Revert "Fix output of uninitialized strings"
[qemu.git] / vl.c
blobff438d09034aece1be6079d8f7a3236b241da2d3
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
162 #include "disas.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
170 #endif
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
178 #ifdef DEBUG_IOPORT
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 #else
181 # define LOG_IOPORT(...) do { } while (0)
182 #endif
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
203 int nb_drives;
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
377 int i, bsize;
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
395 return 0;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
402 int i, bsize;
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
420 return 0;
423 void isa_unassign_ioport(int start, int length)
425 int i;
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
472 int cpu_inb(CPUState *env, int addr)
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
484 int cpu_inw(CPUState *env, int addr)
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 int cpu_inl(CPUState *env, int addr)
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
511 va_list ap;
512 CPUState *env;
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
526 va_end(ap);
527 abort();
530 /***************/
531 /* ballooning */
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
555 /***********************************************************/
556 /* keyboard/mouse */
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
595 return s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
644 if (!qemu_put_mouse_event_current) {
645 return;
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
670 return 0;
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
747 #ifdef WIN32
749 static int64_t clock_freq;
751 static void init_get_clock(void)
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
770 #else
772 static int use_rt_clock;
774 static void init_get_clock(void)
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
785 #endif
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
806 #endif
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
833 if (use_icount) {
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
885 /* timers */
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
924 return;
926 t->rearm(t);
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
934 #ifdef _WIN32
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
945 #else
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
950 #ifdef __linux__
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
964 #endif /* _WIN32 */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1051 static void show_available_alarms(void)
1053 int i;
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1074 arg = strdup(opt);
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1103 free(arg);
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130 QEMUTimer *ts;
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1139 void qemu_free_timer(QEMUTimer *ts)
1141 qemu_free(ts);
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1147 QEMUTimer **pt, *t;
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1160 pt = &t->next;
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168 QEMUTimer **pt, *t;
1170 qemu_del_timer(ts);
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1206 return 0;
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218 QEMUTimer *ts;
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1248 static void init_timers(void)
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1303 return 0;
1306 static void qemu_event_increment(void);
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1316 #if 0
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1342 last_clock = ti;
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1362 #endif
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1372 int64_t delta;
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1382 if (delta < 0)
1383 delta = 0;
1385 return delta;
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1391 int64_t delta;
1392 int64_t rtdelta;
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1409 return delta;
1411 #endif
1413 #ifndef _WIN32
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1418 int flags;
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1427 return 0;
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1451 int r, fd;
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1494 close(fd);
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1523 return 0;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1530 close(rtc_fd);
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1560 return -1;
1563 t->priv = (void *)(long)host_timer;
1565 return 0;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1572 timer_delete(host_timer);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1622 sigaction(SIGALRM, &act, NULL);
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1634 return 0;
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1639 struct itimerval itv;
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1645 #endif /* !defined(_WIN32) */
1648 #ifdef _WIN32
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1662 timeBeginPeriod(data->period);
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1682 return 0;
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1687 struct qemu_alarm_win32 *data = t->priv;
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1705 timeKillEvent(data->timerId);
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data->period);
1717 exit(1);
1721 #endif /* _WIN32 */
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1731 err = t->start(t);
1732 if (!err)
1733 break;
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1741 alarm_timer = t;
1743 return 0;
1745 fail:
1746 return err;
1749 static void quit_timers(void)
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1759 time_t ti;
1760 struct tm *ret;
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1774 memcpy(tm, ret, sizeof(struct tm));
1777 int qemu_timedate_diff(struct tm *tm)
1779 time_t seconds;
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1789 return seconds - time(NULL);
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1795 WSACleanup();
1798 static int socket_init(void)
1800 WSADATA Data;
1801 int ret, err;
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1809 atexit(socket_cleanup);
1810 return 0;
1812 #endif
1814 int get_param_value(char *buf, int buf_size,
1815 const char *tag, const char *str)
1817 const char *p;
1818 char option[128];
1820 p = str;
1821 for(;;) {
1822 p = get_opt_name(option, sizeof(option), p, '=');
1823 if (*p != '=')
1824 break;
1825 p++;
1826 if (!strcmp(tag, option)) {
1827 (void)get_opt_value(buf, buf_size, p);
1828 return strlen(buf);
1829 } else {
1830 p = get_opt_value(NULL, 0, p);
1832 if (*p != ',')
1833 break;
1834 p++;
1836 return 0;
1839 int check_params(const char * const *params, const char *str)
1841 int name_buf_size = 1;
1842 const char *p;
1843 char *name_buf;
1844 int i, len;
1845 int ret = 0;
1847 for (i = 0; params[i] != NULL; i++) {
1848 len = strlen(params[i]) + 1;
1849 if (len > name_buf_size) {
1850 name_buf_size = len;
1853 name_buf = qemu_malloc(name_buf_size);
1855 p = str;
1856 while (*p != '\0') {
1857 p = get_opt_name(name_buf, name_buf_size, p, '=');
1858 if (*p != '=') {
1859 ret = -1;
1860 break;
1862 p++;
1863 for(i = 0; params[i] != NULL; i++)
1864 if (!strcmp(params[i], name_buf))
1865 break;
1866 if (params[i] == NULL) {
1867 ret = -1;
1868 break;
1870 p = get_opt_value(NULL, 0, p);
1871 if (*p != ',')
1872 break;
1873 p++;
1876 qemu_free(name_buf);
1877 return ret;
1880 /***********************************************************/
1881 /* Bluetooth support */
1882 static int nb_hcis;
1883 static int cur_hci;
1884 static struct HCIInfo *hci_table[MAX_NICS];
1886 static struct bt_vlan_s {
1887 struct bt_scatternet_s net;
1888 int id;
1889 struct bt_vlan_s *next;
1890 } *first_bt_vlan;
1892 /* find or alloc a new bluetooth "VLAN" */
1893 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1895 struct bt_vlan_s **pvlan, *vlan;
1896 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1897 if (vlan->id == id)
1898 return &vlan->net;
1900 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1901 vlan->id = id;
1902 pvlan = &first_bt_vlan;
1903 while (*pvlan != NULL)
1904 pvlan = &(*pvlan)->next;
1905 *pvlan = vlan;
1906 return &vlan->net;
1909 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1913 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1915 return -ENOTSUP;
1918 static struct HCIInfo null_hci = {
1919 .cmd_send = null_hci_send,
1920 .sco_send = null_hci_send,
1921 .acl_send = null_hci_send,
1922 .bdaddr_set = null_hci_addr_set,
1925 struct HCIInfo *qemu_next_hci(void)
1927 if (cur_hci == nb_hcis)
1928 return &null_hci;
1930 return hci_table[cur_hci++];
1933 static struct HCIInfo *hci_init(const char *str)
1935 char *endp;
1936 struct bt_scatternet_s *vlan = 0;
1938 if (!strcmp(str, "null"))
1939 /* null */
1940 return &null_hci;
1941 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1942 /* host[:hciN] */
1943 return bt_host_hci(str[4] ? str + 5 : "hci0");
1944 else if (!strncmp(str, "hci", 3)) {
1945 /* hci[,vlan=n] */
1946 if (str[3]) {
1947 if (!strncmp(str + 3, ",vlan=", 6)) {
1948 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1949 if (*endp)
1950 vlan = 0;
1952 } else
1953 vlan = qemu_find_bt_vlan(0);
1954 if (vlan)
1955 return bt_new_hci(vlan);
1958 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1960 return 0;
1963 static int bt_hci_parse(const char *str)
1965 struct HCIInfo *hci;
1966 bdaddr_t bdaddr;
1968 if (nb_hcis >= MAX_NICS) {
1969 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1970 return -1;
1973 hci = hci_init(str);
1974 if (!hci)
1975 return -1;
1977 bdaddr.b[0] = 0x52;
1978 bdaddr.b[1] = 0x54;
1979 bdaddr.b[2] = 0x00;
1980 bdaddr.b[3] = 0x12;
1981 bdaddr.b[4] = 0x34;
1982 bdaddr.b[5] = 0x56 + nb_hcis;
1983 hci->bdaddr_set(hci, bdaddr.b);
1985 hci_table[nb_hcis++] = hci;
1987 return 0;
1990 static void bt_vhci_add(int vlan_id)
1992 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1994 if (!vlan->slave)
1995 fprintf(stderr, "qemu: warning: adding a VHCI to "
1996 "an empty scatternet %i\n", vlan_id);
1998 bt_vhci_init(bt_new_hci(vlan));
2001 static struct bt_device_s *bt_device_add(const char *opt)
2003 struct bt_scatternet_s *vlan;
2004 int vlan_id = 0;
2005 char *endp = strstr(opt, ",vlan=");
2006 int len = (endp ? endp - opt : strlen(opt)) + 1;
2007 char devname[10];
2009 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2011 if (endp) {
2012 vlan_id = strtol(endp + 6, &endp, 0);
2013 if (*endp) {
2014 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2015 return 0;
2019 vlan = qemu_find_bt_vlan(vlan_id);
2021 if (!vlan->slave)
2022 fprintf(stderr, "qemu: warning: adding a slave device to "
2023 "an empty scatternet %i\n", vlan_id);
2025 if (!strcmp(devname, "keyboard"))
2026 return bt_keyboard_init(vlan);
2028 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2029 return 0;
2032 static int bt_parse(const char *opt)
2034 const char *endp, *p;
2035 int vlan;
2037 if (strstart(opt, "hci", &endp)) {
2038 if (!*endp || *endp == ',') {
2039 if (*endp)
2040 if (!strstart(endp, ",vlan=", 0))
2041 opt = endp + 1;
2043 return bt_hci_parse(opt);
2045 } else if (strstart(opt, "vhci", &endp)) {
2046 if (!*endp || *endp == ',') {
2047 if (*endp) {
2048 if (strstart(endp, ",vlan=", &p)) {
2049 vlan = strtol(p, (char **) &endp, 0);
2050 if (*endp) {
2051 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2052 return 1;
2054 } else {
2055 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2056 return 1;
2058 } else
2059 vlan = 0;
2061 bt_vhci_add(vlan);
2062 return 0;
2064 } else if (strstart(opt, "device:", &endp))
2065 return !bt_device_add(endp);
2067 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2068 return 1;
2071 /***********************************************************/
2072 /* QEMU Block devices */
2074 #define HD_ALIAS "index=%d,media=disk"
2075 #define CDROM_ALIAS "index=2,media=cdrom"
2076 #define FD_ALIAS "index=%d,if=floppy"
2077 #define PFLASH_ALIAS "if=pflash"
2078 #define MTD_ALIAS "if=mtd"
2079 #define SD_ALIAS "index=0,if=sd"
2081 static int drive_opt_get_free_idx(void)
2083 int index;
2085 for (index = 0; index < MAX_DRIVES; index++)
2086 if (!drives_opt[index].used) {
2087 drives_opt[index].used = 1;
2088 return index;
2091 return -1;
2094 static int drive_get_free_idx(void)
2096 int index;
2098 for (index = 0; index < MAX_DRIVES; index++)
2099 if (!drives_table[index].used) {
2100 drives_table[index].used = 1;
2101 return index;
2104 return -1;
2107 int drive_add(const char *file, const char *fmt, ...)
2109 va_list ap;
2110 int index = drive_opt_get_free_idx();
2112 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2113 fprintf(stderr, "qemu: too many drives\n");
2114 return -1;
2117 drives_opt[index].file = file;
2118 va_start(ap, fmt);
2119 vsnprintf(drives_opt[index].opt,
2120 sizeof(drives_opt[0].opt), fmt, ap);
2121 va_end(ap);
2123 nb_drives_opt++;
2124 return index;
2127 void drive_remove(int index)
2129 drives_opt[index].used = 0;
2130 nb_drives_opt--;
2133 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2135 int index;
2137 /* seek interface, bus and unit */
2139 for (index = 0; index < MAX_DRIVES; index++)
2140 if (drives_table[index].type == type &&
2141 drives_table[index].bus == bus &&
2142 drives_table[index].unit == unit &&
2143 drives_table[index].used)
2144 return index;
2146 return -1;
2149 int drive_get_max_bus(BlockInterfaceType type)
2151 int max_bus;
2152 int index;
2154 max_bus = -1;
2155 for (index = 0; index < nb_drives; index++) {
2156 if(drives_table[index].type == type &&
2157 drives_table[index].bus > max_bus)
2158 max_bus = drives_table[index].bus;
2160 return max_bus;
2163 const char *drive_get_serial(BlockDriverState *bdrv)
2165 int index;
2167 for (index = 0; index < nb_drives; index++)
2168 if (drives_table[index].bdrv == bdrv)
2169 return drives_table[index].serial;
2171 return "\0";
2174 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2176 int index;
2178 for (index = 0; index < nb_drives; index++)
2179 if (drives_table[index].bdrv == bdrv)
2180 return drives_table[index].onerror;
2182 return BLOCK_ERR_STOP_ENOSPC;
2185 static void bdrv_format_print(void *opaque, const char *name)
2187 fprintf(stderr, " %s", name);
2190 void drive_uninit(BlockDriverState *bdrv)
2192 int i;
2194 for (i = 0; i < MAX_DRIVES; i++)
2195 if (drives_table[i].bdrv == bdrv) {
2196 drives_table[i].bdrv = NULL;
2197 drives_table[i].used = 0;
2198 drive_remove(drives_table[i].drive_opt_idx);
2199 nb_drives--;
2200 break;
2204 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2206 char buf[128];
2207 char file[1024];
2208 char devname[128];
2209 char serial[21];
2210 const char *mediastr = "";
2211 BlockInterfaceType type;
2212 enum { MEDIA_DISK, MEDIA_CDROM } media;
2213 int bus_id, unit_id;
2214 int cyls, heads, secs, translation;
2215 BlockDriverState *bdrv;
2216 BlockDriver *drv = NULL;
2217 QEMUMachine *machine = opaque;
2218 int max_devs;
2219 int index;
2220 int cache;
2221 int bdrv_flags, onerror;
2222 int drives_table_idx;
2223 char *str = arg->opt;
2224 static const char * const params[] = { "bus", "unit", "if", "index",
2225 "cyls", "heads", "secs", "trans",
2226 "media", "snapshot", "file",
2227 "cache", "format", "serial", "werror",
2228 NULL };
2230 if (check_params(params, str) < 0) {
2231 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2232 buf, str);
2233 return -1;
2236 file[0] = 0;
2237 cyls = heads = secs = 0;
2238 bus_id = 0;
2239 unit_id = -1;
2240 translation = BIOS_ATA_TRANSLATION_AUTO;
2241 index = -1;
2242 cache = 3;
2244 if (machine->use_scsi) {
2245 type = IF_SCSI;
2246 max_devs = MAX_SCSI_DEVS;
2247 pstrcpy(devname, sizeof(devname), "scsi");
2248 } else {
2249 type = IF_IDE;
2250 max_devs = MAX_IDE_DEVS;
2251 pstrcpy(devname, sizeof(devname), "ide");
2253 media = MEDIA_DISK;
2255 /* extract parameters */
2257 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2258 bus_id = strtol(buf, NULL, 0);
2259 if (bus_id < 0) {
2260 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2261 return -1;
2265 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2266 unit_id = strtol(buf, NULL, 0);
2267 if (unit_id < 0) {
2268 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2269 return -1;
2273 if (get_param_value(buf, sizeof(buf), "if", str)) {
2274 pstrcpy(devname, sizeof(devname), buf);
2275 if (!strcmp(buf, "ide")) {
2276 type = IF_IDE;
2277 max_devs = MAX_IDE_DEVS;
2278 } else if (!strcmp(buf, "scsi")) {
2279 type = IF_SCSI;
2280 max_devs = MAX_SCSI_DEVS;
2281 } else if (!strcmp(buf, "floppy")) {
2282 type = IF_FLOPPY;
2283 max_devs = 0;
2284 } else if (!strcmp(buf, "pflash")) {
2285 type = IF_PFLASH;
2286 max_devs = 0;
2287 } else if (!strcmp(buf, "mtd")) {
2288 type = IF_MTD;
2289 max_devs = 0;
2290 } else if (!strcmp(buf, "sd")) {
2291 type = IF_SD;
2292 max_devs = 0;
2293 } else if (!strcmp(buf, "virtio")) {
2294 type = IF_VIRTIO;
2295 max_devs = 0;
2296 } else if (!strcmp(buf, "xen")) {
2297 type = IF_XEN;
2298 max_devs = 0;
2299 } else {
2300 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2301 return -1;
2305 if (get_param_value(buf, sizeof(buf), "index", str)) {
2306 index = strtol(buf, NULL, 0);
2307 if (index < 0) {
2308 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2309 return -1;
2313 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2314 cyls = strtol(buf, NULL, 0);
2317 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2318 heads = strtol(buf, NULL, 0);
2321 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2322 secs = strtol(buf, NULL, 0);
2325 if (cyls || heads || secs) {
2326 if (cyls < 1 || cyls > 16383) {
2327 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2328 return -1;
2330 if (heads < 1 || heads > 16) {
2331 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2332 return -1;
2334 if (secs < 1 || secs > 63) {
2335 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2336 return -1;
2340 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2341 if (!cyls) {
2342 fprintf(stderr,
2343 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2344 str);
2345 return -1;
2347 if (!strcmp(buf, "none"))
2348 translation = BIOS_ATA_TRANSLATION_NONE;
2349 else if (!strcmp(buf, "lba"))
2350 translation = BIOS_ATA_TRANSLATION_LBA;
2351 else if (!strcmp(buf, "auto"))
2352 translation = BIOS_ATA_TRANSLATION_AUTO;
2353 else {
2354 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2355 return -1;
2359 if (get_param_value(buf, sizeof(buf), "media", str)) {
2360 if (!strcmp(buf, "disk")) {
2361 media = MEDIA_DISK;
2362 } else if (!strcmp(buf, "cdrom")) {
2363 if (cyls || secs || heads) {
2364 fprintf(stderr,
2365 "qemu: '%s' invalid physical CHS format\n", str);
2366 return -1;
2368 media = MEDIA_CDROM;
2369 } else {
2370 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2371 return -1;
2375 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2376 if (!strcmp(buf, "on"))
2377 snapshot = 1;
2378 else if (!strcmp(buf, "off"))
2379 snapshot = 0;
2380 else {
2381 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2382 return -1;
2386 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2387 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2388 cache = 0;
2389 else if (!strcmp(buf, "writethrough"))
2390 cache = 1;
2391 else if (!strcmp(buf, "writeback"))
2392 cache = 2;
2393 else {
2394 fprintf(stderr, "qemu: invalid cache option\n");
2395 return -1;
2399 if (get_param_value(buf, sizeof(buf), "format", str)) {
2400 if (strcmp(buf, "?") == 0) {
2401 fprintf(stderr, "qemu: Supported formats:");
2402 bdrv_iterate_format(bdrv_format_print, NULL);
2403 fprintf(stderr, "\n");
2404 return -1;
2406 drv = bdrv_find_format(buf);
2407 if (!drv) {
2408 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2409 return -1;
2413 if (arg->file == NULL)
2414 get_param_value(file, sizeof(file), "file", str);
2415 else
2416 pstrcpy(file, sizeof(file), arg->file);
2418 if (!get_param_value(serial, sizeof(serial), "serial", str))
2419 memset(serial, 0, sizeof(serial));
2421 onerror = BLOCK_ERR_STOP_ENOSPC;
2422 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2423 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2424 fprintf(stderr, "werror is no supported by this format\n");
2425 return -1;
2427 if (!strcmp(buf, "ignore"))
2428 onerror = BLOCK_ERR_IGNORE;
2429 else if (!strcmp(buf, "enospc"))
2430 onerror = BLOCK_ERR_STOP_ENOSPC;
2431 else if (!strcmp(buf, "stop"))
2432 onerror = BLOCK_ERR_STOP_ANY;
2433 else if (!strcmp(buf, "report"))
2434 onerror = BLOCK_ERR_REPORT;
2435 else {
2436 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2437 return -1;
2441 /* compute bus and unit according index */
2443 if (index != -1) {
2444 if (bus_id != 0 || unit_id != -1) {
2445 fprintf(stderr,
2446 "qemu: '%s' index cannot be used with bus and unit\n", str);
2447 return -1;
2449 if (max_devs == 0)
2451 unit_id = index;
2452 bus_id = 0;
2453 } else {
2454 unit_id = index % max_devs;
2455 bus_id = index / max_devs;
2459 /* if user doesn't specify a unit_id,
2460 * try to find the first free
2463 if (unit_id == -1) {
2464 unit_id = 0;
2465 while (drive_get_index(type, bus_id, unit_id) != -1) {
2466 unit_id++;
2467 if (max_devs && unit_id >= max_devs) {
2468 unit_id -= max_devs;
2469 bus_id++;
2474 /* check unit id */
2476 if (max_devs && unit_id >= max_devs) {
2477 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2478 str, unit_id, max_devs - 1);
2479 return -1;
2483 * ignore multiple definitions
2486 if (drive_get_index(type, bus_id, unit_id) != -1)
2487 return -2;
2489 /* init */
2491 if (type == IF_IDE || type == IF_SCSI)
2492 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2493 if (max_devs)
2494 snprintf(buf, sizeof(buf), "%s%i%s%i",
2495 devname, bus_id, mediastr, unit_id);
2496 else
2497 snprintf(buf, sizeof(buf), "%s%s%i",
2498 devname, mediastr, unit_id);
2499 bdrv = bdrv_new(buf);
2500 drives_table_idx = drive_get_free_idx();
2501 drives_table[drives_table_idx].bdrv = bdrv;
2502 drives_table[drives_table_idx].type = type;
2503 drives_table[drives_table_idx].bus = bus_id;
2504 drives_table[drives_table_idx].unit = unit_id;
2505 drives_table[drives_table_idx].onerror = onerror;
2506 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2507 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2508 nb_drives++;
2510 switch(type) {
2511 case IF_IDE:
2512 case IF_SCSI:
2513 case IF_XEN:
2514 switch(media) {
2515 case MEDIA_DISK:
2516 if (cyls != 0) {
2517 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2518 bdrv_set_translation_hint(bdrv, translation);
2520 break;
2521 case MEDIA_CDROM:
2522 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2523 break;
2525 break;
2526 case IF_SD:
2527 /* FIXME: This isn't really a floppy, but it's a reasonable
2528 approximation. */
2529 case IF_FLOPPY:
2530 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2531 break;
2532 case IF_PFLASH:
2533 case IF_MTD:
2534 case IF_VIRTIO:
2535 break;
2536 case IF_COUNT:
2537 abort();
2539 if (!file[0])
2540 return -2;
2541 bdrv_flags = 0;
2542 if (snapshot) {
2543 bdrv_flags |= BDRV_O_SNAPSHOT;
2544 cache = 2; /* always use write-back with snapshot */
2546 if (cache == 0) /* no caching */
2547 bdrv_flags |= BDRV_O_NOCACHE;
2548 else if (cache == 2) /* write-back */
2549 bdrv_flags |= BDRV_O_CACHE_WB;
2550 else if (cache == 3) /* not specified */
2551 bdrv_flags |= BDRV_O_CACHE_DEF;
2552 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2553 fprintf(stderr, "qemu: could not open disk image %s\n",
2554 file);
2555 return -1;
2557 if (bdrv_key_required(bdrv))
2558 autostart = 0;
2559 return drives_table_idx;
2562 static void numa_add(const char *optarg)
2564 char option[128];
2565 char *endptr;
2566 unsigned long long value, endvalue;
2567 int nodenr;
2569 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2570 if (!strcmp(option, "node")) {
2571 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2572 nodenr = nb_numa_nodes;
2573 } else {
2574 nodenr = strtoull(option, NULL, 10);
2577 if (get_param_value(option, 128, "mem", optarg) == 0) {
2578 node_mem[nodenr] = 0;
2579 } else {
2580 value = strtoull(option, &endptr, 0);
2581 switch (*endptr) {
2582 case 0: case 'M': case 'm':
2583 value <<= 20;
2584 break;
2585 case 'G': case 'g':
2586 value <<= 30;
2587 break;
2589 node_mem[nodenr] = value;
2591 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2592 node_cpumask[nodenr] = 0;
2593 } else {
2594 value = strtoull(option, &endptr, 10);
2595 if (value >= 64) {
2596 value = 63;
2597 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2598 } else {
2599 if (*endptr == '-') {
2600 endvalue = strtoull(endptr+1, &endptr, 10);
2601 if (endvalue >= 63) {
2602 endvalue = 62;
2603 fprintf(stderr,
2604 "only 63 CPUs in NUMA mode supported.\n");
2606 value = (1 << (endvalue + 1)) - (1 << value);
2607 } else {
2608 value = 1 << value;
2611 node_cpumask[nodenr] = value;
2613 nb_numa_nodes++;
2615 return;
2618 /***********************************************************/
2619 /* USB devices */
2621 static USBPort *used_usb_ports;
2622 static USBPort *free_usb_ports;
2624 /* ??? Maybe change this to register a hub to keep track of the topology. */
2625 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2626 usb_attachfn attach)
2628 port->opaque = opaque;
2629 port->index = index;
2630 port->attach = attach;
2631 port->next = free_usb_ports;
2632 free_usb_ports = port;
2635 int usb_device_add_dev(USBDevice *dev)
2637 USBPort *port;
2639 /* Find a USB port to add the device to. */
2640 port = free_usb_ports;
2641 if (!port->next) {
2642 USBDevice *hub;
2644 /* Create a new hub and chain it on. */
2645 free_usb_ports = NULL;
2646 port->next = used_usb_ports;
2647 used_usb_ports = port;
2649 hub = usb_hub_init(VM_USB_HUB_SIZE);
2650 usb_attach(port, hub);
2651 port = free_usb_ports;
2654 free_usb_ports = port->next;
2655 port->next = used_usb_ports;
2656 used_usb_ports = port;
2657 usb_attach(port, dev);
2658 return 0;
2661 static void usb_msd_password_cb(void *opaque, int err)
2663 USBDevice *dev = opaque;
2665 if (!err)
2666 usb_device_add_dev(dev);
2667 else
2668 dev->handle_destroy(dev);
2671 static int usb_device_add(const char *devname, int is_hotplug)
2673 const char *p;
2674 USBDevice *dev;
2676 if (!free_usb_ports)
2677 return -1;
2679 if (strstart(devname, "host:", &p)) {
2680 dev = usb_host_device_open(p);
2681 } else if (!strcmp(devname, "mouse")) {
2682 dev = usb_mouse_init();
2683 } else if (!strcmp(devname, "tablet")) {
2684 dev = usb_tablet_init();
2685 } else if (!strcmp(devname, "keyboard")) {
2686 dev = usb_keyboard_init();
2687 } else if (strstart(devname, "disk:", &p)) {
2688 BlockDriverState *bs;
2690 dev = usb_msd_init(p);
2691 if (!dev)
2692 return -1;
2693 bs = usb_msd_get_bdrv(dev);
2694 if (bdrv_key_required(bs)) {
2695 autostart = 0;
2696 if (is_hotplug) {
2697 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2698 dev);
2699 return 0;
2702 } else if (!strcmp(devname, "wacom-tablet")) {
2703 dev = usb_wacom_init();
2704 } else if (strstart(devname, "serial:", &p)) {
2705 dev = usb_serial_init(p);
2706 #ifdef CONFIG_BRLAPI
2707 } else if (!strcmp(devname, "braille")) {
2708 dev = usb_baum_init();
2709 #endif
2710 } else if (strstart(devname, "net:", &p)) {
2711 int nic = nb_nics;
2713 if (net_client_init("nic", p) < 0)
2714 return -1;
2715 nd_table[nic].model = "usb";
2716 dev = usb_net_init(&nd_table[nic]);
2717 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2718 dev = usb_bt_init(devname[2] ? hci_init(p) :
2719 bt_new_hci(qemu_find_bt_vlan(0)));
2720 } else {
2721 return -1;
2723 if (!dev)
2724 return -1;
2726 return usb_device_add_dev(dev);
2729 int usb_device_del_addr(int bus_num, int addr)
2731 USBPort *port;
2732 USBPort **lastp;
2733 USBDevice *dev;
2735 if (!used_usb_ports)
2736 return -1;
2738 if (bus_num != 0)
2739 return -1;
2741 lastp = &used_usb_ports;
2742 port = used_usb_ports;
2743 while (port && port->dev->addr != addr) {
2744 lastp = &port->next;
2745 port = port->next;
2748 if (!port)
2749 return -1;
2751 dev = port->dev;
2752 *lastp = port->next;
2753 usb_attach(port, NULL);
2754 dev->handle_destroy(dev);
2755 port->next = free_usb_ports;
2756 free_usb_ports = port;
2757 return 0;
2760 static int usb_device_del(const char *devname)
2762 int bus_num, addr;
2763 const char *p;
2765 if (strstart(devname, "host:", &p))
2766 return usb_host_device_close(p);
2768 if (!used_usb_ports)
2769 return -1;
2771 p = strchr(devname, '.');
2772 if (!p)
2773 return -1;
2774 bus_num = strtoul(devname, NULL, 0);
2775 addr = strtoul(p + 1, NULL, 0);
2777 return usb_device_del_addr(bus_num, addr);
2780 void do_usb_add(Monitor *mon, const char *devname)
2782 usb_device_add(devname, 1);
2785 void do_usb_del(Monitor *mon, const char *devname)
2787 usb_device_del(devname);
2790 void usb_info(Monitor *mon)
2792 USBDevice *dev;
2793 USBPort *port;
2794 const char *speed_str;
2796 if (!usb_enabled) {
2797 monitor_printf(mon, "USB support not enabled\n");
2798 return;
2801 for (port = used_usb_ports; port; port = port->next) {
2802 dev = port->dev;
2803 if (!dev)
2804 continue;
2805 switch(dev->speed) {
2806 case USB_SPEED_LOW:
2807 speed_str = "1.5";
2808 break;
2809 case USB_SPEED_FULL:
2810 speed_str = "12";
2811 break;
2812 case USB_SPEED_HIGH:
2813 speed_str = "480";
2814 break;
2815 default:
2816 speed_str = "?";
2817 break;
2819 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2820 0, dev->addr, speed_str, dev->devname);
2824 /***********************************************************/
2825 /* PCMCIA/Cardbus */
2827 static struct pcmcia_socket_entry_s {
2828 PCMCIASocket *socket;
2829 struct pcmcia_socket_entry_s *next;
2830 } *pcmcia_sockets = 0;
2832 void pcmcia_socket_register(PCMCIASocket *socket)
2834 struct pcmcia_socket_entry_s *entry;
2836 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2837 entry->socket = socket;
2838 entry->next = pcmcia_sockets;
2839 pcmcia_sockets = entry;
2842 void pcmcia_socket_unregister(PCMCIASocket *socket)
2844 struct pcmcia_socket_entry_s *entry, **ptr;
2846 ptr = &pcmcia_sockets;
2847 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2848 if (entry->socket == socket) {
2849 *ptr = entry->next;
2850 qemu_free(entry);
2854 void pcmcia_info(Monitor *mon)
2856 struct pcmcia_socket_entry_s *iter;
2858 if (!pcmcia_sockets)
2859 monitor_printf(mon, "No PCMCIA sockets\n");
2861 for (iter = pcmcia_sockets; iter; iter = iter->next)
2862 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2863 iter->socket->attached ? iter->socket->card_string :
2864 "Empty");
2867 /***********************************************************/
2868 /* register display */
2870 struct DisplayAllocator default_allocator = {
2871 defaultallocator_create_displaysurface,
2872 defaultallocator_resize_displaysurface,
2873 defaultallocator_free_displaysurface
2876 void register_displaystate(DisplayState *ds)
2878 DisplayState **s;
2879 s = &display_state;
2880 while (*s != NULL)
2881 s = &(*s)->next;
2882 ds->next = NULL;
2883 *s = ds;
2886 DisplayState *get_displaystate(void)
2888 return display_state;
2891 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2893 if(ds->allocator == &default_allocator) ds->allocator = da;
2894 return ds->allocator;
2897 /* dumb display */
2899 static void dumb_display_init(void)
2901 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2902 ds->allocator = &default_allocator;
2903 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2904 register_displaystate(ds);
2907 /***********************************************************/
2908 /* I/O handling */
2910 typedef struct IOHandlerRecord {
2911 int fd;
2912 IOCanRWHandler *fd_read_poll;
2913 IOHandler *fd_read;
2914 IOHandler *fd_write;
2915 int deleted;
2916 void *opaque;
2917 /* temporary data */
2918 struct pollfd *ufd;
2919 struct IOHandlerRecord *next;
2920 } IOHandlerRecord;
2922 static IOHandlerRecord *first_io_handler;
2924 /* XXX: fd_read_poll should be suppressed, but an API change is
2925 necessary in the character devices to suppress fd_can_read(). */
2926 int qemu_set_fd_handler2(int fd,
2927 IOCanRWHandler *fd_read_poll,
2928 IOHandler *fd_read,
2929 IOHandler *fd_write,
2930 void *opaque)
2932 IOHandlerRecord **pioh, *ioh;
2934 if (!fd_read && !fd_write) {
2935 pioh = &first_io_handler;
2936 for(;;) {
2937 ioh = *pioh;
2938 if (ioh == NULL)
2939 break;
2940 if (ioh->fd == fd) {
2941 ioh->deleted = 1;
2942 break;
2944 pioh = &ioh->next;
2946 } else {
2947 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2948 if (ioh->fd == fd)
2949 goto found;
2951 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2952 ioh->next = first_io_handler;
2953 first_io_handler = ioh;
2954 found:
2955 ioh->fd = fd;
2956 ioh->fd_read_poll = fd_read_poll;
2957 ioh->fd_read = fd_read;
2958 ioh->fd_write = fd_write;
2959 ioh->opaque = opaque;
2960 ioh->deleted = 0;
2962 return 0;
2965 int qemu_set_fd_handler(int fd,
2966 IOHandler *fd_read,
2967 IOHandler *fd_write,
2968 void *opaque)
2970 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2973 #ifdef _WIN32
2974 /***********************************************************/
2975 /* Polling handling */
2977 typedef struct PollingEntry {
2978 PollingFunc *func;
2979 void *opaque;
2980 struct PollingEntry *next;
2981 } PollingEntry;
2983 static PollingEntry *first_polling_entry;
2985 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2987 PollingEntry **ppe, *pe;
2988 pe = qemu_mallocz(sizeof(PollingEntry));
2989 pe->func = func;
2990 pe->opaque = opaque;
2991 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2992 *ppe = pe;
2993 return 0;
2996 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2998 PollingEntry **ppe, *pe;
2999 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3000 pe = *ppe;
3001 if (pe->func == func && pe->opaque == opaque) {
3002 *ppe = pe->next;
3003 qemu_free(pe);
3004 break;
3009 /***********************************************************/
3010 /* Wait objects support */
3011 typedef struct WaitObjects {
3012 int num;
3013 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3014 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3015 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3016 } WaitObjects;
3018 static WaitObjects wait_objects = {0};
3020 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3022 WaitObjects *w = &wait_objects;
3024 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3025 return -1;
3026 w->events[w->num] = handle;
3027 w->func[w->num] = func;
3028 w->opaque[w->num] = opaque;
3029 w->num++;
3030 return 0;
3033 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3035 int i, found;
3036 WaitObjects *w = &wait_objects;
3038 found = 0;
3039 for (i = 0; i < w->num; i++) {
3040 if (w->events[i] == handle)
3041 found = 1;
3042 if (found) {
3043 w->events[i] = w->events[i + 1];
3044 w->func[i] = w->func[i + 1];
3045 w->opaque[i] = w->opaque[i + 1];
3048 if (found)
3049 w->num--;
3051 #endif
3053 /***********************************************************/
3054 /* ram save/restore */
3056 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3058 int v;
3060 v = qemu_get_byte(f);
3061 switch(v) {
3062 case 0:
3063 if (qemu_get_buffer(f, buf, len) != len)
3064 return -EIO;
3065 break;
3066 case 1:
3067 v = qemu_get_byte(f);
3068 memset(buf, v, len);
3069 break;
3070 default:
3071 return -EINVAL;
3074 if (qemu_file_has_error(f))
3075 return -EIO;
3077 return 0;
3080 static int ram_load_v1(QEMUFile *f, void *opaque)
3082 int ret;
3083 ram_addr_t i;
3085 if (qemu_get_be32(f) != last_ram_offset)
3086 return -EINVAL;
3087 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3088 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3089 if (ret)
3090 return ret;
3092 return 0;
3095 #define BDRV_HASH_BLOCK_SIZE 1024
3096 #define IOBUF_SIZE 4096
3097 #define RAM_CBLOCK_MAGIC 0xfabe
3099 typedef struct RamDecompressState {
3100 z_stream zstream;
3101 QEMUFile *f;
3102 uint8_t buf[IOBUF_SIZE];
3103 } RamDecompressState;
3105 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3107 int ret;
3108 memset(s, 0, sizeof(*s));
3109 s->f = f;
3110 ret = inflateInit(&s->zstream);
3111 if (ret != Z_OK)
3112 return -1;
3113 return 0;
3116 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3118 int ret, clen;
3120 s->zstream.avail_out = len;
3121 s->zstream.next_out = buf;
3122 while (s->zstream.avail_out > 0) {
3123 if (s->zstream.avail_in == 0) {
3124 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3125 return -1;
3126 clen = qemu_get_be16(s->f);
3127 if (clen > IOBUF_SIZE)
3128 return -1;
3129 qemu_get_buffer(s->f, s->buf, clen);
3130 s->zstream.avail_in = clen;
3131 s->zstream.next_in = s->buf;
3133 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3134 if (ret != Z_OK && ret != Z_STREAM_END) {
3135 return -1;
3138 return 0;
3141 static void ram_decompress_close(RamDecompressState *s)
3143 inflateEnd(&s->zstream);
3146 #define RAM_SAVE_FLAG_FULL 0x01
3147 #define RAM_SAVE_FLAG_COMPRESS 0x02
3148 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3149 #define RAM_SAVE_FLAG_PAGE 0x08
3150 #define RAM_SAVE_FLAG_EOS 0x10
3152 static int is_dup_page(uint8_t *page, uint8_t ch)
3154 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3155 uint32_t *array = (uint32_t *)page;
3156 int i;
3158 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3159 if (array[i] != val)
3160 return 0;
3163 return 1;
3166 static int ram_save_block(QEMUFile *f)
3168 static ram_addr_t current_addr = 0;
3169 ram_addr_t saved_addr = current_addr;
3170 ram_addr_t addr = 0;
3171 int found = 0;
3173 while (addr < last_ram_offset) {
3174 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3175 uint8_t *p;
3177 cpu_physical_memory_reset_dirty(current_addr,
3178 current_addr + TARGET_PAGE_SIZE,
3179 MIGRATION_DIRTY_FLAG);
3181 p = qemu_get_ram_ptr(current_addr);
3183 if (is_dup_page(p, *p)) {
3184 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3185 qemu_put_byte(f, *p);
3186 } else {
3187 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3188 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3191 found = 1;
3192 break;
3194 addr += TARGET_PAGE_SIZE;
3195 current_addr = (saved_addr + addr) % last_ram_offset;
3198 return found;
3201 static ram_addr_t ram_save_threshold = 10;
3202 static uint64_t bytes_transferred = 0;
3204 static ram_addr_t ram_save_remaining(void)
3206 ram_addr_t addr;
3207 ram_addr_t count = 0;
3209 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3210 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3211 count++;
3214 return count;
3217 uint64_t ram_bytes_remaining(void)
3219 return ram_save_remaining() * TARGET_PAGE_SIZE;
3222 uint64_t ram_bytes_transferred(void)
3224 return bytes_transferred;
3227 uint64_t ram_bytes_total(void)
3229 return last_ram_offset;
3232 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3234 ram_addr_t addr;
3236 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3237 qemu_file_set_error(f);
3238 return 0;
3241 if (stage == 1) {
3242 /* Make sure all dirty bits are set */
3243 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3244 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3245 cpu_physical_memory_set_dirty(addr);
3248 /* Enable dirty memory tracking */
3249 cpu_physical_memory_set_dirty_tracking(1);
3251 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3254 while (!qemu_file_rate_limit(f)) {
3255 int ret;
3257 ret = ram_save_block(f);
3258 bytes_transferred += ret * TARGET_PAGE_SIZE;
3259 if (ret == 0) /* no more blocks */
3260 break;
3263 /* try transferring iterative blocks of memory */
3265 if (stage == 3) {
3267 /* flush all remaining blocks regardless of rate limiting */
3268 while (ram_save_block(f) != 0) {
3269 bytes_transferred += TARGET_PAGE_SIZE;
3271 cpu_physical_memory_set_dirty_tracking(0);
3274 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3276 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3279 static int ram_load_dead(QEMUFile *f, void *opaque)
3281 RamDecompressState s1, *s = &s1;
3282 uint8_t buf[10];
3283 ram_addr_t i;
3285 if (ram_decompress_open(s, f) < 0)
3286 return -EINVAL;
3287 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3288 if (ram_decompress_buf(s, buf, 1) < 0) {
3289 fprintf(stderr, "Error while reading ram block header\n");
3290 goto error;
3292 if (buf[0] == 0) {
3293 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3294 BDRV_HASH_BLOCK_SIZE) < 0) {
3295 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3296 goto error;
3298 } else {
3299 error:
3300 printf("Error block header\n");
3301 return -EINVAL;
3304 ram_decompress_close(s);
3306 return 0;
3309 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3311 ram_addr_t addr;
3312 int flags;
3314 if (version_id == 1)
3315 return ram_load_v1(f, opaque);
3317 if (version_id == 2) {
3318 if (qemu_get_be32(f) != last_ram_offset)
3319 return -EINVAL;
3320 return ram_load_dead(f, opaque);
3323 if (version_id != 3)
3324 return -EINVAL;
3326 do {
3327 addr = qemu_get_be64(f);
3329 flags = addr & ~TARGET_PAGE_MASK;
3330 addr &= TARGET_PAGE_MASK;
3332 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3333 if (addr != last_ram_offset)
3334 return -EINVAL;
3337 if (flags & RAM_SAVE_FLAG_FULL) {
3338 if (ram_load_dead(f, opaque) < 0)
3339 return -EINVAL;
3342 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3343 uint8_t ch = qemu_get_byte(f);
3344 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3345 } else if (flags & RAM_SAVE_FLAG_PAGE)
3346 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3347 } while (!(flags & RAM_SAVE_FLAG_EOS));
3349 return 0;
3352 void qemu_service_io(void)
3354 qemu_notify_event();
3357 /***********************************************************/
3358 /* bottom halves (can be seen as timers which expire ASAP) */
3360 struct QEMUBH {
3361 QEMUBHFunc *cb;
3362 void *opaque;
3363 int scheduled;
3364 int idle;
3365 int deleted;
3366 QEMUBH *next;
3369 static QEMUBH *first_bh = NULL;
3371 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3373 QEMUBH *bh;
3374 bh = qemu_mallocz(sizeof(QEMUBH));
3375 bh->cb = cb;
3376 bh->opaque = opaque;
3377 bh->next = first_bh;
3378 first_bh = bh;
3379 return bh;
3382 int qemu_bh_poll(void)
3384 QEMUBH *bh, **bhp;
3385 int ret;
3387 ret = 0;
3388 for (bh = first_bh; bh; bh = bh->next) {
3389 if (!bh->deleted && bh->scheduled) {
3390 bh->scheduled = 0;
3391 if (!bh->idle)
3392 ret = 1;
3393 bh->idle = 0;
3394 bh->cb(bh->opaque);
3398 /* remove deleted bhs */
3399 bhp = &first_bh;
3400 while (*bhp) {
3401 bh = *bhp;
3402 if (bh->deleted) {
3403 *bhp = bh->next;
3404 qemu_free(bh);
3405 } else
3406 bhp = &bh->next;
3409 return ret;
3412 void qemu_bh_schedule_idle(QEMUBH *bh)
3414 if (bh->scheduled)
3415 return;
3416 bh->scheduled = 1;
3417 bh->idle = 1;
3420 void qemu_bh_schedule(QEMUBH *bh)
3422 if (bh->scheduled)
3423 return;
3424 bh->scheduled = 1;
3425 bh->idle = 0;
3426 /* stop the currently executing CPU to execute the BH ASAP */
3427 qemu_notify_event();
3430 void qemu_bh_cancel(QEMUBH *bh)
3432 bh->scheduled = 0;
3435 void qemu_bh_delete(QEMUBH *bh)
3437 bh->scheduled = 0;
3438 bh->deleted = 1;
3441 static void qemu_bh_update_timeout(int *timeout)
3443 QEMUBH *bh;
3445 for (bh = first_bh; bh; bh = bh->next) {
3446 if (!bh->deleted && bh->scheduled) {
3447 if (bh->idle) {
3448 /* idle bottom halves will be polled at least
3449 * every 10ms */
3450 *timeout = MIN(10, *timeout);
3451 } else {
3452 /* non-idle bottom halves will be executed
3453 * immediately */
3454 *timeout = 0;
3455 break;
3461 /***********************************************************/
3462 /* machine registration */
3464 static QEMUMachine *first_machine = NULL;
3465 QEMUMachine *current_machine = NULL;
3467 int qemu_register_machine(QEMUMachine *m)
3469 QEMUMachine **pm;
3470 pm = &first_machine;
3471 while (*pm != NULL)
3472 pm = &(*pm)->next;
3473 m->next = NULL;
3474 *pm = m;
3475 return 0;
3478 static QEMUMachine *find_machine(const char *name)
3480 QEMUMachine *m;
3482 for(m = first_machine; m != NULL; m = m->next) {
3483 if (!strcmp(m->name, name))
3484 return m;
3486 return NULL;
3489 static QEMUMachine *find_default_machine(void)
3491 QEMUMachine *m;
3493 for(m = first_machine; m != NULL; m = m->next) {
3494 if (m->is_default) {
3495 return m;
3498 return NULL;
3501 /***********************************************************/
3502 /* main execution loop */
3504 static void gui_update(void *opaque)
3506 uint64_t interval = GUI_REFRESH_INTERVAL;
3507 DisplayState *ds = opaque;
3508 DisplayChangeListener *dcl = ds->listeners;
3510 dpy_refresh(ds);
3512 while (dcl != NULL) {
3513 if (dcl->gui_timer_interval &&
3514 dcl->gui_timer_interval < interval)
3515 interval = dcl->gui_timer_interval;
3516 dcl = dcl->next;
3518 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3521 static void nographic_update(void *opaque)
3523 uint64_t interval = GUI_REFRESH_INTERVAL;
3525 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3528 struct vm_change_state_entry {
3529 VMChangeStateHandler *cb;
3530 void *opaque;
3531 LIST_ENTRY (vm_change_state_entry) entries;
3534 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3536 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3537 void *opaque)
3539 VMChangeStateEntry *e;
3541 e = qemu_mallocz(sizeof (*e));
3543 e->cb = cb;
3544 e->opaque = opaque;
3545 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3546 return e;
3549 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3551 LIST_REMOVE (e, entries);
3552 qemu_free (e);
3555 static void vm_state_notify(int running, int reason)
3557 VMChangeStateEntry *e;
3559 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3560 e->cb(e->opaque, running, reason);
3564 static void resume_all_vcpus(void);
3565 static void pause_all_vcpus(void);
3567 void vm_start(void)
3569 if (!vm_running) {
3570 cpu_enable_ticks();
3571 vm_running = 1;
3572 vm_state_notify(1, 0);
3573 qemu_rearm_alarm_timer(alarm_timer);
3574 resume_all_vcpus();
3578 /* reset/shutdown handler */
3580 typedef struct QEMUResetEntry {
3581 QEMUResetHandler *func;
3582 void *opaque;
3583 int order;
3584 struct QEMUResetEntry *next;
3585 } QEMUResetEntry;
3587 static QEMUResetEntry *first_reset_entry;
3588 static int reset_requested;
3589 static int shutdown_requested;
3590 static int powerdown_requested;
3591 static int debug_requested;
3592 static int vmstop_requested;
3594 int qemu_shutdown_requested(void)
3596 int r = shutdown_requested;
3597 shutdown_requested = 0;
3598 return r;
3601 int qemu_reset_requested(void)
3603 int r = reset_requested;
3604 reset_requested = 0;
3605 return r;
3608 int qemu_powerdown_requested(void)
3610 int r = powerdown_requested;
3611 powerdown_requested = 0;
3612 return r;
3615 static int qemu_debug_requested(void)
3617 int r = debug_requested;
3618 debug_requested = 0;
3619 return r;
3622 static int qemu_vmstop_requested(void)
3624 int r = vmstop_requested;
3625 vmstop_requested = 0;
3626 return r;
3629 static void do_vm_stop(int reason)
3631 if (vm_running) {
3632 cpu_disable_ticks();
3633 vm_running = 0;
3634 pause_all_vcpus();
3635 vm_state_notify(0, reason);
3639 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3641 QEMUResetEntry **pre, *re;
3643 pre = &first_reset_entry;
3644 while (*pre != NULL && (*pre)->order >= order) {
3645 pre = &(*pre)->next;
3647 re = qemu_mallocz(sizeof(QEMUResetEntry));
3648 re->func = func;
3649 re->opaque = opaque;
3650 re->order = order;
3651 re->next = NULL;
3652 *pre = re;
3655 void qemu_system_reset(void)
3657 QEMUResetEntry *re;
3659 /* reset all devices */
3660 for(re = first_reset_entry; re != NULL; re = re->next) {
3661 re->func(re->opaque);
3665 void qemu_system_reset_request(void)
3667 if (no_reboot) {
3668 shutdown_requested = 1;
3669 } else {
3670 reset_requested = 1;
3672 qemu_notify_event();
3675 void qemu_system_shutdown_request(void)
3677 shutdown_requested = 1;
3678 qemu_notify_event();
3681 void qemu_system_powerdown_request(void)
3683 powerdown_requested = 1;
3684 qemu_notify_event();
3687 #ifdef CONFIG_IOTHREAD
3688 static void qemu_system_vmstop_request(int reason)
3690 vmstop_requested = reason;
3691 qemu_notify_event();
3693 #endif
3695 #ifndef _WIN32
3696 static int io_thread_fd = -1;
3698 static void qemu_event_increment(void)
3700 static const char byte = 0;
3702 if (io_thread_fd == -1)
3703 return;
3705 write(io_thread_fd, &byte, sizeof(byte));
3708 static void qemu_event_read(void *opaque)
3710 int fd = (unsigned long)opaque;
3711 ssize_t len;
3713 /* Drain the notify pipe */
3714 do {
3715 char buffer[512];
3716 len = read(fd, buffer, sizeof(buffer));
3717 } while ((len == -1 && errno == EINTR) || len > 0);
3720 static int qemu_event_init(void)
3722 int err;
3723 int fds[2];
3725 err = pipe(fds);
3726 if (err == -1)
3727 return -errno;
3729 err = fcntl_setfl(fds[0], O_NONBLOCK);
3730 if (err < 0)
3731 goto fail;
3733 err = fcntl_setfl(fds[1], O_NONBLOCK);
3734 if (err < 0)
3735 goto fail;
3737 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3738 (void *)(unsigned long)fds[0]);
3740 io_thread_fd = fds[1];
3741 return 0;
3743 fail:
3744 close(fds[0]);
3745 close(fds[1]);
3746 return err;
3748 #else
3749 HANDLE qemu_event_handle;
3751 static void dummy_event_handler(void *opaque)
3755 static int qemu_event_init(void)
3757 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3758 if (!qemu_event_handle) {
3759 perror("Failed CreateEvent");
3760 return -1;
3762 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3763 return 0;
3766 static void qemu_event_increment(void)
3768 SetEvent(qemu_event_handle);
3770 #endif
3772 static int cpu_can_run(CPUState *env)
3774 if (env->stop)
3775 return 0;
3776 if (env->stopped)
3777 return 0;
3778 return 1;
3781 #ifndef CONFIG_IOTHREAD
3782 static int qemu_init_main_loop(void)
3784 return qemu_event_init();
3787 void qemu_init_vcpu(void *_env)
3789 CPUState *env = _env;
3791 if (kvm_enabled())
3792 kvm_init_vcpu(env);
3793 return;
3796 int qemu_cpu_self(void *env)
3798 return 1;
3801 static void resume_all_vcpus(void)
3805 static void pause_all_vcpus(void)
3809 void qemu_cpu_kick(void *env)
3811 return;
3814 void qemu_notify_event(void)
3816 CPUState *env = cpu_single_env;
3818 if (env) {
3819 cpu_exit(env);
3820 #ifdef USE_KQEMU
3821 if (env->kqemu_enabled)
3822 kqemu_cpu_interrupt(env);
3823 #endif
3827 #define qemu_mutex_lock_iothread() do { } while (0)
3828 #define qemu_mutex_unlock_iothread() do { } while (0)
3830 void vm_stop(int reason)
3832 do_vm_stop(reason);
3835 #else /* CONFIG_IOTHREAD */
3837 #include "qemu-thread.h"
3839 QemuMutex qemu_global_mutex;
3840 static QemuMutex qemu_fair_mutex;
3842 static QemuThread io_thread;
3844 static QemuThread *tcg_cpu_thread;
3845 static QemuCond *tcg_halt_cond;
3847 static int qemu_system_ready;
3848 /* cpu creation */
3849 static QemuCond qemu_cpu_cond;
3850 /* system init */
3851 static QemuCond qemu_system_cond;
3852 static QemuCond qemu_pause_cond;
3854 static void block_io_signals(void);
3855 static void unblock_io_signals(void);
3856 static int tcg_has_work(void);
3858 static int qemu_init_main_loop(void)
3860 int ret;
3862 ret = qemu_event_init();
3863 if (ret)
3864 return ret;
3866 qemu_cond_init(&qemu_pause_cond);
3867 qemu_mutex_init(&qemu_fair_mutex);
3868 qemu_mutex_init(&qemu_global_mutex);
3869 qemu_mutex_lock(&qemu_global_mutex);
3871 unblock_io_signals();
3872 qemu_thread_self(&io_thread);
3874 return 0;
3877 static void qemu_wait_io_event(CPUState *env)
3879 while (!tcg_has_work())
3880 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3882 qemu_mutex_unlock(&qemu_global_mutex);
3885 * Users of qemu_global_mutex can be starved, having no chance
3886 * to acquire it since this path will get to it first.
3887 * So use another lock to provide fairness.
3889 qemu_mutex_lock(&qemu_fair_mutex);
3890 qemu_mutex_unlock(&qemu_fair_mutex);
3892 qemu_mutex_lock(&qemu_global_mutex);
3893 if (env->stop) {
3894 env->stop = 0;
3895 env->stopped = 1;
3896 qemu_cond_signal(&qemu_pause_cond);
3900 static int qemu_cpu_exec(CPUState *env);
3902 static void *kvm_cpu_thread_fn(void *arg)
3904 CPUState *env = arg;
3906 block_io_signals();
3907 qemu_thread_self(env->thread);
3909 /* signal CPU creation */
3910 qemu_mutex_lock(&qemu_global_mutex);
3911 env->created = 1;
3912 qemu_cond_signal(&qemu_cpu_cond);
3914 /* and wait for machine initialization */
3915 while (!qemu_system_ready)
3916 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3918 while (1) {
3919 if (cpu_can_run(env))
3920 qemu_cpu_exec(env);
3921 qemu_wait_io_event(env);
3924 return NULL;
3927 static void tcg_cpu_exec(void);
3929 static void *tcg_cpu_thread_fn(void *arg)
3931 CPUState *env = arg;
3933 block_io_signals();
3934 qemu_thread_self(env->thread);
3936 /* signal CPU creation */
3937 qemu_mutex_lock(&qemu_global_mutex);
3938 for (env = first_cpu; env != NULL; env = env->next_cpu)
3939 env->created = 1;
3940 qemu_cond_signal(&qemu_cpu_cond);
3942 /* and wait for machine initialization */
3943 while (!qemu_system_ready)
3944 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3946 while (1) {
3947 tcg_cpu_exec();
3948 qemu_wait_io_event(cur_cpu);
3951 return NULL;
3954 void qemu_cpu_kick(void *_env)
3956 CPUState *env = _env;
3957 qemu_cond_broadcast(env->halt_cond);
3958 if (kvm_enabled())
3959 qemu_thread_signal(env->thread, SIGUSR1);
3962 int qemu_cpu_self(void *env)
3964 return (cpu_single_env != NULL);
3967 static void cpu_signal(int sig)
3969 if (cpu_single_env)
3970 cpu_exit(cpu_single_env);
3973 static void block_io_signals(void)
3975 sigset_t set;
3976 struct sigaction sigact;
3978 sigemptyset(&set);
3979 sigaddset(&set, SIGUSR2);
3980 sigaddset(&set, SIGIO);
3981 sigaddset(&set, SIGALRM);
3982 pthread_sigmask(SIG_BLOCK, &set, NULL);
3984 sigemptyset(&set);
3985 sigaddset(&set, SIGUSR1);
3986 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3988 memset(&sigact, 0, sizeof(sigact));
3989 sigact.sa_handler = cpu_signal;
3990 sigaction(SIGUSR1, &sigact, NULL);
3993 static void unblock_io_signals(void)
3995 sigset_t set;
3997 sigemptyset(&set);
3998 sigaddset(&set, SIGUSR2);
3999 sigaddset(&set, SIGIO);
4000 sigaddset(&set, SIGALRM);
4001 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4003 sigemptyset(&set);
4004 sigaddset(&set, SIGUSR1);
4005 pthread_sigmask(SIG_BLOCK, &set, NULL);
4008 static void qemu_signal_lock(unsigned int msecs)
4010 qemu_mutex_lock(&qemu_fair_mutex);
4012 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4013 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4014 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4015 break;
4017 qemu_mutex_unlock(&qemu_fair_mutex);
4020 static void qemu_mutex_lock_iothread(void)
4022 if (kvm_enabled()) {
4023 qemu_mutex_lock(&qemu_fair_mutex);
4024 qemu_mutex_lock(&qemu_global_mutex);
4025 qemu_mutex_unlock(&qemu_fair_mutex);
4026 } else
4027 qemu_signal_lock(100);
4030 static void qemu_mutex_unlock_iothread(void)
4032 qemu_mutex_unlock(&qemu_global_mutex);
4035 static int all_vcpus_paused(void)
4037 CPUState *penv = first_cpu;
4039 while (penv) {
4040 if (!penv->stopped)
4041 return 0;
4042 penv = (CPUState *)penv->next_cpu;
4045 return 1;
4048 static void pause_all_vcpus(void)
4050 CPUState *penv = first_cpu;
4052 while (penv) {
4053 penv->stop = 1;
4054 qemu_thread_signal(penv->thread, SIGUSR1);
4055 qemu_cpu_kick(penv);
4056 penv = (CPUState *)penv->next_cpu;
4059 while (!all_vcpus_paused()) {
4060 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4061 penv = first_cpu;
4062 while (penv) {
4063 qemu_thread_signal(penv->thread, SIGUSR1);
4064 penv = (CPUState *)penv->next_cpu;
4069 static void resume_all_vcpus(void)
4071 CPUState *penv = first_cpu;
4073 while (penv) {
4074 penv->stop = 0;
4075 penv->stopped = 0;
4076 qemu_thread_signal(penv->thread, SIGUSR1);
4077 qemu_cpu_kick(penv);
4078 penv = (CPUState *)penv->next_cpu;
4082 static void tcg_init_vcpu(void *_env)
4084 CPUState *env = _env;
4085 /* share a single thread for all cpus with TCG */
4086 if (!tcg_cpu_thread) {
4087 env->thread = qemu_mallocz(sizeof(QemuThread));
4088 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4089 qemu_cond_init(env->halt_cond);
4090 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4091 while (env->created == 0)
4092 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4093 tcg_cpu_thread = env->thread;
4094 tcg_halt_cond = env->halt_cond;
4095 } else {
4096 env->thread = tcg_cpu_thread;
4097 env->halt_cond = tcg_halt_cond;
4101 static void kvm_start_vcpu(CPUState *env)
4103 kvm_init_vcpu(env);
4104 env->thread = qemu_mallocz(sizeof(QemuThread));
4105 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4106 qemu_cond_init(env->halt_cond);
4107 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4108 while (env->created == 0)
4109 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4112 void qemu_init_vcpu(void *_env)
4114 CPUState *env = _env;
4116 if (kvm_enabled())
4117 kvm_start_vcpu(env);
4118 else
4119 tcg_init_vcpu(env);
4122 void qemu_notify_event(void)
4124 qemu_event_increment();
4127 void vm_stop(int reason)
4129 QemuThread me;
4130 qemu_thread_self(&me);
4132 if (!qemu_thread_equal(&me, &io_thread)) {
4133 qemu_system_vmstop_request(reason);
4135 * FIXME: should not return to device code in case
4136 * vm_stop() has been requested.
4138 if (cpu_single_env) {
4139 cpu_exit(cpu_single_env);
4140 cpu_single_env->stop = 1;
4142 return;
4144 do_vm_stop(reason);
4147 #endif
4150 #ifdef _WIN32
4151 static void host_main_loop_wait(int *timeout)
4153 int ret, ret2, i;
4154 PollingEntry *pe;
4157 /* XXX: need to suppress polling by better using win32 events */
4158 ret = 0;
4159 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4160 ret |= pe->func(pe->opaque);
4162 if (ret == 0) {
4163 int err;
4164 WaitObjects *w = &wait_objects;
4166 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4167 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4168 if (w->func[ret - WAIT_OBJECT_0])
4169 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4171 /* Check for additional signaled events */
4172 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4174 /* Check if event is signaled */
4175 ret2 = WaitForSingleObject(w->events[i], 0);
4176 if(ret2 == WAIT_OBJECT_0) {
4177 if (w->func[i])
4178 w->func[i](w->opaque[i]);
4179 } else if (ret2 == WAIT_TIMEOUT) {
4180 } else {
4181 err = GetLastError();
4182 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4185 } else if (ret == WAIT_TIMEOUT) {
4186 } else {
4187 err = GetLastError();
4188 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4192 *timeout = 0;
4194 #else
4195 static void host_main_loop_wait(int *timeout)
4198 #endif
4200 void main_loop_wait(int timeout)
4202 IOHandlerRecord *ioh;
4203 fd_set rfds, wfds, xfds;
4204 int ret, nfds;
4205 struct timeval tv;
4207 qemu_bh_update_timeout(&timeout);
4209 host_main_loop_wait(&timeout);
4211 /* poll any events */
4212 /* XXX: separate device handlers from system ones */
4213 nfds = -1;
4214 FD_ZERO(&rfds);
4215 FD_ZERO(&wfds);
4216 FD_ZERO(&xfds);
4217 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4218 if (ioh->deleted)
4219 continue;
4220 if (ioh->fd_read &&
4221 (!ioh->fd_read_poll ||
4222 ioh->fd_read_poll(ioh->opaque) != 0)) {
4223 FD_SET(ioh->fd, &rfds);
4224 if (ioh->fd > nfds)
4225 nfds = ioh->fd;
4227 if (ioh->fd_write) {
4228 FD_SET(ioh->fd, &wfds);
4229 if (ioh->fd > nfds)
4230 nfds = ioh->fd;
4234 tv.tv_sec = timeout / 1000;
4235 tv.tv_usec = (timeout % 1000) * 1000;
4237 #if defined(CONFIG_SLIRP)
4238 if (slirp_is_inited()) {
4239 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4241 #endif
4242 qemu_mutex_unlock_iothread();
4243 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4244 qemu_mutex_lock_iothread();
4245 if (ret > 0) {
4246 IOHandlerRecord **pioh;
4248 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4249 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4250 ioh->fd_read(ioh->opaque);
4252 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4253 ioh->fd_write(ioh->opaque);
4257 /* remove deleted IO handlers */
4258 pioh = &first_io_handler;
4259 while (*pioh) {
4260 ioh = *pioh;
4261 if (ioh->deleted) {
4262 *pioh = ioh->next;
4263 qemu_free(ioh);
4264 } else
4265 pioh = &ioh->next;
4268 #if defined(CONFIG_SLIRP)
4269 if (slirp_is_inited()) {
4270 if (ret < 0) {
4271 FD_ZERO(&rfds);
4272 FD_ZERO(&wfds);
4273 FD_ZERO(&xfds);
4275 slirp_select_poll(&rfds, &wfds, &xfds);
4277 #endif
4279 /* rearm timer, if not periodic */
4280 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4281 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4282 qemu_rearm_alarm_timer(alarm_timer);
4285 /* vm time timers */
4286 if (vm_running) {
4287 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4288 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4289 qemu_get_clock(vm_clock));
4292 /* real time timers */
4293 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4294 qemu_get_clock(rt_clock));
4296 /* Check bottom-halves last in case any of the earlier events triggered
4297 them. */
4298 qemu_bh_poll();
4302 static int qemu_cpu_exec(CPUState *env)
4304 int ret;
4305 #ifdef CONFIG_PROFILER
4306 int64_t ti;
4307 #endif
4309 #ifdef CONFIG_PROFILER
4310 ti = profile_getclock();
4311 #endif
4312 if (use_icount) {
4313 int64_t count;
4314 int decr;
4315 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4316 env->icount_decr.u16.low = 0;
4317 env->icount_extra = 0;
4318 count = qemu_next_deadline();
4319 count = (count + (1 << icount_time_shift) - 1)
4320 >> icount_time_shift;
4321 qemu_icount += count;
4322 decr = (count > 0xffff) ? 0xffff : count;
4323 count -= decr;
4324 env->icount_decr.u16.low = decr;
4325 env->icount_extra = count;
4327 ret = cpu_exec(env);
4328 #ifdef CONFIG_PROFILER
4329 qemu_time += profile_getclock() - ti;
4330 #endif
4331 if (use_icount) {
4332 /* Fold pending instructions back into the
4333 instruction counter, and clear the interrupt flag. */
4334 qemu_icount -= (env->icount_decr.u16.low
4335 + env->icount_extra);
4336 env->icount_decr.u32 = 0;
4337 env->icount_extra = 0;
4339 return ret;
4342 static void tcg_cpu_exec(void)
4344 int ret = 0;
4346 if (next_cpu == NULL)
4347 next_cpu = first_cpu;
4348 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4349 CPUState *env = cur_cpu = next_cpu;
4351 if (!vm_running)
4352 break;
4353 if (timer_alarm_pending) {
4354 timer_alarm_pending = 0;
4355 break;
4357 if (cpu_can_run(env))
4358 ret = qemu_cpu_exec(env);
4359 if (ret == EXCP_DEBUG) {
4360 gdb_set_stop_cpu(env);
4361 debug_requested = 1;
4362 break;
4367 static int cpu_has_work(CPUState *env)
4369 if (env->stop)
4370 return 1;
4371 if (env->stopped)
4372 return 0;
4373 if (!env->halted)
4374 return 1;
4375 if (qemu_cpu_has_work(env))
4376 return 1;
4377 return 0;
4380 static int tcg_has_work(void)
4382 CPUState *env;
4384 for (env = first_cpu; env != NULL; env = env->next_cpu)
4385 if (cpu_has_work(env))
4386 return 1;
4387 return 0;
4390 static int qemu_calculate_timeout(void)
4392 int timeout;
4394 if (!vm_running)
4395 timeout = 5000;
4396 else if (tcg_has_work())
4397 timeout = 0;
4398 else if (!use_icount)
4399 timeout = 5000;
4400 else {
4401 /* XXX: use timeout computed from timers */
4402 int64_t add;
4403 int64_t delta;
4404 /* Advance virtual time to the next event. */
4405 if (use_icount == 1) {
4406 /* When not using an adaptive execution frequency
4407 we tend to get badly out of sync with real time,
4408 so just delay for a reasonable amount of time. */
4409 delta = 0;
4410 } else {
4411 delta = cpu_get_icount() - cpu_get_clock();
4413 if (delta > 0) {
4414 /* If virtual time is ahead of real time then just
4415 wait for IO. */
4416 timeout = (delta / 1000000) + 1;
4417 } else {
4418 /* Wait for either IO to occur or the next
4419 timer event. */
4420 add = qemu_next_deadline();
4421 /* We advance the timer before checking for IO.
4422 Limit the amount we advance so that early IO
4423 activity won't get the guest too far ahead. */
4424 if (add > 10000000)
4425 add = 10000000;
4426 delta += add;
4427 add = (add + (1 << icount_time_shift) - 1)
4428 >> icount_time_shift;
4429 qemu_icount += add;
4430 timeout = delta / 1000000;
4431 if (timeout < 0)
4432 timeout = 0;
4436 return timeout;
4439 static int vm_can_run(void)
4441 if (powerdown_requested)
4442 return 0;
4443 if (reset_requested)
4444 return 0;
4445 if (shutdown_requested)
4446 return 0;
4447 if (debug_requested)
4448 return 0;
4449 return 1;
4452 static void main_loop(void)
4454 int r;
4456 #ifdef CONFIG_IOTHREAD
4457 qemu_system_ready = 1;
4458 qemu_cond_broadcast(&qemu_system_cond);
4459 #endif
4461 for (;;) {
4462 do {
4463 #ifdef CONFIG_PROFILER
4464 int64_t ti;
4465 #endif
4466 #ifndef CONFIG_IOTHREAD
4467 tcg_cpu_exec();
4468 #endif
4469 #ifdef CONFIG_PROFILER
4470 ti = profile_getclock();
4471 #endif
4472 #ifdef CONFIG_IOTHREAD
4473 main_loop_wait(1000);
4474 #else
4475 main_loop_wait(qemu_calculate_timeout());
4476 #endif
4477 #ifdef CONFIG_PROFILER
4478 dev_time += profile_getclock() - ti;
4479 #endif
4480 } while (vm_can_run());
4482 if (qemu_debug_requested())
4483 vm_stop(EXCP_DEBUG);
4484 if (qemu_shutdown_requested()) {
4485 if (no_shutdown) {
4486 vm_stop(0);
4487 no_shutdown = 0;
4488 } else
4489 break;
4491 if (qemu_reset_requested()) {
4492 pause_all_vcpus();
4493 qemu_system_reset();
4494 resume_all_vcpus();
4496 if (qemu_powerdown_requested())
4497 qemu_system_powerdown();
4498 if ((r = qemu_vmstop_requested()))
4499 vm_stop(r);
4501 pause_all_vcpus();
4504 static void version(void)
4506 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4509 static void help(int exitcode)
4511 version();
4512 printf("usage: %s [options] [disk_image]\n"
4513 "\n"
4514 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4515 "\n"
4516 #define DEF(option, opt_arg, opt_enum, opt_help) \
4517 opt_help
4518 #define DEFHEADING(text) stringify(text) "\n"
4519 #include "qemu-options.h"
4520 #undef DEF
4521 #undef DEFHEADING
4522 #undef GEN_DOCS
4523 "\n"
4524 "During emulation, the following keys are useful:\n"
4525 "ctrl-alt-f toggle full screen\n"
4526 "ctrl-alt-n switch to virtual console 'n'\n"
4527 "ctrl-alt toggle mouse and keyboard grab\n"
4528 "\n"
4529 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4531 "qemu",
4532 DEFAULT_RAM_SIZE,
4533 #ifndef _WIN32
4534 DEFAULT_NETWORK_SCRIPT,
4535 DEFAULT_NETWORK_DOWN_SCRIPT,
4536 #endif
4537 DEFAULT_GDBSTUB_PORT,
4538 "/tmp/qemu.log");
4539 exit(exitcode);
4542 #define HAS_ARG 0x0001
4544 enum {
4545 #define DEF(option, opt_arg, opt_enum, opt_help) \
4546 opt_enum,
4547 #define DEFHEADING(text)
4548 #include "qemu-options.h"
4549 #undef DEF
4550 #undef DEFHEADING
4551 #undef GEN_DOCS
4554 typedef struct QEMUOption {
4555 const char *name;
4556 int flags;
4557 int index;
4558 } QEMUOption;
4560 static const QEMUOption qemu_options[] = {
4561 { "h", 0, QEMU_OPTION_h },
4562 #define DEF(option, opt_arg, opt_enum, opt_help) \
4563 { option, opt_arg, opt_enum },
4564 #define DEFHEADING(text)
4565 #include "qemu-options.h"
4566 #undef DEF
4567 #undef DEFHEADING
4568 #undef GEN_DOCS
4569 { NULL },
4572 #ifdef HAS_AUDIO
4573 struct soundhw soundhw[] = {
4574 #ifdef HAS_AUDIO_CHOICE
4575 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4577 "pcspk",
4578 "PC speaker",
4581 { .init_isa = pcspk_audio_init }
4583 #endif
4585 #ifdef CONFIG_SB16
4587 "sb16",
4588 "Creative Sound Blaster 16",
4591 { .init_isa = SB16_init }
4593 #endif
4595 #ifdef CONFIG_CS4231A
4597 "cs4231a",
4598 "CS4231A",
4601 { .init_isa = cs4231a_init }
4603 #endif
4605 #ifdef CONFIG_ADLIB
4607 "adlib",
4608 #ifdef HAS_YMF262
4609 "Yamaha YMF262 (OPL3)",
4610 #else
4611 "Yamaha YM3812 (OPL2)",
4612 #endif
4615 { .init_isa = Adlib_init }
4617 #endif
4619 #ifdef CONFIG_GUS
4621 "gus",
4622 "Gravis Ultrasound GF1",
4625 { .init_isa = GUS_init }
4627 #endif
4629 #ifdef CONFIG_AC97
4631 "ac97",
4632 "Intel 82801AA AC97 Audio",
4635 { .init_pci = ac97_init }
4637 #endif
4639 #ifdef CONFIG_ES1370
4641 "es1370",
4642 "ENSONIQ AudioPCI ES1370",
4645 { .init_pci = es1370_init }
4647 #endif
4649 #endif /* HAS_AUDIO_CHOICE */
4651 { NULL, NULL, 0, 0, { NULL } }
4654 static void select_soundhw (const char *optarg)
4656 struct soundhw *c;
4658 if (*optarg == '?') {
4659 show_valid_cards:
4661 printf ("Valid sound card names (comma separated):\n");
4662 for (c = soundhw; c->name; ++c) {
4663 printf ("%-11s %s\n", c->name, c->descr);
4665 printf ("\n-soundhw all will enable all of the above\n");
4666 exit (*optarg != '?');
4668 else {
4669 size_t l;
4670 const char *p;
4671 char *e;
4672 int bad_card = 0;
4674 if (!strcmp (optarg, "all")) {
4675 for (c = soundhw; c->name; ++c) {
4676 c->enabled = 1;
4678 return;
4681 p = optarg;
4682 while (*p) {
4683 e = strchr (p, ',');
4684 l = !e ? strlen (p) : (size_t) (e - p);
4686 for (c = soundhw; c->name; ++c) {
4687 if (!strncmp (c->name, p, l)) {
4688 c->enabled = 1;
4689 break;
4693 if (!c->name) {
4694 if (l > 80) {
4695 fprintf (stderr,
4696 "Unknown sound card name (too big to show)\n");
4698 else {
4699 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4700 (int) l, p);
4702 bad_card = 1;
4704 p += l + (e != NULL);
4707 if (bad_card)
4708 goto show_valid_cards;
4711 #endif
4713 static void select_vgahw (const char *p)
4715 const char *opts;
4717 cirrus_vga_enabled = 0;
4718 std_vga_enabled = 0;
4719 vmsvga_enabled = 0;
4720 xenfb_enabled = 0;
4721 if (strstart(p, "std", &opts)) {
4722 std_vga_enabled = 1;
4723 } else if (strstart(p, "cirrus", &opts)) {
4724 cirrus_vga_enabled = 1;
4725 } else if (strstart(p, "vmware", &opts)) {
4726 vmsvga_enabled = 1;
4727 } else if (strstart(p, "xenfb", &opts)) {
4728 xenfb_enabled = 1;
4729 } else if (!strstart(p, "none", &opts)) {
4730 invalid_vga:
4731 fprintf(stderr, "Unknown vga type: %s\n", p);
4732 exit(1);
4734 while (*opts) {
4735 const char *nextopt;
4737 if (strstart(opts, ",retrace=", &nextopt)) {
4738 opts = nextopt;
4739 if (strstart(opts, "dumb", &nextopt))
4740 vga_retrace_method = VGA_RETRACE_DUMB;
4741 else if (strstart(opts, "precise", &nextopt))
4742 vga_retrace_method = VGA_RETRACE_PRECISE;
4743 else goto invalid_vga;
4744 } else goto invalid_vga;
4745 opts = nextopt;
4749 #ifdef _WIN32
4750 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4752 exit(STATUS_CONTROL_C_EXIT);
4753 return TRUE;
4755 #endif
4757 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4759 int ret;
4761 if(strlen(str) != 36)
4762 return -1;
4764 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4765 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4766 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4768 if(ret != 16)
4769 return -1;
4771 #ifdef TARGET_I386
4772 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4773 #endif
4775 return 0;
4778 #define MAX_NET_CLIENTS 32
4780 #ifndef _WIN32
4782 static void termsig_handler(int signal)
4784 qemu_system_shutdown_request();
4787 static void sigchld_handler(int signal)
4789 waitpid(-1, NULL, WNOHANG);
4792 static void sighandler_setup(void)
4794 struct sigaction act;
4796 memset(&act, 0, sizeof(act));
4797 act.sa_handler = termsig_handler;
4798 sigaction(SIGINT, &act, NULL);
4799 sigaction(SIGHUP, &act, NULL);
4800 sigaction(SIGTERM, &act, NULL);
4802 act.sa_handler = sigchld_handler;
4803 act.sa_flags = SA_NOCLDSTOP;
4804 sigaction(SIGCHLD, &act, NULL);
4807 #endif
4809 #ifdef _WIN32
4810 /* Look for support files in the same directory as the executable. */
4811 static char *find_datadir(const char *argv0)
4813 char *p;
4814 char buf[MAX_PATH];
4815 DWORD len;
4817 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4818 if (len == 0) {
4819 return len;
4822 buf[len] = 0;
4823 p = buf + len - 1;
4824 while (p != buf && *p != '\\')
4825 p--;
4826 *p = 0;
4827 if (access(buf, R_OK) == 0) {
4828 return qemu_strdup(buf);
4830 return NULL;
4832 #else /* !_WIN32 */
4834 /* Find a likely location for support files using the location of the binary.
4835 For installed binaries this will be "$bindir/../share/qemu". When
4836 running from the build tree this will be "$bindir/../pc-bios". */
4837 #define SHARE_SUFFIX "/share/qemu"
4838 #define BUILD_SUFFIX "/pc-bios"
4839 static char *find_datadir(const char *argv0)
4841 char *dir;
4842 char *p = NULL;
4843 char *res;
4844 #ifdef PATH_MAX
4845 char buf[PATH_MAX];
4846 #endif
4848 #if defined(__linux__)
4850 int len;
4851 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4852 if (len > 0) {
4853 buf[len] = 0;
4854 p = buf;
4857 #elif defined(__FreeBSD__)
4859 int len;
4860 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4861 if (len > 0) {
4862 buf[len] = 0;
4863 p = buf;
4866 #endif
4867 /* If we don't have any way of figuring out the actual executable
4868 location then try argv[0]. */
4869 if (!p) {
4870 #ifdef PATH_MAX
4871 p = buf;
4872 #endif
4873 p = realpath(argv0, p);
4874 if (!p) {
4875 return NULL;
4878 dir = dirname(p);
4879 dir = dirname(dir);
4881 res = qemu_mallocz(strlen(dir) +
4882 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1);
4883 sprintf(res, "%s%s", dir, SHARE_SUFFIX);
4884 if (access(res, R_OK)) {
4885 sprintf(res, "%s%s", dir, BUILD_SUFFIX);
4886 if (access(res, R_OK)) {
4887 qemu_free(res);
4888 res = NULL;
4891 #ifndef PATH_MAX
4892 free(p);
4893 #endif
4894 return res;
4896 #undef SHARE_SUFFIX
4897 #undef BUILD_SUFFIX
4898 #endif
4900 char *qemu_find_file(int type, const char *name)
4902 int len;
4903 const char *subdir;
4904 char *buf;
4906 /* If name contains path separators then try it as a straight path. */
4907 if ((strchr(name, '/') || strchr(name, '\\'))
4908 && access(name, R_OK) == 0) {
4909 return strdup(name);
4911 switch (type) {
4912 case QEMU_FILE_TYPE_BIOS:
4913 subdir = "";
4914 break;
4915 case QEMU_FILE_TYPE_KEYMAP:
4916 subdir = "keymaps/";
4917 break;
4918 default:
4919 abort();
4921 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4922 buf = qemu_mallocz(len);
4923 sprintf(buf, "%s/%s%s", data_dir, subdir, name);
4924 if (access(buf, R_OK)) {
4925 qemu_free(buf);
4926 return NULL;
4928 return buf;
4931 int main(int argc, char **argv, char **envp)
4933 const char *gdbstub_dev = NULL;
4934 uint32_t boot_devices_bitmap = 0;
4935 int i;
4936 int snapshot, linux_boot, net_boot;
4937 const char *initrd_filename;
4938 const char *kernel_filename, *kernel_cmdline;
4939 const char *boot_devices = "";
4940 DisplayState *ds;
4941 DisplayChangeListener *dcl;
4942 int cyls, heads, secs, translation;
4943 const char *net_clients[MAX_NET_CLIENTS];
4944 int nb_net_clients;
4945 const char *bt_opts[MAX_BT_CMDLINE];
4946 int nb_bt_opts;
4947 int hda_index;
4948 int optind;
4949 const char *r, *optarg;
4950 CharDriverState *monitor_hd = NULL;
4951 const char *monitor_device;
4952 const char *serial_devices[MAX_SERIAL_PORTS];
4953 int serial_device_index;
4954 const char *parallel_devices[MAX_PARALLEL_PORTS];
4955 int parallel_device_index;
4956 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4957 int virtio_console_index;
4958 const char *loadvm = NULL;
4959 QEMUMachine *machine;
4960 const char *cpu_model;
4961 const char *usb_devices[MAX_USB_CMDLINE];
4962 int usb_devices_index;
4963 #ifndef _WIN32
4964 int fds[2];
4965 #endif
4966 int tb_size;
4967 const char *pid_file = NULL;
4968 const char *incoming = NULL;
4969 #ifndef _WIN32
4970 int fd = 0;
4971 struct passwd *pwd = NULL;
4972 const char *chroot_dir = NULL;
4973 const char *run_as = NULL;
4974 #endif
4975 CPUState *env;
4976 int show_vnc_port = 0;
4978 qemu_cache_utils_init(envp);
4980 LIST_INIT (&vm_change_state_head);
4981 #ifndef _WIN32
4983 struct sigaction act;
4984 sigfillset(&act.sa_mask);
4985 act.sa_flags = 0;
4986 act.sa_handler = SIG_IGN;
4987 sigaction(SIGPIPE, &act, NULL);
4989 #else
4990 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4991 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4992 QEMU to run on a single CPU */
4994 HANDLE h;
4995 DWORD mask, smask;
4996 int i;
4997 h = GetCurrentProcess();
4998 if (GetProcessAffinityMask(h, &mask, &smask)) {
4999 for(i = 0; i < 32; i++) {
5000 if (mask & (1 << i))
5001 break;
5003 if (i != 32) {
5004 mask = 1 << i;
5005 SetProcessAffinityMask(h, mask);
5009 #endif
5011 module_call_init(MODULE_INIT_MACHINE);
5012 machine = find_default_machine();
5013 cpu_model = NULL;
5014 initrd_filename = NULL;
5015 ram_size = 0;
5016 snapshot = 0;
5017 kernel_filename = NULL;
5018 kernel_cmdline = "";
5019 cyls = heads = secs = 0;
5020 translation = BIOS_ATA_TRANSLATION_AUTO;
5021 monitor_device = "vc:80Cx24C";
5023 serial_devices[0] = "vc:80Cx24C";
5024 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5025 serial_devices[i] = NULL;
5026 serial_device_index = 0;
5028 parallel_devices[0] = "vc:80Cx24C";
5029 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5030 parallel_devices[i] = NULL;
5031 parallel_device_index = 0;
5033 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5034 virtio_consoles[i] = NULL;
5035 virtio_console_index = 0;
5037 for (i = 0; i < MAX_NODES; i++) {
5038 node_mem[i] = 0;
5039 node_cpumask[i] = 0;
5042 usb_devices_index = 0;
5044 nb_net_clients = 0;
5045 nb_bt_opts = 0;
5046 nb_drives = 0;
5047 nb_drives_opt = 0;
5048 nb_numa_nodes = 0;
5049 hda_index = -1;
5051 nb_nics = 0;
5053 tb_size = 0;
5054 autostart= 1;
5056 register_watchdogs();
5058 optind = 1;
5059 for(;;) {
5060 if (optind >= argc)
5061 break;
5062 r = argv[optind];
5063 if (r[0] != '-') {
5064 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5065 } else {
5066 const QEMUOption *popt;
5068 optind++;
5069 /* Treat --foo the same as -foo. */
5070 if (r[1] == '-')
5071 r++;
5072 popt = qemu_options;
5073 for(;;) {
5074 if (!popt->name) {
5075 fprintf(stderr, "%s: invalid option -- '%s'\n",
5076 argv[0], r);
5077 exit(1);
5079 if (!strcmp(popt->name, r + 1))
5080 break;
5081 popt++;
5083 if (popt->flags & HAS_ARG) {
5084 if (optind >= argc) {
5085 fprintf(stderr, "%s: option '%s' requires an argument\n",
5086 argv[0], r);
5087 exit(1);
5089 optarg = argv[optind++];
5090 } else {
5091 optarg = NULL;
5094 switch(popt->index) {
5095 case QEMU_OPTION_M:
5096 machine = find_machine(optarg);
5097 if (!machine) {
5098 QEMUMachine *m;
5099 printf("Supported machines are:\n");
5100 for(m = first_machine; m != NULL; m = m->next) {
5101 printf("%-10s %s%s\n",
5102 m->name, m->desc,
5103 m->is_default ? " (default)" : "");
5105 exit(*optarg != '?');
5107 break;
5108 case QEMU_OPTION_cpu:
5109 /* hw initialization will check this */
5110 if (*optarg == '?') {
5111 /* XXX: implement xxx_cpu_list for targets that still miss it */
5112 #if defined(cpu_list)
5113 cpu_list(stdout, &fprintf);
5114 #endif
5115 exit(0);
5116 } else {
5117 cpu_model = optarg;
5119 break;
5120 case QEMU_OPTION_initrd:
5121 initrd_filename = optarg;
5122 break;
5123 case QEMU_OPTION_hda:
5124 if (cyls == 0)
5125 hda_index = drive_add(optarg, HD_ALIAS, 0);
5126 else
5127 hda_index = drive_add(optarg, HD_ALIAS
5128 ",cyls=%d,heads=%d,secs=%d%s",
5129 0, cyls, heads, secs,
5130 translation == BIOS_ATA_TRANSLATION_LBA ?
5131 ",trans=lba" :
5132 translation == BIOS_ATA_TRANSLATION_NONE ?
5133 ",trans=none" : "");
5134 break;
5135 case QEMU_OPTION_hdb:
5136 case QEMU_OPTION_hdc:
5137 case QEMU_OPTION_hdd:
5138 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5139 break;
5140 case QEMU_OPTION_drive:
5141 drive_add(NULL, "%s", optarg);
5142 break;
5143 case QEMU_OPTION_mtdblock:
5144 drive_add(optarg, MTD_ALIAS);
5145 break;
5146 case QEMU_OPTION_sd:
5147 drive_add(optarg, SD_ALIAS);
5148 break;
5149 case QEMU_OPTION_pflash:
5150 drive_add(optarg, PFLASH_ALIAS);
5151 break;
5152 case QEMU_OPTION_snapshot:
5153 snapshot = 1;
5154 break;
5155 case QEMU_OPTION_hdachs:
5157 const char *p;
5158 p = optarg;
5159 cyls = strtol(p, (char **)&p, 0);
5160 if (cyls < 1 || cyls > 16383)
5161 goto chs_fail;
5162 if (*p != ',')
5163 goto chs_fail;
5164 p++;
5165 heads = strtol(p, (char **)&p, 0);
5166 if (heads < 1 || heads > 16)
5167 goto chs_fail;
5168 if (*p != ',')
5169 goto chs_fail;
5170 p++;
5171 secs = strtol(p, (char **)&p, 0);
5172 if (secs < 1 || secs > 63)
5173 goto chs_fail;
5174 if (*p == ',') {
5175 p++;
5176 if (!strcmp(p, "none"))
5177 translation = BIOS_ATA_TRANSLATION_NONE;
5178 else if (!strcmp(p, "lba"))
5179 translation = BIOS_ATA_TRANSLATION_LBA;
5180 else if (!strcmp(p, "auto"))
5181 translation = BIOS_ATA_TRANSLATION_AUTO;
5182 else
5183 goto chs_fail;
5184 } else if (*p != '\0') {
5185 chs_fail:
5186 fprintf(stderr, "qemu: invalid physical CHS format\n");
5187 exit(1);
5189 if (hda_index != -1)
5190 snprintf(drives_opt[hda_index].opt,
5191 sizeof(drives_opt[hda_index].opt),
5192 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5193 0, cyls, heads, secs,
5194 translation == BIOS_ATA_TRANSLATION_LBA ?
5195 ",trans=lba" :
5196 translation == BIOS_ATA_TRANSLATION_NONE ?
5197 ",trans=none" : "");
5199 break;
5200 case QEMU_OPTION_numa:
5201 if (nb_numa_nodes >= MAX_NODES) {
5202 fprintf(stderr, "qemu: too many NUMA nodes\n");
5203 exit(1);
5205 numa_add(optarg);
5206 break;
5207 case QEMU_OPTION_nographic:
5208 display_type = DT_NOGRAPHIC;
5209 break;
5210 #ifdef CONFIG_CURSES
5211 case QEMU_OPTION_curses:
5212 display_type = DT_CURSES;
5213 break;
5214 #endif
5215 case QEMU_OPTION_portrait:
5216 graphic_rotate = 1;
5217 break;
5218 case QEMU_OPTION_kernel:
5219 kernel_filename = optarg;
5220 break;
5221 case QEMU_OPTION_append:
5222 kernel_cmdline = optarg;
5223 break;
5224 case QEMU_OPTION_cdrom:
5225 drive_add(optarg, CDROM_ALIAS);
5226 break;
5227 case QEMU_OPTION_boot:
5228 boot_devices = optarg;
5229 /* We just do some generic consistency checks */
5231 /* Could easily be extended to 64 devices if needed */
5232 const char *p;
5234 boot_devices_bitmap = 0;
5235 for (p = boot_devices; *p != '\0'; p++) {
5236 /* Allowed boot devices are:
5237 * a b : floppy disk drives
5238 * c ... f : IDE disk drives
5239 * g ... m : machine implementation dependant drives
5240 * n ... p : network devices
5241 * It's up to each machine implementation to check
5242 * if the given boot devices match the actual hardware
5243 * implementation and firmware features.
5245 if (*p < 'a' || *p > 'q') {
5246 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5247 exit(1);
5249 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5250 fprintf(stderr,
5251 "Boot device '%c' was given twice\n",*p);
5252 exit(1);
5254 boot_devices_bitmap |= 1 << (*p - 'a');
5257 break;
5258 case QEMU_OPTION_fda:
5259 case QEMU_OPTION_fdb:
5260 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5261 break;
5262 #ifdef TARGET_I386
5263 case QEMU_OPTION_no_fd_bootchk:
5264 fd_bootchk = 0;
5265 break;
5266 #endif
5267 case QEMU_OPTION_net:
5268 if (nb_net_clients >= MAX_NET_CLIENTS) {
5269 fprintf(stderr, "qemu: too many network clients\n");
5270 exit(1);
5272 net_clients[nb_net_clients] = optarg;
5273 nb_net_clients++;
5274 break;
5275 #ifdef CONFIG_SLIRP
5276 case QEMU_OPTION_tftp:
5277 tftp_prefix = optarg;
5278 break;
5279 case QEMU_OPTION_bootp:
5280 bootp_filename = optarg;
5281 break;
5282 #ifndef _WIN32
5283 case QEMU_OPTION_smb:
5284 net_slirp_smb(optarg);
5285 break;
5286 #endif
5287 case QEMU_OPTION_redir:
5288 net_slirp_redir(NULL, optarg, NULL);
5289 break;
5290 #endif
5291 case QEMU_OPTION_bt:
5292 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5293 fprintf(stderr, "qemu: too many bluetooth options\n");
5294 exit(1);
5296 bt_opts[nb_bt_opts++] = optarg;
5297 break;
5298 #ifdef HAS_AUDIO
5299 case QEMU_OPTION_audio_help:
5300 AUD_help ();
5301 exit (0);
5302 break;
5303 case QEMU_OPTION_soundhw:
5304 select_soundhw (optarg);
5305 break;
5306 #endif
5307 case QEMU_OPTION_h:
5308 help(0);
5309 break;
5310 case QEMU_OPTION_version:
5311 version();
5312 exit(0);
5313 break;
5314 case QEMU_OPTION_m: {
5315 uint64_t value;
5316 char *ptr;
5318 value = strtoul(optarg, &ptr, 10);
5319 switch (*ptr) {
5320 case 0: case 'M': case 'm':
5321 value <<= 20;
5322 break;
5323 case 'G': case 'g':
5324 value <<= 30;
5325 break;
5326 default:
5327 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5328 exit(1);
5331 /* On 32-bit hosts, QEMU is limited by virtual address space */
5332 if (value > (2047 << 20)
5333 #ifndef CONFIG_KQEMU
5334 && HOST_LONG_BITS == 32
5335 #endif
5337 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5338 exit(1);
5340 if (value != (uint64_t)(ram_addr_t)value) {
5341 fprintf(stderr, "qemu: ram size too large\n");
5342 exit(1);
5344 ram_size = value;
5345 break;
5347 case QEMU_OPTION_d:
5349 int mask;
5350 const CPULogItem *item;
5352 mask = cpu_str_to_log_mask(optarg);
5353 if (!mask) {
5354 printf("Log items (comma separated):\n");
5355 for(item = cpu_log_items; item->mask != 0; item++) {
5356 printf("%-10s %s\n", item->name, item->help);
5358 exit(1);
5360 cpu_set_log(mask);
5362 break;
5363 case QEMU_OPTION_s:
5364 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5365 break;
5366 case QEMU_OPTION_gdb:
5367 gdbstub_dev = optarg;
5368 break;
5369 case QEMU_OPTION_L:
5370 data_dir = optarg;
5371 break;
5372 case QEMU_OPTION_bios:
5373 bios_name = optarg;
5374 break;
5375 case QEMU_OPTION_singlestep:
5376 singlestep = 1;
5377 break;
5378 case QEMU_OPTION_S:
5379 autostart = 0;
5380 break;
5381 #ifndef _WIN32
5382 case QEMU_OPTION_k:
5383 keyboard_layout = optarg;
5384 break;
5385 #endif
5386 case QEMU_OPTION_localtime:
5387 rtc_utc = 0;
5388 break;
5389 case QEMU_OPTION_vga:
5390 select_vgahw (optarg);
5391 break;
5392 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5393 case QEMU_OPTION_g:
5395 const char *p;
5396 int w, h, depth;
5397 p = optarg;
5398 w = strtol(p, (char **)&p, 10);
5399 if (w <= 0) {
5400 graphic_error:
5401 fprintf(stderr, "qemu: invalid resolution or depth\n");
5402 exit(1);
5404 if (*p != 'x')
5405 goto graphic_error;
5406 p++;
5407 h = strtol(p, (char **)&p, 10);
5408 if (h <= 0)
5409 goto graphic_error;
5410 if (*p == 'x') {
5411 p++;
5412 depth = strtol(p, (char **)&p, 10);
5413 if (depth != 8 && depth != 15 && depth != 16 &&
5414 depth != 24 && depth != 32)
5415 goto graphic_error;
5416 } else if (*p == '\0') {
5417 depth = graphic_depth;
5418 } else {
5419 goto graphic_error;
5422 graphic_width = w;
5423 graphic_height = h;
5424 graphic_depth = depth;
5426 break;
5427 #endif
5428 case QEMU_OPTION_echr:
5430 char *r;
5431 term_escape_char = strtol(optarg, &r, 0);
5432 if (r == optarg)
5433 printf("Bad argument to echr\n");
5434 break;
5436 case QEMU_OPTION_monitor:
5437 monitor_device = optarg;
5438 break;
5439 case QEMU_OPTION_serial:
5440 if (serial_device_index >= MAX_SERIAL_PORTS) {
5441 fprintf(stderr, "qemu: too many serial ports\n");
5442 exit(1);
5444 serial_devices[serial_device_index] = optarg;
5445 serial_device_index++;
5446 break;
5447 case QEMU_OPTION_watchdog:
5448 i = select_watchdog(optarg);
5449 if (i > 0)
5450 exit (i == 1 ? 1 : 0);
5451 break;
5452 case QEMU_OPTION_watchdog_action:
5453 if (select_watchdog_action(optarg) == -1) {
5454 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5455 exit(1);
5457 break;
5458 case QEMU_OPTION_virtiocon:
5459 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5460 fprintf(stderr, "qemu: too many virtio consoles\n");
5461 exit(1);
5463 virtio_consoles[virtio_console_index] = optarg;
5464 virtio_console_index++;
5465 break;
5466 case QEMU_OPTION_parallel:
5467 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5468 fprintf(stderr, "qemu: too many parallel ports\n");
5469 exit(1);
5471 parallel_devices[parallel_device_index] = optarg;
5472 parallel_device_index++;
5473 break;
5474 case QEMU_OPTION_loadvm:
5475 loadvm = optarg;
5476 break;
5477 case QEMU_OPTION_full_screen:
5478 full_screen = 1;
5479 break;
5480 #ifdef CONFIG_SDL
5481 case QEMU_OPTION_no_frame:
5482 no_frame = 1;
5483 break;
5484 case QEMU_OPTION_alt_grab:
5485 alt_grab = 1;
5486 break;
5487 case QEMU_OPTION_no_quit:
5488 no_quit = 1;
5489 break;
5490 case QEMU_OPTION_sdl:
5491 display_type = DT_SDL;
5492 break;
5493 #endif
5494 case QEMU_OPTION_pidfile:
5495 pid_file = optarg;
5496 break;
5497 #ifdef TARGET_I386
5498 case QEMU_OPTION_win2k_hack:
5499 win2k_install_hack = 1;
5500 break;
5501 case QEMU_OPTION_rtc_td_hack:
5502 rtc_td_hack = 1;
5503 break;
5504 case QEMU_OPTION_acpitable:
5505 if(acpi_table_add(optarg) < 0) {
5506 fprintf(stderr, "Wrong acpi table provided\n");
5507 exit(1);
5509 break;
5510 case QEMU_OPTION_smbios:
5511 if(smbios_entry_add(optarg) < 0) {
5512 fprintf(stderr, "Wrong smbios provided\n");
5513 exit(1);
5515 break;
5516 #endif
5517 #ifdef CONFIG_KQEMU
5518 case QEMU_OPTION_no_kqemu:
5519 kqemu_allowed = 0;
5520 break;
5521 case QEMU_OPTION_kernel_kqemu:
5522 kqemu_allowed = 2;
5523 break;
5524 #endif
5525 #ifdef CONFIG_KVM
5526 case QEMU_OPTION_enable_kvm:
5527 kvm_allowed = 1;
5528 #ifdef CONFIG_KQEMU
5529 kqemu_allowed = 0;
5530 #endif
5531 break;
5532 #endif
5533 case QEMU_OPTION_usb:
5534 usb_enabled = 1;
5535 break;
5536 case QEMU_OPTION_usbdevice:
5537 usb_enabled = 1;
5538 if (usb_devices_index >= MAX_USB_CMDLINE) {
5539 fprintf(stderr, "Too many USB devices\n");
5540 exit(1);
5542 usb_devices[usb_devices_index] = optarg;
5543 usb_devices_index++;
5544 break;
5545 case QEMU_OPTION_smp:
5546 smp_cpus = atoi(optarg);
5547 if (smp_cpus < 1) {
5548 fprintf(stderr, "Invalid number of CPUs\n");
5549 exit(1);
5551 break;
5552 case QEMU_OPTION_vnc:
5553 display_type = DT_VNC;
5554 vnc_display = optarg;
5555 break;
5556 #ifdef TARGET_I386
5557 case QEMU_OPTION_no_acpi:
5558 acpi_enabled = 0;
5559 break;
5560 case QEMU_OPTION_no_hpet:
5561 no_hpet = 1;
5562 break;
5563 #endif
5564 case QEMU_OPTION_no_reboot:
5565 no_reboot = 1;
5566 break;
5567 case QEMU_OPTION_no_shutdown:
5568 no_shutdown = 1;
5569 break;
5570 case QEMU_OPTION_show_cursor:
5571 cursor_hide = 0;
5572 break;
5573 case QEMU_OPTION_uuid:
5574 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5575 fprintf(stderr, "Fail to parse UUID string."
5576 " Wrong format.\n");
5577 exit(1);
5579 break;
5580 #ifndef _WIN32
5581 case QEMU_OPTION_daemonize:
5582 daemonize = 1;
5583 break;
5584 #endif
5585 case QEMU_OPTION_option_rom:
5586 if (nb_option_roms >= MAX_OPTION_ROMS) {
5587 fprintf(stderr, "Too many option ROMs\n");
5588 exit(1);
5590 option_rom[nb_option_roms] = optarg;
5591 nb_option_roms++;
5592 break;
5593 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5594 case QEMU_OPTION_semihosting:
5595 semihosting_enabled = 1;
5596 break;
5597 #endif
5598 case QEMU_OPTION_name:
5599 qemu_name = optarg;
5600 break;
5601 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5602 case QEMU_OPTION_prom_env:
5603 if (nb_prom_envs >= MAX_PROM_ENVS) {
5604 fprintf(stderr, "Too many prom variables\n");
5605 exit(1);
5607 prom_envs[nb_prom_envs] = optarg;
5608 nb_prom_envs++;
5609 break;
5610 #endif
5611 #ifdef TARGET_ARM
5612 case QEMU_OPTION_old_param:
5613 old_param = 1;
5614 break;
5615 #endif
5616 case QEMU_OPTION_clock:
5617 configure_alarms(optarg);
5618 break;
5619 case QEMU_OPTION_startdate:
5621 struct tm tm;
5622 time_t rtc_start_date;
5623 if (!strcmp(optarg, "now")) {
5624 rtc_date_offset = -1;
5625 } else {
5626 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5627 &tm.tm_year,
5628 &tm.tm_mon,
5629 &tm.tm_mday,
5630 &tm.tm_hour,
5631 &tm.tm_min,
5632 &tm.tm_sec) == 6) {
5633 /* OK */
5634 } else if (sscanf(optarg, "%d-%d-%d",
5635 &tm.tm_year,
5636 &tm.tm_mon,
5637 &tm.tm_mday) == 3) {
5638 tm.tm_hour = 0;
5639 tm.tm_min = 0;
5640 tm.tm_sec = 0;
5641 } else {
5642 goto date_fail;
5644 tm.tm_year -= 1900;
5645 tm.tm_mon--;
5646 rtc_start_date = mktimegm(&tm);
5647 if (rtc_start_date == -1) {
5648 date_fail:
5649 fprintf(stderr, "Invalid date format. Valid format are:\n"
5650 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5651 exit(1);
5653 rtc_date_offset = time(NULL) - rtc_start_date;
5656 break;
5657 case QEMU_OPTION_tb_size:
5658 tb_size = strtol(optarg, NULL, 0);
5659 if (tb_size < 0)
5660 tb_size = 0;
5661 break;
5662 case QEMU_OPTION_icount:
5663 use_icount = 1;
5664 if (strcmp(optarg, "auto") == 0) {
5665 icount_time_shift = -1;
5666 } else {
5667 icount_time_shift = strtol(optarg, NULL, 0);
5669 break;
5670 case QEMU_OPTION_incoming:
5671 incoming = optarg;
5672 break;
5673 #ifndef _WIN32
5674 case QEMU_OPTION_chroot:
5675 chroot_dir = optarg;
5676 break;
5677 case QEMU_OPTION_runas:
5678 run_as = optarg;
5679 break;
5680 #endif
5681 #ifdef CONFIG_XEN
5682 case QEMU_OPTION_xen_domid:
5683 xen_domid = atoi(optarg);
5684 break;
5685 case QEMU_OPTION_xen_create:
5686 xen_mode = XEN_CREATE;
5687 break;
5688 case QEMU_OPTION_xen_attach:
5689 xen_mode = XEN_ATTACH;
5690 break;
5691 #endif
5696 /* If no data_dir is specified then try to find it relative to the
5697 executable path. */
5698 if (!data_dir) {
5699 data_dir = find_datadir(argv[0]);
5701 /* If all else fails use the install patch specified when building. */
5702 if (!data_dir) {
5703 data_dir = CONFIG_QEMU_SHAREDIR;
5706 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5707 if (kvm_allowed && kqemu_allowed) {
5708 fprintf(stderr,
5709 "You can not enable both KVM and kqemu at the same time\n");
5710 exit(1);
5712 #endif
5714 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5715 if (smp_cpus > machine->max_cpus) {
5716 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5717 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5718 machine->max_cpus);
5719 exit(1);
5722 if (display_type == DT_NOGRAPHIC) {
5723 if (serial_device_index == 0)
5724 serial_devices[0] = "stdio";
5725 if (parallel_device_index == 0)
5726 parallel_devices[0] = "null";
5727 if (strncmp(monitor_device, "vc", 2) == 0)
5728 monitor_device = "stdio";
5731 #ifndef _WIN32
5732 if (daemonize) {
5733 pid_t pid;
5735 if (pipe(fds) == -1)
5736 exit(1);
5738 pid = fork();
5739 if (pid > 0) {
5740 uint8_t status;
5741 ssize_t len;
5743 close(fds[1]);
5745 again:
5746 len = read(fds[0], &status, 1);
5747 if (len == -1 && (errno == EINTR))
5748 goto again;
5750 if (len != 1)
5751 exit(1);
5752 else if (status == 1) {
5753 fprintf(stderr, "Could not acquire pidfile\n");
5754 exit(1);
5755 } else
5756 exit(0);
5757 } else if (pid < 0)
5758 exit(1);
5760 setsid();
5762 pid = fork();
5763 if (pid > 0)
5764 exit(0);
5765 else if (pid < 0)
5766 exit(1);
5768 umask(027);
5770 signal(SIGTSTP, SIG_IGN);
5771 signal(SIGTTOU, SIG_IGN);
5772 signal(SIGTTIN, SIG_IGN);
5775 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5776 if (daemonize) {
5777 uint8_t status = 1;
5778 write(fds[1], &status, 1);
5779 } else
5780 fprintf(stderr, "Could not acquire pid file\n");
5781 exit(1);
5783 #endif
5785 #ifdef CONFIG_KQEMU
5786 if (smp_cpus > 1)
5787 kqemu_allowed = 0;
5788 #endif
5789 if (qemu_init_main_loop()) {
5790 fprintf(stderr, "qemu_init_main_loop failed\n");
5791 exit(1);
5793 linux_boot = (kernel_filename != NULL);
5794 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5796 if (!linux_boot && *kernel_cmdline != '\0') {
5797 fprintf(stderr, "-append only allowed with -kernel option\n");
5798 exit(1);
5801 if (!linux_boot && initrd_filename != NULL) {
5802 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5803 exit(1);
5806 /* boot to floppy or the default cd if no hard disk defined yet */
5807 if (!boot_devices[0]) {
5808 boot_devices = "cad";
5810 setvbuf(stdout, NULL, _IOLBF, 0);
5812 init_timers();
5813 if (init_timer_alarm() < 0) {
5814 fprintf(stderr, "could not initialize alarm timer\n");
5815 exit(1);
5817 if (use_icount && icount_time_shift < 0) {
5818 use_icount = 2;
5819 /* 125MIPS seems a reasonable initial guess at the guest speed.
5820 It will be corrected fairly quickly anyway. */
5821 icount_time_shift = 3;
5822 init_icount_adjust();
5825 #ifdef _WIN32
5826 socket_init();
5827 #endif
5829 /* init network clients */
5830 if (nb_net_clients == 0) {
5831 /* if no clients, we use a default config */
5832 net_clients[nb_net_clients++] = "nic";
5833 #ifdef CONFIG_SLIRP
5834 net_clients[nb_net_clients++] = "user";
5835 #endif
5838 for(i = 0;i < nb_net_clients; i++) {
5839 if (net_client_parse(net_clients[i]) < 0)
5840 exit(1);
5842 net_client_check();
5844 #ifdef TARGET_I386
5845 /* XXX: this should be moved in the PC machine instantiation code */
5846 if (net_boot != 0) {
5847 int netroms = 0;
5848 for (i = 0; i < nb_nics && i < 4; i++) {
5849 const char *model = nd_table[i].model;
5850 char buf[1024];
5851 char *filename;
5852 if (net_boot & (1 << i)) {
5853 if (model == NULL)
5854 model = "ne2k_pci";
5855 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5856 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5857 if (filename && get_image_size(filename) > 0) {
5858 if (nb_option_roms >= MAX_OPTION_ROMS) {
5859 fprintf(stderr, "Too many option ROMs\n");
5860 exit(1);
5862 option_rom[nb_option_roms] = qemu_strdup(buf);
5863 nb_option_roms++;
5864 netroms++;
5866 if (filename) {
5867 qemu_free(filename);
5871 if (netroms == 0) {
5872 fprintf(stderr, "No valid PXE rom found for network device\n");
5873 exit(1);
5876 #endif
5878 /* init the bluetooth world */
5879 for (i = 0; i < nb_bt_opts; i++)
5880 if (bt_parse(bt_opts[i]))
5881 exit(1);
5883 /* init the memory */
5884 if (ram_size == 0)
5885 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5887 #ifdef CONFIG_KQEMU
5888 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5889 guest ram allocation. It needs to go away. */
5890 if (kqemu_allowed) {
5891 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5892 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5893 if (!kqemu_phys_ram_base) {
5894 fprintf(stderr, "Could not allocate physical memory\n");
5895 exit(1);
5898 #endif
5900 /* init the dynamic translator */
5901 cpu_exec_init_all(tb_size * 1024 * 1024);
5903 bdrv_init();
5905 /* we always create the cdrom drive, even if no disk is there */
5907 if (nb_drives_opt < MAX_DRIVES)
5908 drive_add(NULL, CDROM_ALIAS);
5910 /* we always create at least one floppy */
5912 if (nb_drives_opt < MAX_DRIVES)
5913 drive_add(NULL, FD_ALIAS, 0);
5915 /* we always create one sd slot, even if no card is in it */
5917 if (nb_drives_opt < MAX_DRIVES)
5918 drive_add(NULL, SD_ALIAS);
5920 /* open the virtual block devices */
5922 for(i = 0; i < nb_drives_opt; i++)
5923 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5924 exit(1);
5926 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5927 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5929 #ifndef _WIN32
5930 /* must be after terminal init, SDL library changes signal handlers */
5931 sighandler_setup();
5932 #endif
5934 /* Maintain compatibility with multiple stdio monitors */
5935 if (!strcmp(monitor_device,"stdio")) {
5936 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5937 const char *devname = serial_devices[i];
5938 if (devname && !strcmp(devname,"mon:stdio")) {
5939 monitor_device = NULL;
5940 break;
5941 } else if (devname && !strcmp(devname,"stdio")) {
5942 monitor_device = NULL;
5943 serial_devices[i] = "mon:stdio";
5944 break;
5949 if (nb_numa_nodes > 0) {
5950 int i;
5952 if (nb_numa_nodes > smp_cpus) {
5953 nb_numa_nodes = smp_cpus;
5956 /* If no memory size if given for any node, assume the default case
5957 * and distribute the available memory equally across all nodes
5959 for (i = 0; i < nb_numa_nodes; i++) {
5960 if (node_mem[i] != 0)
5961 break;
5963 if (i == nb_numa_nodes) {
5964 uint64_t usedmem = 0;
5966 /* On Linux, the each node's border has to be 8MB aligned,
5967 * the final node gets the rest.
5969 for (i = 0; i < nb_numa_nodes - 1; i++) {
5970 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5971 usedmem += node_mem[i];
5973 node_mem[i] = ram_size - usedmem;
5976 for (i = 0; i < nb_numa_nodes; i++) {
5977 if (node_cpumask[i] != 0)
5978 break;
5980 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5981 * must cope with this anyway, because there are BIOSes out there in
5982 * real machines which also use this scheme.
5984 if (i == nb_numa_nodes) {
5985 for (i = 0; i < smp_cpus; i++) {
5986 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5991 if (kvm_enabled()) {
5992 int ret;
5994 ret = kvm_init(smp_cpus);
5995 if (ret < 0) {
5996 fprintf(stderr, "failed to initialize KVM\n");
5997 exit(1);
6001 if (monitor_device) {
6002 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6003 if (!monitor_hd) {
6004 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6005 exit(1);
6009 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6010 const char *devname = serial_devices[i];
6011 if (devname && strcmp(devname, "none")) {
6012 char label[32];
6013 snprintf(label, sizeof(label), "serial%d", i);
6014 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6015 if (!serial_hds[i]) {
6016 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6017 devname);
6018 exit(1);
6023 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6024 const char *devname = parallel_devices[i];
6025 if (devname && strcmp(devname, "none")) {
6026 char label[32];
6027 snprintf(label, sizeof(label), "parallel%d", i);
6028 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6029 if (!parallel_hds[i]) {
6030 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6031 devname);
6032 exit(1);
6037 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6038 const char *devname = virtio_consoles[i];
6039 if (devname && strcmp(devname, "none")) {
6040 char label[32];
6041 snprintf(label, sizeof(label), "virtcon%d", i);
6042 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6043 if (!virtcon_hds[i]) {
6044 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6045 devname);
6046 exit(1);
6051 module_call_init(MODULE_INIT_DEVICE);
6053 machine->init(ram_size, boot_devices,
6054 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6057 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6058 for (i = 0; i < nb_numa_nodes; i++) {
6059 if (node_cpumask[i] & (1 << env->cpu_index)) {
6060 env->numa_node = i;
6065 current_machine = machine;
6067 /* Set KVM's vcpu state to qemu's initial CPUState. */
6068 if (kvm_enabled()) {
6069 int ret;
6071 ret = kvm_sync_vcpus();
6072 if (ret < 0) {
6073 fprintf(stderr, "failed to initialize vcpus\n");
6074 exit(1);
6078 /* init USB devices */
6079 if (usb_enabled) {
6080 for(i = 0; i < usb_devices_index; i++) {
6081 if (usb_device_add(usb_devices[i], 0) < 0) {
6082 fprintf(stderr, "Warning: could not add USB device %s\n",
6083 usb_devices[i]);
6088 if (!display_state)
6089 dumb_display_init();
6090 /* just use the first displaystate for the moment */
6091 ds = display_state;
6093 if (display_type == DT_DEFAULT) {
6094 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6095 display_type = DT_SDL;
6096 #else
6097 display_type = DT_VNC;
6098 vnc_display = "localhost:0,to=99";
6099 show_vnc_port = 1;
6100 #endif
6104 switch (display_type) {
6105 case DT_NOGRAPHIC:
6106 break;
6107 #if defined(CONFIG_CURSES)
6108 case DT_CURSES:
6109 curses_display_init(ds, full_screen);
6110 break;
6111 #endif
6112 #if defined(CONFIG_SDL)
6113 case DT_SDL:
6114 sdl_display_init(ds, full_screen, no_frame);
6115 break;
6116 #elif defined(CONFIG_COCOA)
6117 case DT_SDL:
6118 cocoa_display_init(ds, full_screen);
6119 break;
6120 #endif
6121 case DT_VNC:
6122 vnc_display_init(ds);
6123 if (vnc_display_open(ds, vnc_display) < 0)
6124 exit(1);
6126 if (show_vnc_port) {
6127 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6129 break;
6130 default:
6131 break;
6133 dpy_resize(ds);
6135 dcl = ds->listeners;
6136 while (dcl != NULL) {
6137 if (dcl->dpy_refresh != NULL) {
6138 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6139 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6141 dcl = dcl->next;
6144 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6145 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6146 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6149 text_consoles_set_display(display_state);
6150 qemu_chr_initial_reset();
6152 if (monitor_device && monitor_hd)
6153 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6155 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6156 const char *devname = serial_devices[i];
6157 if (devname && strcmp(devname, "none")) {
6158 char label[32];
6159 snprintf(label, sizeof(label), "serial%d", i);
6160 if (strstart(devname, "vc", 0))
6161 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6165 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6166 const char *devname = parallel_devices[i];
6167 if (devname && strcmp(devname, "none")) {
6168 char label[32];
6169 snprintf(label, sizeof(label), "parallel%d", i);
6170 if (strstart(devname, "vc", 0))
6171 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6175 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6176 const char *devname = virtio_consoles[i];
6177 if (virtcon_hds[i] && devname) {
6178 char label[32];
6179 snprintf(label, sizeof(label), "virtcon%d", i);
6180 if (strstart(devname, "vc", 0))
6181 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6185 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6186 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6187 gdbstub_dev);
6188 exit(1);
6191 if (loadvm)
6192 do_loadvm(cur_mon, loadvm);
6194 if (incoming) {
6195 autostart = 0; /* fixme how to deal with -daemonize */
6196 qemu_start_incoming_migration(incoming);
6199 if (autostart)
6200 vm_start();
6202 #ifndef _WIN32
6203 if (daemonize) {
6204 uint8_t status = 0;
6205 ssize_t len;
6207 again1:
6208 len = write(fds[1], &status, 1);
6209 if (len == -1 && (errno == EINTR))
6210 goto again1;
6212 if (len != 1)
6213 exit(1);
6215 chdir("/");
6216 TFR(fd = open("/dev/null", O_RDWR));
6217 if (fd == -1)
6218 exit(1);
6221 if (run_as) {
6222 pwd = getpwnam(run_as);
6223 if (!pwd) {
6224 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6225 exit(1);
6229 if (chroot_dir) {
6230 if (chroot(chroot_dir) < 0) {
6231 fprintf(stderr, "chroot failed\n");
6232 exit(1);
6234 chdir("/");
6237 if (run_as) {
6238 if (setgid(pwd->pw_gid) < 0) {
6239 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6240 exit(1);
6242 if (setuid(pwd->pw_uid) < 0) {
6243 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6244 exit(1);
6246 if (setuid(0) != -1) {
6247 fprintf(stderr, "Dropping privileges failed\n");
6248 exit(1);
6252 if (daemonize) {
6253 dup2(fd, 0);
6254 dup2(fd, 1);
6255 dup2(fd, 2);
6257 close(fd);
6259 #endif
6261 main_loop();
6262 quit_timers();
6263 net_cleanup();
6265 return 0;