \
2682 if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \
2683 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2684 xt.fld[i] = tp##_snan_to_qnan(xb.fld[i]); \
2685 } else { \
2686 xt.fld[i] = tp##_round_to_int(xb.fld[i], &env->fp_status); \
2688 if (sfprf) { \
2689 helper_compute_fprf(env, xt.fld[i], sfprf); \
2693 /* If this is not a "use current rounding mode" instruction, \
2694 * then inhibit setting of the XX bit and restore rounding \
2695 * mode from FPSCR */ \
2696 if (rmode != FLOAT_ROUND_CURRENT) { \
2697 fpscr_set_rounding_mode(env); \
2698 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2701 putVSR(xT(opcode), &xt, env); \
2702 helper_float_check_status(env); \
2705 VSX_ROUND(xsrdpi, 1, float64, f64, float_round_nearest_even, 1)
2706 VSX_ROUND(xsrdpic, 1, float64, f64, FLOAT_ROUND_CURRENT, 1)
2707 VSX_ROUND(xsrdpim, 1, float64, f64, float_round_down, 1)
2708 VSX_ROUND(xsrdpip, 1, float64, f64, float_round_up, 1)
2709 VSX_ROUND(xsrdpiz, 1, float64, f64, float_round_to_zero, 1)
2711 VSX_ROUND(xvrdpi, 2, float64, f64, float_round_nearest_even, 0)
2712 VSX_ROUND(xvrdpic, 2, float64, f64, FLOAT_ROUND_CURRENT, 0)
2713 VSX_ROUND(xvrdpim, 2, float64, f64, float_round_down, 0)
2714 VSX_ROUND(xvrdpip, 2, float64, f64, float_round_up, 0)
2715 VSX_ROUND(xvrdpiz, 2, float64, f64, float_round_to_zero, 0)
2717 VSX_ROUND(xvrspi, 4, float32, f32, float_round_nearest_even, 0)
2718 VSX_ROUND(xvrspic, 4, float32, f32, FLOAT_ROUND_CURRENT, 0)
2719 VSX_ROUND(xvrspim, 4, float32, f32, float_round_down, 0)
2720 VSX_ROUND(xvrspip, 4, float32, f32, float_round_up, 0)
2721 VSX_ROUND(xvrspiz, 4, float32, f32, float_round_to_zero, 0)
2723 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2725 helper_reset_fpstatus(env);
2727 uint64_t xt = helper_frsp(env, xb);
2729 helper_compute_fprf(env, xt, 1);
2730 helper_float_check_status(env);
2731 return xt;