tests: acpi: add applesmc testcase
[qemu.git] / block / io.c
blob789e6373d5a797dab58541781b640850e5f3dcb6
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
49 bool ignore_bds_parents)
51 BdrvChild *c, *next;
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
55 continue;
57 bdrv_parent_drained_begin_single(c, false);
61 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
62 int *drained_end_counter)
64 assert(c->parent_quiesce_counter > 0);
65 c->parent_quiesce_counter--;
66 if (c->klass->drained_end) {
67 c->klass->drained_end(c, drained_end_counter);
71 void bdrv_parent_drained_end_single(BdrvChild *c)
73 int drained_end_counter = 0;
74 IO_OR_GS_CODE();
75 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
76 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
79 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
80 bool ignore_bds_parents,
81 int *drained_end_counter)
83 BdrvChild *c;
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
87 continue;
89 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
93 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
95 if (c->klass->drained_poll) {
96 return c->klass->drained_poll(c);
98 return false;
101 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
102 bool ignore_bds_parents)
104 BdrvChild *c, *next;
105 bool busy = false;
107 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
108 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
109 continue;
111 busy |= bdrv_parent_drained_poll_single(c);
114 return busy;
117 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
119 IO_OR_GS_CODE();
120 c->parent_quiesce_counter++;
121 if (c->klass->drained_begin) {
122 c->klass->drained_begin(c);
124 if (poll) {
125 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
129 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
131 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
132 src->pdiscard_alignment);
133 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
134 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
135 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
136 src->max_hw_transfer);
137 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
138 src->opt_mem_alignment);
139 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
140 src->min_mem_alignment);
141 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
142 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
145 typedef struct BdrvRefreshLimitsState {
146 BlockDriverState *bs;
147 BlockLimits old_bl;
148 } BdrvRefreshLimitsState;
150 static void bdrv_refresh_limits_abort(void *opaque)
152 BdrvRefreshLimitsState *s = opaque;
154 s->bs->bl = s->old_bl;
157 static TransactionActionDrv bdrv_refresh_limits_drv = {
158 .abort = bdrv_refresh_limits_abort,
159 .clean = g_free,
162 /* @tran is allowed to be NULL, in this case no rollback is possible. */
163 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
165 ERRP_GUARD();
166 BlockDriver *drv = bs->drv;
167 BdrvChild *c;
168 bool have_limits;
170 GLOBAL_STATE_CODE();
172 if (tran) {
173 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
174 *s = (BdrvRefreshLimitsState) {
175 .bs = bs,
176 .old_bl = bs->bl,
178 tran_add(tran, &bdrv_refresh_limits_drv, s);
181 memset(&bs->bl, 0, sizeof(bs->bl));
183 if (!drv) {
184 return;
187 /* Default alignment based on whether driver has byte interface */
188 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
189 drv->bdrv_aio_preadv ||
190 drv->bdrv_co_preadv_part) ? 1 : 512;
192 /* Take some limits from the children as a default */
193 have_limits = false;
194 QLIST_FOREACH(c, &bs->children, next) {
195 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
197 bdrv_merge_limits(&bs->bl, &c->bs->bl);
198 have_limits = true;
202 if (!have_limits) {
203 bs->bl.min_mem_alignment = 512;
204 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
206 /* Safe default since most protocols use readv()/writev()/etc */
207 bs->bl.max_iov = IOV_MAX;
210 /* Then let the driver override it */
211 if (drv->bdrv_refresh_limits) {
212 drv->bdrv_refresh_limits(bs, errp);
213 if (*errp) {
214 return;
218 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
219 error_setg(errp, "Driver requires too large request alignment");
224 * The copy-on-read flag is actually a reference count so multiple users may
225 * use the feature without worrying about clobbering its previous state.
226 * Copy-on-read stays enabled until all users have called to disable it.
228 void bdrv_enable_copy_on_read(BlockDriverState *bs)
230 IO_CODE();
231 qatomic_inc(&bs->copy_on_read);
234 void bdrv_disable_copy_on_read(BlockDriverState *bs)
236 int old = qatomic_fetch_dec(&bs->copy_on_read);
237 IO_CODE();
238 assert(old >= 1);
241 typedef struct {
242 Coroutine *co;
243 BlockDriverState *bs;
244 bool done;
245 bool begin;
246 bool recursive;
247 bool poll;
248 BdrvChild *parent;
249 bool ignore_bds_parents;
250 int *drained_end_counter;
251 } BdrvCoDrainData;
253 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
255 BdrvCoDrainData *data = opaque;
256 BlockDriverState *bs = data->bs;
258 if (data->begin) {
259 bs->drv->bdrv_co_drain_begin(bs);
260 } else {
261 bs->drv->bdrv_co_drain_end(bs);
264 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
265 qatomic_mb_set(&data->done, true);
266 if (!data->begin) {
267 qatomic_dec(data->drained_end_counter);
269 bdrv_dec_in_flight(bs);
271 g_free(data);
274 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
275 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
276 int *drained_end_counter)
278 BdrvCoDrainData *data;
280 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
281 (!begin && !bs->drv->bdrv_co_drain_end)) {
282 return;
285 data = g_new(BdrvCoDrainData, 1);
286 *data = (BdrvCoDrainData) {
287 .bs = bs,
288 .done = false,
289 .begin = begin,
290 .drained_end_counter = drained_end_counter,
293 if (!begin) {
294 qatomic_inc(drained_end_counter);
297 /* Make sure the driver callback completes during the polling phase for
298 * drain_begin. */
299 bdrv_inc_in_flight(bs);
300 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
301 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
304 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
305 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
306 BdrvChild *ignore_parent, bool ignore_bds_parents)
308 BdrvChild *child, *next;
309 IO_OR_GS_CODE();
311 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
312 return true;
315 if (qatomic_read(&bs->in_flight)) {
316 return true;
319 if (recursive) {
320 assert(!ignore_bds_parents);
321 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
322 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
323 return true;
328 return false;
331 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
332 BdrvChild *ignore_parent)
334 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
337 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
338 BdrvChild *parent, bool ignore_bds_parents,
339 bool poll);
340 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
341 BdrvChild *parent, bool ignore_bds_parents,
342 int *drained_end_counter);
344 static void bdrv_co_drain_bh_cb(void *opaque)
346 BdrvCoDrainData *data = opaque;
347 Coroutine *co = data->co;
348 BlockDriverState *bs = data->bs;
350 if (bs) {
351 AioContext *ctx = bdrv_get_aio_context(bs);
352 aio_context_acquire(ctx);
353 bdrv_dec_in_flight(bs);
354 if (data->begin) {
355 assert(!data->drained_end_counter);
356 bdrv_do_drained_begin(bs, data->recursive, data->parent,
357 data->ignore_bds_parents, data->poll);
358 } else {
359 assert(!data->poll);
360 bdrv_do_drained_end(bs, data->recursive, data->parent,
361 data->ignore_bds_parents,
362 data->drained_end_counter);
364 aio_context_release(ctx);
365 } else {
366 assert(data->begin);
367 bdrv_drain_all_begin();
370 data->done = true;
371 aio_co_wake(co);
374 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
375 bool begin, bool recursive,
376 BdrvChild *parent,
377 bool ignore_bds_parents,
378 bool poll,
379 int *drained_end_counter)
381 BdrvCoDrainData data;
382 Coroutine *self = qemu_coroutine_self();
383 AioContext *ctx = bdrv_get_aio_context(bs);
384 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
386 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
387 * other coroutines run if they were queued by aio_co_enter(). */
389 assert(qemu_in_coroutine());
390 data = (BdrvCoDrainData) {
391 .co = self,
392 .bs = bs,
393 .done = false,
394 .begin = begin,
395 .recursive = recursive,
396 .parent = parent,
397 .ignore_bds_parents = ignore_bds_parents,
398 .poll = poll,
399 .drained_end_counter = drained_end_counter,
402 if (bs) {
403 bdrv_inc_in_flight(bs);
407 * Temporarily drop the lock across yield or we would get deadlocks.
408 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
410 * When we yield below, the lock for the current context will be
411 * released, so if this is actually the lock that protects bs, don't drop
412 * it a second time.
414 if (ctx != co_ctx) {
415 aio_context_release(ctx);
417 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
419 qemu_coroutine_yield();
420 /* If we are resumed from some other event (such as an aio completion or a
421 * timer callback), it is a bug in the caller that should be fixed. */
422 assert(data.done);
424 /* Reaquire the AioContext of bs if we dropped it */
425 if (ctx != co_ctx) {
426 aio_context_acquire(ctx);
430 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
431 BdrvChild *parent, bool ignore_bds_parents)
433 IO_OR_GS_CODE();
434 assert(!qemu_in_coroutine());
436 /* Stop things in parent-to-child order */
437 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
438 aio_disable_external(bdrv_get_aio_context(bs));
441 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
442 bdrv_drain_invoke(bs, true, NULL);
445 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
446 BdrvChild *parent, bool ignore_bds_parents,
447 bool poll)
449 BdrvChild *child, *next;
451 if (qemu_in_coroutine()) {
452 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
453 poll, NULL);
454 return;
457 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
459 if (recursive) {
460 assert(!ignore_bds_parents);
461 bs->recursive_quiesce_counter++;
462 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
463 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
464 false);
469 * Wait for drained requests to finish.
471 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
472 * call is needed so things in this AioContext can make progress even
473 * though we don't return to the main AioContext loop - this automatically
474 * includes other nodes in the same AioContext and therefore all child
475 * nodes.
477 if (poll) {
478 assert(!ignore_bds_parents);
479 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
483 void bdrv_drained_begin(BlockDriverState *bs)
485 IO_OR_GS_CODE();
486 bdrv_do_drained_begin(bs, false, NULL, false, true);
489 void bdrv_subtree_drained_begin(BlockDriverState *bs)
491 IO_OR_GS_CODE();
492 bdrv_do_drained_begin(bs, true, NULL, false, true);
496 * This function does not poll, nor must any of its recursively called
497 * functions. The *drained_end_counter pointee will be incremented
498 * once for every background operation scheduled, and decremented once
499 * the operation settles. Therefore, the pointer must remain valid
500 * until the pointee reaches 0. That implies that whoever sets up the
501 * pointee has to poll until it is 0.
503 * We use atomic operations to access *drained_end_counter, because
504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
505 * @bs may contain nodes in different AioContexts,
506 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
507 * regardless of which AioContext they are in.
509 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
510 BdrvChild *parent, bool ignore_bds_parents,
511 int *drained_end_counter)
513 BdrvChild *child;
514 int old_quiesce_counter;
516 assert(drained_end_counter != NULL);
518 if (qemu_in_coroutine()) {
519 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
520 false, drained_end_counter);
521 return;
523 assert(bs->quiesce_counter > 0);
525 /* Re-enable things in child-to-parent order */
526 bdrv_drain_invoke(bs, false, drained_end_counter);
527 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
528 drained_end_counter);
530 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
531 if (old_quiesce_counter == 1) {
532 aio_enable_external(bdrv_get_aio_context(bs));
535 if (recursive) {
536 assert(!ignore_bds_parents);
537 bs->recursive_quiesce_counter--;
538 QLIST_FOREACH(child, &bs->children, next) {
539 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
540 drained_end_counter);
545 void bdrv_drained_end(BlockDriverState *bs)
547 int drained_end_counter = 0;
548 IO_OR_GS_CODE();
549 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
550 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
553 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
555 IO_CODE();
556 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
559 void bdrv_subtree_drained_end(BlockDriverState *bs)
561 int drained_end_counter = 0;
562 IO_OR_GS_CODE();
563 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
564 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
567 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
569 int i;
570 IO_OR_GS_CODE();
572 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
573 bdrv_do_drained_begin(child->bs, true, child, false, true);
577 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
579 int drained_end_counter = 0;
580 int i;
581 IO_OR_GS_CODE();
583 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
584 bdrv_do_drained_end(child->bs, true, child, false,
585 &drained_end_counter);
588 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
592 * Wait for pending requests to complete on a single BlockDriverState subtree,
593 * and suspend block driver's internal I/O until next request arrives.
595 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
596 * AioContext.
598 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
600 IO_OR_GS_CODE();
601 assert(qemu_in_coroutine());
602 bdrv_drained_begin(bs);
603 bdrv_drained_end(bs);
606 void bdrv_drain(BlockDriverState *bs)
608 IO_OR_GS_CODE();
609 bdrv_drained_begin(bs);
610 bdrv_drained_end(bs);
613 static void bdrv_drain_assert_idle(BlockDriverState *bs)
615 BdrvChild *child, *next;
617 assert(qatomic_read(&bs->in_flight) == 0);
618 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
619 bdrv_drain_assert_idle(child->bs);
623 unsigned int bdrv_drain_all_count = 0;
625 static bool bdrv_drain_all_poll(void)
627 BlockDriverState *bs = NULL;
628 bool result = false;
629 GLOBAL_STATE_CODE();
631 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
632 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
633 while ((bs = bdrv_next_all_states(bs))) {
634 AioContext *aio_context = bdrv_get_aio_context(bs);
635 aio_context_acquire(aio_context);
636 result |= bdrv_drain_poll(bs, false, NULL, true);
637 aio_context_release(aio_context);
640 return result;
644 * Wait for pending requests to complete across all BlockDriverStates
646 * This function does not flush data to disk, use bdrv_flush_all() for that
647 * after calling this function.
649 * This pauses all block jobs and disables external clients. It must
650 * be paired with bdrv_drain_all_end().
652 * NOTE: no new block jobs or BlockDriverStates can be created between
653 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
655 void bdrv_drain_all_begin(void)
657 BlockDriverState *bs = NULL;
658 GLOBAL_STATE_CODE();
660 if (qemu_in_coroutine()) {
661 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
662 return;
666 * bdrv queue is managed by record/replay,
667 * waiting for finishing the I/O requests may
668 * be infinite
670 if (replay_events_enabled()) {
671 return;
674 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
675 * loop AioContext, so make sure we're in the main context. */
676 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
677 assert(bdrv_drain_all_count < INT_MAX);
678 bdrv_drain_all_count++;
680 /* Quiesce all nodes, without polling in-flight requests yet. The graph
681 * cannot change during this loop. */
682 while ((bs = bdrv_next_all_states(bs))) {
683 AioContext *aio_context = bdrv_get_aio_context(bs);
685 aio_context_acquire(aio_context);
686 bdrv_do_drained_begin(bs, false, NULL, true, false);
687 aio_context_release(aio_context);
690 /* Now poll the in-flight requests */
691 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
693 while ((bs = bdrv_next_all_states(bs))) {
694 bdrv_drain_assert_idle(bs);
698 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
700 int drained_end_counter = 0;
701 GLOBAL_STATE_CODE();
703 g_assert(bs->quiesce_counter > 0);
704 g_assert(!bs->refcnt);
706 while (bs->quiesce_counter) {
707 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
709 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
712 void bdrv_drain_all_end(void)
714 BlockDriverState *bs = NULL;
715 int drained_end_counter = 0;
716 GLOBAL_STATE_CODE();
719 * bdrv queue is managed by record/replay,
720 * waiting for finishing the I/O requests may
721 * be endless
723 if (replay_events_enabled()) {
724 return;
727 while ((bs = bdrv_next_all_states(bs))) {
728 AioContext *aio_context = bdrv_get_aio_context(bs);
730 aio_context_acquire(aio_context);
731 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
732 aio_context_release(aio_context);
735 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
736 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
738 assert(bdrv_drain_all_count > 0);
739 bdrv_drain_all_count--;
742 void bdrv_drain_all(void)
744 GLOBAL_STATE_CODE();
745 bdrv_drain_all_begin();
746 bdrv_drain_all_end();
750 * Remove an active request from the tracked requests list
752 * This function should be called when a tracked request is completing.
754 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
756 if (req->serialising) {
757 qatomic_dec(&req->bs->serialising_in_flight);
760 qemu_co_mutex_lock(&req->bs->reqs_lock);
761 QLIST_REMOVE(req, list);
762 qemu_co_queue_restart_all(&req->wait_queue);
763 qemu_co_mutex_unlock(&req->bs->reqs_lock);
767 * Add an active request to the tracked requests list
769 static void tracked_request_begin(BdrvTrackedRequest *req,
770 BlockDriverState *bs,
771 int64_t offset,
772 int64_t bytes,
773 enum BdrvTrackedRequestType type)
775 bdrv_check_request(offset, bytes, &error_abort);
777 *req = (BdrvTrackedRequest){
778 .bs = bs,
779 .offset = offset,
780 .bytes = bytes,
781 .type = type,
782 .co = qemu_coroutine_self(),
783 .serialising = false,
784 .overlap_offset = offset,
785 .overlap_bytes = bytes,
788 qemu_co_queue_init(&req->wait_queue);
790 qemu_co_mutex_lock(&bs->reqs_lock);
791 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
792 qemu_co_mutex_unlock(&bs->reqs_lock);
795 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
796 int64_t offset, int64_t bytes)
798 bdrv_check_request(offset, bytes, &error_abort);
800 /* aaaa bbbb */
801 if (offset >= req->overlap_offset + req->overlap_bytes) {
802 return false;
804 /* bbbb aaaa */
805 if (req->overlap_offset >= offset + bytes) {
806 return false;
808 return true;
811 /* Called with self->bs->reqs_lock held */
812 static BdrvTrackedRequest *
813 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
815 BdrvTrackedRequest *req;
817 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
818 if (req == self || (!req->serialising && !self->serialising)) {
819 continue;
821 if (tracked_request_overlaps(req, self->overlap_offset,
822 self->overlap_bytes))
825 * Hitting this means there was a reentrant request, for
826 * example, a block driver issuing nested requests. This must
827 * never happen since it means deadlock.
829 assert(qemu_coroutine_self() != req->co);
832 * If the request is already (indirectly) waiting for us, or
833 * will wait for us as soon as it wakes up, then just go on
834 * (instead of producing a deadlock in the former case).
836 if (!req->waiting_for) {
837 return req;
842 return NULL;
845 /* Called with self->bs->reqs_lock held */
846 static bool coroutine_fn
847 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
849 BdrvTrackedRequest *req;
850 bool waited = false;
852 while ((req = bdrv_find_conflicting_request(self))) {
853 self->waiting_for = req;
854 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
855 self->waiting_for = NULL;
856 waited = true;
859 return waited;
862 /* Called with req->bs->reqs_lock held */
863 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
864 uint64_t align)
866 int64_t overlap_offset = req->offset & ~(align - 1);
867 int64_t overlap_bytes =
868 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
870 bdrv_check_request(req->offset, req->bytes, &error_abort);
872 if (!req->serialising) {
873 qatomic_inc(&req->bs->serialising_in_flight);
874 req->serialising = true;
877 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
878 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
882 * Return the tracked request on @bs for the current coroutine, or
883 * NULL if there is none.
885 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
887 BdrvTrackedRequest *req;
888 Coroutine *self = qemu_coroutine_self();
889 IO_CODE();
891 QLIST_FOREACH(req, &bs->tracked_requests, list) {
892 if (req->co == self) {
893 return req;
897 return NULL;
901 * Round a region to cluster boundaries
903 void bdrv_round_to_clusters(BlockDriverState *bs,
904 int64_t offset, int64_t bytes,
905 int64_t *cluster_offset,
906 int64_t *cluster_bytes)
908 BlockDriverInfo bdi;
909 IO_CODE();
910 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
911 *cluster_offset = offset;
912 *cluster_bytes = bytes;
913 } else {
914 int64_t c = bdi.cluster_size;
915 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
916 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
920 static int bdrv_get_cluster_size(BlockDriverState *bs)
922 BlockDriverInfo bdi;
923 int ret;
925 ret = bdrv_get_info(bs, &bdi);
926 if (ret < 0 || bdi.cluster_size == 0) {
927 return bs->bl.request_alignment;
928 } else {
929 return bdi.cluster_size;
933 void bdrv_inc_in_flight(BlockDriverState *bs)
935 IO_CODE();
936 qatomic_inc(&bs->in_flight);
939 void bdrv_wakeup(BlockDriverState *bs)
941 IO_CODE();
942 aio_wait_kick();
945 void bdrv_dec_in_flight(BlockDriverState *bs)
947 IO_CODE();
948 qatomic_dec(&bs->in_flight);
949 bdrv_wakeup(bs);
952 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
954 BlockDriverState *bs = self->bs;
955 bool waited = false;
957 if (!qatomic_read(&bs->serialising_in_flight)) {
958 return false;
961 qemu_co_mutex_lock(&bs->reqs_lock);
962 waited = bdrv_wait_serialising_requests_locked(self);
963 qemu_co_mutex_unlock(&bs->reqs_lock);
965 return waited;
968 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
969 uint64_t align)
971 bool waited;
972 IO_CODE();
974 qemu_co_mutex_lock(&req->bs->reqs_lock);
976 tracked_request_set_serialising(req, align);
977 waited = bdrv_wait_serialising_requests_locked(req);
979 qemu_co_mutex_unlock(&req->bs->reqs_lock);
981 return waited;
984 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
985 QEMUIOVector *qiov, size_t qiov_offset,
986 Error **errp)
989 * Check generic offset/bytes correctness
992 if (offset < 0) {
993 error_setg(errp, "offset is negative: %" PRIi64, offset);
994 return -EIO;
997 if (bytes < 0) {
998 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
999 return -EIO;
1002 if (bytes > BDRV_MAX_LENGTH) {
1003 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
1004 bytes, BDRV_MAX_LENGTH);
1005 return -EIO;
1008 if (offset > BDRV_MAX_LENGTH) {
1009 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
1010 offset, BDRV_MAX_LENGTH);
1011 return -EIO;
1014 if (offset > BDRV_MAX_LENGTH - bytes) {
1015 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
1016 "exceeds maximum(%" PRIi64 ")", offset, bytes,
1017 BDRV_MAX_LENGTH);
1018 return -EIO;
1021 if (!qiov) {
1022 return 0;
1026 * Check qiov and qiov_offset
1029 if (qiov_offset > qiov->size) {
1030 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1031 qiov_offset, qiov->size);
1032 return -EIO;
1035 if (bytes > qiov->size - qiov_offset) {
1036 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1037 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1038 return -EIO;
1041 return 0;
1044 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1046 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1049 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1050 QEMUIOVector *qiov, size_t qiov_offset)
1052 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1053 if (ret < 0) {
1054 return ret;
1057 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1058 return -EIO;
1061 return 0;
1064 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1065 int64_t bytes, BdrvRequestFlags flags)
1067 IO_CODE();
1068 return bdrv_pwritev(child, offset, bytes, NULL,
1069 BDRV_REQ_ZERO_WRITE | flags);
1073 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1074 * The operation is sped up by checking the block status and only writing
1075 * zeroes to the device if they currently do not return zeroes. Optional
1076 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1077 * BDRV_REQ_FUA).
1079 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1081 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1083 int ret;
1084 int64_t target_size, bytes, offset = 0;
1085 BlockDriverState *bs = child->bs;
1086 IO_CODE();
1088 target_size = bdrv_getlength(bs);
1089 if (target_size < 0) {
1090 return target_size;
1093 for (;;) {
1094 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1095 if (bytes <= 0) {
1096 return 0;
1098 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1099 if (ret < 0) {
1100 return ret;
1102 if (ret & BDRV_BLOCK_ZERO) {
1103 offset += bytes;
1104 continue;
1106 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1107 if (ret < 0) {
1108 return ret;
1110 offset += bytes;
1114 /* See bdrv_pwrite() for the return codes */
1115 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1117 int ret;
1118 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1119 IO_CODE();
1121 if (bytes < 0) {
1122 return -EINVAL;
1125 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1127 return ret < 0 ? ret : bytes;
1130 /* Return no. of bytes on success or < 0 on error. Important errors are:
1131 -EIO generic I/O error (may happen for all errors)
1132 -ENOMEDIUM No media inserted.
1133 -EINVAL Invalid offset or number of bytes
1134 -EACCES Trying to write a read-only device
1136 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1137 int64_t bytes)
1139 int ret;
1140 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1141 IO_CODE();
1143 if (bytes < 0) {
1144 return -EINVAL;
1147 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1149 return ret < 0 ? ret : bytes;
1153 * Writes to the file and ensures that no writes are reordered across this
1154 * request (acts as a barrier)
1156 * Returns 0 on success, -errno in error cases.
1158 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1159 const void *buf, int64_t count)
1161 int ret;
1162 IO_CODE();
1164 ret = bdrv_pwrite(child, offset, buf, count);
1165 if (ret < 0) {
1166 return ret;
1169 ret = bdrv_flush(child->bs);
1170 if (ret < 0) {
1171 return ret;
1174 return 0;
1177 typedef struct CoroutineIOCompletion {
1178 Coroutine *coroutine;
1179 int ret;
1180 } CoroutineIOCompletion;
1182 static void bdrv_co_io_em_complete(void *opaque, int ret)
1184 CoroutineIOCompletion *co = opaque;
1186 co->ret = ret;
1187 aio_co_wake(co->coroutine);
1190 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1191 int64_t offset, int64_t bytes,
1192 QEMUIOVector *qiov,
1193 size_t qiov_offset, int flags)
1195 BlockDriver *drv = bs->drv;
1196 int64_t sector_num;
1197 unsigned int nb_sectors;
1198 QEMUIOVector local_qiov;
1199 int ret;
1201 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1202 assert(!(flags & ~BDRV_REQ_MASK));
1203 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1205 if (!drv) {
1206 return -ENOMEDIUM;
1209 if (drv->bdrv_co_preadv_part) {
1210 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1211 flags);
1214 if (qiov_offset > 0 || bytes != qiov->size) {
1215 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1216 qiov = &local_qiov;
1219 if (drv->bdrv_co_preadv) {
1220 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1221 goto out;
1224 if (drv->bdrv_aio_preadv) {
1225 BlockAIOCB *acb;
1226 CoroutineIOCompletion co = {
1227 .coroutine = qemu_coroutine_self(),
1230 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1231 bdrv_co_io_em_complete, &co);
1232 if (acb == NULL) {
1233 ret = -EIO;
1234 goto out;
1235 } else {
1236 qemu_coroutine_yield();
1237 ret = co.ret;
1238 goto out;
1242 sector_num = offset >> BDRV_SECTOR_BITS;
1243 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1245 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1246 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1247 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1248 assert(drv->bdrv_co_readv);
1250 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1252 out:
1253 if (qiov == &local_qiov) {
1254 qemu_iovec_destroy(&local_qiov);
1257 return ret;
1260 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1261 int64_t offset, int64_t bytes,
1262 QEMUIOVector *qiov,
1263 size_t qiov_offset,
1264 BdrvRequestFlags flags)
1266 BlockDriver *drv = bs->drv;
1267 int64_t sector_num;
1268 unsigned int nb_sectors;
1269 QEMUIOVector local_qiov;
1270 int ret;
1272 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1273 assert(!(flags & ~BDRV_REQ_MASK));
1274 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1276 if (!drv) {
1277 return -ENOMEDIUM;
1280 if (drv->bdrv_co_pwritev_part) {
1281 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1282 flags & bs->supported_write_flags);
1283 flags &= ~bs->supported_write_flags;
1284 goto emulate_flags;
1287 if (qiov_offset > 0 || bytes != qiov->size) {
1288 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1289 qiov = &local_qiov;
1292 if (drv->bdrv_co_pwritev) {
1293 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1294 flags & bs->supported_write_flags);
1295 flags &= ~bs->supported_write_flags;
1296 goto emulate_flags;
1299 if (drv->bdrv_aio_pwritev) {
1300 BlockAIOCB *acb;
1301 CoroutineIOCompletion co = {
1302 .coroutine = qemu_coroutine_self(),
1305 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1306 flags & bs->supported_write_flags,
1307 bdrv_co_io_em_complete, &co);
1308 flags &= ~bs->supported_write_flags;
1309 if (acb == NULL) {
1310 ret = -EIO;
1311 } else {
1312 qemu_coroutine_yield();
1313 ret = co.ret;
1315 goto emulate_flags;
1318 sector_num = offset >> BDRV_SECTOR_BITS;
1319 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1321 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1322 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1323 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1325 assert(drv->bdrv_co_writev);
1326 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1327 flags & bs->supported_write_flags);
1328 flags &= ~bs->supported_write_flags;
1330 emulate_flags:
1331 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1332 ret = bdrv_co_flush(bs);
1335 if (qiov == &local_qiov) {
1336 qemu_iovec_destroy(&local_qiov);
1339 return ret;
1342 static int coroutine_fn
1343 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1344 int64_t bytes, QEMUIOVector *qiov,
1345 size_t qiov_offset)
1347 BlockDriver *drv = bs->drv;
1348 QEMUIOVector local_qiov;
1349 int ret;
1351 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1353 if (!drv) {
1354 return -ENOMEDIUM;
1357 if (!block_driver_can_compress(drv)) {
1358 return -ENOTSUP;
1361 if (drv->bdrv_co_pwritev_compressed_part) {
1362 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1363 qiov, qiov_offset);
1366 if (qiov_offset == 0) {
1367 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1370 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1371 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1372 qemu_iovec_destroy(&local_qiov);
1374 return ret;
1377 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1378 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1379 size_t qiov_offset, int flags)
1381 BlockDriverState *bs = child->bs;
1383 /* Perform I/O through a temporary buffer so that users who scribble over
1384 * their read buffer while the operation is in progress do not end up
1385 * modifying the image file. This is critical for zero-copy guest I/O
1386 * where anything might happen inside guest memory.
1388 void *bounce_buffer = NULL;
1390 BlockDriver *drv = bs->drv;
1391 int64_t cluster_offset;
1392 int64_t cluster_bytes;
1393 int64_t skip_bytes;
1394 int ret;
1395 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1396 BDRV_REQUEST_MAX_BYTES);
1397 int64_t progress = 0;
1398 bool skip_write;
1400 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1402 if (!drv) {
1403 return -ENOMEDIUM;
1407 * Do not write anything when the BDS is inactive. That is not
1408 * allowed, and it would not help.
1410 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1412 /* FIXME We cannot require callers to have write permissions when all they
1413 * are doing is a read request. If we did things right, write permissions
1414 * would be obtained anyway, but internally by the copy-on-read code. As
1415 * long as it is implemented here rather than in a separate filter driver,
1416 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1417 * it could request permissions. Therefore we have to bypass the permission
1418 * system for the moment. */
1419 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1421 /* Cover entire cluster so no additional backing file I/O is required when
1422 * allocating cluster in the image file. Note that this value may exceed
1423 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1424 * is one reason we loop rather than doing it all at once.
1426 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1427 skip_bytes = offset - cluster_offset;
1429 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1430 cluster_offset, cluster_bytes);
1432 while (cluster_bytes) {
1433 int64_t pnum;
1435 if (skip_write) {
1436 ret = 1; /* "already allocated", so nothing will be copied */
1437 pnum = MIN(cluster_bytes, max_transfer);
1438 } else {
1439 ret = bdrv_is_allocated(bs, cluster_offset,
1440 MIN(cluster_bytes, max_transfer), &pnum);
1441 if (ret < 0) {
1443 * Safe to treat errors in querying allocation as if
1444 * unallocated; we'll probably fail again soon on the
1445 * read, but at least that will set a decent errno.
1447 pnum = MIN(cluster_bytes, max_transfer);
1450 /* Stop at EOF if the image ends in the middle of the cluster */
1451 if (ret == 0 && pnum == 0) {
1452 assert(progress >= bytes);
1453 break;
1456 assert(skip_bytes < pnum);
1459 if (ret <= 0) {
1460 QEMUIOVector local_qiov;
1462 /* Must copy-on-read; use the bounce buffer */
1463 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1464 if (!bounce_buffer) {
1465 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1466 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1467 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1469 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1470 if (!bounce_buffer) {
1471 ret = -ENOMEM;
1472 goto err;
1475 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1477 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1478 &local_qiov, 0, 0);
1479 if (ret < 0) {
1480 goto err;
1483 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1484 if (drv->bdrv_co_pwrite_zeroes &&
1485 buffer_is_zero(bounce_buffer, pnum)) {
1486 /* FIXME: Should we (perhaps conditionally) be setting
1487 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1488 * that still correctly reads as zero? */
1489 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1490 BDRV_REQ_WRITE_UNCHANGED);
1491 } else {
1492 /* This does not change the data on the disk, it is not
1493 * necessary to flush even in cache=writethrough mode.
1495 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1496 &local_qiov, 0,
1497 BDRV_REQ_WRITE_UNCHANGED);
1500 if (ret < 0) {
1501 /* It might be okay to ignore write errors for guest
1502 * requests. If this is a deliberate copy-on-read
1503 * then we don't want to ignore the error. Simply
1504 * report it in all cases.
1506 goto err;
1509 if (!(flags & BDRV_REQ_PREFETCH)) {
1510 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1511 bounce_buffer + skip_bytes,
1512 MIN(pnum - skip_bytes, bytes - progress));
1514 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1515 /* Read directly into the destination */
1516 ret = bdrv_driver_preadv(bs, offset + progress,
1517 MIN(pnum - skip_bytes, bytes - progress),
1518 qiov, qiov_offset + progress, 0);
1519 if (ret < 0) {
1520 goto err;
1524 cluster_offset += pnum;
1525 cluster_bytes -= pnum;
1526 progress += pnum - skip_bytes;
1527 skip_bytes = 0;
1529 ret = 0;
1531 err:
1532 qemu_vfree(bounce_buffer);
1533 return ret;
1537 * Forwards an already correctly aligned request to the BlockDriver. This
1538 * handles copy on read, zeroing after EOF, and fragmentation of large
1539 * reads; any other features must be implemented by the caller.
1541 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1542 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1543 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1545 BlockDriverState *bs = child->bs;
1546 int64_t total_bytes, max_bytes;
1547 int ret = 0;
1548 int64_t bytes_remaining = bytes;
1549 int max_transfer;
1551 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1552 assert(is_power_of_2(align));
1553 assert((offset & (align - 1)) == 0);
1554 assert((bytes & (align - 1)) == 0);
1555 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1556 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1557 align);
1559 /* TODO: We would need a per-BDS .supported_read_flags and
1560 * potential fallback support, if we ever implement any read flags
1561 * to pass through to drivers. For now, there aren't any
1562 * passthrough flags. */
1563 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1565 /* Handle Copy on Read and associated serialisation */
1566 if (flags & BDRV_REQ_COPY_ON_READ) {
1567 /* If we touch the same cluster it counts as an overlap. This
1568 * guarantees that allocating writes will be serialized and not race
1569 * with each other for the same cluster. For example, in copy-on-read
1570 * it ensures that the CoR read and write operations are atomic and
1571 * guest writes cannot interleave between them. */
1572 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1573 } else {
1574 bdrv_wait_serialising_requests(req);
1577 if (flags & BDRV_REQ_COPY_ON_READ) {
1578 int64_t pnum;
1580 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1581 flags &= ~BDRV_REQ_COPY_ON_READ;
1583 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1584 if (ret < 0) {
1585 goto out;
1588 if (!ret || pnum != bytes) {
1589 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1590 qiov, qiov_offset, flags);
1591 goto out;
1592 } else if (flags & BDRV_REQ_PREFETCH) {
1593 goto out;
1597 /* Forward the request to the BlockDriver, possibly fragmenting it */
1598 total_bytes = bdrv_getlength(bs);
1599 if (total_bytes < 0) {
1600 ret = total_bytes;
1601 goto out;
1604 assert(!(flags & ~bs->supported_read_flags));
1606 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1607 if (bytes <= max_bytes && bytes <= max_transfer) {
1608 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1609 goto out;
1612 while (bytes_remaining) {
1613 int64_t num;
1615 if (max_bytes) {
1616 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1617 assert(num);
1619 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1620 num, qiov,
1621 qiov_offset + bytes - bytes_remaining,
1622 flags);
1623 max_bytes -= num;
1624 } else {
1625 num = bytes_remaining;
1626 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1627 0, bytes_remaining);
1629 if (ret < 0) {
1630 goto out;
1632 bytes_remaining -= num;
1635 out:
1636 return ret < 0 ? ret : 0;
1640 * Request padding
1642 * |<---- align ----->| |<----- align ---->|
1643 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1644 * | | | | | |
1645 * -*----------$-------*-------- ... --------*-----$------------*---
1646 * | | | | | |
1647 * | offset | | end |
1648 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1649 * [buf ... ) [tail_buf )
1651 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1652 * is placed at the beginning of @buf and @tail at the @end.
1654 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1655 * around tail, if tail exists.
1657 * @merge_reads is true for small requests,
1658 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1659 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1661 typedef struct BdrvRequestPadding {
1662 uint8_t *buf;
1663 size_t buf_len;
1664 uint8_t *tail_buf;
1665 size_t head;
1666 size_t tail;
1667 bool merge_reads;
1668 QEMUIOVector local_qiov;
1669 } BdrvRequestPadding;
1671 static bool bdrv_init_padding(BlockDriverState *bs,
1672 int64_t offset, int64_t bytes,
1673 BdrvRequestPadding *pad)
1675 int64_t align = bs->bl.request_alignment;
1676 int64_t sum;
1678 bdrv_check_request(offset, bytes, &error_abort);
1679 assert(align <= INT_MAX); /* documented in block/block_int.h */
1680 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1682 memset(pad, 0, sizeof(*pad));
1684 pad->head = offset & (align - 1);
1685 pad->tail = ((offset + bytes) & (align - 1));
1686 if (pad->tail) {
1687 pad->tail = align - pad->tail;
1690 if (!pad->head && !pad->tail) {
1691 return false;
1694 assert(bytes); /* Nothing good in aligning zero-length requests */
1696 sum = pad->head + bytes + pad->tail;
1697 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1698 pad->buf = qemu_blockalign(bs, pad->buf_len);
1699 pad->merge_reads = sum == pad->buf_len;
1700 if (pad->tail) {
1701 pad->tail_buf = pad->buf + pad->buf_len - align;
1704 return true;
1707 static int bdrv_padding_rmw_read(BdrvChild *child,
1708 BdrvTrackedRequest *req,
1709 BdrvRequestPadding *pad,
1710 bool zero_middle)
1712 QEMUIOVector local_qiov;
1713 BlockDriverState *bs = child->bs;
1714 uint64_t align = bs->bl.request_alignment;
1715 int ret;
1717 assert(req->serialising && pad->buf);
1719 if (pad->head || pad->merge_reads) {
1720 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1722 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1724 if (pad->head) {
1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1727 if (pad->merge_reads && pad->tail) {
1728 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1730 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1731 align, &local_qiov, 0, 0);
1732 if (ret < 0) {
1733 return ret;
1735 if (pad->head) {
1736 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1738 if (pad->merge_reads && pad->tail) {
1739 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1742 if (pad->merge_reads) {
1743 goto zero_mem;
1747 if (pad->tail) {
1748 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1750 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1751 ret = bdrv_aligned_preadv(
1752 child, req,
1753 req->overlap_offset + req->overlap_bytes - align,
1754 align, align, &local_qiov, 0, 0);
1755 if (ret < 0) {
1756 return ret;
1758 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1761 zero_mem:
1762 if (zero_middle) {
1763 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1766 return 0;
1769 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1771 if (pad->buf) {
1772 qemu_vfree(pad->buf);
1773 qemu_iovec_destroy(&pad->local_qiov);
1775 memset(pad, 0, sizeof(*pad));
1779 * bdrv_pad_request
1781 * Exchange request parameters with padded request if needed. Don't include RMW
1782 * read of padding, bdrv_padding_rmw_read() should be called separately if
1783 * needed.
1785 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1786 * - on function start they represent original request
1787 * - on failure or when padding is not needed they are unchanged
1788 * - on success when padding is needed they represent padded request
1790 static int bdrv_pad_request(BlockDriverState *bs,
1791 QEMUIOVector **qiov, size_t *qiov_offset,
1792 int64_t *offset, int64_t *bytes,
1793 BdrvRequestPadding *pad, bool *padded)
1795 int ret;
1797 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1799 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1800 if (padded) {
1801 *padded = false;
1803 return 0;
1806 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1807 *qiov, *qiov_offset, *bytes,
1808 pad->buf + pad->buf_len - pad->tail,
1809 pad->tail);
1810 if (ret < 0) {
1811 bdrv_padding_destroy(pad);
1812 return ret;
1814 *bytes += pad->head + pad->tail;
1815 *offset -= pad->head;
1816 *qiov = &pad->local_qiov;
1817 *qiov_offset = 0;
1818 if (padded) {
1819 *padded = true;
1822 return 0;
1825 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1826 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1827 BdrvRequestFlags flags)
1829 IO_CODE();
1830 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1833 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1834 int64_t offset, int64_t bytes,
1835 QEMUIOVector *qiov, size_t qiov_offset,
1836 BdrvRequestFlags flags)
1838 BlockDriverState *bs = child->bs;
1839 BdrvTrackedRequest req;
1840 BdrvRequestPadding pad;
1841 int ret;
1842 IO_CODE();
1844 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1846 if (!bdrv_is_inserted(bs)) {
1847 return -ENOMEDIUM;
1850 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1851 if (ret < 0) {
1852 return ret;
1855 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1857 * Aligning zero request is nonsense. Even if driver has special meaning
1858 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1859 * it to driver due to request_alignment.
1861 * Still, no reason to return an error if someone do unaligned
1862 * zero-length read occasionally.
1864 return 0;
1867 bdrv_inc_in_flight(bs);
1869 /* Don't do copy-on-read if we read data before write operation */
1870 if (qatomic_read(&bs->copy_on_read)) {
1871 flags |= BDRV_REQ_COPY_ON_READ;
1874 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1875 NULL);
1876 if (ret < 0) {
1877 goto fail;
1880 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1881 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1882 bs->bl.request_alignment,
1883 qiov, qiov_offset, flags);
1884 tracked_request_end(&req);
1885 bdrv_padding_destroy(&pad);
1887 fail:
1888 bdrv_dec_in_flight(bs);
1890 return ret;
1893 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1894 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1896 BlockDriver *drv = bs->drv;
1897 QEMUIOVector qiov;
1898 void *buf = NULL;
1899 int ret = 0;
1900 bool need_flush = false;
1901 int head = 0;
1902 int tail = 0;
1904 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1905 INT64_MAX);
1906 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1907 bs->bl.request_alignment);
1908 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1910 bdrv_check_request(offset, bytes, &error_abort);
1912 if (!drv) {
1913 return -ENOMEDIUM;
1916 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1917 return -ENOTSUP;
1920 /* Invalidate the cached block-status data range if this write overlaps */
1921 bdrv_bsc_invalidate_range(bs, offset, bytes);
1923 assert(alignment % bs->bl.request_alignment == 0);
1924 head = offset % alignment;
1925 tail = (offset + bytes) % alignment;
1926 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1927 assert(max_write_zeroes >= bs->bl.request_alignment);
1929 while (bytes > 0 && !ret) {
1930 int64_t num = bytes;
1932 /* Align request. Block drivers can expect the "bulk" of the request
1933 * to be aligned, and that unaligned requests do not cross cluster
1934 * boundaries.
1936 if (head) {
1937 /* Make a small request up to the first aligned sector. For
1938 * convenience, limit this request to max_transfer even if
1939 * we don't need to fall back to writes. */
1940 num = MIN(MIN(bytes, max_transfer), alignment - head);
1941 head = (head + num) % alignment;
1942 assert(num < max_write_zeroes);
1943 } else if (tail && num > alignment) {
1944 /* Shorten the request to the last aligned sector. */
1945 num -= tail;
1948 /* limit request size */
1949 if (num > max_write_zeroes) {
1950 num = max_write_zeroes;
1953 ret = -ENOTSUP;
1954 /* First try the efficient write zeroes operation */
1955 if (drv->bdrv_co_pwrite_zeroes) {
1956 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1957 flags & bs->supported_zero_flags);
1958 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1959 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1960 need_flush = true;
1962 } else {
1963 assert(!bs->supported_zero_flags);
1966 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1967 /* Fall back to bounce buffer if write zeroes is unsupported */
1968 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1970 if ((flags & BDRV_REQ_FUA) &&
1971 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1972 /* No need for bdrv_driver_pwrite() to do a fallback
1973 * flush on each chunk; use just one at the end */
1974 write_flags &= ~BDRV_REQ_FUA;
1975 need_flush = true;
1977 num = MIN(num, max_transfer);
1978 if (buf == NULL) {
1979 buf = qemu_try_blockalign0(bs, num);
1980 if (buf == NULL) {
1981 ret = -ENOMEM;
1982 goto fail;
1985 qemu_iovec_init_buf(&qiov, buf, num);
1987 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1989 /* Keep bounce buffer around if it is big enough for all
1990 * all future requests.
1992 if (num < max_transfer) {
1993 qemu_vfree(buf);
1994 buf = NULL;
1998 offset += num;
1999 bytes -= num;
2002 fail:
2003 if (ret == 0 && need_flush) {
2004 ret = bdrv_co_flush(bs);
2006 qemu_vfree(buf);
2007 return ret;
2010 static inline int coroutine_fn
2011 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
2012 BdrvTrackedRequest *req, int flags)
2014 BlockDriverState *bs = child->bs;
2016 bdrv_check_request(offset, bytes, &error_abort);
2018 if (bdrv_is_read_only(bs)) {
2019 return -EPERM;
2022 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2023 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
2024 assert(!(flags & ~BDRV_REQ_MASK));
2025 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
2027 if (flags & BDRV_REQ_SERIALISING) {
2028 QEMU_LOCK_GUARD(&bs->reqs_lock);
2030 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
2032 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
2033 return -EBUSY;
2036 bdrv_wait_serialising_requests_locked(req);
2037 } else {
2038 bdrv_wait_serialising_requests(req);
2041 assert(req->overlap_offset <= offset);
2042 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2043 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2044 child->perm & BLK_PERM_RESIZE);
2046 switch (req->type) {
2047 case BDRV_TRACKED_WRITE:
2048 case BDRV_TRACKED_DISCARD:
2049 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2050 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2051 } else {
2052 assert(child->perm & BLK_PERM_WRITE);
2054 bdrv_write_threshold_check_write(bs, offset, bytes);
2055 return 0;
2056 case BDRV_TRACKED_TRUNCATE:
2057 assert(child->perm & BLK_PERM_RESIZE);
2058 return 0;
2059 default:
2060 abort();
2064 static inline void coroutine_fn
2065 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2066 BdrvTrackedRequest *req, int ret)
2068 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2069 BlockDriverState *bs = child->bs;
2071 bdrv_check_request(offset, bytes, &error_abort);
2073 qatomic_inc(&bs->write_gen);
2076 * Discard cannot extend the image, but in error handling cases, such as
2077 * when reverting a qcow2 cluster allocation, the discarded range can pass
2078 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2079 * here. Instead, just skip it, since semantically a discard request
2080 * beyond EOF cannot expand the image anyway.
2082 if (ret == 0 &&
2083 (req->type == BDRV_TRACKED_TRUNCATE ||
2084 end_sector > bs->total_sectors) &&
2085 req->type != BDRV_TRACKED_DISCARD) {
2086 bs->total_sectors = end_sector;
2087 bdrv_parent_cb_resize(bs);
2088 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2090 if (req->bytes) {
2091 switch (req->type) {
2092 case BDRV_TRACKED_WRITE:
2093 stat64_max(&bs->wr_highest_offset, offset + bytes);
2094 /* fall through, to set dirty bits */
2095 case BDRV_TRACKED_DISCARD:
2096 bdrv_set_dirty(bs, offset, bytes);
2097 break;
2098 default:
2099 break;
2105 * Forwards an already correctly aligned write request to the BlockDriver,
2106 * after possibly fragmenting it.
2108 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2109 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2110 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2111 BdrvRequestFlags flags)
2113 BlockDriverState *bs = child->bs;
2114 BlockDriver *drv = bs->drv;
2115 int ret;
2117 int64_t bytes_remaining = bytes;
2118 int max_transfer;
2120 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2122 if (!drv) {
2123 return -ENOMEDIUM;
2126 if (bdrv_has_readonly_bitmaps(bs)) {
2127 return -EPERM;
2130 assert(is_power_of_2(align));
2131 assert((offset & (align - 1)) == 0);
2132 assert((bytes & (align - 1)) == 0);
2133 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2134 align);
2136 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2138 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2139 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2140 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2141 flags |= BDRV_REQ_ZERO_WRITE;
2142 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2143 flags |= BDRV_REQ_MAY_UNMAP;
2147 if (ret < 0) {
2148 /* Do nothing, write notifier decided to fail this request */
2149 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2150 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2151 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2152 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2153 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2154 qiov, qiov_offset);
2155 } else if (bytes <= max_transfer) {
2156 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2157 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2158 } else {
2159 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2160 while (bytes_remaining) {
2161 int num = MIN(bytes_remaining, max_transfer);
2162 int local_flags = flags;
2164 assert(num);
2165 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2166 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2167 /* If FUA is going to be emulated by flush, we only
2168 * need to flush on the last iteration */
2169 local_flags &= ~BDRV_REQ_FUA;
2172 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2173 num, qiov,
2174 qiov_offset + bytes - bytes_remaining,
2175 local_flags);
2176 if (ret < 0) {
2177 break;
2179 bytes_remaining -= num;
2182 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2184 if (ret >= 0) {
2185 ret = 0;
2187 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2189 return ret;
2192 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2193 int64_t offset,
2194 int64_t bytes,
2195 BdrvRequestFlags flags,
2196 BdrvTrackedRequest *req)
2198 BlockDriverState *bs = child->bs;
2199 QEMUIOVector local_qiov;
2200 uint64_t align = bs->bl.request_alignment;
2201 int ret = 0;
2202 bool padding;
2203 BdrvRequestPadding pad;
2205 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2206 if (padding) {
2207 assert(!(flags & BDRV_REQ_NO_WAIT));
2208 bdrv_make_request_serialising(req, align);
2210 bdrv_padding_rmw_read(child, req, &pad, true);
2212 if (pad.head || pad.merge_reads) {
2213 int64_t aligned_offset = offset & ~(align - 1);
2214 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2216 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2217 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2218 align, &local_qiov, 0,
2219 flags & ~BDRV_REQ_ZERO_WRITE);
2220 if (ret < 0 || pad.merge_reads) {
2221 /* Error or all work is done */
2222 goto out;
2224 offset += write_bytes - pad.head;
2225 bytes -= write_bytes - pad.head;
2229 assert(!bytes || (offset & (align - 1)) == 0);
2230 if (bytes >= align) {
2231 /* Write the aligned part in the middle. */
2232 int64_t aligned_bytes = bytes & ~(align - 1);
2233 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2234 NULL, 0, flags);
2235 if (ret < 0) {
2236 goto out;
2238 bytes -= aligned_bytes;
2239 offset += aligned_bytes;
2242 assert(!bytes || (offset & (align - 1)) == 0);
2243 if (bytes) {
2244 assert(align == pad.tail + bytes);
2246 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2247 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2248 &local_qiov, 0,
2249 flags & ~BDRV_REQ_ZERO_WRITE);
2252 out:
2253 bdrv_padding_destroy(&pad);
2255 return ret;
2259 * Handle a write request in coroutine context
2261 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2262 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2263 BdrvRequestFlags flags)
2265 IO_CODE();
2266 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2269 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2270 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2271 BdrvRequestFlags flags)
2273 BlockDriverState *bs = child->bs;
2274 BdrvTrackedRequest req;
2275 uint64_t align = bs->bl.request_alignment;
2276 BdrvRequestPadding pad;
2277 int ret;
2278 bool padded = false;
2279 IO_CODE();
2281 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2283 if (!bdrv_is_inserted(bs)) {
2284 return -ENOMEDIUM;
2287 if (flags & BDRV_REQ_ZERO_WRITE) {
2288 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2289 } else {
2290 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2292 if (ret < 0) {
2293 return ret;
2296 /* If the request is misaligned then we can't make it efficient */
2297 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2298 !QEMU_IS_ALIGNED(offset | bytes, align))
2300 return -ENOTSUP;
2303 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2305 * Aligning zero request is nonsense. Even if driver has special meaning
2306 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2307 * it to driver due to request_alignment.
2309 * Still, no reason to return an error if someone do unaligned
2310 * zero-length write occasionally.
2312 return 0;
2315 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2317 * Pad request for following read-modify-write cycle.
2318 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2319 * alignment only if there is no ZERO flag.
2321 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2322 &padded);
2323 if (ret < 0) {
2324 return ret;
2328 bdrv_inc_in_flight(bs);
2329 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2331 if (flags & BDRV_REQ_ZERO_WRITE) {
2332 assert(!padded);
2333 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2334 goto out;
2337 if (padded) {
2339 * Request was unaligned to request_alignment and therefore
2340 * padded. We are going to do read-modify-write, and must
2341 * serialize the request to prevent interactions of the
2342 * widened region with other transactions.
2344 assert(!(flags & BDRV_REQ_NO_WAIT));
2345 bdrv_make_request_serialising(&req, align);
2346 bdrv_padding_rmw_read(child, &req, &pad, false);
2349 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2350 qiov, qiov_offset, flags);
2352 bdrv_padding_destroy(&pad);
2354 out:
2355 tracked_request_end(&req);
2356 bdrv_dec_in_flight(bs);
2358 return ret;
2361 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2362 int64_t bytes, BdrvRequestFlags flags)
2364 IO_CODE();
2365 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2367 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2368 flags &= ~BDRV_REQ_MAY_UNMAP;
2371 return bdrv_co_pwritev(child, offset, bytes, NULL,
2372 BDRV_REQ_ZERO_WRITE | flags);
2376 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2378 int bdrv_flush_all(void)
2380 BdrvNextIterator it;
2381 BlockDriverState *bs = NULL;
2382 int result = 0;
2384 GLOBAL_STATE_CODE();
2387 * bdrv queue is managed by record/replay,
2388 * creating new flush request for stopping
2389 * the VM may break the determinism
2391 if (replay_events_enabled()) {
2392 return result;
2395 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2396 AioContext *aio_context = bdrv_get_aio_context(bs);
2397 int ret;
2399 aio_context_acquire(aio_context);
2400 ret = bdrv_flush(bs);
2401 if (ret < 0 && !result) {
2402 result = ret;
2404 aio_context_release(aio_context);
2407 return result;
2411 * Returns the allocation status of the specified sectors.
2412 * Drivers not implementing the functionality are assumed to not support
2413 * backing files, hence all their sectors are reported as allocated.
2415 * If 'want_zero' is true, the caller is querying for mapping
2416 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2417 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2418 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2420 * If 'offset' is beyond the end of the disk image the return value is
2421 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2423 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2424 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2425 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2427 * 'pnum' is set to the number of bytes (including and immediately
2428 * following the specified offset) that are easily known to be in the
2429 * same allocated/unallocated state. Note that a second call starting
2430 * at the original offset plus returned pnum may have the same status.
2431 * The returned value is non-zero on success except at end-of-file.
2433 * Returns negative errno on failure. Otherwise, if the
2434 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2435 * set to the host mapping and BDS corresponding to the guest offset.
2437 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2438 bool want_zero,
2439 int64_t offset, int64_t bytes,
2440 int64_t *pnum, int64_t *map,
2441 BlockDriverState **file)
2443 int64_t total_size;
2444 int64_t n; /* bytes */
2445 int ret;
2446 int64_t local_map = 0;
2447 BlockDriverState *local_file = NULL;
2448 int64_t aligned_offset, aligned_bytes;
2449 uint32_t align;
2450 bool has_filtered_child;
2452 assert(pnum);
2453 *pnum = 0;
2454 total_size = bdrv_getlength(bs);
2455 if (total_size < 0) {
2456 ret = total_size;
2457 goto early_out;
2460 if (offset >= total_size) {
2461 ret = BDRV_BLOCK_EOF;
2462 goto early_out;
2464 if (!bytes) {
2465 ret = 0;
2466 goto early_out;
2469 n = total_size - offset;
2470 if (n < bytes) {
2471 bytes = n;
2474 /* Must be non-NULL or bdrv_getlength() would have failed */
2475 assert(bs->drv);
2476 has_filtered_child = bdrv_filter_child(bs);
2477 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2478 *pnum = bytes;
2479 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2480 if (offset + bytes == total_size) {
2481 ret |= BDRV_BLOCK_EOF;
2483 if (bs->drv->protocol_name) {
2484 ret |= BDRV_BLOCK_OFFSET_VALID;
2485 local_map = offset;
2486 local_file = bs;
2488 goto early_out;
2491 bdrv_inc_in_flight(bs);
2493 /* Round out to request_alignment boundaries */
2494 align = bs->bl.request_alignment;
2495 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2496 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2498 if (bs->drv->bdrv_co_block_status) {
2500 * Use the block-status cache only for protocol nodes: Format
2501 * drivers are generally quick to inquire the status, but protocol
2502 * drivers often need to get information from outside of qemu, so
2503 * we do not have control over the actual implementation. There
2504 * have been cases where inquiring the status took an unreasonably
2505 * long time, and we can do nothing in qemu to fix it.
2506 * This is especially problematic for images with large data areas,
2507 * because finding the few holes in them and giving them special
2508 * treatment does not gain much performance. Therefore, we try to
2509 * cache the last-identified data region.
2511 * Second, limiting ourselves to protocol nodes allows us to assume
2512 * the block status for data regions to be DATA | OFFSET_VALID, and
2513 * that the host offset is the same as the guest offset.
2515 * Note that it is possible that external writers zero parts of
2516 * the cached regions without the cache being invalidated, and so
2517 * we may report zeroes as data. This is not catastrophic,
2518 * however, because reporting zeroes as data is fine.
2520 if (QLIST_EMPTY(&bs->children) &&
2521 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2523 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2524 local_file = bs;
2525 local_map = aligned_offset;
2526 } else {
2527 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2528 aligned_bytes, pnum, &local_map,
2529 &local_file);
2532 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2533 * the cache is queried above. Technically, we do not need to check
2534 * it here; the worst that can happen is that we fill the cache for
2535 * non-protocol nodes, and then it is never used. However, filling
2536 * the cache requires an RCU update, so double check here to avoid
2537 * such an update if possible.
2539 * Check want_zero, because we only want to update the cache when we
2540 * have accurate information about what is zero and what is data.
2542 if (want_zero &&
2543 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2544 QLIST_EMPTY(&bs->children))
2547 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2548 * returned local_map value must be the same as the offset we
2549 * have passed (aligned_offset), and local_bs must be the node
2550 * itself.
2551 * Assert this, because we follow this rule when reading from
2552 * the cache (see the `local_file = bs` and
2553 * `local_map = aligned_offset` assignments above), and the
2554 * result the cache delivers must be the same as the driver
2555 * would deliver.
2557 assert(local_file == bs);
2558 assert(local_map == aligned_offset);
2559 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2562 } else {
2563 /* Default code for filters */
2565 local_file = bdrv_filter_bs(bs);
2566 assert(local_file);
2568 *pnum = aligned_bytes;
2569 local_map = aligned_offset;
2570 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2572 if (ret < 0) {
2573 *pnum = 0;
2574 goto out;
2578 * The driver's result must be a non-zero multiple of request_alignment.
2579 * Clamp pnum and adjust map to original request.
2581 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2582 align > offset - aligned_offset);
2583 if (ret & BDRV_BLOCK_RECURSE) {
2584 assert(ret & BDRV_BLOCK_DATA);
2585 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2586 assert(!(ret & BDRV_BLOCK_ZERO));
2589 *pnum -= offset - aligned_offset;
2590 if (*pnum > bytes) {
2591 *pnum = bytes;
2593 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2594 local_map += offset - aligned_offset;
2597 if (ret & BDRV_BLOCK_RAW) {
2598 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2599 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2600 *pnum, pnum, &local_map, &local_file);
2601 goto out;
2604 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2605 ret |= BDRV_BLOCK_ALLOCATED;
2606 } else if (bs->drv->supports_backing) {
2607 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2609 if (!cow_bs) {
2610 ret |= BDRV_BLOCK_ZERO;
2611 } else if (want_zero) {
2612 int64_t size2 = bdrv_getlength(cow_bs);
2614 if (size2 >= 0 && offset >= size2) {
2615 ret |= BDRV_BLOCK_ZERO;
2620 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2621 local_file && local_file != bs &&
2622 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2623 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2624 int64_t file_pnum;
2625 int ret2;
2627 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2628 *pnum, &file_pnum, NULL, NULL);
2629 if (ret2 >= 0) {
2630 /* Ignore errors. This is just providing extra information, it
2631 * is useful but not necessary.
2633 if (ret2 & BDRV_BLOCK_EOF &&
2634 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2636 * It is valid for the format block driver to read
2637 * beyond the end of the underlying file's current
2638 * size; such areas read as zero.
2640 ret |= BDRV_BLOCK_ZERO;
2641 } else {
2642 /* Limit request to the range reported by the protocol driver */
2643 *pnum = file_pnum;
2644 ret |= (ret2 & BDRV_BLOCK_ZERO);
2649 out:
2650 bdrv_dec_in_flight(bs);
2651 if (ret >= 0 && offset + *pnum == total_size) {
2652 ret |= BDRV_BLOCK_EOF;
2654 early_out:
2655 if (file) {
2656 *file = local_file;
2658 if (map) {
2659 *map = local_map;
2661 return ret;
2664 int coroutine_fn
2665 bdrv_co_common_block_status_above(BlockDriverState *bs,
2666 BlockDriverState *base,
2667 bool include_base,
2668 bool want_zero,
2669 int64_t offset,
2670 int64_t bytes,
2671 int64_t *pnum,
2672 int64_t *map,
2673 BlockDriverState **file,
2674 int *depth)
2676 int ret;
2677 BlockDriverState *p;
2678 int64_t eof = 0;
2679 int dummy;
2680 IO_CODE();
2682 assert(!include_base || base); /* Can't include NULL base */
2684 if (!depth) {
2685 depth = &dummy;
2687 *depth = 0;
2689 if (!include_base && bs == base) {
2690 *pnum = bytes;
2691 return 0;
2694 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2695 ++*depth;
2696 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2697 return ret;
2700 if (ret & BDRV_BLOCK_EOF) {
2701 eof = offset + *pnum;
2704 assert(*pnum <= bytes);
2705 bytes = *pnum;
2707 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2708 p = bdrv_filter_or_cow_bs(p))
2710 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2711 file);
2712 ++*depth;
2713 if (ret < 0) {
2714 return ret;
2716 if (*pnum == 0) {
2718 * The top layer deferred to this layer, and because this layer is
2719 * short, any zeroes that we synthesize beyond EOF behave as if they
2720 * were allocated at this layer.
2722 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2723 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2724 * below.
2726 assert(ret & BDRV_BLOCK_EOF);
2727 *pnum = bytes;
2728 if (file) {
2729 *file = p;
2731 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2732 break;
2734 if (ret & BDRV_BLOCK_ALLOCATED) {
2736 * We've found the node and the status, we must break.
2738 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2739 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2740 * below.
2742 ret &= ~BDRV_BLOCK_EOF;
2743 break;
2746 if (p == base) {
2747 assert(include_base);
2748 break;
2752 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2753 * let's continue the diving.
2755 assert(*pnum <= bytes);
2756 bytes = *pnum;
2759 if (offset + *pnum == eof) {
2760 ret |= BDRV_BLOCK_EOF;
2763 return ret;
2766 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2767 int64_t offset, int64_t bytes, int64_t *pnum,
2768 int64_t *map, BlockDriverState **file)
2770 IO_CODE();
2771 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2772 pnum, map, file, NULL);
2775 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2776 int64_t *pnum, int64_t *map, BlockDriverState **file)
2778 IO_CODE();
2779 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2780 offset, bytes, pnum, map, file);
2784 * Check @bs (and its backing chain) to see if the range defined
2785 * by @offset and @bytes is known to read as zeroes.
2786 * Return 1 if that is the case, 0 otherwise and -errno on error.
2787 * This test is meant to be fast rather than accurate so returning 0
2788 * does not guarantee non-zero data.
2790 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2791 int64_t bytes)
2793 int ret;
2794 int64_t pnum = bytes;
2795 IO_CODE();
2797 if (!bytes) {
2798 return 1;
2801 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2802 bytes, &pnum, NULL, NULL, NULL);
2804 if (ret < 0) {
2805 return ret;
2808 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2811 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2812 int64_t bytes, int64_t *pnum)
2814 int ret;
2815 int64_t dummy;
2816 IO_CODE();
2818 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2819 bytes, pnum ? pnum : &dummy, NULL,
2820 NULL, NULL);
2821 if (ret < 0) {
2822 return ret;
2824 return !!(ret & BDRV_BLOCK_ALLOCATED);
2828 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2830 * Return a positive depth if (a prefix of) the given range is allocated
2831 * in any image between BASE and TOP (BASE is only included if include_base
2832 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2833 * BASE can be NULL to check if the given offset is allocated in any
2834 * image of the chain. Return 0 otherwise, or negative errno on
2835 * failure.
2837 * 'pnum' is set to the number of bytes (including and immediately
2838 * following the specified offset) that are known to be in the same
2839 * allocated/unallocated state. Note that a subsequent call starting
2840 * at 'offset + *pnum' may return the same allocation status (in other
2841 * words, the result is not necessarily the maximum possible range);
2842 * but 'pnum' will only be 0 when end of file is reached.
2844 int bdrv_is_allocated_above(BlockDriverState *top,
2845 BlockDriverState *base,
2846 bool include_base, int64_t offset,
2847 int64_t bytes, int64_t *pnum)
2849 int depth;
2850 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2851 offset, bytes, pnum, NULL, NULL,
2852 &depth);
2853 IO_CODE();
2854 if (ret < 0) {
2855 return ret;
2858 if (ret & BDRV_BLOCK_ALLOCATED) {
2859 return depth;
2861 return 0;
2864 int coroutine_fn
2865 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2867 BlockDriver *drv = bs->drv;
2868 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2869 int ret;
2870 IO_CODE();
2872 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2873 if (ret < 0) {
2874 return ret;
2877 if (!drv) {
2878 return -ENOMEDIUM;
2881 bdrv_inc_in_flight(bs);
2883 if (drv->bdrv_load_vmstate) {
2884 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2885 } else if (child_bs) {
2886 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2887 } else {
2888 ret = -ENOTSUP;
2891 bdrv_dec_in_flight(bs);
2893 return ret;
2896 int coroutine_fn
2897 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2899 BlockDriver *drv = bs->drv;
2900 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2901 int ret;
2902 IO_CODE();
2904 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2905 if (ret < 0) {
2906 return ret;
2909 if (!drv) {
2910 return -ENOMEDIUM;
2913 bdrv_inc_in_flight(bs);
2915 if (drv->bdrv_save_vmstate) {
2916 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2917 } else if (child_bs) {
2918 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2919 } else {
2920 ret = -ENOTSUP;
2923 bdrv_dec_in_flight(bs);
2925 return ret;
2928 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2929 int64_t pos, int size)
2931 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2932 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2933 IO_CODE();
2935 return ret < 0 ? ret : size;
2938 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2939 int64_t pos, int size)
2941 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2942 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2943 IO_CODE();
2945 return ret < 0 ? ret : size;
2948 /**************************************************************/
2949 /* async I/Os */
2951 void bdrv_aio_cancel(BlockAIOCB *acb)
2953 IO_CODE();
2954 qemu_aio_ref(acb);
2955 bdrv_aio_cancel_async(acb);
2956 while (acb->refcnt > 1) {
2957 if (acb->aiocb_info->get_aio_context) {
2958 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2959 } else if (acb->bs) {
2960 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2961 * assert that we're not using an I/O thread. Thread-safe
2962 * code should use bdrv_aio_cancel_async exclusively.
2964 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2965 aio_poll(bdrv_get_aio_context(acb->bs), true);
2966 } else {
2967 abort();
2970 qemu_aio_unref(acb);
2973 /* Async version of aio cancel. The caller is not blocked if the acb implements
2974 * cancel_async, otherwise we do nothing and let the request normally complete.
2975 * In either case the completion callback must be called. */
2976 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2978 IO_CODE();
2979 if (acb->aiocb_info->cancel_async) {
2980 acb->aiocb_info->cancel_async(acb);
2984 /**************************************************************/
2985 /* Coroutine block device emulation */
2987 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2989 BdrvChild *primary_child = bdrv_primary_child(bs);
2990 BdrvChild *child;
2991 int current_gen;
2992 int ret = 0;
2993 IO_CODE();
2995 bdrv_inc_in_flight(bs);
2997 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2998 bdrv_is_sg(bs)) {
2999 goto early_exit;
3002 qemu_co_mutex_lock(&bs->reqs_lock);
3003 current_gen = qatomic_read(&bs->write_gen);
3005 /* Wait until any previous flushes are completed */
3006 while (bs->active_flush_req) {
3007 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3010 /* Flushes reach this point in nondecreasing current_gen order. */
3011 bs->active_flush_req = true;
3012 qemu_co_mutex_unlock(&bs->reqs_lock);
3014 /* Write back all layers by calling one driver function */
3015 if (bs->drv->bdrv_co_flush) {
3016 ret = bs->drv->bdrv_co_flush(bs);
3017 goto out;
3020 /* Write back cached data to the OS even with cache=unsafe */
3021 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3022 if (bs->drv->bdrv_co_flush_to_os) {
3023 ret = bs->drv->bdrv_co_flush_to_os(bs);
3024 if (ret < 0) {
3025 goto out;
3029 /* But don't actually force it to the disk with cache=unsafe */
3030 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3031 goto flush_children;
3034 /* Check if we really need to flush anything */
3035 if (bs->flushed_gen == current_gen) {
3036 goto flush_children;
3039 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3040 if (!bs->drv) {
3041 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3042 * (even in case of apparent success) */
3043 ret = -ENOMEDIUM;
3044 goto out;
3046 if (bs->drv->bdrv_co_flush_to_disk) {
3047 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3048 } else if (bs->drv->bdrv_aio_flush) {
3049 BlockAIOCB *acb;
3050 CoroutineIOCompletion co = {
3051 .coroutine = qemu_coroutine_self(),
3054 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3055 if (acb == NULL) {
3056 ret = -EIO;
3057 } else {
3058 qemu_coroutine_yield();
3059 ret = co.ret;
3061 } else {
3063 * Some block drivers always operate in either writethrough or unsafe
3064 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3065 * know how the server works (because the behaviour is hardcoded or
3066 * depends on server-side configuration), so we can't ensure that
3067 * everything is safe on disk. Returning an error doesn't work because
3068 * that would break guests even if the server operates in writethrough
3069 * mode.
3071 * Let's hope the user knows what he's doing.
3073 ret = 0;
3076 if (ret < 0) {
3077 goto out;
3080 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3081 * in the case of cache=unsafe, so there are no useless flushes.
3083 flush_children:
3084 ret = 0;
3085 QLIST_FOREACH(child, &bs->children, next) {
3086 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3087 int this_child_ret = bdrv_co_flush(child->bs);
3088 if (!ret) {
3089 ret = this_child_ret;
3094 out:
3095 /* Notify any pending flushes that we have completed */
3096 if (ret == 0) {
3097 bs->flushed_gen = current_gen;
3100 qemu_co_mutex_lock(&bs->reqs_lock);
3101 bs->active_flush_req = false;
3102 /* Return value is ignored - it's ok if wait queue is empty */
3103 qemu_co_queue_next(&bs->flush_queue);
3104 qemu_co_mutex_unlock(&bs->reqs_lock);
3106 early_exit:
3107 bdrv_dec_in_flight(bs);
3108 return ret;
3111 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3112 int64_t bytes)
3114 BdrvTrackedRequest req;
3115 int ret;
3116 int64_t max_pdiscard;
3117 int head, tail, align;
3118 BlockDriverState *bs = child->bs;
3119 IO_CODE();
3121 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3122 return -ENOMEDIUM;
3125 if (bdrv_has_readonly_bitmaps(bs)) {
3126 return -EPERM;
3129 ret = bdrv_check_request(offset, bytes, NULL);
3130 if (ret < 0) {
3131 return ret;
3134 /* Do nothing if disabled. */
3135 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3136 return 0;
3139 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3140 return 0;
3143 /* Invalidate the cached block-status data range if this discard overlaps */
3144 bdrv_bsc_invalidate_range(bs, offset, bytes);
3146 /* Discard is advisory, but some devices track and coalesce
3147 * unaligned requests, so we must pass everything down rather than
3148 * round here. Still, most devices will just silently ignore
3149 * unaligned requests (by returning -ENOTSUP), so we must fragment
3150 * the request accordingly. */
3151 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3152 assert(align % bs->bl.request_alignment == 0);
3153 head = offset % align;
3154 tail = (offset + bytes) % align;
3156 bdrv_inc_in_flight(bs);
3157 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3159 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3160 if (ret < 0) {
3161 goto out;
3164 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3165 align);
3166 assert(max_pdiscard >= bs->bl.request_alignment);
3168 while (bytes > 0) {
3169 int64_t num = bytes;
3171 if (head) {
3172 /* Make small requests to get to alignment boundaries. */
3173 num = MIN(bytes, align - head);
3174 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3175 num %= bs->bl.request_alignment;
3177 head = (head + num) % align;
3178 assert(num < max_pdiscard);
3179 } else if (tail) {
3180 if (num > align) {
3181 /* Shorten the request to the last aligned cluster. */
3182 num -= tail;
3183 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3184 tail > bs->bl.request_alignment) {
3185 tail %= bs->bl.request_alignment;
3186 num -= tail;
3189 /* limit request size */
3190 if (num > max_pdiscard) {
3191 num = max_pdiscard;
3194 if (!bs->drv) {
3195 ret = -ENOMEDIUM;
3196 goto out;
3198 if (bs->drv->bdrv_co_pdiscard) {
3199 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3200 } else {
3201 BlockAIOCB *acb;
3202 CoroutineIOCompletion co = {
3203 .coroutine = qemu_coroutine_self(),
3206 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3207 bdrv_co_io_em_complete, &co);
3208 if (acb == NULL) {
3209 ret = -EIO;
3210 goto out;
3211 } else {
3212 qemu_coroutine_yield();
3213 ret = co.ret;
3216 if (ret && ret != -ENOTSUP) {
3217 goto out;
3220 offset += num;
3221 bytes -= num;
3223 ret = 0;
3224 out:
3225 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3226 tracked_request_end(&req);
3227 bdrv_dec_in_flight(bs);
3228 return ret;
3231 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3233 BlockDriver *drv = bs->drv;
3234 CoroutineIOCompletion co = {
3235 .coroutine = qemu_coroutine_self(),
3237 BlockAIOCB *acb;
3238 IO_CODE();
3240 bdrv_inc_in_flight(bs);
3241 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3242 co.ret = -ENOTSUP;
3243 goto out;
3246 if (drv->bdrv_co_ioctl) {
3247 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3248 } else {
3249 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3250 if (!acb) {
3251 co.ret = -ENOTSUP;
3252 goto out;
3254 qemu_coroutine_yield();
3256 out:
3257 bdrv_dec_in_flight(bs);
3258 return co.ret;
3261 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3263 IO_CODE();
3264 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3267 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3269 IO_CODE();
3270 return memset(qemu_blockalign(bs, size), 0, size);
3273 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3275 size_t align = bdrv_opt_mem_align(bs);
3276 IO_CODE();
3278 /* Ensure that NULL is never returned on success */
3279 assert(align > 0);
3280 if (size == 0) {
3281 size = align;
3284 return qemu_try_memalign(align, size);
3287 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3289 void *mem = qemu_try_blockalign(bs, size);
3290 IO_CODE();
3292 if (mem) {
3293 memset(mem, 0, size);
3296 return mem;
3300 * Check if all memory in this vector is sector aligned.
3302 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3304 int i;
3305 size_t alignment = bdrv_min_mem_align(bs);
3306 IO_CODE();
3308 for (i = 0; i < qiov->niov; i++) {
3309 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3310 return false;
3312 if (qiov->iov[i].iov_len % alignment) {
3313 return false;
3317 return true;
3320 void bdrv_io_plug(BlockDriverState *bs)
3322 BdrvChild *child;
3323 IO_CODE();
3325 QLIST_FOREACH(child, &bs->children, next) {
3326 bdrv_io_plug(child->bs);
3329 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3330 BlockDriver *drv = bs->drv;
3331 if (drv && drv->bdrv_io_plug) {
3332 drv->bdrv_io_plug(bs);
3337 void bdrv_io_unplug(BlockDriverState *bs)
3339 BdrvChild *child;
3340 IO_CODE();
3342 assert(bs->io_plugged);
3343 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3344 BlockDriver *drv = bs->drv;
3345 if (drv && drv->bdrv_io_unplug) {
3346 drv->bdrv_io_unplug(bs);
3350 QLIST_FOREACH(child, &bs->children, next) {
3351 bdrv_io_unplug(child->bs);
3355 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3357 BdrvChild *child;
3359 GLOBAL_STATE_CODE();
3360 if (bs->drv && bs->drv->bdrv_register_buf) {
3361 bs->drv->bdrv_register_buf(bs, host, size);
3363 QLIST_FOREACH(child, &bs->children, next) {
3364 bdrv_register_buf(child->bs, host, size);
3368 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3370 BdrvChild *child;
3372 GLOBAL_STATE_CODE();
3373 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3374 bs->drv->bdrv_unregister_buf(bs, host);
3376 QLIST_FOREACH(child, &bs->children, next) {
3377 bdrv_unregister_buf(child->bs, host);
3381 static int coroutine_fn bdrv_co_copy_range_internal(
3382 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3383 int64_t dst_offset, int64_t bytes,
3384 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3385 bool recurse_src)
3387 BdrvTrackedRequest req;
3388 int ret;
3390 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3391 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3392 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3393 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3394 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3396 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3397 return -ENOMEDIUM;
3399 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3400 if (ret) {
3401 return ret;
3403 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3404 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3407 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3408 return -ENOMEDIUM;
3410 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3411 if (ret) {
3412 return ret;
3415 if (!src->bs->drv->bdrv_co_copy_range_from
3416 || !dst->bs->drv->bdrv_co_copy_range_to
3417 || src->bs->encrypted || dst->bs->encrypted) {
3418 return -ENOTSUP;
3421 if (recurse_src) {
3422 bdrv_inc_in_flight(src->bs);
3423 tracked_request_begin(&req, src->bs, src_offset, bytes,
3424 BDRV_TRACKED_READ);
3426 /* BDRV_REQ_SERIALISING is only for write operation */
3427 assert(!(read_flags & BDRV_REQ_SERIALISING));
3428 bdrv_wait_serialising_requests(&req);
3430 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3431 src, src_offset,
3432 dst, dst_offset,
3433 bytes,
3434 read_flags, write_flags);
3436 tracked_request_end(&req);
3437 bdrv_dec_in_flight(src->bs);
3438 } else {
3439 bdrv_inc_in_flight(dst->bs);
3440 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3441 BDRV_TRACKED_WRITE);
3442 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3443 write_flags);
3444 if (!ret) {
3445 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3446 src, src_offset,
3447 dst, dst_offset,
3448 bytes,
3449 read_flags, write_flags);
3451 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3452 tracked_request_end(&req);
3453 bdrv_dec_in_flight(dst->bs);
3456 return ret;
3459 /* Copy range from @src to @dst.
3461 * See the comment of bdrv_co_copy_range for the parameter and return value
3462 * semantics. */
3463 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3464 BdrvChild *dst, int64_t dst_offset,
3465 int64_t bytes,
3466 BdrvRequestFlags read_flags,
3467 BdrvRequestFlags write_flags)
3469 IO_CODE();
3470 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3471 read_flags, write_flags);
3472 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3473 bytes, read_flags, write_flags, true);
3476 /* Copy range from @src to @dst.
3478 * See the comment of bdrv_co_copy_range for the parameter and return value
3479 * semantics. */
3480 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3481 BdrvChild *dst, int64_t dst_offset,
3482 int64_t bytes,
3483 BdrvRequestFlags read_flags,
3484 BdrvRequestFlags write_flags)
3486 IO_CODE();
3487 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3488 read_flags, write_flags);
3489 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3490 bytes, read_flags, write_flags, false);
3493 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3494 BdrvChild *dst, int64_t dst_offset,
3495 int64_t bytes, BdrvRequestFlags read_flags,
3496 BdrvRequestFlags write_flags)
3498 IO_CODE();
3499 return bdrv_co_copy_range_from(src, src_offset,
3500 dst, dst_offset,
3501 bytes, read_flags, write_flags);
3504 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3506 BdrvChild *c;
3507 QLIST_FOREACH(c, &bs->parents, next_parent) {
3508 if (c->klass->resize) {
3509 c->klass->resize(c);
3515 * Truncate file to 'offset' bytes (needed only for file protocols)
3517 * If 'exact' is true, the file must be resized to exactly the given
3518 * 'offset'. Otherwise, it is sufficient for the node to be at least
3519 * 'offset' bytes in length.
3521 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3522 PreallocMode prealloc, BdrvRequestFlags flags,
3523 Error **errp)
3525 BlockDriverState *bs = child->bs;
3526 BdrvChild *filtered, *backing;
3527 BlockDriver *drv = bs->drv;
3528 BdrvTrackedRequest req;
3529 int64_t old_size, new_bytes;
3530 int ret;
3531 IO_CODE();
3533 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3534 if (!drv) {
3535 error_setg(errp, "No medium inserted");
3536 return -ENOMEDIUM;
3538 if (offset < 0) {
3539 error_setg(errp, "Image size cannot be negative");
3540 return -EINVAL;
3543 ret = bdrv_check_request(offset, 0, errp);
3544 if (ret < 0) {
3545 return ret;
3548 old_size = bdrv_getlength(bs);
3549 if (old_size < 0) {
3550 error_setg_errno(errp, -old_size, "Failed to get old image size");
3551 return old_size;
3554 if (bdrv_is_read_only(bs)) {
3555 error_setg(errp, "Image is read-only");
3556 return -EACCES;
3559 if (offset > old_size) {
3560 new_bytes = offset - old_size;
3561 } else {
3562 new_bytes = 0;
3565 bdrv_inc_in_flight(bs);
3566 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3567 BDRV_TRACKED_TRUNCATE);
3569 /* If we are growing the image and potentially using preallocation for the
3570 * new area, we need to make sure that no write requests are made to it
3571 * concurrently or they might be overwritten by preallocation. */
3572 if (new_bytes) {
3573 bdrv_make_request_serialising(&req, 1);
3575 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3577 if (ret < 0) {
3578 error_setg_errno(errp, -ret,
3579 "Failed to prepare request for truncation");
3580 goto out;
3583 filtered = bdrv_filter_child(bs);
3584 backing = bdrv_cow_child(bs);
3587 * If the image has a backing file that is large enough that it would
3588 * provide data for the new area, we cannot leave it unallocated because
3589 * then the backing file content would become visible. Instead, zero-fill
3590 * the new area.
3592 * Note that if the image has a backing file, but was opened without the
3593 * backing file, taking care of keeping things consistent with that backing
3594 * file is the user's responsibility.
3596 if (new_bytes && backing) {
3597 int64_t backing_len;
3599 backing_len = bdrv_getlength(backing->bs);
3600 if (backing_len < 0) {
3601 ret = backing_len;
3602 error_setg_errno(errp, -ret, "Could not get backing file size");
3603 goto out;
3606 if (backing_len > old_size) {
3607 flags |= BDRV_REQ_ZERO_WRITE;
3611 if (drv->bdrv_co_truncate) {
3612 if (flags & ~bs->supported_truncate_flags) {
3613 error_setg(errp, "Block driver does not support requested flags");
3614 ret = -ENOTSUP;
3615 goto out;
3617 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3618 } else if (filtered) {
3619 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3620 } else {
3621 error_setg(errp, "Image format driver does not support resize");
3622 ret = -ENOTSUP;
3623 goto out;
3625 if (ret < 0) {
3626 goto out;
3629 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3630 if (ret < 0) {
3631 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3632 } else {
3633 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3635 /* It's possible that truncation succeeded but refresh_total_sectors
3636 * failed, but the latter doesn't affect how we should finish the request.
3637 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3638 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3640 out:
3641 tracked_request_end(&req);
3642 bdrv_dec_in_flight(bs);
3644 return ret;
3647 void bdrv_cancel_in_flight(BlockDriverState *bs)
3649 GLOBAL_STATE_CODE();
3650 if (!bs || !bs->drv) {
3651 return;
3654 if (bs->drv->bdrv_cancel_in_flight) {
3655 bs->drv->bdrv_cancel_in_flight(bs);
3659 int coroutine_fn
3660 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3661 QEMUIOVector *qiov, size_t qiov_offset)
3663 BlockDriverState *bs = child->bs;
3664 BlockDriver *drv = bs->drv;
3665 int ret;
3666 IO_CODE();
3668 if (!drv) {
3669 return -ENOMEDIUM;
3672 if (!drv->bdrv_co_preadv_snapshot) {
3673 return -ENOTSUP;
3676 bdrv_inc_in_flight(bs);
3677 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3678 bdrv_dec_in_flight(bs);
3680 return ret;
3683 int coroutine_fn
3684 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3685 bool want_zero, int64_t offset, int64_t bytes,
3686 int64_t *pnum, int64_t *map,
3687 BlockDriverState **file)
3689 BlockDriver *drv = bs->drv;
3690 int ret;
3691 IO_CODE();
3693 if (!drv) {
3694 return -ENOMEDIUM;
3697 if (!drv->bdrv_co_snapshot_block_status) {
3698 return -ENOTSUP;
3701 bdrv_inc_in_flight(bs);
3702 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3703 pnum, map, file);
3704 bdrv_dec_in_flight(bs);
3706 return ret;
3709 int coroutine_fn
3710 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3712 BlockDriver *drv = bs->drv;
3713 int ret;
3714 IO_CODE();
3716 if (!drv) {
3717 return -ENOMEDIUM;
3720 if (!drv->bdrv_co_pdiscard_snapshot) {
3721 return -ENOTSUP;
3724 bdrv_inc_in_flight(bs);
3725 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3726 bdrv_dec_in_flight(bs);
3728 return ret;