4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
33 #include "qemu-char.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
54 GDB_SIGNAL_UNKNOWN
= 143
57 #ifdef CONFIG_USER_ONLY
59 /* Map target signal numbers to GDB protocol signal numbers and vice
60 * versa. For user emulation's currently supported systems, we can
61 * assume most signals are defined.
64 static int gdb_signal_table
[] = {
224 /* In system mode we only need SIGINT and SIGTRAP; other signals
225 are not yet supported. */
232 static int gdb_signal_table
[] = {
242 #ifdef CONFIG_USER_ONLY
243 static int target_signal_to_gdb (int sig
)
246 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
247 if (gdb_signal_table
[i
] == sig
)
249 return GDB_SIGNAL_UNKNOWN
;
253 static int gdb_signal_to_target (int sig
)
255 if (sig
< ARRAY_SIZE (gdb_signal_table
))
256 return gdb_signal_table
[sig
];
263 typedef struct GDBRegisterState
{
269 struct GDBRegisterState
*next
;
280 typedef struct GDBState
{
281 CPUState
*c_cpu
; /* current CPU for step/continue ops */
282 CPUState
*g_cpu
; /* current CPU for other ops */
283 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
284 enum RSState state
; /* parsing state */
285 char line_buf
[MAX_PACKET_LENGTH
];
288 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
291 #ifdef CONFIG_USER_ONLY
295 CharDriverState
*chr
;
296 CharDriverState
*mon_chr
;
300 /* By default use no IRQs and no timers while single stepping so as to
301 * make single stepping like an ICE HW step.
303 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
305 static GDBState
*gdbserver_state
;
307 /* This is an ugly hack to cope with both new and old gdb.
308 If gdb sends qXfer:features:read then assume we're talking to a newish
309 gdb that understands target descriptions. */
310 static int gdb_has_xml
;
312 #ifdef CONFIG_USER_ONLY
313 /* XXX: This is not thread safe. Do we care? */
314 static int gdbserver_fd
= -1;
316 static int get_char(GDBState
*s
)
322 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
324 if (errno
== ECONNRESET
)
326 if (errno
!= EINTR
&& errno
!= EAGAIN
)
328 } else if (ret
== 0) {
340 static gdb_syscall_complete_cb gdb_current_syscall_cb
;
348 /* If gdb is connected when the first semihosting syscall occurs then use
349 remote gdb syscalls. Otherwise use native file IO. */
350 int use_gdb_syscalls(void)
352 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
353 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
356 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
359 /* Resume execution. */
360 static inline void gdb_continue(GDBState
*s
)
362 #ifdef CONFIG_USER_ONLY
363 s
->running_state
= 1;
369 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
371 #ifdef CONFIG_USER_ONLY
375 ret
= send(s
->fd
, buf
, len
, 0);
377 if (errno
!= EINTR
&& errno
!= EAGAIN
)
385 qemu_chr_fe_write(s
->chr
, buf
, len
);
389 static inline int fromhex(int v
)
391 if (v
>= '0' && v
<= '9')
393 else if (v
>= 'A' && v
<= 'F')
395 else if (v
>= 'a' && v
<= 'f')
401 static inline int tohex(int v
)
409 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
414 for(i
= 0; i
< len
; i
++) {
416 *q
++ = tohex(c
>> 4);
417 *q
++ = tohex(c
& 0xf);
422 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
426 for(i
= 0; i
< len
; i
++) {
427 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
432 /* return -1 if error, 0 if OK */
433 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
444 for(i
= 0; i
< len
; i
++) {
448 *(p
++) = tohex((csum
>> 4) & 0xf);
449 *(p
++) = tohex((csum
) & 0xf);
451 s
->last_packet_len
= p
- s
->last_packet
;
452 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
454 #ifdef CONFIG_USER_ONLY
467 /* return -1 if error, 0 if OK */
468 static int put_packet(GDBState
*s
, const char *buf
)
471 printf("reply='%s'\n", buf
);
474 return put_packet_binary(s
, buf
, strlen(buf
));
477 /* The GDB remote protocol transfers values in target byte order. This means
478 we can use the raw memory access routines to access the value buffer.
479 Conveniently, these also handle the case where the buffer is mis-aligned.
481 #define GET_REG8(val) do { \
482 stb_p(mem_buf, val); \
485 #define GET_REG16(val) do { \
486 stw_p(mem_buf, val); \
489 #define GET_REG32(val) do { \
490 stl_p(mem_buf, val); \
493 #define GET_REG64(val) do { \
494 stq_p(mem_buf, val); \
498 #if TARGET_LONG_BITS == 64
499 #define GET_REGL(val) GET_REG64(val)
500 #define ldtul_p(addr) ldq_p(addr)
502 #define GET_REGL(val) GET_REG32(val)
503 #define ldtul_p(addr) ldl_p(addr)
506 #if defined(TARGET_I386)
509 static const int gpr_map
[16] = {
510 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
511 8, 9, 10, 11, 12, 13, 14, 15
514 #define gpr_map gpr_map32
516 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
518 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
520 #define IDX_IP_REG CPU_NB_REGS
521 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
522 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
523 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
524 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
525 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
527 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
529 if (n
< CPU_NB_REGS
) {
530 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
531 GET_REG64(env
->regs
[gpr_map
[n
]]);
532 } else if (n
< CPU_NB_REGS32
) {
533 GET_REG32(env
->regs
[gpr_map32
[n
]]);
535 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
536 #ifdef USE_X86LDOUBLE
537 /* FIXME: byteswap float values - after fixing fpregs layout. */
538 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
540 memset(mem_buf
, 0, 10);
543 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
545 if (n
< CPU_NB_REGS32
||
546 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
547 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
548 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
554 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
559 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
561 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
562 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
563 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
564 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
565 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
566 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
568 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
569 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
570 (env
->fpstt
& 0x7) << 11);
571 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
572 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
573 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
574 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
575 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
576 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
578 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
584 static int cpu_x86_gdb_load_seg(CPUState
*env
, int sreg
, uint8_t *mem_buf
)
586 uint16_t selector
= ldl_p(mem_buf
);
588 if (selector
!= env
->segs
[sreg
].selector
) {
589 #if defined(CONFIG_USER_ONLY)
590 cpu_x86_load_seg(env
, sreg
, selector
);
592 unsigned int limit
, flags
;
595 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
596 base
= selector
<< 4;
600 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
603 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
609 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
613 if (n
< CPU_NB_REGS
) {
614 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
615 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
616 return sizeof(target_ulong
);
617 } else if (n
< CPU_NB_REGS32
) {
619 env
->regs
[n
] &= ~0xffffffffUL
;
620 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
623 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
624 #ifdef USE_X86LDOUBLE
625 /* FIXME: byteswap float values - after fixing fpregs layout. */
626 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
629 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
631 if (n
< CPU_NB_REGS32
||
632 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
633 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
634 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
640 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
641 env
->eip
= ldq_p(mem_buf
);
644 env
->eip
&= ~0xffffffffUL
;
645 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
649 env
->eflags
= ldl_p(mem_buf
);
652 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
653 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
654 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
655 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
656 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
657 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
659 case IDX_FP_REGS
+ 8:
660 env
->fpuc
= ldl_p(mem_buf
);
662 case IDX_FP_REGS
+ 9:
663 tmp
= ldl_p(mem_buf
);
664 env
->fpstt
= (tmp
>> 11) & 7;
665 env
->fpus
= tmp
& ~0x3800;
667 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
668 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
669 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
670 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
671 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
672 case IDX_FP_REGS
+ 15: /* fop */ return 4;
675 env
->mxcsr
= ldl_p(mem_buf
);
679 /* Unrecognised register. */
683 #elif defined (TARGET_PPC)
685 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
686 expects whatever the target description contains. Due to a
687 historical mishap the FP registers appear in between core integer
688 regs and PC, MSR, CR, and so forth. We hack round this by giving the
689 FP regs zero size when talking to a newer gdb. */
690 #define NUM_CORE_REGS 71
691 #if defined (TARGET_PPC64)
692 #define GDB_CORE_XML "power64-core.xml"
694 #define GDB_CORE_XML "power-core.xml"
697 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
701 GET_REGL(env
->gpr
[n
]);
706 stfq_p(mem_buf
, env
->fpr
[n
-32]);
710 case 64: GET_REGL(env
->nip
);
711 case 65: GET_REGL(env
->msr
);
716 for (i
= 0; i
< 8; i
++)
717 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
720 case 67: GET_REGL(env
->lr
);
721 case 68: GET_REGL(env
->ctr
);
722 case 69: GET_REGL(env
->xer
);
727 GET_REG32(0); /* fpscr */
734 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
738 env
->gpr
[n
] = ldtul_p(mem_buf
);
739 return sizeof(target_ulong
);
744 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
749 env
->nip
= ldtul_p(mem_buf
);
750 return sizeof(target_ulong
);
752 ppc_store_msr(env
, ldtul_p(mem_buf
));
753 return sizeof(target_ulong
);
756 uint32_t cr
= ldl_p(mem_buf
);
758 for (i
= 0; i
< 8; i
++)
759 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
763 env
->lr
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
766 env
->ctr
= ldtul_p(mem_buf
);
767 return sizeof(target_ulong
);
769 env
->xer
= ldtul_p(mem_buf
);
770 return sizeof(target_ulong
);
781 #elif defined (TARGET_SPARC)
783 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
784 #define NUM_CORE_REGS 86
786 #define NUM_CORE_REGS 72
790 #define GET_REGA(val) GET_REG32(val)
792 #define GET_REGA(val) GET_REGL(val)
795 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
799 GET_REGA(env
->gregs
[n
]);
802 /* register window */
803 GET_REGA(env
->regwptr
[n
- 8]);
805 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
808 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
810 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
812 case 64: GET_REGA(env
->y
);
813 case 65: GET_REGA(cpu_get_psr(env
));
814 case 66: GET_REGA(env
->wim
);
815 case 67: GET_REGA(env
->tbr
);
816 case 68: GET_REGA(env
->pc
);
817 case 69: GET_REGA(env
->npc
);
818 case 70: GET_REGA(env
->fsr
);
819 case 71: GET_REGA(0); /* csr */
820 default: GET_REGA(0);
825 GET_REG32(*((uint32_t *)&env
->fpr
[n
- 32]));
828 /* f32-f62 (double width, even numbers only) */
831 val
= (uint64_t)*((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) << 32;
832 val
|= *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]);
836 case 80: GET_REGL(env
->pc
);
837 case 81: GET_REGL(env
->npc
);
838 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
839 ((env
->asi
& 0xff) << 24) |
840 ((env
->pstate
& 0xfff) << 8) |
842 case 83: GET_REGL(env
->fsr
);
843 case 84: GET_REGL(env
->fprs
);
844 case 85: GET_REGL(env
->y
);
850 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
852 #if defined(TARGET_ABI32)
855 tmp
= ldl_p(mem_buf
);
859 tmp
= ldtul_p(mem_buf
);
866 /* register window */
867 env
->regwptr
[n
- 8] = tmp
;
869 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
872 *((uint32_t *)&env
->fpr
[n
- 32]) = tmp
;
874 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
876 case 64: env
->y
= tmp
; break;
877 case 65: cpu_put_psr(env
, tmp
); break;
878 case 66: env
->wim
= tmp
; break;
879 case 67: env
->tbr
= tmp
; break;
880 case 68: env
->pc
= tmp
; break;
881 case 69: env
->npc
= tmp
; break;
882 case 70: env
->fsr
= tmp
; break;
890 env
->fpr
[n
] = ldfl_p(mem_buf
);
893 /* f32-f62 (double width, even numbers only) */
894 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 32]) = tmp
>> 32;
895 *((uint32_t *)&env
->fpr
[(n
- 64) * 2 + 33]) = tmp
;
898 case 80: env
->pc
= tmp
; break;
899 case 81: env
->npc
= tmp
; break;
901 cpu_put_ccr(env
, tmp
>> 32);
902 env
->asi
= (tmp
>> 24) & 0xff;
903 env
->pstate
= (tmp
>> 8) & 0xfff;
904 cpu_put_cwp64(env
, tmp
& 0xff);
906 case 83: env
->fsr
= tmp
; break;
907 case 84: env
->fprs
= tmp
; break;
908 case 85: env
->y
= tmp
; break;
915 #elif defined (TARGET_ARM)
917 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
918 whatever the target description contains. Due to a historical mishap
919 the FPA registers appear in between core integer regs and the CPSR.
920 We hack round this by giving the FPA regs zero size when talking to a
922 #define NUM_CORE_REGS 26
923 #define GDB_CORE_XML "arm-core.xml"
925 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
928 /* Core integer register. */
929 GET_REG32(env
->regs
[n
]);
935 memset(mem_buf
, 0, 12);
940 /* FPA status register. */
946 GET_REG32(cpsr_read(env
));
948 /* Unknown register. */
952 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
956 tmp
= ldl_p(mem_buf
);
958 /* Mask out low bit of PC to workaround gdb bugs. This will probably
959 cause problems if we ever implement the Jazelle DBX extensions. */
964 /* Core integer register. */
968 if (n
< 24) { /* 16-23 */
969 /* FPA registers (ignored). */
976 /* FPA status register (ignored). */
982 cpsr_write (env
, tmp
, 0xffffffff);
985 /* Unknown register. */
989 #elif defined (TARGET_M68K)
991 #define NUM_CORE_REGS 18
993 #define GDB_CORE_XML "cf-core.xml"
995 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
999 GET_REG32(env
->dregs
[n
]);
1000 } else if (n
< 16) {
1002 GET_REG32(env
->aregs
[n
- 8]);
1005 case 16: GET_REG32(env
->sr
);
1006 case 17: GET_REG32(env
->pc
);
1009 /* FP registers not included here because they vary between
1010 ColdFire and m68k. Use XML bits for these. */
1014 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1018 tmp
= ldl_p(mem_buf
);
1022 env
->dregs
[n
] = tmp
;
1023 } else if (n
< 16) {
1025 env
->aregs
[n
- 8] = tmp
;
1028 case 16: env
->sr
= tmp
; break;
1029 case 17: env
->pc
= tmp
; break;
1035 #elif defined (TARGET_MIPS)
1037 #define NUM_CORE_REGS 73
1039 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1042 GET_REGL(env
->active_tc
.gpr
[n
]);
1044 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1045 if (n
>= 38 && n
< 70) {
1046 if (env
->CP0_Status
& (1 << CP0St_FR
))
1047 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1049 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1052 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1053 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1057 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1058 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1059 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1060 case 35: GET_REGL(env
->CP0_BadVAddr
);
1061 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1062 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1063 case 72: GET_REGL(0); /* fp */
1064 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1066 if (n
>= 73 && n
<= 88) {
1067 /* 16 embedded regs. */
1074 /* convert MIPS rounding mode in FCR31 to IEEE library */
1075 static unsigned int ieee_rm
[] =
1077 float_round_nearest_even
,
1078 float_round_to_zero
,
1082 #define RESTORE_ROUNDING_MODE \
1083 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1085 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1089 tmp
= ldtul_p(mem_buf
);
1092 env
->active_tc
.gpr
[n
] = tmp
;
1093 return sizeof(target_ulong
);
1095 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1096 && n
>= 38 && n
< 73) {
1098 if (env
->CP0_Status
& (1 << CP0St_FR
))
1099 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1101 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1105 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1106 /* set rounding mode */
1107 RESTORE_ROUNDING_MODE
;
1109 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1111 return sizeof(target_ulong
);
1114 case 32: env
->CP0_Status
= tmp
; break;
1115 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1116 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1117 case 35: env
->CP0_BadVAddr
= tmp
; break;
1118 case 36: env
->CP0_Cause
= tmp
; break;
1120 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1122 env
->hflags
|= MIPS_HFLAG_M16
;
1124 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1127 case 72: /* fp, ignored */ break;
1131 /* Other registers are readonly. Ignore writes. */
1135 return sizeof(target_ulong
);
1137 #elif defined (TARGET_SH4)
1139 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1140 /* FIXME: We should use XML for this. */
1142 #define NUM_CORE_REGS 59
1144 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1147 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1148 GET_REGL(env
->gregs
[n
+ 16]);
1150 GET_REGL(env
->gregs
[n
]);
1152 } else if (n
< 16) {
1153 GET_REGL(env
->gregs
[n
]);
1154 } else if (n
>= 25 && n
< 41) {
1155 GET_REGL(env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)]);
1156 } else if (n
>= 43 && n
< 51) {
1157 GET_REGL(env
->gregs
[n
- 43]);
1158 } else if (n
>= 51 && n
< 59) {
1159 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1162 case 16: GET_REGL(env
->pc
);
1163 case 17: GET_REGL(env
->pr
);
1164 case 18: GET_REGL(env
->gbr
);
1165 case 19: GET_REGL(env
->vbr
);
1166 case 20: GET_REGL(env
->mach
);
1167 case 21: GET_REGL(env
->macl
);
1168 case 22: GET_REGL(env
->sr
);
1169 case 23: GET_REGL(env
->fpul
);
1170 case 24: GET_REGL(env
->fpscr
);
1171 case 41: GET_REGL(env
->ssr
);
1172 case 42: GET_REGL(env
->spc
);
1178 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1182 tmp
= ldl_p(mem_buf
);
1185 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1186 env
->gregs
[n
+ 16] = tmp
;
1188 env
->gregs
[n
] = tmp
;
1191 } else if (n
< 16) {
1192 env
->gregs
[n
] = tmp
;
1194 } else if (n
>= 25 && n
< 41) {
1195 env
->fregs
[(n
- 25) + ((env
->fpscr
& FPSCR_FR
) ? 16 : 0)] = tmp
;
1197 } else if (n
>= 43 && n
< 51) {
1198 env
->gregs
[n
- 43] = tmp
;
1200 } else if (n
>= 51 && n
< 59) {
1201 env
->gregs
[n
- (51 - 16)] = tmp
;
1205 case 16: env
->pc
= tmp
; break;
1206 case 17: env
->pr
= tmp
; break;
1207 case 18: env
->gbr
= tmp
; break;
1208 case 19: env
->vbr
= tmp
; break;
1209 case 20: env
->mach
= tmp
; break;
1210 case 21: env
->macl
= tmp
; break;
1211 case 22: env
->sr
= tmp
; break;
1212 case 23: env
->fpul
= tmp
; break;
1213 case 24: env
->fpscr
= tmp
; break;
1214 case 41: env
->ssr
= tmp
; break;
1215 case 42: env
->spc
= tmp
; break;
1221 #elif defined (TARGET_MICROBLAZE)
1223 #define NUM_CORE_REGS (32 + 5)
1225 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1228 GET_REG32(env
->regs
[n
]);
1230 GET_REG32(env
->sregs
[n
- 32]);
1235 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1239 if (n
> NUM_CORE_REGS
)
1242 tmp
= ldl_p(mem_buf
);
1247 env
->sregs
[n
- 32] = tmp
;
1251 #elif defined (TARGET_CRIS)
1253 #define NUM_CORE_REGS 49
1256 read_register_crisv10(CPUState
*env
, uint8_t *mem_buf
, int n
)
1259 GET_REG32(env
->regs
[n
]);
1269 GET_REG8(env
->pregs
[n
- 16]);
1272 GET_REG8(env
->pregs
[n
- 16]);
1276 GET_REG16(env
->pregs
[n
- 16]);
1280 GET_REG32(env
->pregs
[n
- 16]);
1288 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1292 if (env
->pregs
[PR_VR
] < 32)
1293 return read_register_crisv10(env
, mem_buf
, n
);
1295 srs
= env
->pregs
[PR_SRS
];
1297 GET_REG32(env
->regs
[n
]);
1300 if (n
>= 21 && n
< 32) {
1301 GET_REG32(env
->pregs
[n
- 16]);
1303 if (n
>= 33 && n
< 49) {
1304 GET_REG32(env
->sregs
[srs
][n
- 33]);
1307 case 16: GET_REG8(env
->pregs
[0]);
1308 case 17: GET_REG8(env
->pregs
[1]);
1309 case 18: GET_REG32(env
->pregs
[2]);
1310 case 19: GET_REG8(srs
);
1311 case 20: GET_REG16(env
->pregs
[4]);
1312 case 32: GET_REG32(env
->pc
);
1318 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1325 tmp
= ldl_p(mem_buf
);
1331 if (n
>= 21 && n
< 32) {
1332 env
->pregs
[n
- 16] = tmp
;
1335 /* FIXME: Should support function regs be writable? */
1339 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1342 case 32: env
->pc
= tmp
; break;
1347 #elif defined (TARGET_ALPHA)
1349 #define NUM_CORE_REGS 67
1351 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1361 d
.d
= env
->fir
[n
- 32];
1365 val
= cpu_alpha_load_fpcr(env
);
1375 /* 31 really is the zero register; 65 is unassigned in the
1376 gdb protocol, but is still required to occupy 8 bytes. */
1385 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1387 target_ulong tmp
= ldtul_p(mem_buf
);
1396 env
->fir
[n
- 32] = d
.d
;
1399 cpu_alpha_store_fpcr(env
, tmp
);
1409 /* 31 really is the zero register; 65 is unassigned in the
1410 gdb protocol, but is still required to occupy 8 bytes. */
1417 #elif defined (TARGET_S390X)
1419 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1421 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1424 case S390_PSWM_REGNUM
: GET_REGL(env
->psw
.mask
); break;
1425 case S390_PSWA_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1426 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1427 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]); break;
1428 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1429 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]); break;
1430 case S390_FPC_REGNUM
: GET_REG32(env
->fpc
); break;
1431 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1434 case S390_PC_REGNUM
: GET_REGL(env
->psw
.addr
); break;
1435 case S390_CC_REGNUM
:
1436 env
->cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
,
1438 GET_REG32(env
->cc_op
);
1445 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1450 tmpl
= ldtul_p(mem_buf
);
1451 tmp32
= ldl_p(mem_buf
);
1454 case S390_PSWM_REGNUM
: env
->psw
.mask
= tmpl
; break;
1455 case S390_PSWA_REGNUM
: env
->psw
.addr
= tmpl
; break;
1456 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1457 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
; break;
1458 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1459 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
; r
=4; break;
1460 case S390_FPC_REGNUM
: env
->fpc
= tmp32
; r
=4; break;
1461 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1464 case S390_PC_REGNUM
: env
->psw
.addr
= tmpl
; break;
1465 case S390_CC_REGNUM
: env
->cc_op
= tmp32
; r
=4; break;
1470 #elif defined (TARGET_LM32)
1472 #include "hw/lm32_pic.h"
1473 #define NUM_CORE_REGS (32 + 7)
1475 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1478 GET_REG32(env
->regs
[n
]);
1484 /* FIXME: put in right exception ID */
1489 GET_REG32(env
->eba
);
1492 GET_REG32(env
->deba
);
1498 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1501 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1508 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1512 if (n
> NUM_CORE_REGS
) {
1516 tmp
= ldl_p(mem_buf
);
1535 lm32_pic_set_im(env
->pic_state
, tmp
);
1538 lm32_pic_set_ip(env
->pic_state
, tmp
);
1544 #elif defined(TARGET_XTENSA)
1546 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1547 * Use num_regs to see all registers. gdb modification is required for that:
1548 * reset bit 0 in the 'flags' field of the registers definitions in the
1549 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1551 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1552 #define num_g_regs NUM_CORE_REGS
1554 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1556 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1558 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1562 switch (reg
->type
) {
1568 xtensa_sync_phys_from_window(env
);
1569 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1573 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1577 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1581 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1585 qemu_log("%s from reg %d of unsupported type %d\n",
1586 __func__
, n
, reg
->type
);
1591 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1594 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1596 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1600 tmp
= ldl_p(mem_buf
);
1602 switch (reg
->type
) {
1608 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1609 xtensa_sync_window_from_phys(env
);
1613 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1617 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1621 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1625 qemu_log("%s to reg %d of unsupported type %d\n",
1626 __func__
, n
, reg
->type
);
1634 #define NUM_CORE_REGS 0
1636 static int cpu_gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1641 static int cpu_gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int n
)
1648 #if !defined(TARGET_XTENSA)
1649 static int num_g_regs
= NUM_CORE_REGS
;
1653 /* Encode data using the encoding for 'x' packets. */
1654 static int memtox(char *buf
, const char *mem
, int len
)
1662 case '#': case '$': case '*': case '}':
1674 static const char *get_feature_xml(const char *p
, const char **newp
)
1679 static char target_xml
[1024];
1682 while (p
[len
] && p
[len
] != ':')
1687 if (strncmp(p
, "target.xml", len
) == 0) {
1688 /* Generate the XML description for this CPU. */
1689 if (!target_xml
[0]) {
1690 GDBRegisterState
*r
;
1692 snprintf(target_xml
, sizeof(target_xml
),
1693 "<?xml version=\"1.0\"?>"
1694 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1696 "<xi:include href=\"%s\"/>",
1699 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1700 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1701 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1702 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1704 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1708 for (i
= 0; ; i
++) {
1709 name
= xml_builtin
[i
][0];
1710 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1713 return name
? xml_builtin
[i
][1] : NULL
;
1717 static int gdb_read_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1719 GDBRegisterState
*r
;
1721 if (reg
< NUM_CORE_REGS
)
1722 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1724 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1725 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1726 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1732 static int gdb_write_register(CPUState
*env
, uint8_t *mem_buf
, int reg
)
1734 GDBRegisterState
*r
;
1736 if (reg
< NUM_CORE_REGS
)
1737 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1739 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1740 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1741 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1747 #if !defined(TARGET_XTENSA)
1748 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1749 specifies the first register number and these registers are included in
1750 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1751 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1754 void gdb_register_coprocessor(CPUState
* env
,
1755 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1756 int num_regs
, const char *xml
, int g_pos
)
1758 GDBRegisterState
*s
;
1759 GDBRegisterState
**p
;
1760 static int last_reg
= NUM_CORE_REGS
;
1762 s
= (GDBRegisterState
*)g_malloc0(sizeof(GDBRegisterState
));
1763 s
->base_reg
= last_reg
;
1764 s
->num_regs
= num_regs
;
1765 s
->get_reg
= get_reg
;
1766 s
->set_reg
= set_reg
;
1770 /* Check for duplicates. */
1771 if (strcmp((*p
)->xml
, xml
) == 0)
1775 /* Add to end of list. */
1776 last_reg
+= num_regs
;
1779 if (g_pos
!= s
->base_reg
) {
1780 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1781 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1783 num_g_regs
= last_reg
;
1789 #ifndef CONFIG_USER_ONLY
1790 static const int xlat_gdb_type
[] = {
1791 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1792 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1793 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1797 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1803 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1806 case GDB_BREAKPOINT_SW
:
1807 case GDB_BREAKPOINT_HW
:
1808 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1809 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1814 #ifndef CONFIG_USER_ONLY
1815 case GDB_WATCHPOINT_WRITE
:
1816 case GDB_WATCHPOINT_READ
:
1817 case GDB_WATCHPOINT_ACCESS
:
1818 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1819 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1831 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1837 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1840 case GDB_BREAKPOINT_SW
:
1841 case GDB_BREAKPOINT_HW
:
1842 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1843 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1848 #ifndef CONFIG_USER_ONLY
1849 case GDB_WATCHPOINT_WRITE
:
1850 case GDB_WATCHPOINT_READ
:
1851 case GDB_WATCHPOINT_ACCESS
:
1852 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1853 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
1864 static void gdb_breakpoint_remove_all(void)
1868 if (kvm_enabled()) {
1869 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
1873 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1874 cpu_breakpoint_remove_all(env
, BP_GDB
);
1875 #ifndef CONFIG_USER_ONLY
1876 cpu_watchpoint_remove_all(env
, BP_GDB
);
1881 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
1883 #if defined(TARGET_I386)
1884 cpu_synchronize_state(s
->c_cpu
);
1886 #elif defined (TARGET_PPC)
1888 #elif defined (TARGET_SPARC)
1890 s
->c_cpu
->npc
= pc
+ 4;
1891 #elif defined (TARGET_ARM)
1892 s
->c_cpu
->regs
[15] = pc
;
1893 #elif defined (TARGET_SH4)
1895 #elif defined (TARGET_MIPS)
1896 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
1898 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
1900 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
1902 #elif defined (TARGET_MICROBLAZE)
1903 s
->c_cpu
->sregs
[SR_PC
] = pc
;
1904 #elif defined (TARGET_CRIS)
1906 #elif defined (TARGET_ALPHA)
1908 #elif defined (TARGET_S390X)
1909 cpu_synchronize_state(s
->c_cpu
);
1910 s
->c_cpu
->psw
.addr
= pc
;
1911 #elif defined (TARGET_LM32)
1913 #elif defined(TARGET_XTENSA)
1918 static inline int gdb_id(CPUState
*env
)
1920 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1921 return env
->host_tid
;
1923 return env
->cpu_index
+ 1;
1927 static CPUState
*find_cpu(uint32_t thread_id
)
1931 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1932 if (gdb_id(env
) == thread_id
) {
1940 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
1945 int ch
, reg_size
, type
, res
;
1946 char buf
[MAX_PACKET_LENGTH
];
1947 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1949 target_ulong addr
, len
;
1952 printf("command='%s'\n", line_buf
);
1958 /* TODO: Make this return the correct value for user-mode. */
1959 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
1962 /* Remove all the breakpoints when this query is issued,
1963 * because gdb is doing and initial connect and the state
1964 * should be cleaned up.
1966 gdb_breakpoint_remove_all();
1970 addr
= strtoull(p
, (char **)&p
, 16);
1971 gdb_set_cpu_pc(s
, addr
);
1977 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
1978 if (s
->signal
== -1)
1983 if (strncmp(p
, "Cont", 4) == 0) {
1984 int res_signal
, res_thread
;
1988 put_packet(s
, "vCont;c;C;s;S");
2003 if (action
== 'C' || action
== 'S') {
2004 signal
= strtoul(p
, (char **)&p
, 16);
2005 } else if (action
!= 'c' && action
!= 's') {
2011 thread
= strtoull(p
+1, (char **)&p
, 16);
2013 action
= tolower(action
);
2014 if (res
== 0 || (res
== 'c' && action
== 's')) {
2016 res_signal
= signal
;
2017 res_thread
= thread
;
2021 if (res_thread
!= -1 && res_thread
!= 0) {
2022 env
= find_cpu(res_thread
);
2024 put_packet(s
, "E22");
2030 cpu_single_step(s
->c_cpu
, sstep_flags
);
2032 s
->signal
= res_signal
;
2038 goto unknown_command
;
2041 /* Kill the target */
2042 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2046 gdb_breakpoint_remove_all();
2047 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2049 put_packet(s
, "OK");
2053 addr
= strtoull(p
, (char **)&p
, 16);
2054 gdb_set_cpu_pc(s
, addr
);
2056 cpu_single_step(s
->c_cpu
, sstep_flags
);
2064 ret
= strtoull(p
, (char **)&p
, 16);
2067 err
= strtoull(p
, (char **)&p
, 16);
2074 if (gdb_current_syscall_cb
)
2075 gdb_current_syscall_cb(s
->c_cpu
, ret
, err
);
2077 put_packet(s
, "T02");
2084 cpu_synchronize_state(s
->g_cpu
);
2087 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2088 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2091 memtohex(buf
, mem_buf
, len
);
2095 cpu_synchronize_state(s
->g_cpu
);
2097 registers
= mem_buf
;
2098 len
= strlen(p
) / 2;
2099 hextomem((uint8_t *)registers
, p
, len
);
2100 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2101 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2103 registers
+= reg_size
;
2105 put_packet(s
, "OK");
2108 addr
= strtoull(p
, (char **)&p
, 16);
2111 len
= strtoull(p
, NULL
, 16);
2112 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2113 put_packet (s
, "E14");
2115 memtohex(buf
, mem_buf
, len
);
2120 addr
= strtoull(p
, (char **)&p
, 16);
2123 len
= strtoull(p
, (char **)&p
, 16);
2126 hextomem(mem_buf
, p
, len
);
2127 if (cpu_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0)
2128 put_packet(s
, "E14");
2130 put_packet(s
, "OK");
2133 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2134 This works, but can be very slow. Anything new enough to
2135 understand XML also knows how to use this properly. */
2137 goto unknown_command
;
2138 addr
= strtoull(p
, (char **)&p
, 16);
2139 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2141 memtohex(buf
, mem_buf
, reg_size
);
2144 put_packet(s
, "E14");
2149 goto unknown_command
;
2150 addr
= strtoull(p
, (char **)&p
, 16);
2153 reg_size
= strlen(p
) / 2;
2154 hextomem(mem_buf
, p
, reg_size
);
2155 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2156 put_packet(s
, "OK");
2160 type
= strtoul(p
, (char **)&p
, 16);
2163 addr
= strtoull(p
, (char **)&p
, 16);
2166 len
= strtoull(p
, (char **)&p
, 16);
2168 res
= gdb_breakpoint_insert(addr
, len
, type
);
2170 res
= gdb_breakpoint_remove(addr
, len
, type
);
2172 put_packet(s
, "OK");
2173 else if (res
== -ENOSYS
)
2176 put_packet(s
, "E22");
2180 thread
= strtoull(p
, (char **)&p
, 16);
2181 if (thread
== -1 || thread
== 0) {
2182 put_packet(s
, "OK");
2185 env
= find_cpu(thread
);
2187 put_packet(s
, "E22");
2193 put_packet(s
, "OK");
2197 put_packet(s
, "OK");
2200 put_packet(s
, "E22");
2205 thread
= strtoull(p
, (char **)&p
, 16);
2206 env
= find_cpu(thread
);
2209 put_packet(s
, "OK");
2211 put_packet(s
, "E22");
2216 /* parse any 'q' packets here */
2217 if (!strcmp(p
,"qemu.sstepbits")) {
2218 /* Query Breakpoint bit definitions */
2219 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2225 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2226 /* Display or change the sstep_flags */
2229 /* Display current setting */
2230 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2235 type
= strtoul(p
, (char **)&p
, 16);
2237 put_packet(s
, "OK");
2239 } else if (strcmp(p
,"C") == 0) {
2240 /* "Current thread" remains vague in the spec, so always return
2241 * the first CPU (gdb returns the first thread). */
2242 put_packet(s
, "QC1");
2244 } else if (strcmp(p
,"fThreadInfo") == 0) {
2245 s
->query_cpu
= first_cpu
;
2246 goto report_cpuinfo
;
2247 } else if (strcmp(p
,"sThreadInfo") == 0) {
2250 snprintf(buf
, sizeof(buf
), "m%x", gdb_id(s
->query_cpu
));
2252 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2256 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2257 thread
= strtoull(p
+16, (char **)&p
, 16);
2258 env
= find_cpu(thread
);
2260 cpu_synchronize_state(env
);
2261 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2262 "CPU#%d [%s]", env
->cpu_index
,
2263 env
->halted
? "halted " : "running");
2264 memtohex(buf
, mem_buf
, len
);
2269 #ifdef CONFIG_USER_ONLY
2270 else if (strncmp(p
, "Offsets", 7) == 0) {
2271 TaskState
*ts
= s
->c_cpu
->opaque
;
2273 snprintf(buf
, sizeof(buf
),
2274 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2275 ";Bss=" TARGET_ABI_FMT_lx
,
2276 ts
->info
->code_offset
,
2277 ts
->info
->data_offset
,
2278 ts
->info
->data_offset
);
2282 #else /* !CONFIG_USER_ONLY */
2283 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2284 int len
= strlen(p
+ 5);
2286 if ((len
% 2) != 0) {
2287 put_packet(s
, "E01");
2290 hextomem(mem_buf
, p
+ 5, len
);
2293 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2294 put_packet(s
, "OK");
2297 #endif /* !CONFIG_USER_ONLY */
2298 if (strncmp(p
, "Supported", 9) == 0) {
2299 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2301 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2307 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2309 target_ulong total_len
;
2313 xml
= get_feature_xml(p
, &p
);
2315 snprintf(buf
, sizeof(buf
), "E00");
2322 addr
= strtoul(p
, (char **)&p
, 16);
2325 len
= strtoul(p
, (char **)&p
, 16);
2327 total_len
= strlen(xml
);
2328 if (addr
> total_len
) {
2329 snprintf(buf
, sizeof(buf
), "E00");
2333 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2334 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2335 if (len
< total_len
- addr
) {
2337 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2340 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2342 put_packet_binary(s
, buf
, len
+ 1);
2346 /* Unrecognised 'q' command. */
2347 goto unknown_command
;
2351 /* put empty packet */
2359 void gdb_set_stop_cpu(CPUState
*env
)
2361 gdbserver_state
->c_cpu
= env
;
2362 gdbserver_state
->g_cpu
= env
;
2365 #ifndef CONFIG_USER_ONLY
2366 static void gdb_vm_state_change(void *opaque
, int running
, int reason
)
2368 GDBState
*s
= gdbserver_state
;
2369 CPUState
*env
= s
->c_cpu
;
2374 if (running
|| s
->state
== RS_INACTIVE
|| s
->state
== RS_SYSCALL
) {
2379 if (env
->watchpoint_hit
) {
2380 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2391 snprintf(buf
, sizeof(buf
),
2392 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2393 GDB_SIGNAL_TRAP
, gdb_id(env
), type
,
2394 env
->watchpoint_hit
->vaddr
);
2395 env
->watchpoint_hit
= NULL
;
2399 ret
= GDB_SIGNAL_TRAP
;
2402 ret
= GDB_SIGNAL_INT
;
2404 case VMSTOP_SHUTDOWN
:
2405 ret
= GDB_SIGNAL_QUIT
;
2407 case VMSTOP_DISKFULL
:
2408 ret
= GDB_SIGNAL_IO
;
2410 case VMSTOP_WATCHDOG
:
2411 ret
= GDB_SIGNAL_ALRM
;
2414 ret
= GDB_SIGNAL_ABRT
;
2419 case VMSTOP_MIGRATE
:
2420 ret
= GDB_SIGNAL_XCPU
;
2423 ret
= GDB_SIGNAL_UNKNOWN
;
2426 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, gdb_id(env
));
2431 /* disable single step if it was enabled */
2432 cpu_single_step(env
, 0);
2436 /* Send a gdb syscall request.
2437 This accepts limited printf-style format specifiers, specifically:
2438 %x - target_ulong argument printed in hex.
2439 %lx - 64-bit argument printed in hex.
2440 %s - string pointer (target_ulong) and length (int) pair. */
2441 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2450 s
= gdbserver_state
;
2453 gdb_current_syscall_cb
= cb
;
2454 s
->state
= RS_SYSCALL
;
2455 #ifndef CONFIG_USER_ONLY
2456 vm_stop(VMSTOP_DEBUG
);
2467 addr
= va_arg(va
, target_ulong
);
2468 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
, addr
);
2471 if (*(fmt
++) != 'x')
2473 i64
= va_arg(va
, uint64_t);
2474 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, "%" PRIx64
, i64
);
2477 addr
= va_arg(va
, target_ulong
);
2478 p
+= snprintf(p
, &buf
[sizeof(buf
)] - p
, TARGET_FMT_lx
"/%x",
2479 addr
, va_arg(va
, int));
2483 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2494 #ifdef CONFIG_USER_ONLY
2495 gdb_handlesig(s
->c_cpu
, 0);
2501 static void gdb_read_byte(GDBState
*s
, int ch
)
2506 #ifndef CONFIG_USER_ONLY
2507 if (s
->last_packet_len
) {
2508 /* Waiting for a response to the last packet. If we see the start
2509 of a new command then abandon the previous response. */
2512 printf("Got NACK, retransmitting\n");
2514 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2518 printf("Got ACK\n");
2520 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2522 if (ch
== '+' || ch
== '$')
2523 s
->last_packet_len
= 0;
2528 /* when the CPU is running, we cannot do anything except stop
2529 it when receiving a char */
2530 vm_stop(VMSTOP_USER
);
2537 s
->line_buf_index
= 0;
2538 s
->state
= RS_GETLINE
;
2543 s
->state
= RS_CHKSUM1
;
2544 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2547 s
->line_buf
[s
->line_buf_index
++] = ch
;
2551 s
->line_buf
[s
->line_buf_index
] = '\0';
2552 s
->line_csum
= fromhex(ch
) << 4;
2553 s
->state
= RS_CHKSUM2
;
2556 s
->line_csum
|= fromhex(ch
);
2558 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2559 csum
+= s
->line_buf
[i
];
2561 if (s
->line_csum
!= (csum
& 0xff)) {
2563 put_buffer(s
, &reply
, 1);
2567 put_buffer(s
, &reply
, 1);
2568 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2577 /* Tell the remote gdb that the process has exited. */
2578 void gdb_exit(CPUState
*env
, int code
)
2583 s
= gdbserver_state
;
2587 #ifdef CONFIG_USER_ONLY
2588 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2593 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2596 #ifndef CONFIG_USER_ONLY
2598 qemu_chr_delete(s
->chr
);
2603 #ifdef CONFIG_USER_ONLY
2609 s
= gdbserver_state
;
2611 if (gdbserver_fd
< 0 || s
->fd
< 0)
2618 gdb_handlesig (CPUState
*env
, int sig
)
2624 s
= gdbserver_state
;
2625 if (gdbserver_fd
< 0 || s
->fd
< 0)
2628 /* disable single step if it was enabled */
2629 cpu_single_step(env
, 0);
2634 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2637 /* put_packet() might have detected that the peer terminated the
2644 s
->running_state
= 0;
2645 while (s
->running_state
== 0) {
2646 n
= read (s
->fd
, buf
, 256);
2651 for (i
= 0; i
< n
; i
++)
2652 gdb_read_byte (s
, buf
[i
]);
2654 else if (n
== 0 || errno
!= EAGAIN
)
2656 /* XXX: Connection closed. Should probably wait for annother
2657 connection before continuing. */
2666 /* Tell the remote gdb that the process has exited due to SIG. */
2667 void gdb_signalled(CPUState
*env
, int sig
)
2672 s
= gdbserver_state
;
2673 if (gdbserver_fd
< 0 || s
->fd
< 0)
2676 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2680 static void gdb_accept(void)
2683 struct sockaddr_in sockaddr
;
2688 len
= sizeof(sockaddr
);
2689 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2690 if (fd
< 0 && errno
!= EINTR
) {
2693 } else if (fd
>= 0) {
2695 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2701 /* set short latency */
2703 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2705 s
= g_malloc0(sizeof(GDBState
));
2706 s
->c_cpu
= first_cpu
;
2707 s
->g_cpu
= first_cpu
;
2711 gdbserver_state
= s
;
2713 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2716 static int gdbserver_open(int port
)
2718 struct sockaddr_in sockaddr
;
2721 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2727 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2730 /* allow fast reuse */
2732 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2734 sockaddr
.sin_family
= AF_INET
;
2735 sockaddr
.sin_port
= htons(port
);
2736 sockaddr
.sin_addr
.s_addr
= 0;
2737 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2742 ret
= listen(fd
, 0);
2750 int gdbserver_start(int port
)
2752 gdbserver_fd
= gdbserver_open(port
);
2753 if (gdbserver_fd
< 0)
2755 /* accept connections */
2760 /* Disable gdb stub for child processes. */
2761 void gdbserver_fork(CPUState
*env
)
2763 GDBState
*s
= gdbserver_state
;
2764 if (gdbserver_fd
< 0 || s
->fd
< 0)
2768 cpu_breakpoint_remove_all(env
, BP_GDB
);
2769 cpu_watchpoint_remove_all(env
, BP_GDB
);
2772 static int gdb_chr_can_receive(void *opaque
)
2774 /* We can handle an arbitrarily large amount of data.
2775 Pick the maximum packet size, which is as good as anything. */
2776 return MAX_PACKET_LENGTH
;
2779 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2783 for (i
= 0; i
< size
; i
++) {
2784 gdb_read_byte(gdbserver_state
, buf
[i
]);
2788 static void gdb_chr_event(void *opaque
, int event
)
2791 case CHR_EVENT_OPENED
:
2792 vm_stop(VMSTOP_USER
);
2800 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2802 char buf
[MAX_PACKET_LENGTH
];
2805 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2806 len
= (MAX_PACKET_LENGTH
/2) - 1;
2807 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2811 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2813 const char *p
= (const char *)buf
;
2816 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2818 if (len
<= max_sz
) {
2819 gdb_monitor_output(gdbserver_state
, p
, len
);
2822 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2830 static void gdb_sigterm_handler(int signal
)
2833 vm_stop(VMSTOP_USER
);
2838 int gdbserver_start(const char *device
)
2841 char gdbstub_device_name
[128];
2842 CharDriverState
*chr
= NULL
;
2843 CharDriverState
*mon_chr
;
2847 if (strcmp(device
, "none") != 0) {
2848 if (strstart(device
, "tcp:", NULL
)) {
2849 /* enforce required TCP attributes */
2850 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
2851 "%s,nowait,nodelay,server", device
);
2852 device
= gdbstub_device_name
;
2855 else if (strcmp(device
, "stdio") == 0) {
2856 struct sigaction act
;
2858 memset(&act
, 0, sizeof(act
));
2859 act
.sa_handler
= gdb_sigterm_handler
;
2860 sigaction(SIGINT
, &act
, NULL
);
2863 chr
= qemu_chr_new("gdb", device
, NULL
);
2867 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
2868 gdb_chr_event
, NULL
);
2871 s
= gdbserver_state
;
2873 s
= g_malloc0(sizeof(GDBState
));
2874 gdbserver_state
= s
;
2876 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
2878 /* Initialize a monitor terminal for gdb */
2879 mon_chr
= g_malloc0(sizeof(*mon_chr
));
2880 mon_chr
->chr_write
= gdb_monitor_write
;
2881 monitor_init(mon_chr
, 0);
2884 qemu_chr_delete(s
->chr
);
2885 mon_chr
= s
->mon_chr
;
2886 memset(s
, 0, sizeof(GDBState
));
2888 s
->c_cpu
= first_cpu
;
2889 s
->g_cpu
= first_cpu
;
2891 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
2892 s
->mon_chr
= mon_chr
;