2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
23 #include "qemu-common.h"
25 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
29 /* some important defines:
31 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
34 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
35 * otherwise little endian.
37 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
39 * TARGET_WORDS_BIGENDIAN : same for target cpu
43 #include "softfloat.h"
45 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
51 static inline uint16_t tswap16(uint16_t s
)
56 static inline uint32_t tswap32(uint32_t s
)
61 static inline uint64_t tswap64(uint64_t s
)
66 static inline void tswap16s(uint16_t *s
)
71 static inline void tswap32s(uint32_t *s
)
76 static inline void tswap64s(uint64_t *s
)
83 static inline uint16_t tswap16(uint16_t s
)
88 static inline uint32_t tswap32(uint32_t s
)
93 static inline uint64_t tswap64(uint64_t s
)
98 static inline void tswap16s(uint16_t *s
)
102 static inline void tswap32s(uint32_t *s
)
106 static inline void tswap64s(uint64_t *s
)
112 #if TARGET_LONG_SIZE == 4
113 #define tswapl(s) tswap32(s)
114 #define tswapls(s) tswap32s((uint32_t *)(s))
115 #define bswaptls(s) bswap32s(s)
117 #define tswapl(s) tswap64(s)
118 #define tswapls(s) tswap64s((uint64_t *)(s))
119 #define bswaptls(s) bswap64s(s)
127 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
131 #if defined(WORDS_BIGENDIAN) \
132 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 #if defined(WORDS_BIGENDIAN) \
150 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
176 /* CPU memory access without any memory or io remapping */
179 * the generic syntax for the memory accesses is:
181 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
183 * store: st{type}{size}{endian}_{access_type}(ptr, val)
186 * (empty): integer access
190 * (empty): for floats or 32 bit size
201 * (empty): target cpu endianness or 8 bit access
202 * r : reversed target cpu endianness (not implemented yet)
203 * be : big endian (not implemented yet)
204 * le : little endian (not implemented yet)
207 * raw : host memory access
208 * user : user mode access using soft MMU
209 * kernel : kernel mode access using soft MMU
211 static inline int ldub_p(const void *ptr
)
213 return *(uint8_t *)ptr
;
216 static inline int ldsb_p(const void *ptr
)
218 return *(int8_t *)ptr
;
221 static inline void stb_p(void *ptr
, int v
)
226 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
227 kernel handles unaligned load/stores may give better results, but
228 it is a system wide setting : bad */
229 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
231 /* conservative code for little endian unaligned accesses */
232 static inline int lduw_le_p(const void *ptr
)
236 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
239 const uint8_t *p
= ptr
;
240 return p
[0] | (p
[1] << 8);
244 static inline int ldsw_le_p(const void *ptr
)
248 __asm__
__volatile__ ("lhbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
251 const uint8_t *p
= ptr
;
252 return (int16_t)(p
[0] | (p
[1] << 8));
256 static inline int ldl_le_p(const void *ptr
)
260 __asm__
__volatile__ ("lwbrx %0,0,%1" : "=r" (val
) : "r" (ptr
));
263 const uint8_t *p
= ptr
;
264 return p
[0] | (p
[1] << 8) | (p
[2] << 16) | (p
[3] << 24);
268 static inline uint64_t ldq_le_p(const void *ptr
)
270 const uint8_t *p
= ptr
;
273 v2
= ldl_le_p(p
+ 4);
274 return v1
| ((uint64_t)v2
<< 32);
277 static inline void stw_le_p(void *ptr
, int v
)
280 __asm__
__volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr
) : "r" (v
), "r" (ptr
));
288 static inline void stl_le_p(void *ptr
, int v
)
291 __asm__
__volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr
) : "r" (v
), "r" (ptr
));
301 static inline void stq_le_p(void *ptr
, uint64_t v
)
304 stl_le_p(p
, (uint32_t)v
);
305 stl_le_p(p
+ 4, v
>> 32);
310 static inline float32
ldfl_le_p(const void *ptr
)
320 static inline void stfl_le_p(void *ptr
, float32 v
)
330 static inline float64
ldfq_le_p(const void *ptr
)
333 u
.l
.lower
= ldl_le_p(ptr
);
334 u
.l
.upper
= ldl_le_p(ptr
+ 4);
338 static inline void stfq_le_p(void *ptr
, float64 v
)
342 stl_le_p(ptr
, u
.l
.lower
);
343 stl_le_p(ptr
+ 4, u
.l
.upper
);
348 static inline int lduw_le_p(const void *ptr
)
350 return *(uint16_t *)ptr
;
353 static inline int ldsw_le_p(const void *ptr
)
355 return *(int16_t *)ptr
;
358 static inline int ldl_le_p(const void *ptr
)
360 return *(uint32_t *)ptr
;
363 static inline uint64_t ldq_le_p(const void *ptr
)
365 return *(uint64_t *)ptr
;
368 static inline void stw_le_p(void *ptr
, int v
)
370 *(uint16_t *)ptr
= v
;
373 static inline void stl_le_p(void *ptr
, int v
)
375 *(uint32_t *)ptr
= v
;
378 static inline void stq_le_p(void *ptr
, uint64_t v
)
380 *(uint64_t *)ptr
= v
;
385 static inline float32
ldfl_le_p(const void *ptr
)
387 return *(float32
*)ptr
;
390 static inline float64
ldfq_le_p(const void *ptr
)
392 return *(float64
*)ptr
;
395 static inline void stfl_le_p(void *ptr
, float32 v
)
400 static inline void stfq_le_p(void *ptr
, float64 v
)
406 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
408 static inline int lduw_be_p(const void *ptr
)
410 #if defined(__i386__)
412 asm volatile ("movzwl %1, %0\n"
415 : "m" (*(uint16_t *)ptr
));
418 const uint8_t *b
= ptr
;
419 return ((b
[0] << 8) | b
[1]);
423 static inline int ldsw_be_p(const void *ptr
)
425 #if defined(__i386__)
427 asm volatile ("movzwl %1, %0\n"
430 : "m" (*(uint16_t *)ptr
));
433 const uint8_t *b
= ptr
;
434 return (int16_t)((b
[0] << 8) | b
[1]);
438 static inline int ldl_be_p(const void *ptr
)
440 #if defined(__i386__) || defined(__x86_64__)
442 asm volatile ("movl %1, %0\n"
445 : "m" (*(uint32_t *)ptr
));
448 const uint8_t *b
= ptr
;
449 return (b
[0] << 24) | (b
[1] << 16) | (b
[2] << 8) | b
[3];
453 static inline uint64_t ldq_be_p(const void *ptr
)
457 b
= ldl_be_p((uint8_t *)ptr
+ 4);
458 return (((uint64_t)a
<<32)|b
);
461 static inline void stw_be_p(void *ptr
, int v
)
463 #if defined(__i386__)
464 asm volatile ("xchgb %b0, %h0\n"
467 : "m" (*(uint16_t *)ptr
), "0" (v
));
469 uint8_t *d
= (uint8_t *) ptr
;
475 static inline void stl_be_p(void *ptr
, int v
)
477 #if defined(__i386__) || defined(__x86_64__)
478 asm volatile ("bswap %0\n"
481 : "m" (*(uint32_t *)ptr
), "0" (v
));
483 uint8_t *d
= (uint8_t *) ptr
;
491 static inline void stq_be_p(void *ptr
, uint64_t v
)
493 stl_be_p(ptr
, v
>> 32);
494 stl_be_p((uint8_t *)ptr
+ 4, v
);
499 static inline float32
ldfl_be_p(const void *ptr
)
509 static inline void stfl_be_p(void *ptr
, float32 v
)
519 static inline float64
ldfq_be_p(const void *ptr
)
522 u
.l
.upper
= ldl_be_p(ptr
);
523 u
.l
.lower
= ldl_be_p((uint8_t *)ptr
+ 4);
527 static inline void stfq_be_p(void *ptr
, float64 v
)
531 stl_be_p(ptr
, u
.l
.upper
);
532 stl_be_p((uint8_t *)ptr
+ 4, u
.l
.lower
);
537 static inline int lduw_be_p(const void *ptr
)
539 return *(uint16_t *)ptr
;
542 static inline int ldsw_be_p(const void *ptr
)
544 return *(int16_t *)ptr
;
547 static inline int ldl_be_p(const void *ptr
)
549 return *(uint32_t *)ptr
;
552 static inline uint64_t ldq_be_p(const void *ptr
)
554 return *(uint64_t *)ptr
;
557 static inline void stw_be_p(void *ptr
, int v
)
559 *(uint16_t *)ptr
= v
;
562 static inline void stl_be_p(void *ptr
, int v
)
564 *(uint32_t *)ptr
= v
;
567 static inline void stq_be_p(void *ptr
, uint64_t v
)
569 *(uint64_t *)ptr
= v
;
574 static inline float32
ldfl_be_p(const void *ptr
)
576 return *(float32
*)ptr
;
579 static inline float64
ldfq_be_p(const void *ptr
)
581 return *(float64
*)ptr
;
584 static inline void stfl_be_p(void *ptr
, float32 v
)
589 static inline void stfq_be_p(void *ptr
, float64 v
)
596 /* target CPU memory access functions */
597 #if defined(TARGET_WORDS_BIGENDIAN)
598 #define lduw_p(p) lduw_be_p(p)
599 #define ldsw_p(p) ldsw_be_p(p)
600 #define ldl_p(p) ldl_be_p(p)
601 #define ldq_p(p) ldq_be_p(p)
602 #define ldfl_p(p) ldfl_be_p(p)
603 #define ldfq_p(p) ldfq_be_p(p)
604 #define stw_p(p, v) stw_be_p(p, v)
605 #define stl_p(p, v) stl_be_p(p, v)
606 #define stq_p(p, v) stq_be_p(p, v)
607 #define stfl_p(p, v) stfl_be_p(p, v)
608 #define stfq_p(p, v) stfq_be_p(p, v)
610 #define lduw_p(p) lduw_le_p(p)
611 #define ldsw_p(p) ldsw_le_p(p)
612 #define ldl_p(p) ldl_le_p(p)
613 #define ldq_p(p) ldq_le_p(p)
614 #define ldfl_p(p) ldfl_le_p(p)
615 #define ldfq_p(p) ldfq_le_p(p)
616 #define stw_p(p, v) stw_le_p(p, v)
617 #define stl_p(p, v) stl_le_p(p, v)
618 #define stq_p(p, v) stq_le_p(p, v)
619 #define stfl_p(p, v) stfl_le_p(p, v)
620 #define stfq_p(p, v) stfq_le_p(p, v)
623 /* MMU memory access macros */
625 #if defined(CONFIG_USER_ONLY)
627 #include "qemu-types.h"
629 /* On some host systems the guest address space is reserved on the host.
630 * This allows the guest address space to be offset to a convenient location.
632 //#define GUEST_BASE 0x20000000
635 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
636 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
638 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
639 /* Check if given address fits target address space */ \
640 assert(__ret == (abi_ulong)__ret); \
643 #define h2g_valid(x) ({ \
644 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645 (__guest == (abi_ulong)__guest); \
648 #define saddr(x) g2h(x)
649 #define laddr(x) g2h(x)
651 #else /* !CONFIG_USER_ONLY */
652 /* NOTE: we use double casts if pointers and target_ulong have
654 #define saddr(x) (uint8_t *)(long)(x)
655 #define laddr(x) (uint8_t *)(long)(x)
658 #define ldub_raw(p) ldub_p(laddr((p)))
659 #define ldsb_raw(p) ldsb_p(laddr((p)))
660 #define lduw_raw(p) lduw_p(laddr((p)))
661 #define ldsw_raw(p) ldsw_p(laddr((p)))
662 #define ldl_raw(p) ldl_p(laddr((p)))
663 #define ldq_raw(p) ldq_p(laddr((p)))
664 #define ldfl_raw(p) ldfl_p(laddr((p)))
665 #define ldfq_raw(p) ldfq_p(laddr((p)))
666 #define stb_raw(p, v) stb_p(saddr((p)), v)
667 #define stw_raw(p, v) stw_p(saddr((p)), v)
668 #define stl_raw(p, v) stl_p(saddr((p)), v)
669 #define stq_raw(p, v) stq_p(saddr((p)), v)
670 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
671 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
674 #if defined(CONFIG_USER_ONLY)
676 /* if user mode, no other memory access functions */
677 #define ldub(p) ldub_raw(p)
678 #define ldsb(p) ldsb_raw(p)
679 #define lduw(p) lduw_raw(p)
680 #define ldsw(p) ldsw_raw(p)
681 #define ldl(p) ldl_raw(p)
682 #define ldq(p) ldq_raw(p)
683 #define ldfl(p) ldfl_raw(p)
684 #define ldfq(p) ldfq_raw(p)
685 #define stb(p, v) stb_raw(p, v)
686 #define stw(p, v) stw_raw(p, v)
687 #define stl(p, v) stl_raw(p, v)
688 #define stq(p, v) stq_raw(p, v)
689 #define stfl(p, v) stfl_raw(p, v)
690 #define stfq(p, v) stfq_raw(p, v)
692 #define ldub_code(p) ldub_raw(p)
693 #define ldsb_code(p) ldsb_raw(p)
694 #define lduw_code(p) lduw_raw(p)
695 #define ldsw_code(p) ldsw_raw(p)
696 #define ldl_code(p) ldl_raw(p)
697 #define ldq_code(p) ldq_raw(p)
699 #define ldub_kernel(p) ldub_raw(p)
700 #define ldsb_kernel(p) ldsb_raw(p)
701 #define lduw_kernel(p) lduw_raw(p)
702 #define ldsw_kernel(p) ldsw_raw(p)
703 #define ldl_kernel(p) ldl_raw(p)
704 #define ldq_kernel(p) ldq_raw(p)
705 #define ldfl_kernel(p) ldfl_raw(p)
706 #define ldfq_kernel(p) ldfq_raw(p)
707 #define stb_kernel(p, v) stb_raw(p, v)
708 #define stw_kernel(p, v) stw_raw(p, v)
709 #define stl_kernel(p, v) stl_raw(p, v)
710 #define stq_kernel(p, v) stq_raw(p, v)
711 #define stfl_kernel(p, v) stfl_raw(p, v)
712 #define stfq_kernel(p, vt) stfq_raw(p, v)
714 #endif /* defined(CONFIG_USER_ONLY) */
716 /* page related stuff */
718 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
719 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
720 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
722 /* ??? These should be the larger of unsigned long and target_ulong. */
723 extern unsigned long qemu_real_host_page_size
;
724 extern unsigned long qemu_host_page_bits
;
725 extern unsigned long qemu_host_page_size
;
726 extern unsigned long qemu_host_page_mask
;
728 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
730 /* same as PROT_xxx */
731 #define PAGE_READ 0x0001
732 #define PAGE_WRITE 0x0002
733 #define PAGE_EXEC 0x0004
734 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
735 #define PAGE_VALID 0x0008
736 /* original state of the write flag (used when tracking self-modifying
738 #define PAGE_WRITE_ORG 0x0010
739 #define PAGE_RESERVED 0x0020
741 void page_dump(FILE *f
);
742 int page_get_flags(target_ulong address
);
743 void page_set_flags(target_ulong start
, target_ulong end
, int flags
);
744 int page_check_range(target_ulong start
, target_ulong len
, int flags
);
746 void cpu_exec_init_all(unsigned long tb_size
);
747 CPUState
*cpu_copy(CPUState
*env
);
749 void cpu_dump_state(CPUState
*env
, FILE *f
,
750 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
752 void cpu_dump_statistics (CPUState
*env
, FILE *f
,
753 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...),
756 void QEMU_NORETURN
cpu_abort(CPUState
*env
, const char *fmt
, ...)
757 __attribute__ ((__format__ (__printf__
, 2, 3)));
758 extern CPUState
*first_cpu
;
759 extern CPUState
*cpu_single_env
;
760 extern int64_t qemu_icount
;
761 extern int use_icount
;
763 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
764 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
765 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
766 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
767 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
768 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
769 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
770 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
771 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
773 void cpu_interrupt(CPUState
*s
, int mask
);
774 void cpu_reset_interrupt(CPUState
*env
, int mask
);
776 void cpu_exit(CPUState
*s
);
778 int qemu_cpu_has_work(CPUState
*env
);
780 /* Breakpoint/watchpoint flags */
781 #define BP_MEM_READ 0x01
782 #define BP_MEM_WRITE 0x02
783 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
784 #define BP_STOP_BEFORE_ACCESS 0x04
785 #define BP_WATCHPOINT_HIT 0x08
789 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
790 CPUBreakpoint
**breakpoint
);
791 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
);
792 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
);
793 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
);
794 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
795 int flags
, CPUWatchpoint
**watchpoint
);
796 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
,
797 target_ulong len
, int flags
);
798 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
);
799 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
);
801 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
802 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
803 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
805 void cpu_single_step(CPUState
*env
, int enabled
);
806 void cpu_reset(CPUState
*s
);
808 /* Return the physical page corresponding to a virtual one. Use it
809 only for debugging because no protection checks are done. Return -1
811 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
);
813 #define CPU_LOG_TB_OUT_ASM (1 << 0)
814 #define CPU_LOG_TB_IN_ASM (1 << 1)
815 #define CPU_LOG_TB_OP (1 << 2)
816 #define CPU_LOG_TB_OP_OPT (1 << 3)
817 #define CPU_LOG_INT (1 << 4)
818 #define CPU_LOG_EXEC (1 << 5)
819 #define CPU_LOG_PCALL (1 << 6)
820 #define CPU_LOG_IOPORT (1 << 7)
821 #define CPU_LOG_TB_CPU (1 << 8)
822 #define CPU_LOG_RESET (1 << 9)
824 /* define log items */
825 typedef struct CPULogItem
{
831 extern const CPULogItem cpu_log_items
[];
833 void cpu_set_log(int log_flags
);
834 void cpu_set_log_filename(const char *filename
);
835 int cpu_str_to_log_mask(const char *str
);
839 /* NOTE: as these functions may be even used when there is an isa
840 brige on non x86 targets, we always defined them */
841 #ifndef NO_CPU_IO_DEFS
842 void cpu_outb(CPUState
*env
, int addr
, int val
);
843 void cpu_outw(CPUState
*env
, int addr
, int val
);
844 void cpu_outl(CPUState
*env
, int addr
, int val
);
845 int cpu_inb(CPUState
*env
, int addr
);
846 int cpu_inw(CPUState
*env
, int addr
);
847 int cpu_inl(CPUState
*env
, int addr
);
850 /* address in the RAM (different from a physical address) */
852 typedef uint32_t ram_addr_t
;
854 typedef unsigned long ram_addr_t
;
859 extern int phys_ram_fd
;
860 extern uint8_t *phys_ram_dirty
;
861 extern ram_addr_t ram_size
;
862 extern ram_addr_t last_ram_offset
;
864 /* physical memory access */
866 /* MMIO pages are identified by a combination of an IO device index and
867 3 flags. The ROMD code stores the page ram offset in iotlb entry,
868 so only a limited number of ids are avaiable. */
870 #define IO_MEM_SHIFT 3
871 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
873 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
874 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
875 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
876 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
878 /* Acts like a ROM when read and like a device when written. */
879 #define IO_MEM_ROMD (1)
880 #define IO_MEM_SUBPAGE (2)
881 #define IO_MEM_SUBWIDTH (4)
883 /* Flags stored in the low bits of the TLB virtual address. These are
884 defined so that fast path ram access is all zeros. */
885 /* Zero if TLB entry is valid. */
886 #define TLB_INVALID_MASK (1 << 3)
887 /* Set if TLB entry references a clean RAM page. The iotlb entry will
888 contain the page physical address. */
889 #define TLB_NOTDIRTY (1 << 4)
890 /* Set if TLB entry is an IO callback. */
891 #define TLB_MMIO (1 << 5)
893 typedef void CPUWriteMemoryFunc(void *opaque
, target_phys_addr_t addr
, uint32_t value
);
894 typedef uint32_t CPUReadMemoryFunc(void *opaque
, target_phys_addr_t addr
);
896 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
898 ram_addr_t phys_offset
,
899 ram_addr_t region_offset
);
900 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr
,
902 ram_addr_t phys_offset
)
904 cpu_register_physical_memory_offset(start_addr
, size
, phys_offset
, 0);
907 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
);
908 ram_addr_t
qemu_ram_alloc(ram_addr_t
);
909 void qemu_ram_free(ram_addr_t addr
);
910 /* This should only be used for ram local to a device. */
911 void *qemu_get_ram_ptr(ram_addr_t addr
);
912 /* This should not be used by devices. */
913 ram_addr_t
qemu_ram_addr_from_host(void *ptr
);
915 int cpu_register_io_memory(int io_index
,
916 CPUReadMemoryFunc
**mem_read
,
917 CPUWriteMemoryFunc
**mem_write
,
919 void cpu_unregister_io_memory(int table_address
);
921 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
922 int len
, int is_write
);
923 static inline void cpu_physical_memory_read(target_phys_addr_t addr
,
924 uint8_t *buf
, int len
)
926 cpu_physical_memory_rw(addr
, buf
, len
, 0);
928 static inline void cpu_physical_memory_write(target_phys_addr_t addr
,
929 const uint8_t *buf
, int len
)
931 cpu_physical_memory_rw(addr
, (uint8_t *)buf
, len
, 1);
933 void *cpu_physical_memory_map(target_phys_addr_t addr
,
934 target_phys_addr_t
*plen
,
936 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
937 int is_write
, target_phys_addr_t access_len
);
938 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
));
939 void cpu_unregister_map_client(void *cookie
);
941 uint32_t ldub_phys(target_phys_addr_t addr
);
942 uint32_t lduw_phys(target_phys_addr_t addr
);
943 uint32_t ldl_phys(target_phys_addr_t addr
);
944 uint64_t ldq_phys(target_phys_addr_t addr
);
945 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
);
946 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
);
947 void stb_phys(target_phys_addr_t addr
, uint32_t val
);
948 void stw_phys(target_phys_addr_t addr
, uint32_t val
);
949 void stl_phys(target_phys_addr_t addr
, uint32_t val
);
950 void stq_phys(target_phys_addr_t addr
, uint64_t val
);
952 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
953 const uint8_t *buf
, int len
);
954 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
955 uint8_t *buf
, int len
, int is_write
);
957 #define VGA_DIRTY_FLAG 0x01
958 #define CODE_DIRTY_FLAG 0x02
959 #define KQEMU_DIRTY_FLAG 0x04
960 #define MIGRATION_DIRTY_FLAG 0x08
962 /* read dirty bit (return 0 or 1) */
963 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr
)
965 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] == 0xff;
968 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr
,
971 return phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] & dirty_flags
;
974 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr
)
976 phys_ram_dirty
[addr
>> TARGET_PAGE_BITS
] = 0xff;
979 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
981 void cpu_tlb_update_dirty(CPUState
*env
);
983 int cpu_physical_memory_set_dirty_tracking(int enable
);
985 int cpu_physical_memory_get_dirty_tracking(void);
987 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
);
989 void dump_exec_info(FILE *f
,
990 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...));
992 /* Coalesced MMIO regions are areas where write operations can be reordered.
993 * This usually implies that write operations are side-effect free. This allows
994 * batching which can make a major impact on performance when using
997 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
);
999 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
);
1001 /*******************************************/
1002 /* host CPU ticks (if available) */
1004 #if defined(_ARCH_PPC)
1006 static inline int64_t cpu_get_real_ticks(void)
1010 /* This reads timebase in one 64bit go and includes Cell workaround from:
1011 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
1013 __asm__
__volatile__ (
1019 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
1021 __asm__
__volatile__ (
1027 : "=r" (retval
), "=r" (junk
));
1032 #elif defined(__i386__)
1034 static inline int64_t cpu_get_real_ticks(void)
1037 asm volatile ("rdtsc" : "=A" (val
));
1041 #elif defined(__x86_64__)
1043 static inline int64_t cpu_get_real_ticks(void)
1047 asm volatile("rdtsc" : "=a" (low
), "=d" (high
));
1054 #elif defined(__hppa__)
1056 static inline int64_t cpu_get_real_ticks(void)
1059 asm volatile ("mfctl %%cr16, %0" : "=r"(val
));
1063 #elif defined(__ia64)
1065 static inline int64_t cpu_get_real_ticks(void)
1068 asm volatile ("mov %0 = ar.itc" : "=r"(val
) :: "memory");
1072 #elif defined(__s390__)
1074 static inline int64_t cpu_get_real_ticks(void)
1077 asm volatile("stck 0(%1)" : "=m" (val
) : "a" (&val
) : "cc");
1081 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1083 static inline int64_t cpu_get_real_ticks (void)
1087 asm volatile("rd %%tick,%0" : "=r"(rval
));
1097 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1098 : "=r"(rval
.i32
.high
), "=r"(rval
.i32
.low
));
1103 #elif defined(__mips__)
1105 static inline int64_t cpu_get_real_ticks(void)
1107 #if __mips_isa_rev >= 2
1109 static uint32_t cyc_per_count
= 0;
1112 __asm__
__volatile__("rdhwr %0, $3" : "=r" (cyc_per_count
));
1114 __asm__
__volatile__("rdhwr %1, $2" : "=r" (count
));
1115 return (int64_t)(count
* cyc_per_count
);
1118 static int64_t ticks
= 0;
1124 /* The host CPU doesn't have an easily accessible cycle counter.
1125 Just return a monotonically increasing value. This will be
1126 totally wrong, but hopefully better than nothing. */
1127 static inline int64_t cpu_get_real_ticks (void)
1129 static int64_t ticks
= 0;
1135 #ifdef CONFIG_PROFILER
1136 static inline int64_t profile_getclock(void)
1138 return cpu_get_real_ticks();
1141 extern int64_t kqemu_time
, kqemu_time_start
;
1142 extern int64_t qemu_time
, qemu_time_start
;
1143 extern int64_t tlb_flush_time
;
1144 extern int64_t kqemu_exec_count
;
1145 extern int64_t dev_time
;
1146 extern int64_t kqemu_ret_int_count
;
1147 extern int64_t kqemu_ret_excp_count
;
1148 extern int64_t kqemu_ret_intr_count
;
1151 #endif /* CPU_ALL_H */