2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
31 #include "qemu-common.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
38 #include "sysemu/device_tree.h"
39 #include "qapi/qmp/qjson.h"
40 #include "exec/gdbstub.h"
41 #include "exec/address-spaces.h"
43 #include "qapi-event.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
50 /* #define DEBUG_KVM */
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
114 #define NR_LOCAL_IRQS 32
116 * Needs to be big enough to contain max_cpus emergency signals
117 * and in addition NR_LOCAL_IRQS interrupts
119 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
120 (max_cpus + NR_LOCAL_IRQS))
122 static CPUWatchpoint hw_watchpoint
;
124 * We don't use a list because this structure is also used to transmit the
125 * hardware breakpoints to the kernel.
127 static struct kvm_hw_breakpoint
*hw_breakpoints
;
128 static int nb_hw_breakpoints
;
130 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
134 static int cap_sync_regs
;
135 static int cap_async_pf
;
136 static int cap_mem_op
;
137 static int cap_s390_irq
;
139 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
141 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
143 struct kvm_device_attr attr
= {
144 .group
= KVM_S390_VM_MEM_CTRL
,
145 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
146 .addr
= (uint64_t) memory_limit
,
149 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
152 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
156 struct kvm_device_attr attr
= {
157 .group
= KVM_S390_VM_MEM_CTRL
,
158 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
159 .addr
= (uint64_t) &new_limit
,
162 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
166 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
169 } else if (*hw_limit
< new_limit
) {
173 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
176 void kvm_s390_clear_cmma_callback(void *opaque
)
179 KVMState
*s
= opaque
;
180 struct kvm_device_attr attr
= {
181 .group
= KVM_S390_VM_MEM_CTRL
,
182 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
185 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
186 trace_kvm_clear_cmma(rc
);
189 static void kvm_s390_enable_cmma(KVMState
*s
)
192 struct kvm_device_attr attr
= {
193 .group
= KVM_S390_VM_MEM_CTRL
,
194 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
197 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_ENABLE_CMMA
) ||
198 !kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_CLR_CMMA
)) {
202 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
204 qemu_register_reset(kvm_s390_clear_cmma_callback
, s
);
206 trace_kvm_enable_cmma(rc
);
209 static void kvm_s390_set_attr(uint64_t attr
)
211 struct kvm_device_attr attribute
= {
212 .group
= KVM_S390_VM_CRYPTO
,
216 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
219 error_report("Failed to set crypto device attribute %lu: %s",
220 attr
, strerror(-ret
));
224 static void kvm_s390_init_aes_kw(void)
226 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
228 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
230 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
233 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
234 kvm_s390_set_attr(attr
);
238 static void kvm_s390_init_dea_kw(void)
240 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
242 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
244 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
247 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
248 kvm_s390_set_attr(attr
);
252 static void kvm_s390_init_crypto(void)
254 kvm_s390_init_aes_kw();
255 kvm_s390_init_dea_kw();
258 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
260 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
261 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
262 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
263 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
265 kvm_s390_enable_cmma(s
);
267 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
268 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
269 phys_mem_set_alloc(legacy_s390_alloc
);
272 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
273 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
274 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
279 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
281 return cpu
->cpu_index
;
284 int kvm_arch_init_vcpu(CPUState
*cs
)
286 S390CPU
*cpu
= S390_CPU(cs
);
287 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
288 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
292 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
294 CPUState
*cs
= CPU(cpu
);
296 /* The initial reset call is needed here to reset in-kernel
297 * vcpu data that we can't access directly from QEMU
298 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
299 * Before this ioctl cpu_synchronize_state() is called in common kvm
301 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
302 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
305 kvm_s390_init_crypto();
308 static int can_sync_regs(CPUState
*cs
, int regs
)
310 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
313 int kvm_arch_put_registers(CPUState
*cs
, int level
)
315 S390CPU
*cpu
= S390_CPU(cs
);
316 CPUS390XState
*env
= &cpu
->env
;
317 struct kvm_sregs sregs
;
318 struct kvm_regs regs
;
319 struct kvm_fpu fpu
= {};
323 /* always save the PSW and the GPRS*/
324 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
325 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
327 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
328 for (i
= 0; i
< 16; i
++) {
329 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
330 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
333 for (i
= 0; i
< 16; i
++) {
334 regs
.gprs
[i
] = env
->regs
[i
];
336 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
342 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
343 for (i
= 0; i
< 32; i
++) {
344 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
345 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
347 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
348 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
351 for (i
= 0; i
< 16; i
++) {
352 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
356 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
362 /* Do we need to save more than that? */
363 if (level
== KVM_PUT_RUNTIME_STATE
) {
367 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
368 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
369 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
370 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
371 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
372 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
373 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
376 * These ONE_REGS are not protected by a capability. As they are only
377 * necessary for migration we just trace a possible error, but don't
378 * return with an error return code.
380 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
381 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
382 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
383 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
384 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
387 /* pfault parameters */
388 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
389 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
390 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
391 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
392 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
393 } else if (cap_async_pf
) {
394 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
398 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
402 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
408 /* access registers and control registers*/
409 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
410 for (i
= 0; i
< 16; i
++) {
411 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
412 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
414 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
415 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
417 for (i
= 0; i
< 16; i
++) {
418 sregs
.acrs
[i
] = env
->aregs
[i
];
419 sregs
.crs
[i
] = env
->cregs
[i
];
421 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
427 /* Finally the prefix */
428 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
429 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
430 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
432 /* prefix is only supported via sync regs */
437 int kvm_arch_get_registers(CPUState
*cs
)
439 S390CPU
*cpu
= S390_CPU(cs
);
440 CPUS390XState
*env
= &cpu
->env
;
441 struct kvm_sregs sregs
;
442 struct kvm_regs regs
;
447 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
448 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
451 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
452 for (i
= 0; i
< 16; i
++) {
453 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
456 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
460 for (i
= 0; i
< 16; i
++) {
461 env
->regs
[i
] = regs
.gprs
[i
];
465 /* The ACRS and CRS */
466 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
467 for (i
= 0; i
< 16; i
++) {
468 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
469 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
472 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
476 for (i
= 0; i
< 16; i
++) {
477 env
->aregs
[i
] = sregs
.acrs
[i
];
478 env
->cregs
[i
] = sregs
.crs
[i
];
482 /* Floating point and vector registers */
483 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
484 for (i
= 0; i
< 32; i
++) {
485 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
486 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
488 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
490 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
494 for (i
= 0; i
< 16; i
++) {
495 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
501 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
502 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
505 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
506 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
507 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
508 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
509 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
510 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
513 * These ONE_REGS are not protected by a capability. As they are only
514 * necessary for migration we just trace a possible error, but don't
515 * return with an error return code.
517 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
518 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
519 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
520 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
521 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
524 /* pfault parameters */
525 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
526 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
527 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
528 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
529 } else if (cap_async_pf
) {
530 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
534 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
538 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
547 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
550 struct kvm_device_attr attr
= {
551 .group
= KVM_S390_VM_TOD
,
552 .attr
= KVM_S390_VM_TOD_LOW
,
553 .addr
= (uint64_t)tod_low
,
556 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
561 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
562 attr
.addr
= (uint64_t)tod_high
;
563 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
566 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
570 struct kvm_device_attr attr
= {
571 .group
= KVM_S390_VM_TOD
,
572 .attr
= KVM_S390_VM_TOD_LOW
,
573 .addr
= (uint64_t)tod_low
,
576 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
581 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
582 attr
.addr
= (uint64_t)tod_high
;
583 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
588 * @addr: the logical start address in guest memory
589 * @ar: the access register number
590 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
591 * @len: length that should be transferred
592 * @is_write: true = write, false = read
593 * Returns: 0 on success, non-zero if an exception or error occurred
595 * Use KVM ioctl to read/write from/to guest memory. An access exception
596 * is injected into the vCPU in case of translation errors.
598 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
599 int len
, bool is_write
)
601 struct kvm_s390_mem_op mem_op
= {
603 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
605 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
606 : KVM_S390_MEMOP_LOGICAL_READ
,
607 .buf
= (uint64_t)hostbuf
,
616 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
619 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
621 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
627 * Legacy layout for s390:
628 * Older S390 KVM requires the topmost vma of the RAM to be
629 * smaller than an system defined value, which is at least 256GB.
630 * Larger systems have larger values. We put the guest between
631 * the end of data segment (system break) and this value. We
632 * use 32GB as a base to have enough room for the system break
633 * to grow. We also have to use MAP parameters that avoid
634 * read-only mapping of guest pages.
636 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
640 mem
= mmap((void *) 0x800000000ULL
, size
,
641 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
642 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
643 return mem
== MAP_FAILED
? NULL
: mem
;
646 /* DIAG 501 is used for sw breakpoints */
647 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
649 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
652 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
653 sizeof(diag_501
), 0) ||
654 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)diag_501
,
655 sizeof(diag_501
), 1)) {
661 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
663 uint8_t t
[sizeof(diag_501
)];
665 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sizeof(diag_501
), 0)) {
667 } else if (memcmp(t
, diag_501
, sizeof(diag_501
))) {
669 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
670 sizeof(diag_501
), 1)) {
677 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
682 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
683 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
684 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
685 return &hw_breakpoints
[n
];
692 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
696 if (find_hw_breakpoint(addr
, len
, type
)) {
700 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
702 if (!hw_breakpoints
) {
703 nb_hw_breakpoints
= 0;
704 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
707 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
710 if (!hw_breakpoints
) {
711 nb_hw_breakpoints
= 0;
715 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
716 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
717 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
724 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
725 target_ulong len
, int type
)
728 case GDB_BREAKPOINT_HW
:
731 case GDB_WATCHPOINT_WRITE
:
735 type
= KVM_HW_WP_WRITE
;
740 return insert_hw_breakpoint(addr
, len
, type
);
743 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
744 target_ulong len
, int type
)
747 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
754 if (nb_hw_breakpoints
> 0) {
756 * In order to trim the array, move the last element to the position to
757 * be removed - if necessary.
759 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
760 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
762 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
764 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
766 g_free(hw_breakpoints
);
767 hw_breakpoints
= NULL
;
773 void kvm_arch_remove_all_hw_breakpoints(void)
775 nb_hw_breakpoints
= 0;
776 g_free(hw_breakpoints
);
777 hw_breakpoints
= NULL
;
780 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
784 if (nb_hw_breakpoints
> 0) {
785 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
786 dbg
->arch
.hw_bp
= hw_breakpoints
;
788 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
789 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
790 hw_breakpoints
[i
].addr
);
792 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
794 dbg
->arch
.nr_hw_bp
= 0;
795 dbg
->arch
.hw_bp
= NULL
;
799 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
803 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
805 return MEMTXATTRS_UNSPECIFIED
;
808 int kvm_arch_process_async_events(CPUState
*cs
)
813 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
814 struct kvm_s390_interrupt
*interrupt
)
818 interrupt
->type
= irq
->type
;
820 case KVM_S390_INT_VIRTIO
:
821 interrupt
->parm
= irq
->u
.ext
.ext_params
;
823 case KVM_S390_INT_PFAULT_INIT
:
824 case KVM_S390_INT_PFAULT_DONE
:
825 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
827 case KVM_S390_PROGRAM_INT
:
828 interrupt
->parm
= irq
->u
.pgm
.code
;
830 case KVM_S390_SIGP_SET_PREFIX
:
831 interrupt
->parm
= irq
->u
.prefix
.address
;
833 case KVM_S390_INT_SERVICE
:
834 interrupt
->parm
= irq
->u
.ext
.ext_params
;
837 interrupt
->parm
= irq
->u
.mchk
.cr14
;
838 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
840 case KVM_S390_INT_EXTERNAL_CALL
:
841 interrupt
->parm
= irq
->u
.extcall
.code
;
843 case KVM_S390_INT_EMERGENCY
:
844 interrupt
->parm
= irq
->u
.emerg
.code
;
846 case KVM_S390_SIGP_STOP
:
847 case KVM_S390_RESTART
:
848 break; /* These types have no parameters */
849 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
850 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
851 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
852 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
853 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
862 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
864 struct kvm_s390_interrupt kvmint
= {};
867 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
869 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
873 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
875 fprintf(stderr
, "KVM failed to inject interrupt\n");
880 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
882 CPUState
*cs
= CPU(cpu
);
886 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
890 error_report("KVM failed to inject interrupt %llx", irq
->type
);
894 inject_vcpu_irq_legacy(cs
, irq
);
897 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
899 struct kvm_s390_interrupt kvmint
= {};
902 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
904 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
908 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
910 fprintf(stderr
, "KVM failed to inject interrupt\n");
915 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
917 static bool use_flic
= true;
921 r
= kvm_s390_inject_flic(irq
);
929 __kvm_s390_floating_interrupt(irq
);
932 void kvm_s390_virtio_irq(int config_change
, uint64_t token
)
934 struct kvm_s390_irq irq
= {
935 .type
= KVM_S390_INT_VIRTIO
,
936 .u
.ext
.ext_params
= config_change
,
937 .u
.ext
.ext_params2
= token
,
940 kvm_s390_floating_interrupt(&irq
);
943 void kvm_s390_service_interrupt(uint32_t parm
)
945 struct kvm_s390_irq irq
= {
946 .type
= KVM_S390_INT_SERVICE
,
947 .u
.ext
.ext_params
= parm
,
950 kvm_s390_floating_interrupt(&irq
);
953 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
955 struct kvm_s390_irq irq
= {
956 .type
= KVM_S390_PROGRAM_INT
,
960 kvm_s390_vcpu_interrupt(cpu
, &irq
);
963 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
965 struct kvm_s390_irq irq
= {
966 .type
= KVM_S390_PROGRAM_INT
,
968 .u
.pgm
.trans_exc_code
= te_code
,
969 .u
.pgm
.exc_access_id
= te_code
& 3,
972 kvm_s390_vcpu_interrupt(cpu
, &irq
);
975 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
978 CPUS390XState
*env
= &cpu
->env
;
983 cpu_synchronize_state(CPU(cpu
));
984 sccb
= env
->regs
[ipbh0
& 0xf];
985 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
987 r
= sclp_service_call(env
, sccb
, code
);
989 enter_pgmcheck(cpu
, -r
);
997 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
999 CPUS390XState
*env
= &cpu
->env
;
1001 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
1003 cpu_synchronize_state(CPU(cpu
));
1007 ioinst_handle_xsch(cpu
, env
->regs
[1]);
1010 ioinst_handle_csch(cpu
, env
->regs
[1]);
1013 ioinst_handle_hsch(cpu
, env
->regs
[1]);
1016 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1019 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1022 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
1025 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1028 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1029 fprintf(stderr
, "Spurious tsch intercept\n");
1032 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
1035 /* This should have been handled by kvm already. */
1036 fprintf(stderr
, "Spurious tpi intercept\n");
1039 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1040 run
->s390_sieic
.ipb
);
1043 ioinst_handle_rsch(cpu
, env
->regs
[1]);
1046 ioinst_handle_rchp(cpu
, env
->regs
[1]);
1049 /* We do not provide this instruction, it is suppressed. */
1052 ioinst_handle_sal(cpu
, env
->regs
[1]);
1055 /* Not provided, set CC = 3 for subchannel not operational */
1058 case PRIV_B2_SCLP_CALL
:
1059 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1063 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1070 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1073 CPUS390XState
*env
= &cpu
->env
;
1074 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1075 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1076 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1077 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1079 if (disp2
& 0x80000) {
1080 disp2
+= 0xfff00000;
1086 return (base2
? env
->regs
[base2
] : 0) +
1087 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1090 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1093 CPUS390XState
*env
= &cpu
->env
;
1094 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1095 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1096 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1098 if (disp2
& 0x80000) {
1099 disp2
+= 0xfff00000;
1105 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1108 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1110 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1112 return clp_service_call(cpu
, r2
);
1115 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1117 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1118 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1120 return pcilg_service_call(cpu
, r1
, r2
);
1123 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1125 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1126 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1128 return pcistg_service_call(cpu
, r1
, r2
);
1131 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1133 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1137 cpu_synchronize_state(CPU(cpu
));
1138 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1140 return stpcifc_service_call(cpu
, r1
, fiba
, ar
);
1143 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1149 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1151 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1152 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1154 return rpcit_service_call(cpu
, r1
, r2
);
1157 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1159 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1160 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1164 cpu_synchronize_state(CPU(cpu
));
1165 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1167 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
);
1170 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1172 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1176 cpu_synchronize_state(CPU(cpu
));
1177 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1179 return mpcifc_service_call(cpu
, r1
, fiba
, ar
);
1182 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1188 r
= kvm_clp_service_call(cpu
, run
);
1190 case PRIV_B9_PCISTG
:
1191 r
= kvm_pcistg_service_call(cpu
, run
);
1194 r
= kvm_pcilg_service_call(cpu
, run
);
1197 r
= kvm_rpcit_service_call(cpu
, run
);
1200 /* just inject exception */
1205 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1212 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1217 case PRIV_EB_PCISTB
:
1218 r
= kvm_pcistb_service_call(cpu
, run
);
1221 r
= kvm_sic_service_call(cpu
, run
);
1224 /* just inject exception */
1229 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1236 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1241 case PRIV_E3_MPCIFC
:
1242 r
= kvm_mpcifc_service_call(cpu
, run
);
1244 case PRIV_E3_STPCIFC
:
1245 r
= kvm_stpcifc_service_call(cpu
, run
);
1249 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1256 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1258 CPUS390XState
*env
= &cpu
->env
;
1261 cpu_synchronize_state(CPU(cpu
));
1262 ret
= s390_virtio_hypercall(env
);
1263 if (ret
== -EINVAL
) {
1264 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1271 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1276 cpu_synchronize_state(CPU(cpu
));
1277 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1278 r3
= run
->s390_sieic
.ipa
& 0x000f;
1279 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1281 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1285 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1289 cpu_synchronize_state(CPU(cpu
));
1290 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1291 r3
= run
->s390_sieic
.ipa
& 0x000f;
1292 handle_diag_308(&cpu
->env
, r1
, r3
);
1295 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1297 CPUS390XState
*env
= &cpu
->env
;
1300 cpu_synchronize_state(CPU(cpu
));
1302 pc
= env
->psw
.addr
- 4;
1303 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1311 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1313 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1319 * For any diagnose call we support, bits 48-63 of the resulting
1320 * address specify the function code; the remainder is ignored.
1322 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1323 switch (func_code
) {
1324 case DIAG_TIMEREVENT
:
1325 kvm_handle_diag_288(cpu
, run
);
1328 kvm_handle_diag_308(cpu
, run
);
1330 case DIAG_KVM_HYPERCALL
:
1331 r
= handle_hypercall(cpu
, run
);
1333 case DIAG_KVM_BREAKPOINT
:
1334 r
= handle_sw_breakpoint(cpu
, run
);
1337 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1338 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1345 typedef struct SigpInfo
{
1349 uint64_t *status_reg
;
1352 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1354 *si
->status_reg
&= 0xffffffff00000000ULL
;
1355 *si
->status_reg
|= status
;
1356 si
->cc
= SIGP_CC_STATUS_STORED
;
1359 static void sigp_start(void *arg
)
1363 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1364 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1368 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1369 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1372 static void sigp_stop(void *arg
)
1375 struct kvm_s390_irq irq
= {
1376 .type
= KVM_S390_SIGP_STOP
,
1379 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_OPERATING
) {
1380 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1384 /* disabled wait - sleeping in user space */
1385 if (CPU(si
->cpu
)->halted
) {
1386 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1388 /* execute the stop function */
1389 si
->cpu
->env
.sigp_order
= SIGP_STOP
;
1390 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1392 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1395 #define ADTL_SAVE_AREA_SIZE 1024
1396 static int kvm_s390_store_adtl_status(S390CPU
*cpu
, hwaddr addr
)
1399 hwaddr len
= ADTL_SAVE_AREA_SIZE
;
1401 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1405 if (len
!= ADTL_SAVE_AREA_SIZE
) {
1406 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1410 memcpy(mem
, &cpu
->env
.vregs
, 512);
1412 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1417 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1418 #define SAVE_AREA_SIZE 512
1419 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1421 static const uint8_t ar_id
= 1;
1422 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1425 hwaddr len
= SAVE_AREA_SIZE
;
1427 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1431 if (len
!= SAVE_AREA_SIZE
) {
1432 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1437 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1439 for (i
= 0; i
< 16; ++i
) {
1440 *((uint64
*)mem
+ i
) = get_freg(&cpu
->env
, i
)->ll
;
1442 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1443 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1444 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1445 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1446 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1447 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1448 memcpy(mem
+ 304, &ckc
, 8);
1449 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1450 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1452 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1457 static void sigp_stop_and_store_status(void *arg
)
1460 struct kvm_s390_irq irq
= {
1461 .type
= KVM_S390_SIGP_STOP
,
1464 /* disabled wait - sleeping in user space */
1465 if (s390_cpu_get_state(si
->cpu
) == CPU_STATE_OPERATING
&&
1466 CPU(si
->cpu
)->halted
) {
1467 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1470 switch (s390_cpu_get_state(si
->cpu
)) {
1471 case CPU_STATE_OPERATING
:
1472 si
->cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1473 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1474 /* store will be performed when handling the stop intercept */
1476 case CPU_STATE_STOPPED
:
1477 /* already stopped, just store the status */
1478 cpu_synchronize_state(CPU(si
->cpu
));
1479 kvm_s390_store_status(si
->cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1482 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1485 static void sigp_store_status_at_address(void *arg
)
1488 uint32_t address
= si
->param
& 0x7ffffe00u
;
1490 /* cpu has to be stopped */
1491 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1492 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1496 cpu_synchronize_state(CPU(si
->cpu
));
1498 if (kvm_s390_store_status(si
->cpu
, address
, false)) {
1499 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1502 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1505 static void sigp_store_adtl_status(void *arg
)
1509 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
1510 set_sigp_status(si
, SIGP_STAT_INVALID_ORDER
);
1514 /* cpu has to be stopped */
1515 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1516 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1520 /* parameter must be aligned to 1024-byte boundary */
1521 if (si
->param
& 0x3ff) {
1522 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1526 cpu_synchronize_state(CPU(si
->cpu
));
1528 if (kvm_s390_store_adtl_status(si
->cpu
, si
->param
)) {
1529 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1532 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1535 static void sigp_restart(void *arg
)
1538 struct kvm_s390_irq irq
= {
1539 .type
= KVM_S390_RESTART
,
1542 switch (s390_cpu_get_state(si
->cpu
)) {
1543 case CPU_STATE_STOPPED
:
1544 /* the restart irq has to be delivered prior to any other pending irq */
1545 cpu_synchronize_state(CPU(si
->cpu
));
1546 do_restart_interrupt(&si
->cpu
->env
);
1547 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1549 case CPU_STATE_OPERATING
:
1550 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1553 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1556 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1562 run_on_cpu(CPU(cpu
), sigp_restart
, &si
);
1563 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1567 static void sigp_initial_cpu_reset(void *arg
)
1570 CPUState
*cs
= CPU(si
->cpu
);
1571 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1573 cpu_synchronize_state(cs
);
1574 scc
->initial_cpu_reset(cs
);
1575 cpu_synchronize_post_reset(cs
);
1576 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1579 static void sigp_cpu_reset(void *arg
)
1582 CPUState
*cs
= CPU(si
->cpu
);
1583 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1585 cpu_synchronize_state(cs
);
1587 cpu_synchronize_post_reset(cs
);
1588 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1591 static void sigp_set_prefix(void *arg
)
1594 uint32_t addr
= si
->param
& 0x7fffe000u
;
1596 cpu_synchronize_state(CPU(si
->cpu
));
1598 if (!address_space_access_valid(&address_space_memory
, addr
,
1599 sizeof(struct LowCore
), false)) {
1600 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1604 /* cpu has to be stopped */
1605 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1606 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1610 si
->cpu
->env
.psa
= addr
;
1611 cpu_synchronize_post_init(CPU(si
->cpu
));
1612 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1615 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1616 uint64_t param
, uint64_t *status_reg
)
1621 .status_reg
= status_reg
,
1624 /* cpu available? */
1625 if (dst_cpu
== NULL
) {
1626 return SIGP_CC_NOT_OPERATIONAL
;
1629 /* only resets can break pending orders */
1630 if (dst_cpu
->env
.sigp_order
!= 0 &&
1631 order
!= SIGP_CPU_RESET
&&
1632 order
!= SIGP_INITIAL_CPU_RESET
) {
1633 return SIGP_CC_BUSY
;
1638 run_on_cpu(CPU(dst_cpu
), sigp_start
, &si
);
1641 run_on_cpu(CPU(dst_cpu
), sigp_stop
, &si
);
1644 run_on_cpu(CPU(dst_cpu
), sigp_restart
, &si
);
1646 case SIGP_STOP_STORE_STATUS
:
1647 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, &si
);
1649 case SIGP_STORE_STATUS_ADDR
:
1650 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, &si
);
1652 case SIGP_STORE_ADTL_STATUS
:
1653 run_on_cpu(CPU(dst_cpu
), sigp_store_adtl_status
, &si
);
1655 case SIGP_SET_PREFIX
:
1656 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, &si
);
1658 case SIGP_INITIAL_CPU_RESET
:
1659 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, &si
);
1661 case SIGP_CPU_RESET
:
1662 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, &si
);
1665 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1666 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1672 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1673 uint64_t *status_reg
)
1678 /* due to the BQL, we are the only active cpu */
1679 CPU_FOREACH(cur_cs
) {
1680 cur_cpu
= S390_CPU(cur_cs
);
1681 if (cur_cpu
->env
.sigp_order
!= 0) {
1682 return SIGP_CC_BUSY
;
1684 cpu_synchronize_state(cur_cs
);
1685 /* all but the current one have to be stopped */
1686 if (cur_cpu
!= cpu
&&
1687 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1688 *status_reg
&= 0xffffffff00000000ULL
;
1689 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1690 return SIGP_CC_STATUS_STORED
;
1694 switch (param
& 0xff) {
1695 case SIGP_MODE_ESA_S390
:
1697 return SIGP_CC_NOT_OPERATIONAL
;
1698 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1699 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1700 CPU_FOREACH(cur_cs
) {
1701 cur_cpu
= S390_CPU(cur_cs
);
1702 cur_cpu
->env
.pfault_token
= -1UL;
1706 *status_reg
&= 0xffffffff00000000ULL
;
1707 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1708 return SIGP_CC_STATUS_STORED
;
1711 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1714 #define SIGP_ORDER_MASK 0x000000ff
1716 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1718 CPUS390XState
*env
= &cpu
->env
;
1719 const uint8_t r1
= ipa1
>> 4;
1720 const uint8_t r3
= ipa1
& 0x0f;
1723 uint64_t *status_reg
;
1725 S390CPU
*dst_cpu
= NULL
;
1727 cpu_synchronize_state(CPU(cpu
));
1729 /* get order code */
1730 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
, NULL
)
1732 status_reg
= &env
->regs
[r1
];
1733 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1737 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1740 /* all other sigp orders target a single vcpu */
1741 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1742 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1745 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1746 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1756 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1758 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1759 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1762 DPRINTF("handle_instruction 0x%x 0x%x\n",
1763 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1766 r
= handle_b2(cpu
, run
, ipa1
);
1769 r
= handle_b9(cpu
, run
, ipa1
);
1772 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1775 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1778 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1781 r
= handle_sigp(cpu
, run
, ipa1
);
1787 enter_pgmcheck(cpu
, 0x0001);
1793 static bool is_special_wait_psw(CPUState
*cs
)
1795 /* signal quiesce */
1796 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1799 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1801 CPUState
*cs
= CPU(cpu
);
1803 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1804 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1805 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1807 qemu_system_guest_panicked();
1810 static int handle_intercept(S390CPU
*cpu
)
1812 CPUState
*cs
= CPU(cpu
);
1813 struct kvm_run
*run
= cs
->kvm_run
;
1814 int icpt_code
= run
->s390_sieic
.icptcode
;
1817 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1818 (long)cs
->kvm_run
->psw_addr
);
1819 switch (icpt_code
) {
1820 case ICPT_INSTRUCTION
:
1821 r
= handle_instruction(cpu
, run
);
1824 unmanageable_intercept(cpu
, "program interrupt",
1825 offsetof(LowCore
, program_new_psw
));
1829 unmanageable_intercept(cpu
, "external interrupt",
1830 offsetof(LowCore
, external_new_psw
));
1834 /* disabled wait, since enabled wait is handled in kernel */
1835 cpu_synchronize_state(cs
);
1836 if (s390_cpu_halt(cpu
) == 0) {
1837 if (is_special_wait_psw(cs
)) {
1838 qemu_system_shutdown_request();
1840 qemu_system_guest_panicked();
1846 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1847 qemu_system_shutdown_request();
1849 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1850 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1853 cpu
->env
.sigp_order
= 0;
1856 case ICPT_SOFT_INTERCEPT
:
1857 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1861 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1865 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1873 static int handle_tsch(S390CPU
*cpu
)
1875 CPUState
*cs
= CPU(cpu
);
1876 struct kvm_run
*run
= cs
->kvm_run
;
1879 cpu_synchronize_state(cs
);
1881 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1885 * If an I/O interrupt had been dequeued, we have to reinject it.
1887 if (run
->s390_tsch
.dequeued
) {
1888 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1889 run
->s390_tsch
.subchannel_nr
,
1890 run
->s390_tsch
.io_int_parm
,
1891 run
->s390_tsch
.io_int_word
);
1898 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1900 struct sysib_322 sysib
;
1903 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1906 /* Shift the stack of Extended Names to prepare for our own data */
1907 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1908 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1909 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1910 * assumed it's not capable of managing Extended Names for lower levels.
1912 for (del
= 1; del
< sysib
.count
; del
++) {
1913 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1917 if (del
< sysib
.count
) {
1918 memset(sysib
.ext_names
[del
], 0,
1919 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1921 /* Insert short machine name in EBCDIC, padded with blanks */
1923 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1924 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1925 strlen(qemu_name
)));
1927 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1928 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1929 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1930 * considered by s390 as not capable of providing any Extended Name.
1931 * Therefore if no name was specified on qemu invocation, we go with the
1932 * same "KVMguest" default, which KVM has filled into short name field.
1935 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1936 sizeof(sysib
.ext_names
[0]));
1938 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1941 memcpy(sysib
.vm
[0].uuid
, qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1943 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1946 static int handle_stsi(S390CPU
*cpu
)
1948 CPUState
*cs
= CPU(cpu
);
1949 struct kvm_run
*run
= cs
->kvm_run
;
1951 switch (run
->s390_stsi
.fc
) {
1953 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1956 /* Only sysib 3.2.2 needs post-handling for now. */
1957 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
1964 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1966 CPUState
*cs
= CPU(cpu
);
1967 struct kvm_run
*run
= cs
->kvm_run
;
1970 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1972 switch (arch_info
->type
) {
1973 case KVM_HW_WP_WRITE
:
1974 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1975 cs
->watchpoint_hit
= &hw_watchpoint
;
1976 hw_watchpoint
.vaddr
= arch_info
->addr
;
1977 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1982 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1986 case KVM_SINGLESTEP
:
1987 if (cs
->singlestep_enabled
) {
1998 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2000 S390CPU
*cpu
= S390_CPU(cs
);
2003 qemu_mutex_lock_iothread();
2005 switch (run
->exit_reason
) {
2006 case KVM_EXIT_S390_SIEIC
:
2007 ret
= handle_intercept(cpu
);
2009 case KVM_EXIT_S390_RESET
:
2010 s390_reipl_request();
2012 case KVM_EXIT_S390_TSCH
:
2013 ret
= handle_tsch(cpu
);
2015 case KVM_EXIT_S390_STSI
:
2016 ret
= handle_stsi(cpu
);
2018 case KVM_EXIT_DEBUG
:
2019 ret
= kvm_arch_handle_debug_exit(cpu
);
2022 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
2025 qemu_mutex_unlock_iothread();
2028 ret
= EXCP_INTERRUPT
;
2033 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2038 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2043 int kvm_arch_on_sigbus(int code
, void *addr
)
2048 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
2049 uint16_t subchannel_nr
, uint32_t io_int_parm
,
2050 uint32_t io_int_word
)
2052 struct kvm_s390_irq irq
= {
2053 .u
.io
.subchannel_id
= subchannel_id
,
2054 .u
.io
.subchannel_nr
= subchannel_nr
,
2055 .u
.io
.io_int_parm
= io_int_parm
,
2056 .u
.io
.io_int_word
= io_int_word
,
2059 if (io_int_word
& IO_INT_WORD_AI
) {
2060 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
2062 irq
.type
= ((subchannel_id
& 0xff00) << 24) |
2063 ((subchannel_id
& 0x00060) << 22) | (subchannel_nr
<< 16);
2065 kvm_s390_floating_interrupt(&irq
);
2068 void kvm_s390_crw_mchk(void)
2070 struct kvm_s390_irq irq
= {
2071 .type
= KVM_S390_MCHK
,
2072 .u
.mchk
.cr14
= 1 << 28,
2073 .u
.mchk
.mcic
= 0x00400f1d40330000ULL
,
2075 kvm_s390_floating_interrupt(&irq
);
2078 void kvm_s390_enable_css_support(S390CPU
*cpu
)
2082 /* Activate host kernel channel subsystem support. */
2083 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
2087 void kvm_arch_init_irq_routing(KVMState
*s
)
2090 * Note that while irqchip capabilities generally imply that cpustates
2091 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2092 * have to override the common code kvm_halt_in_kernel_allowed setting.
2094 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2095 kvm_gsi_routing_allowed
= true;
2096 kvm_halt_in_kernel_allowed
= false;
2100 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2101 int vq
, bool assign
)
2103 struct kvm_ioeventfd kick
= {
2104 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2105 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2106 .fd
= event_notifier_get_fd(notifier
),
2111 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2115 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2117 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2120 int kvm_s390_get_memslot_count(KVMState
*s
)
2122 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2125 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2127 struct kvm_mp_state mp_state
= {};
2130 /* the kvm part might not have been initialized yet */
2131 if (CPU(cpu
)->kvm_state
== NULL
) {
2135 switch (cpu_state
) {
2136 case CPU_STATE_STOPPED
:
2137 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2139 case CPU_STATE_CHECK_STOP
:
2140 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2142 case CPU_STATE_OPERATING
:
2143 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2145 case CPU_STATE_LOAD
:
2146 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2149 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2154 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2156 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2163 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2165 struct kvm_s390_irq_state irq_state
;
2166 CPUState
*cs
= CPU(cpu
);
2169 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2173 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2174 irq_state
.len
= VCPU_IRQ_BUF_SIZE
;
2176 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2178 cpu
->irqstate_saved_size
= 0;
2179 error_report("Migration of interrupt state failed");
2183 cpu
->irqstate_saved_size
= bytes
;
2186 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2188 CPUState
*cs
= CPU(cpu
);
2189 struct kvm_s390_irq_state irq_state
;
2192 if (cpu
->irqstate_saved_size
== 0) {
2196 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2200 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2201 irq_state
.len
= cpu
->irqstate_saved_size
;
2203 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2205 error_report("Setting interrupt state failed %d", r
);
2210 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2211 uint64_t address
, uint32_t data
)
2213 S390PCIBusDevice
*pbdev
;
2214 uint32_t fid
= data
>> ZPCI_MSI_VEC_BITS
;
2215 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2217 pbdev
= s390_pci_find_dev_by_fid(fid
);
2219 DPRINTF("add_msi_route no dev\n");
2223 pbdev
->routes
.adapter
.ind_offset
= vec
;
2225 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2227 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2228 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2229 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2230 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
2231 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2235 int kvm_arch_msi_data_to_gsi(uint32_t data
)