target/arm: Implement AArch32 HCR and HCR2
[qemu.git] / hw / i386 / kvmvapic.c
blob70f6f26a94b0856b606a0422409670d952cf9c0a
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "sysemu/sysemu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/hw_accel.h"
17 #include "sysemu/kvm.h"
18 #include "hw/i386/apic_internal.h"
19 #include "hw/sysbus.h"
20 #include "tcg/tcg.h"
22 #define VAPIC_IO_PORT 0x7e
24 #define VAPIC_CPU_SHIFT 7
26 #define ROM_BLOCK_SIZE 512
27 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
29 typedef enum VAPICMode {
30 VAPIC_INACTIVE = 0,
31 VAPIC_ACTIVE = 1,
32 VAPIC_STANDBY = 2,
33 } VAPICMode;
35 typedef struct VAPICHandlers {
36 uint32_t set_tpr;
37 uint32_t set_tpr_eax;
38 uint32_t get_tpr[8];
39 uint32_t get_tpr_stack;
40 } QEMU_PACKED VAPICHandlers;
42 typedef struct GuestROMState {
43 char signature[8];
44 uint32_t vaddr;
45 uint32_t fixup_start;
46 uint32_t fixup_end;
47 uint32_t vapic_vaddr;
48 uint32_t vapic_size;
49 uint32_t vcpu_shift;
50 uint32_t real_tpr_addr;
51 VAPICHandlers up;
52 VAPICHandlers mp;
53 } QEMU_PACKED GuestROMState;
55 typedef struct VAPICROMState {
56 SysBusDevice busdev;
57 MemoryRegion io;
58 MemoryRegion rom;
59 uint32_t state;
60 uint32_t rom_state_paddr;
61 uint32_t rom_state_vaddr;
62 uint32_t vapic_paddr;
63 uint32_t real_tpr_addr;
64 GuestROMState rom_state;
65 size_t rom_size;
66 bool rom_mapped_writable;
67 VMChangeStateEntry *vmsentry;
68 } VAPICROMState;
70 #define TYPE_VAPIC "kvmvapic"
71 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
73 #define TPR_INSTR_ABS_MODRM 0x1
74 #define TPR_INSTR_MATCH_MODRM_REG 0x2
76 typedef struct TPRInstruction {
77 uint8_t opcode;
78 uint8_t modrm_reg;
79 unsigned int flags;
80 TPRAccess access;
81 size_t length;
82 off_t addr_offset;
83 } TPRInstruction;
85 /* must be sorted by length, shortest first */
86 static const TPRInstruction tpr_instr[] = {
87 { /* mov abs to eax */
88 .opcode = 0xa1,
89 .access = TPR_ACCESS_READ,
90 .length = 5,
91 .addr_offset = 1,
93 { /* mov eax to abs */
94 .opcode = 0xa3,
95 .access = TPR_ACCESS_WRITE,
96 .length = 5,
97 .addr_offset = 1,
99 { /* mov r32 to r/m32 */
100 .opcode = 0x89,
101 .flags = TPR_INSTR_ABS_MODRM,
102 .access = TPR_ACCESS_WRITE,
103 .length = 6,
104 .addr_offset = 2,
106 { /* mov r/m32 to r32 */
107 .opcode = 0x8b,
108 .flags = TPR_INSTR_ABS_MODRM,
109 .access = TPR_ACCESS_READ,
110 .length = 6,
111 .addr_offset = 2,
113 { /* push r/m32 */
114 .opcode = 0xff,
115 .modrm_reg = 6,
116 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
117 .access = TPR_ACCESS_READ,
118 .length = 6,
119 .addr_offset = 2,
121 { /* mov imm32, r/m32 (c7/0) */
122 .opcode = 0xc7,
123 .modrm_reg = 0,
124 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
125 .access = TPR_ACCESS_WRITE,
126 .length = 10,
127 .addr_offset = 2,
131 static void read_guest_rom_state(VAPICROMState *s)
133 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
134 sizeof(GuestROMState));
137 static void write_guest_rom_state(VAPICROMState *s)
139 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
140 sizeof(GuestROMState));
143 static void update_guest_rom_state(VAPICROMState *s)
145 read_guest_rom_state(s);
147 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
148 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
150 write_guest_rom_state(s);
153 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
155 CPUState *cs = CPU(x86_env_get_cpu(env));
156 hwaddr paddr;
157 target_ulong addr;
159 if (s->state == VAPIC_ACTIVE) {
160 return 0;
163 * If there is no prior TPR access instruction we could analyze (which is
164 * the case after resume from hibernation), we need to scan the possible
165 * virtual address space for the APIC mapping.
167 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
168 paddr = cpu_get_phys_page_debug(cs, addr);
169 if (paddr != APIC_DEFAULT_ADDRESS) {
170 continue;
172 s->real_tpr_addr = addr + 0x80;
173 update_guest_rom_state(s);
174 return 0;
176 return -1;
179 static uint8_t modrm_reg(uint8_t modrm)
181 return (modrm >> 3) & 7;
184 static bool is_abs_modrm(uint8_t modrm)
186 return (modrm & 0xc7) == 0x05;
189 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
191 return opcode[0] == instr->opcode &&
192 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
193 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
194 modrm_reg(opcode[1]) == instr->modrm_reg);
197 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
198 target_ulong *pip, TPRAccess access)
200 CPUState *cs = CPU(cpu);
201 const TPRInstruction *instr;
202 target_ulong ip = *pip;
203 uint8_t opcode[2];
204 uint32_t real_tpr_addr;
205 int i;
207 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
208 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
209 return -1;
213 * Early Windows 2003 SMP initialization contains a
215 * mov imm32, r/m32
217 * instruction that is patched by TPR optimization. The problem is that
218 * RSP, used by the patched instruction, is zero, so the guest gets a
219 * double fault and dies.
221 if (cpu->env.regs[R_ESP] == 0) {
222 return -1;
225 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
227 * KVM without kernel-based TPR access reporting will pass an IP that
228 * points after the accessing instruction. So we need to look backward
229 * to find the reason.
231 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
232 instr = &tpr_instr[i];
233 if (instr->access != access) {
234 continue;
236 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
237 sizeof(opcode), 0) < 0) {
238 return -1;
240 if (opcode_matches(opcode, instr)) {
241 ip -= instr->length;
242 goto instruction_ok;
245 return -1;
246 } else {
247 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
248 return -1;
250 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
251 instr = &tpr_instr[i];
252 if (opcode_matches(opcode, instr)) {
253 goto instruction_ok;
256 return -1;
259 instruction_ok:
261 * Grab the virtual TPR address from the instruction
262 * and update the cached values.
264 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
265 (void *)&real_tpr_addr,
266 sizeof(real_tpr_addr), 0) < 0) {
267 return -1;
269 real_tpr_addr = le32_to_cpu(real_tpr_addr);
270 if ((real_tpr_addr & 0xfff) != 0x80) {
271 return -1;
273 s->real_tpr_addr = real_tpr_addr;
274 update_guest_rom_state(s);
276 *pip = ip;
277 return 0;
280 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
282 CPUState *cs = CPU(x86_env_get_cpu(env));
283 hwaddr paddr;
284 uint32_t rom_state_vaddr;
285 uint32_t pos, patch, offset;
287 /* nothing to do if already activated */
288 if (s->state == VAPIC_ACTIVE) {
289 return 0;
292 /* bail out if ROM init code was not executed (missing ROM?) */
293 if (s->state == VAPIC_INACTIVE) {
294 return -1;
297 /* find out virtual address of the ROM */
298 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
299 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
300 if (paddr == -1) {
301 return -1;
303 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
304 if (paddr != s->rom_state_paddr) {
305 return -1;
307 read_guest_rom_state(s);
308 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
309 return -1;
311 s->rom_state_vaddr = rom_state_vaddr;
313 /* fixup addresses in ROM if needed */
314 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
315 return 0;
317 for (pos = le32_to_cpu(s->rom_state.fixup_start);
318 pos < le32_to_cpu(s->rom_state.fixup_end);
319 pos += 4) {
320 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
321 &offset, sizeof(offset));
322 offset = le32_to_cpu(offset);
323 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
324 patch = le32_to_cpu(patch);
325 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
326 patch = cpu_to_le32(patch);
327 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
329 read_guest_rom_state(s);
330 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
331 le32_to_cpu(s->rom_state.vaddr);
333 return 0;
337 * Tries to read the unique processor number from the Kernel Processor Control
338 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
339 * cannot be accessed or is considered invalid. This also ensures that we are
340 * not patching the wrong guest.
342 static int get_kpcr_number(X86CPU *cpu)
344 CPUX86State *env = &cpu->env;
345 struct kpcr {
346 uint8_t fill1[0x1c];
347 uint32_t self;
348 uint8_t fill2[0x31];
349 uint8_t number;
350 } QEMU_PACKED kpcr;
352 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
353 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
354 kpcr.self != env->segs[R_FS].base) {
355 return -1;
357 return kpcr.number;
360 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
362 int cpu_number = get_kpcr_number(cpu);
363 hwaddr vapic_paddr;
364 static const uint8_t enabled = 1;
366 if (cpu_number < 0) {
367 return -1;
369 vapic_paddr = s->vapic_paddr +
370 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
371 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
372 &enabled, sizeof(enabled));
373 apic_enable_vapic(cpu->apic_state, vapic_paddr);
375 s->state = VAPIC_ACTIVE;
377 return 0;
380 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
382 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
385 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
387 uint32_t offset;
389 offset = cpu_to_le32(target - ip - 5);
390 patch_byte(cpu, ip, 0xe8); /* call near */
391 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
394 typedef struct PatchInfo {
395 VAPICHandlers *handler;
396 target_ulong ip;
397 } PatchInfo;
399 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
401 X86CPU *x86_cpu = X86_CPU(cs);
402 PatchInfo *info = (PatchInfo *) data.host_ptr;
403 VAPICHandlers *handlers = info->handler;
404 target_ulong ip = info->ip;
405 uint8_t opcode[2];
406 uint32_t imm32 = 0;
408 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
410 switch (opcode[0]) {
411 case 0x89: /* mov r32 to r/m32 */
412 patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
413 patch_call(x86_cpu, ip + 1, handlers->set_tpr);
414 break;
415 case 0x8b: /* mov r/m32 to r32 */
416 patch_byte(x86_cpu, ip, 0x90);
417 patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
418 break;
419 case 0xa1: /* mov abs to eax */
420 patch_call(x86_cpu, ip, handlers->get_tpr[0]);
421 break;
422 case 0xa3: /* mov eax to abs */
423 patch_call(x86_cpu, ip, handlers->set_tpr_eax);
424 break;
425 case 0xc7: /* mov imm32, r/m32 (c7/0) */
426 patch_byte(x86_cpu, ip, 0x68); /* push imm32 */
427 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
428 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
429 patch_call(x86_cpu, ip + 5, handlers->set_tpr);
430 break;
431 case 0xff: /* push r/m32 */
432 patch_byte(x86_cpu, ip, 0x50); /* push eax */
433 patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
434 break;
435 default:
436 abort();
439 g_free(info);
442 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
444 CPUState *cs = CPU(cpu);
445 VAPICHandlers *handlers;
446 PatchInfo *info;
448 if (smp_cpus == 1) {
449 handlers = &s->rom_state.up;
450 } else {
451 handlers = &s->rom_state.mp;
454 info = g_new(PatchInfo, 1);
455 info->handler = handlers;
456 info->ip = ip;
458 async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
461 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
462 TPRAccess access)
464 VAPICROMState *s = VAPIC(dev);
465 X86CPU *cpu = X86_CPU(cs);
466 CPUX86State *env = &cpu->env;
468 cpu_synchronize_state(cs);
470 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
471 if (s->state == VAPIC_ACTIVE) {
472 vapic_enable(s, cpu);
474 return;
476 if (update_rom_mapping(s, env, ip) < 0) {
477 return;
479 if (vapic_enable(s, cpu) < 0) {
480 return;
482 patch_instruction(s, cpu, ip);
485 typedef struct VAPICEnableTPRReporting {
486 DeviceState *apic;
487 bool enable;
488 } VAPICEnableTPRReporting;
490 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
492 VAPICEnableTPRReporting *info = data.host_ptr;
493 apic_enable_tpr_access_reporting(info->apic, info->enable);
496 static void vapic_enable_tpr_reporting(bool enable)
498 VAPICEnableTPRReporting info = {
499 .enable = enable,
501 CPUState *cs;
502 X86CPU *cpu;
504 CPU_FOREACH(cs) {
505 cpu = X86_CPU(cs);
506 info.apic = cpu->apic_state;
507 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
511 static void vapic_reset(DeviceState *dev)
513 VAPICROMState *s = VAPIC(dev);
515 s->state = VAPIC_INACTIVE;
516 s->rom_state_paddr = 0;
517 vapic_enable_tpr_reporting(false);
521 * Set the IRQ polling hypercalls to the supported variant:
522 * - vmcall if using KVM in-kernel irqchip
523 * - 32-bit VAPIC port write otherwise
525 static int patch_hypercalls(VAPICROMState *s)
527 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
528 static const uint8_t vmcall_pattern[] = { /* vmcall */
529 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
531 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
532 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
534 uint8_t alternates[2];
535 const uint8_t *pattern;
536 const uint8_t *patch;
537 off_t pos;
538 uint8_t *rom;
540 rom = g_malloc(s->rom_size);
541 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
543 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
544 if (kvm_irqchip_in_kernel()) {
545 pattern = outl_pattern;
546 alternates[0] = outl_pattern[7];
547 alternates[1] = outl_pattern[7];
548 patch = &vmcall_pattern[5];
549 } else {
550 pattern = vmcall_pattern;
551 alternates[0] = vmcall_pattern[7];
552 alternates[1] = 0xd9; /* AMD's VMMCALL */
553 patch = &outl_pattern[5];
555 if (memcmp(rom + pos, pattern, 7) == 0 &&
556 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
557 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
559 * Don't flush the tb here. Under ordinary conditions, the patched
560 * calls are miles away from the current IP. Under malicious
561 * conditions, the guest could trick us to crash.
566 g_free(rom);
567 return 0;
571 * For TCG mode or the time KVM honors read-only memory regions, we need to
572 * enable write access to the option ROM so that variables can be updated by
573 * the guest.
575 static int vapic_map_rom_writable(VAPICROMState *s)
577 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
578 MemoryRegionSection section;
579 MemoryRegion *as;
580 size_t rom_size;
581 uint8_t *ram;
583 as = sysbus_address_space(&s->busdev);
585 if (s->rom_mapped_writable) {
586 memory_region_del_subregion(as, &s->rom);
587 object_unparent(OBJECT(&s->rom));
590 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
591 section = memory_region_find(as, 0, 1);
593 /* read ROM size from RAM region */
594 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
595 return -1;
597 ram = memory_region_get_ram_ptr(section.mr);
598 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
599 if (rom_size == 0) {
600 return -1;
602 s->rom_size = rom_size;
604 /* We need to round to avoid creating subpages
605 * from which we cannot run code. */
606 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
607 rom_paddr &= TARGET_PAGE_MASK;
608 rom_size = TARGET_PAGE_ALIGN(rom_size);
610 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
611 rom_paddr, rom_size);
612 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
613 s->rom_mapped_writable = true;
614 memory_region_unref(section.mr);
616 return 0;
619 static int vapic_prepare(VAPICROMState *s)
621 if (vapic_map_rom_writable(s) < 0) {
622 return -1;
625 if (patch_hypercalls(s) < 0) {
626 return -1;
629 vapic_enable_tpr_reporting(true);
631 return 0;
634 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
635 unsigned int size)
637 VAPICROMState *s = opaque;
638 X86CPU *cpu;
639 CPUX86State *env;
640 hwaddr rom_paddr;
642 if (!current_cpu) {
643 return;
646 cpu_synchronize_state(current_cpu);
647 cpu = X86_CPU(current_cpu);
648 env = &cpu->env;
651 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
652 * o 16-bit write access:
653 * Reports the option ROM initialization to the hypervisor. Written
654 * value is the offset of the state structure in the ROM.
655 * o 8-bit write access:
656 * Reactivates the VAPIC after a guest hibernation, i.e. after the
657 * option ROM content has been re-initialized by a guest power cycle.
658 * o 32-bit write access:
659 * Poll for pending IRQs, considering the current VAPIC state.
661 switch (size) {
662 case 2:
663 if (s->state == VAPIC_INACTIVE) {
664 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
665 s->rom_state_paddr = rom_paddr + data;
667 s->state = VAPIC_STANDBY;
669 if (vapic_prepare(s) < 0) {
670 s->state = VAPIC_INACTIVE;
671 s->rom_state_paddr = 0;
672 break;
674 break;
675 case 1:
676 if (kvm_enabled()) {
678 * Disable triggering instruction in ROM by writing a NOP.
680 * We cannot do this in TCG mode as the reported IP is not
681 * accurate.
683 pause_all_vcpus();
684 patch_byte(cpu, env->eip - 2, 0x66);
685 patch_byte(cpu, env->eip - 1, 0x90);
686 resume_all_vcpus();
689 if (s->state == VAPIC_ACTIVE) {
690 break;
692 if (update_rom_mapping(s, env, env->eip) < 0) {
693 break;
695 if (find_real_tpr_addr(s, env) < 0) {
696 break;
698 vapic_enable(s, cpu);
699 break;
700 default:
701 case 4:
702 if (!kvm_irqchip_in_kernel()) {
703 apic_poll_irq(cpu->apic_state);
705 break;
709 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
711 return 0xffffffff;
714 static const MemoryRegionOps vapic_ops = {
715 .write = vapic_write,
716 .read = vapic_read,
717 .endianness = DEVICE_NATIVE_ENDIAN,
720 static void vapic_realize(DeviceState *dev, Error **errp)
722 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
723 VAPICROMState *s = VAPIC(dev);
725 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
726 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
727 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
729 option_rom[nb_option_roms].name = "kvmvapic.bin";
730 option_rom[nb_option_roms].bootindex = -1;
731 nb_option_roms++;
734 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
736 VAPICROMState *s = data.host_ptr;
737 X86CPU *cpu = X86_CPU(cs);
739 static const uint8_t enabled = 1;
740 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
741 &enabled, sizeof(enabled));
742 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
743 s->state = VAPIC_ACTIVE;
746 static void kvmvapic_vm_state_change(void *opaque, int running,
747 RunState state)
749 VAPICROMState *s = opaque;
750 uint8_t *zero;
752 if (!running) {
753 return;
756 if (s->state == VAPIC_ACTIVE) {
757 if (smp_cpus == 1) {
758 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
759 } else {
760 zero = g_malloc0(s->rom_state.vapic_size);
761 cpu_physical_memory_write(s->vapic_paddr, zero,
762 s->rom_state.vapic_size);
763 g_free(zero);
767 qemu_del_vm_change_state_handler(s->vmsentry);
768 s->vmsentry = NULL;
771 static int vapic_post_load(void *opaque, int version_id)
773 VAPICROMState *s = opaque;
776 * The old implementation of qemu-kvm did not provide the state
777 * VAPIC_STANDBY. Reconstruct it.
779 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
780 s->state = VAPIC_STANDBY;
783 if (s->state != VAPIC_INACTIVE) {
784 if (vapic_prepare(s) < 0) {
785 return -1;
789 if (!s->vmsentry) {
790 s->vmsentry =
791 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
793 return 0;
796 static const VMStateDescription vmstate_handlers = {
797 .name = "kvmvapic-handlers",
798 .version_id = 1,
799 .minimum_version_id = 1,
800 .fields = (VMStateField[]) {
801 VMSTATE_UINT32(set_tpr, VAPICHandlers),
802 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
803 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
804 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
805 VMSTATE_END_OF_LIST()
809 static const VMStateDescription vmstate_guest_rom = {
810 .name = "kvmvapic-guest-rom",
811 .version_id = 1,
812 .minimum_version_id = 1,
813 .fields = (VMStateField[]) {
814 VMSTATE_UNUSED(8), /* signature */
815 VMSTATE_UINT32(vaddr, GuestROMState),
816 VMSTATE_UINT32(fixup_start, GuestROMState),
817 VMSTATE_UINT32(fixup_end, GuestROMState),
818 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
819 VMSTATE_UINT32(vapic_size, GuestROMState),
820 VMSTATE_UINT32(vcpu_shift, GuestROMState),
821 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
822 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
823 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
824 VMSTATE_END_OF_LIST()
828 static const VMStateDescription vmstate_vapic = {
829 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
830 .version_id = 1,
831 .minimum_version_id = 1,
832 .post_load = vapic_post_load,
833 .fields = (VMStateField[]) {
834 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
835 GuestROMState),
836 VMSTATE_UINT32(state, VAPICROMState),
837 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
838 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
839 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
840 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
841 VMSTATE_END_OF_LIST()
845 static void vapic_class_init(ObjectClass *klass, void *data)
847 DeviceClass *dc = DEVICE_CLASS(klass);
849 dc->reset = vapic_reset;
850 dc->vmsd = &vmstate_vapic;
851 dc->realize = vapic_realize;
854 static const TypeInfo vapic_type = {
855 .name = TYPE_VAPIC,
856 .parent = TYPE_SYS_BUS_DEVICE,
857 .instance_size = sizeof(VAPICROMState),
858 .class_init = vapic_class_init,
861 static void vapic_register(void)
863 type_register_static(&vapic_type);
866 type_init(vapic_register);