bswap: Tidy base definitions of bswapN
[qemu.git] / cpus.c
blob4a7782a541382619c5ec211e7a46faaac8442049
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor/monitor.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/dma.h"
32 #include "sysemu/kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu/thread.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/qtest.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/bitmap.h"
41 #ifndef _WIN32
42 #include "qemu/compatfd.h"
43 #endif
45 #ifdef CONFIG_LINUX
47 #include <sys/prctl.h>
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
61 #endif /* CONFIG_LINUX */
63 static CPUArchState *next_cpu;
65 static bool cpu_thread_is_idle(CPUArchState *env)
67 CPUState *cpu = ENV_GET_CPU(env);
69 if (cpu->stop || cpu->queued_work_first) {
70 return false;
72 if (cpu->stopped || !runstate_is_running()) {
73 return true;
75 if (!env->halted || qemu_cpu_has_work(cpu) ||
76 kvm_async_interrupts_enabled()) {
77 return false;
79 return true;
82 static bool all_cpu_threads_idle(void)
84 CPUArchState *env;
86 for (env = first_cpu; env != NULL; env = env->next_cpu) {
87 if (!cpu_thread_is_idle(env)) {
88 return false;
91 return true;
94 /***********************************************************/
95 /* guest cycle counter */
97 /* Conversion factor from emulated instructions to virtual clock ticks. */
98 static int icount_time_shift;
99 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
100 #define MAX_ICOUNT_SHIFT 10
101 /* Compensate for varying guest execution speed. */
102 static int64_t qemu_icount_bias;
103 static QEMUTimer *icount_rt_timer;
104 static QEMUTimer *icount_vm_timer;
105 static QEMUTimer *icount_warp_timer;
106 static int64_t vm_clock_warp_start;
107 static int64_t qemu_icount;
109 typedef struct TimersState {
110 int64_t cpu_ticks_prev;
111 int64_t cpu_ticks_offset;
112 int64_t cpu_clock_offset;
113 int32_t cpu_ticks_enabled;
114 int64_t dummy;
115 } TimersState;
117 TimersState timers_state;
119 /* Return the virtual CPU time, based on the instruction counter. */
120 int64_t cpu_get_icount(void)
122 int64_t icount;
123 CPUArchState *env = cpu_single_env;
125 icount = qemu_icount;
126 if (env) {
127 if (!can_do_io(env)) {
128 fprintf(stderr, "Bad clock read\n");
130 icount -= (env->icount_decr.u16.low + env->icount_extra);
132 return qemu_icount_bias + (icount << icount_time_shift);
135 /* return the host CPU cycle counter and handle stop/restart */
136 int64_t cpu_get_ticks(void)
138 if (use_icount) {
139 return cpu_get_icount();
141 if (!timers_state.cpu_ticks_enabled) {
142 return timers_state.cpu_ticks_offset;
143 } else {
144 int64_t ticks;
145 ticks = cpu_get_real_ticks();
146 if (timers_state.cpu_ticks_prev > ticks) {
147 /* Note: non increasing ticks may happen if the host uses
148 software suspend */
149 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
151 timers_state.cpu_ticks_prev = ticks;
152 return ticks + timers_state.cpu_ticks_offset;
156 /* return the host CPU monotonic timer and handle stop/restart */
157 int64_t cpu_get_clock(void)
159 int64_t ti;
160 if (!timers_state.cpu_ticks_enabled) {
161 return timers_state.cpu_clock_offset;
162 } else {
163 ti = get_clock();
164 return ti + timers_state.cpu_clock_offset;
168 /* enable cpu_get_ticks() */
169 void cpu_enable_ticks(void)
171 if (!timers_state.cpu_ticks_enabled) {
172 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
173 timers_state.cpu_clock_offset -= get_clock();
174 timers_state.cpu_ticks_enabled = 1;
178 /* disable cpu_get_ticks() : the clock is stopped. You must not call
179 cpu_get_ticks() after that. */
180 void cpu_disable_ticks(void)
182 if (timers_state.cpu_ticks_enabled) {
183 timers_state.cpu_ticks_offset = cpu_get_ticks();
184 timers_state.cpu_clock_offset = cpu_get_clock();
185 timers_state.cpu_ticks_enabled = 0;
189 /* Correlation between real and virtual time is always going to be
190 fairly approximate, so ignore small variation.
191 When the guest is idle real and virtual time will be aligned in
192 the IO wait loop. */
193 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
195 static void icount_adjust(void)
197 int64_t cur_time;
198 int64_t cur_icount;
199 int64_t delta;
200 static int64_t last_delta;
201 /* If the VM is not running, then do nothing. */
202 if (!runstate_is_running()) {
203 return;
205 cur_time = cpu_get_clock();
206 cur_icount = qemu_get_clock_ns(vm_clock);
207 delta = cur_icount - cur_time;
208 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 if (delta > 0
210 && last_delta + ICOUNT_WOBBLE < delta * 2
211 && icount_time_shift > 0) {
212 /* The guest is getting too far ahead. Slow time down. */
213 icount_time_shift--;
215 if (delta < 0
216 && last_delta - ICOUNT_WOBBLE > delta * 2
217 && icount_time_shift < MAX_ICOUNT_SHIFT) {
218 /* The guest is getting too far behind. Speed time up. */
219 icount_time_shift++;
221 last_delta = delta;
222 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
225 static void icount_adjust_rt(void *opaque)
227 qemu_mod_timer(icount_rt_timer,
228 qemu_get_clock_ms(rt_clock) + 1000);
229 icount_adjust();
232 static void icount_adjust_vm(void *opaque)
234 qemu_mod_timer(icount_vm_timer,
235 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
236 icount_adjust();
239 static int64_t qemu_icount_round(int64_t count)
241 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
244 static void icount_warp_rt(void *opaque)
246 if (vm_clock_warp_start == -1) {
247 return;
250 if (runstate_is_running()) {
251 int64_t clock = qemu_get_clock_ns(rt_clock);
252 int64_t warp_delta = clock - vm_clock_warp_start;
253 if (use_icount == 1) {
254 qemu_icount_bias += warp_delta;
255 } else {
257 * In adaptive mode, do not let the vm_clock run too
258 * far ahead of real time.
260 int64_t cur_time = cpu_get_clock();
261 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
262 int64_t delta = cur_time - cur_icount;
263 qemu_icount_bias += MIN(warp_delta, delta);
265 if (qemu_clock_expired(vm_clock)) {
266 qemu_notify_event();
269 vm_clock_warp_start = -1;
272 void qtest_clock_warp(int64_t dest)
274 int64_t clock = qemu_get_clock_ns(vm_clock);
275 assert(qtest_enabled());
276 while (clock < dest) {
277 int64_t deadline = qemu_clock_deadline(vm_clock);
278 int64_t warp = MIN(dest - clock, deadline);
279 qemu_icount_bias += warp;
280 qemu_run_timers(vm_clock);
281 clock = qemu_get_clock_ns(vm_clock);
283 qemu_notify_event();
286 void qemu_clock_warp(QEMUClock *clock)
288 int64_t deadline;
291 * There are too many global variables to make the "warp" behavior
292 * applicable to other clocks. But a clock argument removes the
293 * need for if statements all over the place.
295 if (clock != vm_clock || !use_icount) {
296 return;
300 * If the CPUs have been sleeping, advance the vm_clock timer now. This
301 * ensures that the deadline for the timer is computed correctly below.
302 * This also makes sure that the insn counter is synchronized before the
303 * CPU starts running, in case the CPU is woken by an event other than
304 * the earliest vm_clock timer.
306 icount_warp_rt(NULL);
307 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
308 qemu_del_timer(icount_warp_timer);
309 return;
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
314 return;
317 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
318 deadline = qemu_clock_deadline(vm_clock);
319 if (deadline > 0) {
321 * Ensure the vm_clock proceeds even when the virtual CPU goes to
322 * sleep. Otherwise, the CPU might be waiting for a future timer
323 * interrupt to wake it up, but the interrupt never comes because
324 * the vCPU isn't running any insns and thus doesn't advance the
325 * vm_clock.
327 * An extreme solution for this problem would be to never let VCPUs
328 * sleep in icount mode if there is a pending vm_clock timer; rather
329 * time could just advance to the next vm_clock event. Instead, we
330 * do stop VCPUs and only advance vm_clock after some "real" time,
331 * (related to the time left until the next event) has passed. This
332 * rt_clock timer will do this. This avoids that the warps are too
333 * visible externally---for example, you will not be sending network
334 * packets continuously instead of every 100ms.
336 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
337 } else {
338 qemu_notify_event();
342 static const VMStateDescription vmstate_timers = {
343 .name = "timer",
344 .version_id = 2,
345 .minimum_version_id = 1,
346 .minimum_version_id_old = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_INT64(cpu_ticks_offset, TimersState),
349 VMSTATE_INT64(dummy, TimersState),
350 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
351 VMSTATE_END_OF_LIST()
355 void configure_icount(const char *option)
357 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
358 if (!option) {
359 return;
362 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
363 if (strcmp(option, "auto") != 0) {
364 icount_time_shift = strtol(option, NULL, 0);
365 use_icount = 1;
366 return;
369 use_icount = 2;
371 /* 125MIPS seems a reasonable initial guess at the guest speed.
372 It will be corrected fairly quickly anyway. */
373 icount_time_shift = 3;
375 /* Have both realtime and virtual time triggers for speed adjustment.
376 The realtime trigger catches emulated time passing too slowly,
377 the virtual time trigger catches emulated time passing too fast.
378 Realtime triggers occur even when idle, so use them less frequently
379 than VM triggers. */
380 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
381 qemu_mod_timer(icount_rt_timer,
382 qemu_get_clock_ms(rt_clock) + 1000);
383 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
384 qemu_mod_timer(icount_vm_timer,
385 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
388 /***********************************************************/
389 void hw_error(const char *fmt, ...)
391 va_list ap;
392 CPUArchState *env;
394 va_start(ap, fmt);
395 fprintf(stderr, "qemu: hardware error: ");
396 vfprintf(stderr, fmt, ap);
397 fprintf(stderr, "\n");
398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
399 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
400 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
402 va_end(ap);
403 abort();
406 void cpu_synchronize_all_states(void)
408 CPUArchState *cpu;
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
415 void cpu_synchronize_all_post_reset(void)
417 CPUArchState *cpu;
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
424 void cpu_synchronize_all_post_init(void)
426 CPUArchState *cpu;
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
433 bool cpu_is_stopped(CPUState *cpu)
435 return !runstate_is_running() || cpu->stopped;
438 static void do_vm_stop(RunState state)
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
451 static bool cpu_can_run(CPUState *cpu)
453 if (cpu->stop) {
454 return false;
456 if (cpu->stopped || !runstate_is_running()) {
457 return false;
459 return true;
462 static void cpu_handle_guest_debug(CPUArchState *env)
464 CPUState *cpu = ENV_GET_CPU(env);
466 gdb_set_stop_cpu(env);
467 qemu_system_debug_request();
468 cpu->stopped = true;
471 static void cpu_signal(int sig)
473 if (cpu_single_env) {
474 cpu_exit(cpu_single_env);
476 exit_request = 1;
479 #ifdef CONFIG_LINUX
480 static void sigbus_reraise(void)
482 sigset_t set;
483 struct sigaction action;
485 memset(&action, 0, sizeof(action));
486 action.sa_handler = SIG_DFL;
487 if (!sigaction(SIGBUS, &action, NULL)) {
488 raise(SIGBUS);
489 sigemptyset(&set);
490 sigaddset(&set, SIGBUS);
491 sigprocmask(SIG_UNBLOCK, &set, NULL);
493 perror("Failed to re-raise SIGBUS!\n");
494 abort();
497 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
498 void *ctx)
500 if (kvm_on_sigbus(siginfo->ssi_code,
501 (void *)(intptr_t)siginfo->ssi_addr)) {
502 sigbus_reraise();
506 static void qemu_init_sigbus(void)
508 struct sigaction action;
510 memset(&action, 0, sizeof(action));
511 action.sa_flags = SA_SIGINFO;
512 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
513 sigaction(SIGBUS, &action, NULL);
515 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
518 static void qemu_kvm_eat_signals(CPUArchState *env)
520 struct timespec ts = { 0, 0 };
521 siginfo_t siginfo;
522 sigset_t waitset;
523 sigset_t chkset;
524 int r;
526 sigemptyset(&waitset);
527 sigaddset(&waitset, SIG_IPI);
528 sigaddset(&waitset, SIGBUS);
530 do {
531 r = sigtimedwait(&waitset, &siginfo, &ts);
532 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
533 perror("sigtimedwait");
534 exit(1);
537 switch (r) {
538 case SIGBUS:
539 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
540 sigbus_reraise();
542 break;
543 default:
544 break;
547 r = sigpending(&chkset);
548 if (r == -1) {
549 perror("sigpending");
550 exit(1);
552 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
555 #else /* !CONFIG_LINUX */
557 static void qemu_init_sigbus(void)
561 static void qemu_kvm_eat_signals(CPUArchState *env)
564 #endif /* !CONFIG_LINUX */
566 #ifndef _WIN32
567 static void dummy_signal(int sig)
571 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
573 int r;
574 sigset_t set;
575 struct sigaction sigact;
577 memset(&sigact, 0, sizeof(sigact));
578 sigact.sa_handler = dummy_signal;
579 sigaction(SIG_IPI, &sigact, NULL);
581 pthread_sigmask(SIG_BLOCK, NULL, &set);
582 sigdelset(&set, SIG_IPI);
583 sigdelset(&set, SIGBUS);
584 r = kvm_set_signal_mask(env, &set);
585 if (r) {
586 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
587 exit(1);
591 static void qemu_tcg_init_cpu_signals(void)
593 sigset_t set;
594 struct sigaction sigact;
596 memset(&sigact, 0, sizeof(sigact));
597 sigact.sa_handler = cpu_signal;
598 sigaction(SIG_IPI, &sigact, NULL);
600 sigemptyset(&set);
601 sigaddset(&set, SIG_IPI);
602 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
605 #else /* _WIN32 */
606 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
608 abort();
611 static void qemu_tcg_init_cpu_signals(void)
614 #endif /* _WIN32 */
616 static QemuMutex qemu_global_mutex;
617 static QemuCond qemu_io_proceeded_cond;
618 static bool iothread_requesting_mutex;
620 static QemuThread io_thread;
622 static QemuThread *tcg_cpu_thread;
623 static QemuCond *tcg_halt_cond;
625 /* cpu creation */
626 static QemuCond qemu_cpu_cond;
627 /* system init */
628 static QemuCond qemu_pause_cond;
629 static QemuCond qemu_work_cond;
631 void qemu_init_cpu_loop(void)
633 qemu_init_sigbus();
634 qemu_cond_init(&qemu_cpu_cond);
635 qemu_cond_init(&qemu_pause_cond);
636 qemu_cond_init(&qemu_work_cond);
637 qemu_cond_init(&qemu_io_proceeded_cond);
638 qemu_mutex_init(&qemu_global_mutex);
640 qemu_thread_get_self(&io_thread);
643 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
645 struct qemu_work_item wi;
647 if (qemu_cpu_is_self(cpu)) {
648 func(data);
649 return;
652 wi.func = func;
653 wi.data = data;
654 if (cpu->queued_work_first == NULL) {
655 cpu->queued_work_first = &wi;
656 } else {
657 cpu->queued_work_last->next = &wi;
659 cpu->queued_work_last = &wi;
660 wi.next = NULL;
661 wi.done = false;
663 qemu_cpu_kick(cpu);
664 while (!wi.done) {
665 CPUArchState *self_env = cpu_single_env;
667 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
668 cpu_single_env = self_env;
672 static void flush_queued_work(CPUState *cpu)
674 struct qemu_work_item *wi;
676 if (cpu->queued_work_first == NULL) {
677 return;
680 while ((wi = cpu->queued_work_first)) {
681 cpu->queued_work_first = wi->next;
682 wi->func(wi->data);
683 wi->done = true;
685 cpu->queued_work_last = NULL;
686 qemu_cond_broadcast(&qemu_work_cond);
689 static void qemu_wait_io_event_common(CPUState *cpu)
691 if (cpu->stop) {
692 cpu->stop = false;
693 cpu->stopped = true;
694 qemu_cond_signal(&qemu_pause_cond);
696 flush_queued_work(cpu);
697 cpu->thread_kicked = false;
700 static void qemu_tcg_wait_io_event(void)
702 CPUArchState *env;
704 while (all_cpu_threads_idle()) {
705 /* Start accounting real time to the virtual clock if the CPUs
706 are idle. */
707 qemu_clock_warp(vm_clock);
708 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
711 while (iothread_requesting_mutex) {
712 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
715 for (env = first_cpu; env != NULL; env = env->next_cpu) {
716 qemu_wait_io_event_common(ENV_GET_CPU(env));
720 static void qemu_kvm_wait_io_event(CPUArchState *env)
722 CPUState *cpu = ENV_GET_CPU(env);
724 while (cpu_thread_is_idle(env)) {
725 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
728 qemu_kvm_eat_signals(env);
729 qemu_wait_io_event_common(cpu);
732 static void *qemu_kvm_cpu_thread_fn(void *arg)
734 CPUArchState *env = arg;
735 CPUState *cpu = ENV_GET_CPU(env);
736 int r;
738 qemu_mutex_lock(&qemu_global_mutex);
739 qemu_thread_get_self(cpu->thread);
740 cpu->thread_id = qemu_get_thread_id();
741 cpu_single_env = env;
743 r = kvm_init_vcpu(env);
744 if (r < 0) {
745 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
746 exit(1);
749 qemu_kvm_init_cpu_signals(env);
751 /* signal CPU creation */
752 cpu->created = true;
753 qemu_cond_signal(&qemu_cpu_cond);
755 while (1) {
756 if (cpu_can_run(cpu)) {
757 r = kvm_cpu_exec(env);
758 if (r == EXCP_DEBUG) {
759 cpu_handle_guest_debug(env);
762 qemu_kvm_wait_io_event(env);
765 return NULL;
768 static void *qemu_dummy_cpu_thread_fn(void *arg)
770 #ifdef _WIN32
771 fprintf(stderr, "qtest is not supported under Windows\n");
772 exit(1);
773 #else
774 CPUArchState *env = arg;
775 CPUState *cpu = ENV_GET_CPU(env);
776 sigset_t waitset;
777 int r;
779 qemu_mutex_lock_iothread();
780 qemu_thread_get_self(cpu->thread);
781 cpu->thread_id = qemu_get_thread_id();
783 sigemptyset(&waitset);
784 sigaddset(&waitset, SIG_IPI);
786 /* signal CPU creation */
787 cpu->created = true;
788 qemu_cond_signal(&qemu_cpu_cond);
790 cpu_single_env = env;
791 while (1) {
792 cpu_single_env = NULL;
793 qemu_mutex_unlock_iothread();
794 do {
795 int sig;
796 r = sigwait(&waitset, &sig);
797 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
798 if (r == -1) {
799 perror("sigwait");
800 exit(1);
802 qemu_mutex_lock_iothread();
803 cpu_single_env = env;
804 qemu_wait_io_event_common(cpu);
807 return NULL;
808 #endif
811 static void tcg_exec_all(void);
813 static void *qemu_tcg_cpu_thread_fn(void *arg)
815 CPUState *cpu = arg;
816 CPUArchState *env;
818 qemu_tcg_init_cpu_signals();
819 qemu_thread_get_self(cpu->thread);
821 /* signal CPU creation */
822 qemu_mutex_lock(&qemu_global_mutex);
823 for (env = first_cpu; env != NULL; env = env->next_cpu) {
824 cpu = ENV_GET_CPU(env);
825 cpu->thread_id = qemu_get_thread_id();
826 cpu->created = true;
828 qemu_cond_signal(&qemu_cpu_cond);
830 /* wait for initial kick-off after machine start */
831 while (ENV_GET_CPU(first_cpu)->stopped) {
832 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
834 /* process any pending work */
835 for (env = first_cpu; env != NULL; env = env->next_cpu) {
836 qemu_wait_io_event_common(ENV_GET_CPU(env));
840 while (1) {
841 tcg_exec_all();
842 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
843 qemu_notify_event();
845 qemu_tcg_wait_io_event();
848 return NULL;
851 static void qemu_cpu_kick_thread(CPUState *cpu)
853 #ifndef _WIN32
854 int err;
856 err = pthread_kill(cpu->thread->thread, SIG_IPI);
857 if (err) {
858 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
859 exit(1);
861 #else /* _WIN32 */
862 if (!qemu_cpu_is_self(cpu)) {
863 SuspendThread(cpu->hThread);
864 cpu_signal(0);
865 ResumeThread(cpu->hThread);
867 #endif
870 void qemu_cpu_kick(CPUState *cpu)
872 qemu_cond_broadcast(cpu->halt_cond);
873 if (!tcg_enabled() && !cpu->thread_kicked) {
874 qemu_cpu_kick_thread(cpu);
875 cpu->thread_kicked = true;
879 void qemu_cpu_kick_self(void)
881 #ifndef _WIN32
882 assert(cpu_single_env);
883 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
885 if (!cpu_single_cpu->thread_kicked) {
886 qemu_cpu_kick_thread(cpu_single_cpu);
887 cpu_single_cpu->thread_kicked = true;
889 #else
890 abort();
891 #endif
894 bool qemu_cpu_is_self(CPUState *cpu)
896 return qemu_thread_is_self(cpu->thread);
899 static bool qemu_in_vcpu_thread(void)
901 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
904 void qemu_mutex_lock_iothread(void)
906 if (!tcg_enabled()) {
907 qemu_mutex_lock(&qemu_global_mutex);
908 } else {
909 iothread_requesting_mutex = true;
910 if (qemu_mutex_trylock(&qemu_global_mutex)) {
911 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
912 qemu_mutex_lock(&qemu_global_mutex);
914 iothread_requesting_mutex = false;
915 qemu_cond_broadcast(&qemu_io_proceeded_cond);
919 void qemu_mutex_unlock_iothread(void)
921 qemu_mutex_unlock(&qemu_global_mutex);
924 static int all_vcpus_paused(void)
926 CPUArchState *penv = first_cpu;
928 while (penv) {
929 CPUState *pcpu = ENV_GET_CPU(penv);
930 if (!pcpu->stopped) {
931 return 0;
933 penv = penv->next_cpu;
936 return 1;
939 void pause_all_vcpus(void)
941 CPUArchState *penv = first_cpu;
943 qemu_clock_enable(vm_clock, false);
944 while (penv) {
945 CPUState *pcpu = ENV_GET_CPU(penv);
946 pcpu->stop = true;
947 qemu_cpu_kick(pcpu);
948 penv = penv->next_cpu;
951 if (qemu_in_vcpu_thread()) {
952 cpu_stop_current();
953 if (!kvm_enabled()) {
954 while (penv) {
955 CPUState *pcpu = ENV_GET_CPU(penv);
956 pcpu->stop = 0;
957 pcpu->stopped = true;
958 penv = penv->next_cpu;
960 return;
964 while (!all_vcpus_paused()) {
965 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
966 penv = first_cpu;
967 while (penv) {
968 qemu_cpu_kick(ENV_GET_CPU(penv));
969 penv = penv->next_cpu;
974 void resume_all_vcpus(void)
976 CPUArchState *penv = first_cpu;
978 qemu_clock_enable(vm_clock, true);
979 while (penv) {
980 CPUState *pcpu = ENV_GET_CPU(penv);
981 pcpu->stop = false;
982 pcpu->stopped = false;
983 qemu_cpu_kick(pcpu);
984 penv = penv->next_cpu;
988 static void qemu_tcg_init_vcpu(CPUState *cpu)
990 /* share a single thread for all cpus with TCG */
991 if (!tcg_cpu_thread) {
992 cpu->thread = g_malloc0(sizeof(QemuThread));
993 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
994 qemu_cond_init(cpu->halt_cond);
995 tcg_halt_cond = cpu->halt_cond;
996 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
997 QEMU_THREAD_JOINABLE);
998 #ifdef _WIN32
999 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1000 #endif
1001 while (!cpu->created) {
1002 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1004 tcg_cpu_thread = cpu->thread;
1005 } else {
1006 cpu->thread = tcg_cpu_thread;
1007 cpu->halt_cond = tcg_halt_cond;
1011 static void qemu_kvm_start_vcpu(CPUArchState *env)
1013 CPUState *cpu = ENV_GET_CPU(env);
1015 cpu->thread = g_malloc0(sizeof(QemuThread));
1016 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1017 qemu_cond_init(cpu->halt_cond);
1018 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1019 QEMU_THREAD_JOINABLE);
1020 while (!cpu->created) {
1021 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1025 static void qemu_dummy_start_vcpu(CPUArchState *env)
1027 CPUState *cpu = ENV_GET_CPU(env);
1029 cpu->thread = g_malloc0(sizeof(QemuThread));
1030 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1031 qemu_cond_init(cpu->halt_cond);
1032 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1033 QEMU_THREAD_JOINABLE);
1034 while (!cpu->created) {
1035 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1039 void qemu_init_vcpu(void *_env)
1041 CPUArchState *env = _env;
1042 CPUState *cpu = ENV_GET_CPU(env);
1044 env->nr_cores = smp_cores;
1045 env->nr_threads = smp_threads;
1046 cpu->stopped = true;
1047 if (kvm_enabled()) {
1048 qemu_kvm_start_vcpu(env);
1049 } else if (tcg_enabled()) {
1050 qemu_tcg_init_vcpu(cpu);
1051 } else {
1052 qemu_dummy_start_vcpu(env);
1056 void cpu_stop_current(void)
1058 if (cpu_single_env) {
1059 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1060 cpu_single_cpu->stop = false;
1061 cpu_single_cpu->stopped = true;
1062 cpu_exit(cpu_single_env);
1063 qemu_cond_signal(&qemu_pause_cond);
1067 void vm_stop(RunState state)
1069 if (qemu_in_vcpu_thread()) {
1070 qemu_system_vmstop_request(state);
1072 * FIXME: should not return to device code in case
1073 * vm_stop() has been requested.
1075 cpu_stop_current();
1076 return;
1078 do_vm_stop(state);
1081 /* does a state transition even if the VM is already stopped,
1082 current state is forgotten forever */
1083 void vm_stop_force_state(RunState state)
1085 if (runstate_is_running()) {
1086 vm_stop(state);
1087 } else {
1088 runstate_set(state);
1092 static int tcg_cpu_exec(CPUArchState *env)
1094 int ret;
1095 #ifdef CONFIG_PROFILER
1096 int64_t ti;
1097 #endif
1099 #ifdef CONFIG_PROFILER
1100 ti = profile_getclock();
1101 #endif
1102 if (use_icount) {
1103 int64_t count;
1104 int decr;
1105 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1106 env->icount_decr.u16.low = 0;
1107 env->icount_extra = 0;
1108 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1109 qemu_icount += count;
1110 decr = (count > 0xffff) ? 0xffff : count;
1111 count -= decr;
1112 env->icount_decr.u16.low = decr;
1113 env->icount_extra = count;
1115 ret = cpu_exec(env);
1116 #ifdef CONFIG_PROFILER
1117 qemu_time += profile_getclock() - ti;
1118 #endif
1119 if (use_icount) {
1120 /* Fold pending instructions back into the
1121 instruction counter, and clear the interrupt flag. */
1122 qemu_icount -= (env->icount_decr.u16.low
1123 + env->icount_extra);
1124 env->icount_decr.u32 = 0;
1125 env->icount_extra = 0;
1127 return ret;
1130 static void tcg_exec_all(void)
1132 int r;
1134 /* Account partial waits to the vm_clock. */
1135 qemu_clock_warp(vm_clock);
1137 if (next_cpu == NULL) {
1138 next_cpu = first_cpu;
1140 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1141 CPUArchState *env = next_cpu;
1142 CPUState *cpu = ENV_GET_CPU(env);
1144 qemu_clock_enable(vm_clock,
1145 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1147 if (cpu_can_run(cpu)) {
1148 r = tcg_cpu_exec(env);
1149 if (r == EXCP_DEBUG) {
1150 cpu_handle_guest_debug(env);
1151 break;
1153 } else if (cpu->stop || cpu->stopped) {
1154 break;
1157 exit_request = 0;
1160 void set_numa_modes(void)
1162 CPUArchState *env;
1163 int i;
1165 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1166 for (i = 0; i < nb_numa_nodes; i++) {
1167 if (test_bit(env->cpu_index, node_cpumask[i])) {
1168 env->numa_node = i;
1174 void set_cpu_log(const char *optarg)
1176 int mask;
1177 const CPULogItem *item;
1179 mask = cpu_str_to_log_mask(optarg);
1180 if (!mask) {
1181 printf("Log items (comma separated):\n");
1182 for (item = cpu_log_items; item->mask != 0; item++) {
1183 printf("%-10s %s\n", item->name, item->help);
1185 exit(1);
1187 cpu_set_log(mask);
1190 void set_cpu_log_filename(const char *optarg)
1192 cpu_set_log_filename(optarg);
1195 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1197 /* XXX: implement xxx_cpu_list for targets that still miss it */
1198 #if defined(cpu_list)
1199 cpu_list(f, cpu_fprintf);
1200 #endif
1203 CpuInfoList *qmp_query_cpus(Error **errp)
1205 CpuInfoList *head = NULL, *cur_item = NULL;
1206 CPUArchState *env;
1208 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1209 CPUState *cpu = ENV_GET_CPU(env);
1210 CpuInfoList *info;
1212 cpu_synchronize_state(env);
1214 info = g_malloc0(sizeof(*info));
1215 info->value = g_malloc0(sizeof(*info->value));
1216 info->value->CPU = env->cpu_index;
1217 info->value->current = (env == first_cpu);
1218 info->value->halted = env->halted;
1219 info->value->thread_id = cpu->thread_id;
1220 #if defined(TARGET_I386)
1221 info->value->has_pc = true;
1222 info->value->pc = env->eip + env->segs[R_CS].base;
1223 #elif defined(TARGET_PPC)
1224 info->value->has_nip = true;
1225 info->value->nip = env->nip;
1226 #elif defined(TARGET_SPARC)
1227 info->value->has_pc = true;
1228 info->value->pc = env->pc;
1229 info->value->has_npc = true;
1230 info->value->npc = env->npc;
1231 #elif defined(TARGET_MIPS)
1232 info->value->has_PC = true;
1233 info->value->PC = env->active_tc.PC;
1234 #endif
1236 /* XXX: waiting for the qapi to support GSList */
1237 if (!cur_item) {
1238 head = cur_item = info;
1239 } else {
1240 cur_item->next = info;
1241 cur_item = info;
1245 return head;
1248 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1249 bool has_cpu, int64_t cpu_index, Error **errp)
1251 FILE *f;
1252 uint32_t l;
1253 CPUArchState *env;
1254 uint8_t buf[1024];
1256 if (!has_cpu) {
1257 cpu_index = 0;
1260 for (env = first_cpu; env; env = env->next_cpu) {
1261 if (cpu_index == env->cpu_index) {
1262 break;
1266 if (env == NULL) {
1267 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1268 "a CPU number");
1269 return;
1272 f = fopen(filename, "wb");
1273 if (!f) {
1274 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1275 return;
1278 while (size != 0) {
1279 l = sizeof(buf);
1280 if (l > size)
1281 l = size;
1282 cpu_memory_rw_debug(env, addr, buf, l, 0);
1283 if (fwrite(buf, 1, l, f) != l) {
1284 error_set(errp, QERR_IO_ERROR);
1285 goto exit;
1287 addr += l;
1288 size -= l;
1291 exit:
1292 fclose(f);
1295 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1296 Error **errp)
1298 FILE *f;
1299 uint32_t l;
1300 uint8_t buf[1024];
1302 f = fopen(filename, "wb");
1303 if (!f) {
1304 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1305 return;
1308 while (size != 0) {
1309 l = sizeof(buf);
1310 if (l > size)
1311 l = size;
1312 cpu_physical_memory_rw(addr, buf, l, 0);
1313 if (fwrite(buf, 1, l, f) != l) {
1314 error_set(errp, QERR_IO_ERROR);
1315 goto exit;
1317 addr += l;
1318 size -= l;
1321 exit:
1322 fclose(f);
1325 void qmp_inject_nmi(Error **errp)
1327 #if defined(TARGET_I386)
1328 CPUArchState *env;
1330 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1331 if (!env->apic_state) {
1332 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1333 } else {
1334 apic_deliver_nmi(env->apic_state);
1337 #else
1338 error_set(errp, QERR_UNSUPPORTED);
1339 #endif