Merge remote-tracking branch 'remotes/armbru/tags/pull-qobject-2018-08-24' into staging
[qemu.git] / hw / block / fdc.c
blob2e9c1e1e2ff871b0b6ca4b8b4b5f3f142ad87a50
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 #include "trace.h"
45 /********************************************************/
46 /* debug Floppy devices */
48 #define DEBUG_FLOPPY 0
50 #define FLOPPY_DPRINTF(fmt, ...) \
51 do { \
52 if (DEBUG_FLOPPY) { \
53 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
54 } \
55 } while (0)
58 /********************************************************/
59 /* qdev floppy bus */
61 #define TYPE_FLOPPY_BUS "floppy-bus"
62 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
64 typedef struct FDCtrl FDCtrl;
65 typedef struct FDrive FDrive;
66 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
68 typedef struct FloppyBus {
69 BusState bus;
70 FDCtrl *fdc;
71 } FloppyBus;
73 static const TypeInfo floppy_bus_info = {
74 .name = TYPE_FLOPPY_BUS,
75 .parent = TYPE_BUS,
76 .instance_size = sizeof(FloppyBus),
79 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
81 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
82 bus->fdc = fdc;
86 /********************************************************/
87 /* Floppy drive emulation */
89 typedef enum FDriveRate {
90 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
91 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
92 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
93 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
94 } FDriveRate;
96 typedef enum FDriveSize {
97 FDRIVE_SIZE_UNKNOWN,
98 FDRIVE_SIZE_350,
99 FDRIVE_SIZE_525,
100 } FDriveSize;
102 typedef struct FDFormat {
103 FloppyDriveType drive;
104 uint8_t last_sect;
105 uint8_t max_track;
106 uint8_t max_head;
107 FDriveRate rate;
108 } FDFormat;
110 /* In many cases, the total sector size of a format is enough to uniquely
111 * identify it. However, there are some total sector collisions between
112 * formats of different physical size, and these are noted below by
113 * highlighting the total sector size for entries with collisions. */
114 static const FDFormat fd_formats[] = {
115 /* First entry is default format */
116 /* 1.44 MB 3"1/2 floppy disks */
117 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
118 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
119 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
120 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
122 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
123 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
124 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
125 /* 2.88 MB 3"1/2 floppy disks */
126 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
127 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
128 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
129 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
130 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
131 /* 720 kB 3"1/2 floppy disks */
132 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
133 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
134 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
135 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
136 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
137 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
138 /* 1.2 MB 5"1/4 floppy disks */
139 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
140 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
141 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
142 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
143 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
144 /* 720 kB 5"1/4 floppy disks */
145 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
146 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
147 /* 360 kB 5"1/4 floppy disks */
148 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
149 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
150 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
151 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
152 /* 320 kB 5"1/4 floppy disks */
153 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
154 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
155 /* 360 kB must match 5"1/4 better than 3"1/2... */
156 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
157 /* end */
158 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
161 static FDriveSize drive_size(FloppyDriveType drive)
163 switch (drive) {
164 case FLOPPY_DRIVE_TYPE_120:
165 return FDRIVE_SIZE_525;
166 case FLOPPY_DRIVE_TYPE_144:
167 case FLOPPY_DRIVE_TYPE_288:
168 return FDRIVE_SIZE_350;
169 default:
170 return FDRIVE_SIZE_UNKNOWN;
174 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
175 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
177 /* Will always be a fixed parameter for us */
178 #define FD_SECTOR_LEN 512
179 #define FD_SECTOR_SC 2 /* Sector size code */
180 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
182 /* Floppy disk drive emulation */
183 typedef enum FDiskFlags {
184 FDISK_DBL_SIDES = 0x01,
185 } FDiskFlags;
187 struct FDrive {
188 FDCtrl *fdctrl;
189 BlockBackend *blk;
190 BlockConf *conf;
191 /* Drive status */
192 FloppyDriveType drive; /* CMOS drive type */
193 uint8_t perpendicular; /* 2.88 MB access mode */
194 /* Position */
195 uint8_t head;
196 uint8_t track;
197 uint8_t sect;
198 /* Media */
199 FloppyDriveType disk; /* Current disk type */
200 FDiskFlags flags;
201 uint8_t last_sect; /* Nb sector per track */
202 uint8_t max_track; /* Nb of tracks */
203 uint16_t bps; /* Bytes per sector */
204 uint8_t ro; /* Is read-only */
205 uint8_t media_changed; /* Is media changed */
206 uint8_t media_rate; /* Data rate of medium */
208 bool media_validated; /* Have we validated the media? */
212 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
214 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
215 * currently goes through some pains to keep seeks within the bounds
216 * established by last_sect and max_track. Correcting this is difficult,
217 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
219 * For now: allow empty drives to have large bounds so we can seek around,
220 * with the understanding that when a diskette is inserted, the bounds will
221 * properly tighten to match the geometry of that inserted medium.
223 static void fd_empty_seek_hack(FDrive *drv)
225 drv->last_sect = 0xFF;
226 drv->max_track = 0xFF;
229 static void fd_init(FDrive *drv)
231 /* Drive */
232 drv->perpendicular = 0;
233 /* Disk */
234 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
235 drv->last_sect = 0;
236 drv->max_track = 0;
237 drv->ro = true;
238 drv->media_changed = 1;
241 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
243 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
244 uint8_t last_sect, uint8_t num_sides)
246 return (((track * num_sides) + head) * last_sect) + sect - 1;
249 /* Returns current position, in sectors, for given drive */
250 static int fd_sector(FDrive *drv)
252 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
253 NUM_SIDES(drv));
256 /* Returns current position, in bytes, for given drive */
257 static int fd_offset(FDrive *drv)
259 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
260 return fd_sector(drv) << BDRV_SECTOR_BITS;
263 /* Seek to a new position:
264 * returns 0 if already on right track
265 * returns 1 if track changed
266 * returns 2 if track is invalid
267 * returns 3 if sector is invalid
268 * returns 4 if seek is disabled
270 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
271 int enable_seek)
273 uint32_t sector;
274 int ret;
276 if (track > drv->max_track ||
277 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
278 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
279 head, track, sect, 1,
280 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
281 drv->max_track, drv->last_sect);
282 return 2;
284 if (sect > drv->last_sect) {
285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286 head, track, sect, 1,
287 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
288 drv->max_track, drv->last_sect);
289 return 3;
291 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
292 ret = 0;
293 if (sector != fd_sector(drv)) {
294 #if 0
295 if (!enable_seek) {
296 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
297 " (max=%d %02x %02x)\n",
298 head, track, sect, 1, drv->max_track,
299 drv->last_sect);
300 return 4;
302 #endif
303 drv->head = head;
304 if (drv->track != track) {
305 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
306 drv->media_changed = 0;
308 ret = 1;
310 drv->track = track;
311 drv->sect = sect;
314 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
315 ret = 2;
318 return ret;
321 /* Set drive back to track 0 */
322 static void fd_recalibrate(FDrive *drv)
324 FLOPPY_DPRINTF("recalibrate\n");
325 fd_seek(drv, 0, 0, 1, 1);
329 * Determine geometry based on inserted diskette.
330 * Will not operate on an empty drive.
332 * @return: 0 on success, -1 if the drive is empty.
334 static int pick_geometry(FDrive *drv)
336 BlockBackend *blk = drv->blk;
337 const FDFormat *parse;
338 uint64_t nb_sectors, size;
339 int i;
340 int match, size_match, type_match;
341 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
343 /* We can only pick a geometry if we have a diskette. */
344 if (!drv->blk || !blk_is_inserted(drv->blk) ||
345 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
347 return -1;
350 /* We need to determine the likely geometry of the inserted medium.
351 * In order of preference, we look for:
352 * (1) The same drive type and number of sectors,
353 * (2) The same diskette size and number of sectors,
354 * (3) The same drive type.
356 * In all cases, matches that occur higher in the drive table will take
357 * precedence over matches that occur later in the table.
359 blk_get_geometry(blk, &nb_sectors);
360 match = size_match = type_match = -1;
361 for (i = 0; ; i++) {
362 parse = &fd_formats[i];
363 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
364 break;
366 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
367 if (nb_sectors == size) {
368 if (magic || parse->drive == drv->drive) {
369 /* (1) perfect match -- nb_sectors and drive type */
370 goto out;
371 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
372 /* (2) size match -- nb_sectors and physical medium size */
373 match = (match == -1) ? i : match;
374 } else {
375 /* This is suspicious -- Did the user misconfigure? */
376 size_match = (size_match == -1) ? i : size_match;
378 } else if (type_match == -1) {
379 if ((parse->drive == drv->drive) ||
380 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
381 /* (3) type match -- nb_sectors mismatch, but matches the type
382 * specified explicitly by the user, or matches the fallback
383 * default type when using the drive autodetect mechanism */
384 type_match = i;
389 /* No exact match found */
390 if (match == -1) {
391 if (size_match != -1) {
392 parse = &fd_formats[size_match];
393 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
394 "but inserted medium appears to be a "
395 "%"PRId64" sector '%s' type\n",
396 FloppyDriveType_str(drv->drive),
397 nb_sectors,
398 FloppyDriveType_str(parse->drive));
400 assert(type_match != -1 && "misconfigured fd_format");
401 match = type_match;
403 parse = &(fd_formats[match]);
405 out:
406 if (parse->max_head == 0) {
407 drv->flags &= ~FDISK_DBL_SIDES;
408 } else {
409 drv->flags |= FDISK_DBL_SIDES;
411 drv->max_track = parse->max_track;
412 drv->last_sect = parse->last_sect;
413 drv->disk = parse->drive;
414 drv->media_rate = parse->rate;
415 return 0;
418 static void pick_drive_type(FDrive *drv)
420 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
421 return;
424 if (pick_geometry(drv) == 0) {
425 drv->drive = drv->disk;
426 } else {
427 drv->drive = get_fallback_drive_type(drv);
430 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
433 /* Revalidate a disk drive after a disk change */
434 static void fd_revalidate(FDrive *drv)
436 int rc;
438 FLOPPY_DPRINTF("revalidate\n");
439 if (drv->blk != NULL) {
440 drv->ro = blk_is_read_only(drv->blk);
441 if (!blk_is_inserted(drv->blk)) {
442 FLOPPY_DPRINTF("No disk in drive\n");
443 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
444 fd_empty_seek_hack(drv);
445 } else if (!drv->media_validated) {
446 rc = pick_geometry(drv);
447 if (rc) {
448 FLOPPY_DPRINTF("Could not validate floppy drive media");
449 } else {
450 drv->media_validated = true;
451 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
452 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
453 drv->max_track, drv->last_sect,
454 drv->ro ? "ro" : "rw");
457 } else {
458 FLOPPY_DPRINTF("No drive connected\n");
459 drv->last_sect = 0;
460 drv->max_track = 0;
461 drv->flags &= ~FDISK_DBL_SIDES;
462 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
463 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
467 static void fd_change_cb(void *opaque, bool load, Error **errp)
469 FDrive *drive = opaque;
471 if (!load) {
472 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
473 } else {
474 if (!blkconf_apply_backend_options(drive->conf,
475 blk_is_read_only(drive->blk), false,
476 errp)) {
477 return;
481 drive->media_changed = 1;
482 drive->media_validated = false;
483 fd_revalidate(drive);
486 static const BlockDevOps fd_block_ops = {
487 .change_media_cb = fd_change_cb,
491 #define TYPE_FLOPPY_DRIVE "floppy"
492 #define FLOPPY_DRIVE(obj) \
493 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
495 typedef struct FloppyDrive {
496 DeviceState qdev;
497 uint32_t unit;
498 BlockConf conf;
499 FloppyDriveType type;
500 } FloppyDrive;
502 static Property floppy_drive_properties[] = {
503 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
504 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
505 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
506 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
507 FloppyDriveType),
508 DEFINE_PROP_END_OF_LIST(),
511 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
513 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
514 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
515 FDrive *drive;
516 int ret;
518 if (dev->unit == -1) {
519 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
520 drive = get_drv(bus->fdc, dev->unit);
521 if (!drive->blk) {
522 break;
527 if (dev->unit >= MAX_FD) {
528 error_setg(errp, "Can't create floppy unit %d, bus supports "
529 "only %d units", dev->unit, MAX_FD);
530 return;
533 drive = get_drv(bus->fdc, dev->unit);
534 if (drive->blk) {
535 error_setg(errp, "Floppy unit %d is in use", dev->unit);
536 return;
539 if (!dev->conf.blk) {
540 /* Anonymous BlockBackend for an empty drive */
541 dev->conf.blk = blk_new(0, BLK_PERM_ALL);
542 ret = blk_attach_dev(dev->conf.blk, qdev);
543 assert(ret == 0);
546 blkconf_blocksizes(&dev->conf);
547 if (dev->conf.logical_block_size != 512 ||
548 dev->conf.physical_block_size != 512)
550 error_setg(errp, "Physical and logical block size must "
551 "be 512 for floppy");
552 return;
555 /* rerror/werror aren't supported by fdc and therefore not even registered
556 * with qdev. So set the defaults manually before they are used in
557 * blkconf_apply_backend_options(). */
558 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
559 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
561 if (!blkconf_apply_backend_options(&dev->conf,
562 blk_is_read_only(dev->conf.blk),
563 false, errp)) {
564 return;
567 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
568 * for empty drives. */
569 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
570 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
571 error_setg(errp, "fdc doesn't support drive option werror");
572 return;
574 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
575 error_setg(errp, "fdc doesn't support drive option rerror");
576 return;
579 drive->conf = &dev->conf;
580 drive->blk = dev->conf.blk;
581 drive->fdctrl = bus->fdc;
583 fd_init(drive);
584 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
586 /* Keep 'type' qdev property and FDrive->drive in sync */
587 drive->drive = dev->type;
588 pick_drive_type(drive);
589 dev->type = drive->drive;
591 fd_revalidate(drive);
594 static void floppy_drive_class_init(ObjectClass *klass, void *data)
596 DeviceClass *k = DEVICE_CLASS(klass);
597 k->realize = floppy_drive_realize;
598 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
599 k->bus_type = TYPE_FLOPPY_BUS;
600 k->props = floppy_drive_properties;
601 k->desc = "virtual floppy drive";
604 static const TypeInfo floppy_drive_info = {
605 .name = TYPE_FLOPPY_DRIVE,
606 .parent = TYPE_DEVICE,
607 .instance_size = sizeof(FloppyDrive),
608 .class_init = floppy_drive_class_init,
611 /********************************************************/
612 /* Intel 82078 floppy disk controller emulation */
614 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
615 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
616 static int fdctrl_transfer_handler (void *opaque, int nchan,
617 int dma_pos, int dma_len);
618 static void fdctrl_raise_irq(FDCtrl *fdctrl);
619 static FDrive *get_cur_drv(FDCtrl *fdctrl);
621 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
622 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
623 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
624 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
625 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
626 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
627 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
628 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
629 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
630 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
631 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
632 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
634 enum {
635 FD_DIR_WRITE = 0,
636 FD_DIR_READ = 1,
637 FD_DIR_SCANE = 2,
638 FD_DIR_SCANL = 3,
639 FD_DIR_SCANH = 4,
640 FD_DIR_VERIFY = 5,
643 enum {
644 FD_STATE_MULTI = 0x01, /* multi track flag */
645 FD_STATE_FORMAT = 0x02, /* format flag */
648 enum {
649 FD_REG_SRA = 0x00,
650 FD_REG_SRB = 0x01,
651 FD_REG_DOR = 0x02,
652 FD_REG_TDR = 0x03,
653 FD_REG_MSR = 0x04,
654 FD_REG_DSR = 0x04,
655 FD_REG_FIFO = 0x05,
656 FD_REG_DIR = 0x07,
657 FD_REG_CCR = 0x07,
660 enum {
661 FD_CMD_READ_TRACK = 0x02,
662 FD_CMD_SPECIFY = 0x03,
663 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
664 FD_CMD_WRITE = 0x05,
665 FD_CMD_READ = 0x06,
666 FD_CMD_RECALIBRATE = 0x07,
667 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
668 FD_CMD_WRITE_DELETED = 0x09,
669 FD_CMD_READ_ID = 0x0a,
670 FD_CMD_READ_DELETED = 0x0c,
671 FD_CMD_FORMAT_TRACK = 0x0d,
672 FD_CMD_DUMPREG = 0x0e,
673 FD_CMD_SEEK = 0x0f,
674 FD_CMD_VERSION = 0x10,
675 FD_CMD_SCAN_EQUAL = 0x11,
676 FD_CMD_PERPENDICULAR_MODE = 0x12,
677 FD_CMD_CONFIGURE = 0x13,
678 FD_CMD_LOCK = 0x14,
679 FD_CMD_VERIFY = 0x16,
680 FD_CMD_POWERDOWN_MODE = 0x17,
681 FD_CMD_PART_ID = 0x18,
682 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
683 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
684 FD_CMD_SAVE = 0x2e,
685 FD_CMD_OPTION = 0x33,
686 FD_CMD_RESTORE = 0x4e,
687 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
688 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
689 FD_CMD_FORMAT_AND_WRITE = 0xcd,
690 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
693 enum {
694 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
695 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
696 FD_CONFIG_POLL = 0x10, /* Poll enabled */
697 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
698 FD_CONFIG_EIS = 0x40, /* No implied seeks */
701 enum {
702 FD_SR0_DS0 = 0x01,
703 FD_SR0_DS1 = 0x02,
704 FD_SR0_HEAD = 0x04,
705 FD_SR0_EQPMT = 0x10,
706 FD_SR0_SEEK = 0x20,
707 FD_SR0_ABNTERM = 0x40,
708 FD_SR0_INVCMD = 0x80,
709 FD_SR0_RDYCHG = 0xc0,
712 enum {
713 FD_SR1_MA = 0x01, /* Missing address mark */
714 FD_SR1_NW = 0x02, /* Not writable */
715 FD_SR1_EC = 0x80, /* End of cylinder */
718 enum {
719 FD_SR2_SNS = 0x04, /* Scan not satisfied */
720 FD_SR2_SEH = 0x08, /* Scan equal hit */
723 enum {
724 FD_SRA_DIR = 0x01,
725 FD_SRA_nWP = 0x02,
726 FD_SRA_nINDX = 0x04,
727 FD_SRA_HDSEL = 0x08,
728 FD_SRA_nTRK0 = 0x10,
729 FD_SRA_STEP = 0x20,
730 FD_SRA_nDRV2 = 0x40,
731 FD_SRA_INTPEND = 0x80,
734 enum {
735 FD_SRB_MTR0 = 0x01,
736 FD_SRB_MTR1 = 0x02,
737 FD_SRB_WGATE = 0x04,
738 FD_SRB_RDATA = 0x08,
739 FD_SRB_WDATA = 0x10,
740 FD_SRB_DR0 = 0x20,
743 enum {
744 #if MAX_FD == 4
745 FD_DOR_SELMASK = 0x03,
746 #else
747 FD_DOR_SELMASK = 0x01,
748 #endif
749 FD_DOR_nRESET = 0x04,
750 FD_DOR_DMAEN = 0x08,
751 FD_DOR_MOTEN0 = 0x10,
752 FD_DOR_MOTEN1 = 0x20,
753 FD_DOR_MOTEN2 = 0x40,
754 FD_DOR_MOTEN3 = 0x80,
757 enum {
758 #if MAX_FD == 4
759 FD_TDR_BOOTSEL = 0x0c,
760 #else
761 FD_TDR_BOOTSEL = 0x04,
762 #endif
765 enum {
766 FD_DSR_DRATEMASK= 0x03,
767 FD_DSR_PWRDOWN = 0x40,
768 FD_DSR_SWRESET = 0x80,
771 enum {
772 FD_MSR_DRV0BUSY = 0x01,
773 FD_MSR_DRV1BUSY = 0x02,
774 FD_MSR_DRV2BUSY = 0x04,
775 FD_MSR_DRV3BUSY = 0x08,
776 FD_MSR_CMDBUSY = 0x10,
777 FD_MSR_NONDMA = 0x20,
778 FD_MSR_DIO = 0x40,
779 FD_MSR_RQM = 0x80,
782 enum {
783 FD_DIR_DSKCHG = 0x80,
787 * See chapter 5.0 "Controller phases" of the spec:
789 * Command phase:
790 * The host writes a command and its parameters into the FIFO. The command
791 * phase is completed when all parameters for the command have been supplied,
792 * and execution phase is entered.
794 * Execution phase:
795 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
796 * contains the payload now, otherwise it's unused. When all bytes of the
797 * required data have been transferred, the state is switched to either result
798 * phase (if the command produces status bytes) or directly back into the
799 * command phase for the next command.
801 * Result phase:
802 * The host reads out the FIFO, which contains one or more result bytes now.
804 enum {
805 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
806 FD_PHASE_RECONSTRUCT = 0,
808 FD_PHASE_COMMAND = 1,
809 FD_PHASE_EXECUTION = 2,
810 FD_PHASE_RESULT = 3,
813 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
814 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
816 struct FDCtrl {
817 MemoryRegion iomem;
818 qemu_irq irq;
819 /* Controller state */
820 QEMUTimer *result_timer;
821 int dma_chann;
822 uint8_t phase;
823 IsaDma *dma;
824 /* Controller's identification */
825 uint8_t version;
826 /* HW */
827 uint8_t sra;
828 uint8_t srb;
829 uint8_t dor;
830 uint8_t dor_vmstate; /* only used as temp during vmstate */
831 uint8_t tdr;
832 uint8_t dsr;
833 uint8_t msr;
834 uint8_t cur_drv;
835 uint8_t status0;
836 uint8_t status1;
837 uint8_t status2;
838 /* Command FIFO */
839 uint8_t *fifo;
840 int32_t fifo_size;
841 uint32_t data_pos;
842 uint32_t data_len;
843 uint8_t data_state;
844 uint8_t data_dir;
845 uint8_t eot; /* last wanted sector */
846 /* States kept only to be returned back */
847 /* precompensation */
848 uint8_t precomp_trk;
849 uint8_t config;
850 uint8_t lock;
851 /* Power down config (also with status regB access mode */
852 uint8_t pwrd;
853 /* Floppy drives */
854 FloppyBus bus;
855 uint8_t num_floppies;
856 FDrive drives[MAX_FD];
857 struct {
858 BlockBackend *blk;
859 FloppyDriveType type;
860 } qdev_for_drives[MAX_FD];
861 int reset_sensei;
862 uint32_t check_media_rate;
863 FloppyDriveType fallback; /* type=auto failure fallback */
864 /* Timers state */
865 uint8_t timer0;
866 uint8_t timer1;
867 PortioList portio_list;
870 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
872 return drv->fdctrl->fallback;
875 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
876 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
878 typedef struct FDCtrlSysBus {
879 /*< private >*/
880 SysBusDevice parent_obj;
881 /*< public >*/
883 struct FDCtrl state;
884 } FDCtrlSysBus;
886 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
888 typedef struct FDCtrlISABus {
889 ISADevice parent_obj;
891 uint32_t iobase;
892 uint32_t irq;
893 uint32_t dma;
894 struct FDCtrl state;
895 int32_t bootindexA;
896 int32_t bootindexB;
897 } FDCtrlISABus;
899 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
901 FDCtrl *fdctrl = opaque;
902 uint32_t retval;
904 reg &= 7;
905 switch (reg) {
906 case FD_REG_SRA:
907 retval = fdctrl_read_statusA(fdctrl);
908 break;
909 case FD_REG_SRB:
910 retval = fdctrl_read_statusB(fdctrl);
911 break;
912 case FD_REG_DOR:
913 retval = fdctrl_read_dor(fdctrl);
914 break;
915 case FD_REG_TDR:
916 retval = fdctrl_read_tape(fdctrl);
917 break;
918 case FD_REG_MSR:
919 retval = fdctrl_read_main_status(fdctrl);
920 break;
921 case FD_REG_FIFO:
922 retval = fdctrl_read_data(fdctrl);
923 break;
924 case FD_REG_DIR:
925 retval = fdctrl_read_dir(fdctrl);
926 break;
927 default:
928 retval = (uint32_t)(-1);
929 break;
931 trace_fdc_ioport_read(reg, retval);
933 return retval;
936 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
938 FDCtrl *fdctrl = opaque;
940 reg &= 7;
941 trace_fdc_ioport_write(reg, value);
942 switch (reg) {
943 case FD_REG_DOR:
944 fdctrl_write_dor(fdctrl, value);
945 break;
946 case FD_REG_TDR:
947 fdctrl_write_tape(fdctrl, value);
948 break;
949 case FD_REG_DSR:
950 fdctrl_write_rate(fdctrl, value);
951 break;
952 case FD_REG_FIFO:
953 fdctrl_write_data(fdctrl, value);
954 break;
955 case FD_REG_CCR:
956 fdctrl_write_ccr(fdctrl, value);
957 break;
958 default:
959 break;
963 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
964 unsigned ize)
966 return fdctrl_read(opaque, (uint32_t)reg);
969 static void fdctrl_write_mem (void *opaque, hwaddr reg,
970 uint64_t value, unsigned size)
972 fdctrl_write(opaque, (uint32_t)reg, value);
975 static const MemoryRegionOps fdctrl_mem_ops = {
976 .read = fdctrl_read_mem,
977 .write = fdctrl_write_mem,
978 .endianness = DEVICE_NATIVE_ENDIAN,
981 static const MemoryRegionOps fdctrl_mem_strict_ops = {
982 .read = fdctrl_read_mem,
983 .write = fdctrl_write_mem,
984 .endianness = DEVICE_NATIVE_ENDIAN,
985 .valid = {
986 .min_access_size = 1,
987 .max_access_size = 1,
991 static bool fdrive_media_changed_needed(void *opaque)
993 FDrive *drive = opaque;
995 return (drive->blk != NULL && drive->media_changed != 1);
998 static const VMStateDescription vmstate_fdrive_media_changed = {
999 .name = "fdrive/media_changed",
1000 .version_id = 1,
1001 .minimum_version_id = 1,
1002 .needed = fdrive_media_changed_needed,
1003 .fields = (VMStateField[]) {
1004 VMSTATE_UINT8(media_changed, FDrive),
1005 VMSTATE_END_OF_LIST()
1009 static bool fdrive_media_rate_needed(void *opaque)
1011 FDrive *drive = opaque;
1013 return drive->fdctrl->check_media_rate;
1016 static const VMStateDescription vmstate_fdrive_media_rate = {
1017 .name = "fdrive/media_rate",
1018 .version_id = 1,
1019 .minimum_version_id = 1,
1020 .needed = fdrive_media_rate_needed,
1021 .fields = (VMStateField[]) {
1022 VMSTATE_UINT8(media_rate, FDrive),
1023 VMSTATE_END_OF_LIST()
1027 static bool fdrive_perpendicular_needed(void *opaque)
1029 FDrive *drive = opaque;
1031 return drive->perpendicular != 0;
1034 static const VMStateDescription vmstate_fdrive_perpendicular = {
1035 .name = "fdrive/perpendicular",
1036 .version_id = 1,
1037 .minimum_version_id = 1,
1038 .needed = fdrive_perpendicular_needed,
1039 .fields = (VMStateField[]) {
1040 VMSTATE_UINT8(perpendicular, FDrive),
1041 VMSTATE_END_OF_LIST()
1045 static int fdrive_post_load(void *opaque, int version_id)
1047 fd_revalidate(opaque);
1048 return 0;
1051 static const VMStateDescription vmstate_fdrive = {
1052 .name = "fdrive",
1053 .version_id = 1,
1054 .minimum_version_id = 1,
1055 .post_load = fdrive_post_load,
1056 .fields = (VMStateField[]) {
1057 VMSTATE_UINT8(head, FDrive),
1058 VMSTATE_UINT8(track, FDrive),
1059 VMSTATE_UINT8(sect, FDrive),
1060 VMSTATE_END_OF_LIST()
1062 .subsections = (const VMStateDescription*[]) {
1063 &vmstate_fdrive_media_changed,
1064 &vmstate_fdrive_media_rate,
1065 &vmstate_fdrive_perpendicular,
1066 NULL
1071 * Reconstructs the phase from register values according to the logic that was
1072 * implemented in qemu 2.3. This is the default value that is used if the phase
1073 * subsection is not present on migration.
1075 * Don't change this function to reflect newer qemu versions, it is part of
1076 * the migration ABI.
1078 static int reconstruct_phase(FDCtrl *fdctrl)
1080 if (fdctrl->msr & FD_MSR_NONDMA) {
1081 return FD_PHASE_EXECUTION;
1082 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1083 /* qemu 2.3 disabled RQM only during DMA transfers */
1084 return FD_PHASE_EXECUTION;
1085 } else if (fdctrl->msr & FD_MSR_DIO) {
1086 return FD_PHASE_RESULT;
1087 } else {
1088 return FD_PHASE_COMMAND;
1092 static int fdc_pre_save(void *opaque)
1094 FDCtrl *s = opaque;
1096 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1098 return 0;
1101 static int fdc_pre_load(void *opaque)
1103 FDCtrl *s = opaque;
1104 s->phase = FD_PHASE_RECONSTRUCT;
1105 return 0;
1108 static int fdc_post_load(void *opaque, int version_id)
1110 FDCtrl *s = opaque;
1112 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1113 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1115 if (s->phase == FD_PHASE_RECONSTRUCT) {
1116 s->phase = reconstruct_phase(s);
1119 return 0;
1122 static bool fdc_reset_sensei_needed(void *opaque)
1124 FDCtrl *s = opaque;
1126 return s->reset_sensei != 0;
1129 static const VMStateDescription vmstate_fdc_reset_sensei = {
1130 .name = "fdc/reset_sensei",
1131 .version_id = 1,
1132 .minimum_version_id = 1,
1133 .needed = fdc_reset_sensei_needed,
1134 .fields = (VMStateField[]) {
1135 VMSTATE_INT32(reset_sensei, FDCtrl),
1136 VMSTATE_END_OF_LIST()
1140 static bool fdc_result_timer_needed(void *opaque)
1142 FDCtrl *s = opaque;
1144 return timer_pending(s->result_timer);
1147 static const VMStateDescription vmstate_fdc_result_timer = {
1148 .name = "fdc/result_timer",
1149 .version_id = 1,
1150 .minimum_version_id = 1,
1151 .needed = fdc_result_timer_needed,
1152 .fields = (VMStateField[]) {
1153 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1154 VMSTATE_END_OF_LIST()
1158 static bool fdc_phase_needed(void *opaque)
1160 FDCtrl *fdctrl = opaque;
1162 return reconstruct_phase(fdctrl) != fdctrl->phase;
1165 static const VMStateDescription vmstate_fdc_phase = {
1166 .name = "fdc/phase",
1167 .version_id = 1,
1168 .minimum_version_id = 1,
1169 .needed = fdc_phase_needed,
1170 .fields = (VMStateField[]) {
1171 VMSTATE_UINT8(phase, FDCtrl),
1172 VMSTATE_END_OF_LIST()
1176 static const VMStateDescription vmstate_fdc = {
1177 .name = "fdc",
1178 .version_id = 2,
1179 .minimum_version_id = 2,
1180 .pre_save = fdc_pre_save,
1181 .pre_load = fdc_pre_load,
1182 .post_load = fdc_post_load,
1183 .fields = (VMStateField[]) {
1184 /* Controller State */
1185 VMSTATE_UINT8(sra, FDCtrl),
1186 VMSTATE_UINT8(srb, FDCtrl),
1187 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1188 VMSTATE_UINT8(tdr, FDCtrl),
1189 VMSTATE_UINT8(dsr, FDCtrl),
1190 VMSTATE_UINT8(msr, FDCtrl),
1191 VMSTATE_UINT8(status0, FDCtrl),
1192 VMSTATE_UINT8(status1, FDCtrl),
1193 VMSTATE_UINT8(status2, FDCtrl),
1194 /* Command FIFO */
1195 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1196 uint8_t),
1197 VMSTATE_UINT32(data_pos, FDCtrl),
1198 VMSTATE_UINT32(data_len, FDCtrl),
1199 VMSTATE_UINT8(data_state, FDCtrl),
1200 VMSTATE_UINT8(data_dir, FDCtrl),
1201 VMSTATE_UINT8(eot, FDCtrl),
1202 /* States kept only to be returned back */
1203 VMSTATE_UINT8(timer0, FDCtrl),
1204 VMSTATE_UINT8(timer1, FDCtrl),
1205 VMSTATE_UINT8(precomp_trk, FDCtrl),
1206 VMSTATE_UINT8(config, FDCtrl),
1207 VMSTATE_UINT8(lock, FDCtrl),
1208 VMSTATE_UINT8(pwrd, FDCtrl),
1209 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1210 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1211 vmstate_fdrive, FDrive),
1212 VMSTATE_END_OF_LIST()
1214 .subsections = (const VMStateDescription*[]) {
1215 &vmstate_fdc_reset_sensei,
1216 &vmstate_fdc_result_timer,
1217 &vmstate_fdc_phase,
1218 NULL
1222 static void fdctrl_external_reset_sysbus(DeviceState *d)
1224 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1225 FDCtrl *s = &sys->state;
1227 fdctrl_reset(s, 0);
1230 static void fdctrl_external_reset_isa(DeviceState *d)
1232 FDCtrlISABus *isa = ISA_FDC(d);
1233 FDCtrl *s = &isa->state;
1235 fdctrl_reset(s, 0);
1238 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1240 //FDCtrl *s = opaque;
1242 if (level) {
1243 // XXX
1244 FLOPPY_DPRINTF("TC pulsed\n");
1248 /* Change IRQ state */
1249 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1251 fdctrl->status0 = 0;
1252 if (!(fdctrl->sra & FD_SRA_INTPEND))
1253 return;
1254 FLOPPY_DPRINTF("Reset interrupt\n");
1255 qemu_set_irq(fdctrl->irq, 0);
1256 fdctrl->sra &= ~FD_SRA_INTPEND;
1259 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1261 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1262 qemu_set_irq(fdctrl->irq, 1);
1263 fdctrl->sra |= FD_SRA_INTPEND;
1266 fdctrl->reset_sensei = 0;
1267 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1270 /* Reset controller */
1271 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1273 int i;
1275 FLOPPY_DPRINTF("reset controller\n");
1276 fdctrl_reset_irq(fdctrl);
1277 /* Initialise controller */
1278 fdctrl->sra = 0;
1279 fdctrl->srb = 0xc0;
1280 if (!fdctrl->drives[1].blk) {
1281 fdctrl->sra |= FD_SRA_nDRV2;
1283 fdctrl->cur_drv = 0;
1284 fdctrl->dor = FD_DOR_nRESET;
1285 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1286 fdctrl->msr = FD_MSR_RQM;
1287 fdctrl->reset_sensei = 0;
1288 timer_del(fdctrl->result_timer);
1289 /* FIFO state */
1290 fdctrl->data_pos = 0;
1291 fdctrl->data_len = 0;
1292 fdctrl->data_state = 0;
1293 fdctrl->data_dir = FD_DIR_WRITE;
1294 for (i = 0; i < MAX_FD; i++)
1295 fd_recalibrate(&fdctrl->drives[i]);
1296 fdctrl_to_command_phase(fdctrl);
1297 if (do_irq) {
1298 fdctrl->status0 |= FD_SR0_RDYCHG;
1299 fdctrl_raise_irq(fdctrl);
1300 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1304 static inline FDrive *drv0(FDCtrl *fdctrl)
1306 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1309 static inline FDrive *drv1(FDCtrl *fdctrl)
1311 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1312 return &fdctrl->drives[1];
1313 else
1314 return &fdctrl->drives[0];
1317 #if MAX_FD == 4
1318 static inline FDrive *drv2(FDCtrl *fdctrl)
1320 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1321 return &fdctrl->drives[2];
1322 else
1323 return &fdctrl->drives[1];
1326 static inline FDrive *drv3(FDCtrl *fdctrl)
1328 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1329 return &fdctrl->drives[3];
1330 else
1331 return &fdctrl->drives[2];
1333 #endif
1335 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1337 switch (unit) {
1338 case 0: return drv0(fdctrl);
1339 case 1: return drv1(fdctrl);
1340 #if MAX_FD == 4
1341 case 2: return drv2(fdctrl);
1342 case 3: return drv3(fdctrl);
1343 #endif
1344 default: return NULL;
1348 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1350 return get_drv(fdctrl, fdctrl->cur_drv);
1353 /* Status A register : 0x00 (read-only) */
1354 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1356 uint32_t retval = fdctrl->sra;
1358 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1360 return retval;
1363 /* Status B register : 0x01 (read-only) */
1364 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1366 uint32_t retval = fdctrl->srb;
1368 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1370 return retval;
1373 /* Digital output register : 0x02 */
1374 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1376 uint32_t retval = fdctrl->dor;
1378 /* Selected drive */
1379 retval |= fdctrl->cur_drv;
1380 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1382 return retval;
1385 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1387 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1389 /* Motors */
1390 if (value & FD_DOR_MOTEN0)
1391 fdctrl->srb |= FD_SRB_MTR0;
1392 else
1393 fdctrl->srb &= ~FD_SRB_MTR0;
1394 if (value & FD_DOR_MOTEN1)
1395 fdctrl->srb |= FD_SRB_MTR1;
1396 else
1397 fdctrl->srb &= ~FD_SRB_MTR1;
1399 /* Drive */
1400 if (value & 1)
1401 fdctrl->srb |= FD_SRB_DR0;
1402 else
1403 fdctrl->srb &= ~FD_SRB_DR0;
1405 /* Reset */
1406 if (!(value & FD_DOR_nRESET)) {
1407 if (fdctrl->dor & FD_DOR_nRESET) {
1408 FLOPPY_DPRINTF("controller enter RESET state\n");
1410 } else {
1411 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1412 FLOPPY_DPRINTF("controller out of RESET state\n");
1413 fdctrl_reset(fdctrl, 1);
1414 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1417 /* Selected drive */
1418 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1420 fdctrl->dor = value;
1423 /* Tape drive register : 0x03 */
1424 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1426 uint32_t retval = fdctrl->tdr;
1428 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1430 return retval;
1433 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1435 /* Reset mode */
1436 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1437 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1438 return;
1440 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1441 /* Disk boot selection indicator */
1442 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1443 /* Tape indicators: never allow */
1446 /* Main status register : 0x04 (read) */
1447 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1449 uint32_t retval = fdctrl->msr;
1451 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1452 fdctrl->dor |= FD_DOR_nRESET;
1454 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1456 return retval;
1459 /* Data select rate register : 0x04 (write) */
1460 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1462 /* Reset mode */
1463 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1464 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1465 return;
1467 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1468 /* Reset: autoclear */
1469 if (value & FD_DSR_SWRESET) {
1470 fdctrl->dor &= ~FD_DOR_nRESET;
1471 fdctrl_reset(fdctrl, 1);
1472 fdctrl->dor |= FD_DOR_nRESET;
1474 if (value & FD_DSR_PWRDOWN) {
1475 fdctrl_reset(fdctrl, 1);
1477 fdctrl->dsr = value;
1480 /* Configuration control register: 0x07 (write) */
1481 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1483 /* Reset mode */
1484 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1485 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1486 return;
1488 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1490 /* Only the rate selection bits used in AT mode, and we
1491 * store those in the DSR.
1493 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1494 (value & FD_DSR_DRATEMASK);
1497 static int fdctrl_media_changed(FDrive *drv)
1499 return drv->media_changed;
1502 /* Digital input register : 0x07 (read-only) */
1503 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1505 uint32_t retval = 0;
1507 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1508 retval |= FD_DIR_DSKCHG;
1510 if (retval != 0) {
1511 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1514 return retval;
1517 /* Clear the FIFO and update the state for receiving the next command */
1518 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1520 fdctrl->phase = FD_PHASE_COMMAND;
1521 fdctrl->data_dir = FD_DIR_WRITE;
1522 fdctrl->data_pos = 0;
1523 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1524 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1525 fdctrl->msr |= FD_MSR_RQM;
1528 /* Update the state to allow the guest to read out the command status.
1529 * @fifo_len is the number of result bytes to be read out. */
1530 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1532 fdctrl->phase = FD_PHASE_RESULT;
1533 fdctrl->data_dir = FD_DIR_READ;
1534 fdctrl->data_len = fifo_len;
1535 fdctrl->data_pos = 0;
1536 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1539 /* Set an error: unimplemented/unknown command */
1540 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1542 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1543 fdctrl->fifo[0]);
1544 fdctrl->fifo[0] = FD_SR0_INVCMD;
1545 fdctrl_to_result_phase(fdctrl, 1);
1548 /* Seek to next sector
1549 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1550 * otherwise returns 1
1552 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1554 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1555 cur_drv->head, cur_drv->track, cur_drv->sect,
1556 fd_sector(cur_drv));
1557 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1558 error in fact */
1559 uint8_t new_head = cur_drv->head;
1560 uint8_t new_track = cur_drv->track;
1561 uint8_t new_sect = cur_drv->sect;
1563 int ret = 1;
1565 if (new_sect >= cur_drv->last_sect ||
1566 new_sect == fdctrl->eot) {
1567 new_sect = 1;
1568 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1569 if (new_head == 0 &&
1570 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1571 new_head = 1;
1572 } else {
1573 new_head = 0;
1574 new_track++;
1575 fdctrl->status0 |= FD_SR0_SEEK;
1576 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1577 ret = 0;
1580 } else {
1581 fdctrl->status0 |= FD_SR0_SEEK;
1582 new_track++;
1583 ret = 0;
1585 if (ret == 1) {
1586 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1587 new_head, new_track, new_sect, fd_sector(cur_drv));
1589 } else {
1590 new_sect++;
1592 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1593 return ret;
1596 /* Callback for transfer end (stop or abort) */
1597 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1598 uint8_t status1, uint8_t status2)
1600 FDrive *cur_drv;
1601 cur_drv = get_cur_drv(fdctrl);
1603 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1604 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1605 if (cur_drv->head) {
1606 fdctrl->status0 |= FD_SR0_HEAD;
1608 fdctrl->status0 |= status0;
1610 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1611 status0, status1, status2, fdctrl->status0);
1612 fdctrl->fifo[0] = fdctrl->status0;
1613 fdctrl->fifo[1] = status1;
1614 fdctrl->fifo[2] = status2;
1615 fdctrl->fifo[3] = cur_drv->track;
1616 fdctrl->fifo[4] = cur_drv->head;
1617 fdctrl->fifo[5] = cur_drv->sect;
1618 fdctrl->fifo[6] = FD_SECTOR_SC;
1619 fdctrl->data_dir = FD_DIR_READ;
1620 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1621 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1622 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1624 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1625 fdctrl->msr &= ~FD_MSR_NONDMA;
1627 fdctrl_to_result_phase(fdctrl, 7);
1628 fdctrl_raise_irq(fdctrl);
1631 /* Prepare a data transfer (either DMA or FIFO) */
1632 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1634 FDrive *cur_drv;
1635 uint8_t kh, kt, ks;
1637 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1638 cur_drv = get_cur_drv(fdctrl);
1639 kt = fdctrl->fifo[2];
1640 kh = fdctrl->fifo[3];
1641 ks = fdctrl->fifo[4];
1642 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1643 GET_CUR_DRV(fdctrl), kh, kt, ks,
1644 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1645 NUM_SIDES(cur_drv)));
1646 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1647 case 2:
1648 /* sect too big */
1649 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1650 fdctrl->fifo[3] = kt;
1651 fdctrl->fifo[4] = kh;
1652 fdctrl->fifo[5] = ks;
1653 return;
1654 case 3:
1655 /* track too big */
1656 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1657 fdctrl->fifo[3] = kt;
1658 fdctrl->fifo[4] = kh;
1659 fdctrl->fifo[5] = ks;
1660 return;
1661 case 4:
1662 /* No seek enabled */
1663 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1664 fdctrl->fifo[3] = kt;
1665 fdctrl->fifo[4] = kh;
1666 fdctrl->fifo[5] = ks;
1667 return;
1668 case 1:
1669 fdctrl->status0 |= FD_SR0_SEEK;
1670 break;
1671 default:
1672 break;
1675 /* Check the data rate. If the programmed data rate does not match
1676 * the currently inserted medium, the operation has to fail. */
1677 if (fdctrl->check_media_rate &&
1678 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1679 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1680 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1681 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1682 fdctrl->fifo[3] = kt;
1683 fdctrl->fifo[4] = kh;
1684 fdctrl->fifo[5] = ks;
1685 return;
1688 /* Set the FIFO state */
1689 fdctrl->data_dir = direction;
1690 fdctrl->data_pos = 0;
1691 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1692 if (fdctrl->fifo[0] & 0x80)
1693 fdctrl->data_state |= FD_STATE_MULTI;
1694 else
1695 fdctrl->data_state &= ~FD_STATE_MULTI;
1696 if (fdctrl->fifo[5] == 0) {
1697 fdctrl->data_len = fdctrl->fifo[8];
1698 } else {
1699 int tmp;
1700 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1701 tmp = (fdctrl->fifo[6] - ks + 1);
1702 if (fdctrl->fifo[0] & 0x80)
1703 tmp += fdctrl->fifo[6];
1704 fdctrl->data_len *= tmp;
1706 fdctrl->eot = fdctrl->fifo[6];
1707 if (fdctrl->dor & FD_DOR_DMAEN) {
1708 IsaDmaTransferMode dma_mode;
1709 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1710 bool dma_mode_ok;
1711 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1712 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1713 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1714 dma_mode, direction,
1715 (128 << fdctrl->fifo[5]) *
1716 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1717 switch (direction) {
1718 case FD_DIR_SCANE:
1719 case FD_DIR_SCANL:
1720 case FD_DIR_SCANH:
1721 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1722 break;
1723 case FD_DIR_WRITE:
1724 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1725 break;
1726 case FD_DIR_READ:
1727 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1728 break;
1729 case FD_DIR_VERIFY:
1730 dma_mode_ok = true;
1731 break;
1732 default:
1733 dma_mode_ok = false;
1734 break;
1736 if (dma_mode_ok) {
1737 /* No access is allowed until DMA transfer has completed */
1738 fdctrl->msr &= ~FD_MSR_RQM;
1739 if (direction != FD_DIR_VERIFY) {
1740 /* Now, we just have to wait for the DMA controller to
1741 * recall us...
1743 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1744 k->schedule(fdctrl->dma);
1745 } else {
1746 /* Start transfer */
1747 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1748 fdctrl->data_len);
1750 return;
1751 } else {
1752 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1753 direction);
1756 FLOPPY_DPRINTF("start non-DMA transfer\n");
1757 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1758 if (direction != FD_DIR_WRITE)
1759 fdctrl->msr |= FD_MSR_DIO;
1760 /* IO based transfer: calculate len */
1761 fdctrl_raise_irq(fdctrl);
1764 /* Prepare a transfer of deleted data */
1765 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1767 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1769 /* We don't handle deleted data,
1770 * so we don't return *ANYTHING*
1772 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1775 /* handlers for DMA transfers */
1776 static int fdctrl_transfer_handler (void *opaque, int nchan,
1777 int dma_pos, int dma_len)
1779 FDCtrl *fdctrl;
1780 FDrive *cur_drv;
1781 int len, start_pos, rel_pos;
1782 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1783 IsaDmaClass *k;
1785 fdctrl = opaque;
1786 if (fdctrl->msr & FD_MSR_RQM) {
1787 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1788 return 0;
1790 k = ISADMA_GET_CLASS(fdctrl->dma);
1791 cur_drv = get_cur_drv(fdctrl);
1792 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1793 fdctrl->data_dir == FD_DIR_SCANH)
1794 status2 = FD_SR2_SNS;
1795 if (dma_len > fdctrl->data_len)
1796 dma_len = fdctrl->data_len;
1797 if (cur_drv->blk == NULL) {
1798 if (fdctrl->data_dir == FD_DIR_WRITE)
1799 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1800 else
1801 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1802 len = 0;
1803 goto transfer_error;
1805 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1806 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1807 len = dma_len - fdctrl->data_pos;
1808 if (len + rel_pos > FD_SECTOR_LEN)
1809 len = FD_SECTOR_LEN - rel_pos;
1810 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1811 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1812 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1813 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1814 fd_sector(cur_drv) * FD_SECTOR_LEN);
1815 if (fdctrl->data_dir != FD_DIR_WRITE ||
1816 len < FD_SECTOR_LEN || rel_pos != 0) {
1817 /* READ & SCAN commands and realign to a sector for WRITE */
1818 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1819 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1820 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1821 fd_sector(cur_drv));
1822 /* Sure, image size is too small... */
1823 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1826 switch (fdctrl->data_dir) {
1827 case FD_DIR_READ:
1828 /* READ commands */
1829 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1830 fdctrl->data_pos, len);
1831 break;
1832 case FD_DIR_WRITE:
1833 /* WRITE commands */
1834 if (cur_drv->ro) {
1835 /* Handle readonly medium early, no need to do DMA, touch the
1836 * LED or attempt any writes. A real floppy doesn't attempt
1837 * to write to readonly media either. */
1838 fdctrl_stop_transfer(fdctrl,
1839 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1840 0x00);
1841 goto transfer_error;
1844 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1845 fdctrl->data_pos, len);
1846 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1847 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1848 FLOPPY_DPRINTF("error writing sector %d\n",
1849 fd_sector(cur_drv));
1850 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1851 goto transfer_error;
1853 break;
1854 case FD_DIR_VERIFY:
1855 /* VERIFY commands */
1856 break;
1857 default:
1858 /* SCAN commands */
1860 uint8_t tmpbuf[FD_SECTOR_LEN];
1861 int ret;
1862 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1863 len);
1864 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1865 if (ret == 0) {
1866 status2 = FD_SR2_SEH;
1867 goto end_transfer;
1869 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1870 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1871 status2 = 0x00;
1872 goto end_transfer;
1875 break;
1877 fdctrl->data_pos += len;
1878 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1879 if (rel_pos == 0) {
1880 /* Seek to next sector */
1881 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1882 break;
1885 end_transfer:
1886 len = fdctrl->data_pos - start_pos;
1887 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1888 fdctrl->data_pos, len, fdctrl->data_len);
1889 if (fdctrl->data_dir == FD_DIR_SCANE ||
1890 fdctrl->data_dir == FD_DIR_SCANL ||
1891 fdctrl->data_dir == FD_DIR_SCANH)
1892 status2 = FD_SR2_SEH;
1893 fdctrl->data_len -= len;
1894 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1895 transfer_error:
1897 return len;
1900 /* Data register : 0x05 */
1901 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1903 FDrive *cur_drv;
1904 uint32_t retval = 0;
1905 uint32_t pos;
1907 cur_drv = get_cur_drv(fdctrl);
1908 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1909 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1910 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1911 return 0;
1914 /* If data_len spans multiple sectors, the current position in the FIFO
1915 * wraps around while fdctrl->data_pos is the real position in the whole
1916 * request. */
1917 pos = fdctrl->data_pos;
1918 pos %= FD_SECTOR_LEN;
1920 switch (fdctrl->phase) {
1921 case FD_PHASE_EXECUTION:
1922 assert(fdctrl->msr & FD_MSR_NONDMA);
1923 if (pos == 0) {
1924 if (fdctrl->data_pos != 0)
1925 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1926 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1927 fd_sector(cur_drv));
1928 return 0;
1930 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1931 BDRV_SECTOR_SIZE)
1932 < 0) {
1933 FLOPPY_DPRINTF("error getting sector %d\n",
1934 fd_sector(cur_drv));
1935 /* Sure, image size is too small... */
1936 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1940 if (++fdctrl->data_pos == fdctrl->data_len) {
1941 fdctrl->msr &= ~FD_MSR_RQM;
1942 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1944 break;
1946 case FD_PHASE_RESULT:
1947 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1948 if (++fdctrl->data_pos == fdctrl->data_len) {
1949 fdctrl->msr &= ~FD_MSR_RQM;
1950 fdctrl_to_command_phase(fdctrl);
1951 fdctrl_reset_irq(fdctrl);
1953 break;
1955 case FD_PHASE_COMMAND:
1956 default:
1957 abort();
1960 retval = fdctrl->fifo[pos];
1961 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1963 return retval;
1966 static void fdctrl_format_sector(FDCtrl *fdctrl)
1968 FDrive *cur_drv;
1969 uint8_t kh, kt, ks;
1971 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1972 cur_drv = get_cur_drv(fdctrl);
1973 kt = fdctrl->fifo[6];
1974 kh = fdctrl->fifo[7];
1975 ks = fdctrl->fifo[8];
1976 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1977 GET_CUR_DRV(fdctrl), kh, kt, ks,
1978 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1979 NUM_SIDES(cur_drv)));
1980 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1981 case 2:
1982 /* sect too big */
1983 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1984 fdctrl->fifo[3] = kt;
1985 fdctrl->fifo[4] = kh;
1986 fdctrl->fifo[5] = ks;
1987 return;
1988 case 3:
1989 /* track too big */
1990 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1991 fdctrl->fifo[3] = kt;
1992 fdctrl->fifo[4] = kh;
1993 fdctrl->fifo[5] = ks;
1994 return;
1995 case 4:
1996 /* No seek enabled */
1997 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1998 fdctrl->fifo[3] = kt;
1999 fdctrl->fifo[4] = kh;
2000 fdctrl->fifo[5] = ks;
2001 return;
2002 case 1:
2003 fdctrl->status0 |= FD_SR0_SEEK;
2004 break;
2005 default:
2006 break;
2008 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2009 if (cur_drv->blk == NULL ||
2010 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2011 BDRV_SECTOR_SIZE, 0) < 0) {
2012 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2013 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2014 } else {
2015 if (cur_drv->sect == cur_drv->last_sect) {
2016 fdctrl->data_state &= ~FD_STATE_FORMAT;
2017 /* Last sector done */
2018 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2019 } else {
2020 /* More to do */
2021 fdctrl->data_pos = 0;
2022 fdctrl->data_len = 4;
2027 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2029 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2030 fdctrl->fifo[0] = fdctrl->lock << 4;
2031 fdctrl_to_result_phase(fdctrl, 1);
2034 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2036 FDrive *cur_drv = get_cur_drv(fdctrl);
2038 /* Drives position */
2039 fdctrl->fifo[0] = drv0(fdctrl)->track;
2040 fdctrl->fifo[1] = drv1(fdctrl)->track;
2041 #if MAX_FD == 4
2042 fdctrl->fifo[2] = drv2(fdctrl)->track;
2043 fdctrl->fifo[3] = drv3(fdctrl)->track;
2044 #else
2045 fdctrl->fifo[2] = 0;
2046 fdctrl->fifo[3] = 0;
2047 #endif
2048 /* timers */
2049 fdctrl->fifo[4] = fdctrl->timer0;
2050 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2051 fdctrl->fifo[6] = cur_drv->last_sect;
2052 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2053 (cur_drv->perpendicular << 2);
2054 fdctrl->fifo[8] = fdctrl->config;
2055 fdctrl->fifo[9] = fdctrl->precomp_trk;
2056 fdctrl_to_result_phase(fdctrl, 10);
2059 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2061 /* Controller's version */
2062 fdctrl->fifo[0] = fdctrl->version;
2063 fdctrl_to_result_phase(fdctrl, 1);
2066 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2068 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2069 fdctrl_to_result_phase(fdctrl, 1);
2072 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2074 FDrive *cur_drv = get_cur_drv(fdctrl);
2076 /* Drives position */
2077 drv0(fdctrl)->track = fdctrl->fifo[3];
2078 drv1(fdctrl)->track = fdctrl->fifo[4];
2079 #if MAX_FD == 4
2080 drv2(fdctrl)->track = fdctrl->fifo[5];
2081 drv3(fdctrl)->track = fdctrl->fifo[6];
2082 #endif
2083 /* timers */
2084 fdctrl->timer0 = fdctrl->fifo[7];
2085 fdctrl->timer1 = fdctrl->fifo[8];
2086 cur_drv->last_sect = fdctrl->fifo[9];
2087 fdctrl->lock = fdctrl->fifo[10] >> 7;
2088 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2089 fdctrl->config = fdctrl->fifo[11];
2090 fdctrl->precomp_trk = fdctrl->fifo[12];
2091 fdctrl->pwrd = fdctrl->fifo[13];
2092 fdctrl_to_command_phase(fdctrl);
2095 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2097 FDrive *cur_drv = get_cur_drv(fdctrl);
2099 fdctrl->fifo[0] = 0;
2100 fdctrl->fifo[1] = 0;
2101 /* Drives position */
2102 fdctrl->fifo[2] = drv0(fdctrl)->track;
2103 fdctrl->fifo[3] = drv1(fdctrl)->track;
2104 #if MAX_FD == 4
2105 fdctrl->fifo[4] = drv2(fdctrl)->track;
2106 fdctrl->fifo[5] = drv3(fdctrl)->track;
2107 #else
2108 fdctrl->fifo[4] = 0;
2109 fdctrl->fifo[5] = 0;
2110 #endif
2111 /* timers */
2112 fdctrl->fifo[6] = fdctrl->timer0;
2113 fdctrl->fifo[7] = fdctrl->timer1;
2114 fdctrl->fifo[8] = cur_drv->last_sect;
2115 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2116 (cur_drv->perpendicular << 2);
2117 fdctrl->fifo[10] = fdctrl->config;
2118 fdctrl->fifo[11] = fdctrl->precomp_trk;
2119 fdctrl->fifo[12] = fdctrl->pwrd;
2120 fdctrl->fifo[13] = 0;
2121 fdctrl->fifo[14] = 0;
2122 fdctrl_to_result_phase(fdctrl, 15);
2125 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2127 FDrive *cur_drv = get_cur_drv(fdctrl);
2129 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2130 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2131 (NANOSECONDS_PER_SECOND / 50));
2134 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2136 FDrive *cur_drv;
2138 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2139 cur_drv = get_cur_drv(fdctrl);
2140 fdctrl->data_state |= FD_STATE_FORMAT;
2141 if (fdctrl->fifo[0] & 0x80)
2142 fdctrl->data_state |= FD_STATE_MULTI;
2143 else
2144 fdctrl->data_state &= ~FD_STATE_MULTI;
2145 cur_drv->bps =
2146 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2147 #if 0
2148 cur_drv->last_sect =
2149 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2150 fdctrl->fifo[3] / 2;
2151 #else
2152 cur_drv->last_sect = fdctrl->fifo[3];
2153 #endif
2154 /* TODO: implement format using DMA expected by the Bochs BIOS
2155 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2156 * the sector with the specified fill byte
2158 fdctrl->data_state &= ~FD_STATE_FORMAT;
2159 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2162 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2164 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2165 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2166 if (fdctrl->fifo[2] & 1)
2167 fdctrl->dor &= ~FD_DOR_DMAEN;
2168 else
2169 fdctrl->dor |= FD_DOR_DMAEN;
2170 /* No result back */
2171 fdctrl_to_command_phase(fdctrl);
2174 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2176 FDrive *cur_drv;
2178 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2179 cur_drv = get_cur_drv(fdctrl);
2180 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2181 /* 1 Byte status back */
2182 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2183 (cur_drv->track == 0 ? 0x10 : 0x00) |
2184 (cur_drv->head << 2) |
2185 GET_CUR_DRV(fdctrl) |
2186 0x28;
2187 fdctrl_to_result_phase(fdctrl, 1);
2190 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2192 FDrive *cur_drv;
2194 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2195 cur_drv = get_cur_drv(fdctrl);
2196 fd_recalibrate(cur_drv);
2197 fdctrl_to_command_phase(fdctrl);
2198 /* Raise Interrupt */
2199 fdctrl->status0 |= FD_SR0_SEEK;
2200 fdctrl_raise_irq(fdctrl);
2203 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2205 FDrive *cur_drv = get_cur_drv(fdctrl);
2207 if (fdctrl->reset_sensei > 0) {
2208 fdctrl->fifo[0] =
2209 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2210 fdctrl->reset_sensei--;
2211 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2212 fdctrl->fifo[0] = FD_SR0_INVCMD;
2213 fdctrl_to_result_phase(fdctrl, 1);
2214 return;
2215 } else {
2216 fdctrl->fifo[0] =
2217 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2218 | GET_CUR_DRV(fdctrl);
2221 fdctrl->fifo[1] = cur_drv->track;
2222 fdctrl_to_result_phase(fdctrl, 2);
2223 fdctrl_reset_irq(fdctrl);
2224 fdctrl->status0 = FD_SR0_RDYCHG;
2227 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2229 FDrive *cur_drv;
2231 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2232 cur_drv = get_cur_drv(fdctrl);
2233 fdctrl_to_command_phase(fdctrl);
2234 /* The seek command just sends step pulses to the drive and doesn't care if
2235 * there is a medium inserted of if it's banging the head against the drive.
2237 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2238 /* Raise Interrupt */
2239 fdctrl->status0 |= FD_SR0_SEEK;
2240 fdctrl_raise_irq(fdctrl);
2243 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2245 FDrive *cur_drv = get_cur_drv(fdctrl);
2247 if (fdctrl->fifo[1] & 0x80)
2248 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2249 /* No result back */
2250 fdctrl_to_command_phase(fdctrl);
2253 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2255 fdctrl->config = fdctrl->fifo[2];
2256 fdctrl->precomp_trk = fdctrl->fifo[3];
2257 /* No result back */
2258 fdctrl_to_command_phase(fdctrl);
2261 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2263 fdctrl->pwrd = fdctrl->fifo[1];
2264 fdctrl->fifo[0] = fdctrl->fifo[1];
2265 fdctrl_to_result_phase(fdctrl, 1);
2268 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2270 /* No result back */
2271 fdctrl_to_command_phase(fdctrl);
2274 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2276 FDrive *cur_drv = get_cur_drv(fdctrl);
2277 uint32_t pos;
2279 pos = fdctrl->data_pos - 1;
2280 pos %= FD_SECTOR_LEN;
2281 if (fdctrl->fifo[pos] & 0x80) {
2282 /* Command parameters done */
2283 if (fdctrl->fifo[pos] & 0x40) {
2284 fdctrl->fifo[0] = fdctrl->fifo[1];
2285 fdctrl->fifo[2] = 0;
2286 fdctrl->fifo[3] = 0;
2287 fdctrl_to_result_phase(fdctrl, 4);
2288 } else {
2289 fdctrl_to_command_phase(fdctrl);
2291 } else if (fdctrl->data_len > 7) {
2292 /* ERROR */
2293 fdctrl->fifo[0] = 0x80 |
2294 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2295 fdctrl_to_result_phase(fdctrl, 1);
2299 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2301 FDrive *cur_drv;
2303 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2304 cur_drv = get_cur_drv(fdctrl);
2305 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2306 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2307 cur_drv->sect, 1);
2308 } else {
2309 fd_seek(cur_drv, cur_drv->head,
2310 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2312 fdctrl_to_command_phase(fdctrl);
2313 /* Raise Interrupt */
2314 fdctrl->status0 |= FD_SR0_SEEK;
2315 fdctrl_raise_irq(fdctrl);
2318 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2320 FDrive *cur_drv;
2322 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2323 cur_drv = get_cur_drv(fdctrl);
2324 if (fdctrl->fifo[2] > cur_drv->track) {
2325 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2326 } else {
2327 fd_seek(cur_drv, cur_drv->head,
2328 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2330 fdctrl_to_command_phase(fdctrl);
2331 /* Raise Interrupt */
2332 fdctrl->status0 |= FD_SR0_SEEK;
2333 fdctrl_raise_irq(fdctrl);
2337 * Handlers for the execution phase of each command
2339 typedef struct FDCtrlCommand {
2340 uint8_t value;
2341 uint8_t mask;
2342 const char* name;
2343 int parameters;
2344 void (*handler)(FDCtrl *fdctrl, int direction);
2345 int direction;
2346 } FDCtrlCommand;
2348 static const FDCtrlCommand handlers[] = {
2349 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2350 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2351 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2352 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2353 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2354 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2355 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2356 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2357 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2358 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2359 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2360 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2361 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2362 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2363 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2364 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2365 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2366 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2367 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2368 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2369 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2370 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2371 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2372 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2373 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2374 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2375 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2376 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2377 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2378 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2379 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2380 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2382 /* Associate command to an index in the 'handlers' array */
2383 static uint8_t command_to_handler[256];
2385 static const FDCtrlCommand *get_command(uint8_t cmd)
2387 int idx;
2389 idx = command_to_handler[cmd];
2390 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2391 return &handlers[idx];
2394 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2396 FDrive *cur_drv;
2397 const FDCtrlCommand *cmd;
2398 uint32_t pos;
2400 /* Reset mode */
2401 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2402 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2403 return;
2405 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2406 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2407 return;
2409 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2411 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2413 /* If data_len spans multiple sectors, the current position in the FIFO
2414 * wraps around while fdctrl->data_pos is the real position in the whole
2415 * request. */
2416 pos = fdctrl->data_pos++;
2417 pos %= FD_SECTOR_LEN;
2418 fdctrl->fifo[pos] = value;
2420 if (fdctrl->data_pos == fdctrl->data_len) {
2421 fdctrl->msr &= ~FD_MSR_RQM;
2424 switch (fdctrl->phase) {
2425 case FD_PHASE_EXECUTION:
2426 /* For DMA requests, RQM should be cleared during execution phase, so
2427 * we would have errored out above. */
2428 assert(fdctrl->msr & FD_MSR_NONDMA);
2430 /* FIFO data write */
2431 if (pos == FD_SECTOR_LEN - 1 ||
2432 fdctrl->data_pos == fdctrl->data_len) {
2433 cur_drv = get_cur_drv(fdctrl);
2434 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2435 BDRV_SECTOR_SIZE, 0) < 0) {
2436 FLOPPY_DPRINTF("error writing sector %d\n",
2437 fd_sector(cur_drv));
2438 break;
2440 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2441 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2442 fd_sector(cur_drv));
2443 break;
2447 /* Switch to result phase when done with the transfer */
2448 if (fdctrl->data_pos == fdctrl->data_len) {
2449 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2451 break;
2453 case FD_PHASE_COMMAND:
2454 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2455 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2457 if (pos == 0) {
2458 /* The first byte specifies the command. Now we start reading
2459 * as many parameters as this command requires. */
2460 cmd = get_command(value);
2461 fdctrl->data_len = cmd->parameters + 1;
2462 if (cmd->parameters) {
2463 fdctrl->msr |= FD_MSR_RQM;
2465 fdctrl->msr |= FD_MSR_CMDBUSY;
2468 if (fdctrl->data_pos == fdctrl->data_len) {
2469 /* We have all parameters now, execute the command */
2470 fdctrl->phase = FD_PHASE_EXECUTION;
2472 if (fdctrl->data_state & FD_STATE_FORMAT) {
2473 fdctrl_format_sector(fdctrl);
2474 break;
2477 cmd = get_command(fdctrl->fifo[0]);
2478 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2479 cmd->handler(fdctrl, cmd->direction);
2481 break;
2483 case FD_PHASE_RESULT:
2484 default:
2485 abort();
2489 static void fdctrl_result_timer(void *opaque)
2491 FDCtrl *fdctrl = opaque;
2492 FDrive *cur_drv = get_cur_drv(fdctrl);
2494 /* Pretend we are spinning.
2495 * This is needed for Coherent, which uses READ ID to check for
2496 * sector interleaving.
2498 if (cur_drv->last_sect != 0) {
2499 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2501 /* READ_ID can't automatically succeed! */
2502 if (fdctrl->check_media_rate &&
2503 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2504 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2505 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2506 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2507 } else {
2508 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2512 /* Init functions */
2513 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2514 Error **errp)
2516 unsigned int i;
2517 FDrive *drive;
2518 DeviceState *dev;
2519 BlockBackend *blk;
2520 Error *local_err = NULL;
2522 for (i = 0; i < MAX_FD; i++) {
2523 drive = &fdctrl->drives[i];
2524 drive->fdctrl = fdctrl;
2526 /* If the drive is not present, we skip creating the qdev device, but
2527 * still have to initialise the controller. */
2528 blk = fdctrl->qdev_for_drives[i].blk;
2529 if (!blk) {
2530 fd_init(drive);
2531 fd_revalidate(drive);
2532 continue;
2535 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2536 qdev_prop_set_uint32(dev, "unit", i);
2537 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2539 blk_ref(blk);
2540 blk_detach_dev(blk, fdc_dev);
2541 fdctrl->qdev_for_drives[i].blk = NULL;
2542 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2543 blk_unref(blk);
2545 if (local_err) {
2546 error_propagate(errp, local_err);
2547 return;
2550 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2551 if (local_err) {
2552 error_propagate(errp, local_err);
2553 return;
2558 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2560 DeviceState *dev;
2561 ISADevice *isadev;
2563 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2564 if (!isadev) {
2565 return NULL;
2567 dev = DEVICE(isadev);
2569 if (fds[0]) {
2570 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2571 &error_fatal);
2573 if (fds[1]) {
2574 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2575 &error_fatal);
2577 qdev_init_nofail(dev);
2579 return isadev;
2582 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2583 hwaddr mmio_base, DriveInfo **fds)
2585 FDCtrl *fdctrl;
2586 DeviceState *dev;
2587 SysBusDevice *sbd;
2588 FDCtrlSysBus *sys;
2590 dev = qdev_create(NULL, "sysbus-fdc");
2591 sys = SYSBUS_FDC(dev);
2592 fdctrl = &sys->state;
2593 fdctrl->dma_chann = dma_chann; /* FIXME */
2594 if (fds[0]) {
2595 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2596 &error_fatal);
2598 if (fds[1]) {
2599 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2600 &error_fatal);
2602 qdev_init_nofail(dev);
2603 sbd = SYS_BUS_DEVICE(dev);
2604 sysbus_connect_irq(sbd, 0, irq);
2605 sysbus_mmio_map(sbd, 0, mmio_base);
2608 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2609 DriveInfo **fds, qemu_irq *fdc_tc)
2611 DeviceState *dev;
2612 FDCtrlSysBus *sys;
2614 dev = qdev_create(NULL, "SUNW,fdtwo");
2615 if (fds[0]) {
2616 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2617 &error_fatal);
2619 qdev_init_nofail(dev);
2620 sys = SYSBUS_FDC(dev);
2621 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2622 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2623 *fdc_tc = qdev_get_gpio_in(dev, 0);
2626 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2627 Error **errp)
2629 int i, j;
2630 static int command_tables_inited = 0;
2632 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2633 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2636 /* Fill 'command_to_handler' lookup table */
2637 if (!command_tables_inited) {
2638 command_tables_inited = 1;
2639 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2640 for (j = 0; j < sizeof(command_to_handler); j++) {
2641 if ((j & handlers[i].mask) == handlers[i].value) {
2642 command_to_handler[j] = i;
2648 FLOPPY_DPRINTF("init controller\n");
2649 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2650 fdctrl->fifo_size = 512;
2651 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2652 fdctrl_result_timer, fdctrl);
2654 fdctrl->version = 0x90; /* Intel 82078 controller */
2655 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2656 fdctrl->num_floppies = MAX_FD;
2658 if (fdctrl->dma_chann != -1) {
2659 IsaDmaClass *k;
2660 assert(fdctrl->dma);
2661 k = ISADMA_GET_CLASS(fdctrl->dma);
2662 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2663 &fdctrl_transfer_handler, fdctrl);
2666 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2667 fdctrl_connect_drives(fdctrl, dev, errp);
2670 static const MemoryRegionPortio fdc_portio_list[] = {
2671 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2672 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2673 PORTIO_END_OF_LIST(),
2676 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2678 ISADevice *isadev = ISA_DEVICE(dev);
2679 FDCtrlISABus *isa = ISA_FDC(dev);
2680 FDCtrl *fdctrl = &isa->state;
2681 Error *err = NULL;
2683 isa_register_portio_list(isadev, &fdctrl->portio_list,
2684 isa->iobase, fdc_portio_list, fdctrl,
2685 "fdc");
2687 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2688 fdctrl->dma_chann = isa->dma;
2689 if (fdctrl->dma_chann != -1) {
2690 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2691 if (!fdctrl->dma) {
2692 error_setg(errp, "ISA controller does not support DMA");
2693 return;
2697 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2698 fdctrl_realize_common(dev, fdctrl, &err);
2699 if (err != NULL) {
2700 error_propagate(errp, err);
2701 return;
2705 static void sysbus_fdc_initfn(Object *obj)
2707 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2708 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2709 FDCtrl *fdctrl = &sys->state;
2711 fdctrl->dma_chann = -1;
2713 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2714 "fdc", 0x08);
2715 sysbus_init_mmio(sbd, &fdctrl->iomem);
2718 static void sun4m_fdc_initfn(Object *obj)
2720 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2721 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2722 FDCtrl *fdctrl = &sys->state;
2724 fdctrl->dma_chann = -1;
2726 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2727 fdctrl, "fdctrl", 0x08);
2728 sysbus_init_mmio(sbd, &fdctrl->iomem);
2731 static void sysbus_fdc_common_initfn(Object *obj)
2733 DeviceState *dev = DEVICE(obj);
2734 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2735 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2736 FDCtrl *fdctrl = &sys->state;
2738 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2740 sysbus_init_irq(sbd, &fdctrl->irq);
2741 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2744 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2746 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2747 FDCtrl *fdctrl = &sys->state;
2749 fdctrl_realize_common(dev, fdctrl, errp);
2752 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2754 FDCtrlISABus *isa = ISA_FDC(fdc);
2756 return isa->state.drives[i].drive;
2759 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2760 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2762 const FDFormat *fdf;
2764 *maxc = *maxh = *maxs = 0;
2765 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2766 if (fdf->drive != type) {
2767 continue;
2769 if (*maxc < fdf->max_track) {
2770 *maxc = fdf->max_track;
2772 if (*maxh < fdf->max_head) {
2773 *maxh = fdf->max_head;
2775 if (*maxs < fdf->last_sect) {
2776 *maxs = fdf->last_sect;
2779 (*maxc)--;
2782 static const VMStateDescription vmstate_isa_fdc ={
2783 .name = "fdc",
2784 .version_id = 2,
2785 .minimum_version_id = 2,
2786 .fields = (VMStateField[]) {
2787 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2788 VMSTATE_END_OF_LIST()
2792 static Property isa_fdc_properties[] = {
2793 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2794 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2795 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2796 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2797 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2798 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2799 0, true),
2800 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2801 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2802 FloppyDriveType),
2803 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2804 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2805 FloppyDriveType),
2806 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2807 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2808 FloppyDriveType),
2809 DEFINE_PROP_END_OF_LIST(),
2812 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2814 DeviceClass *dc = DEVICE_CLASS(klass);
2816 dc->realize = isabus_fdc_realize;
2817 dc->fw_name = "fdc";
2818 dc->reset = fdctrl_external_reset_isa;
2819 dc->vmsd = &vmstate_isa_fdc;
2820 dc->props = isa_fdc_properties;
2821 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2824 static void isabus_fdc_instance_init(Object *obj)
2826 FDCtrlISABus *isa = ISA_FDC(obj);
2828 device_add_bootindex_property(obj, &isa->bootindexA,
2829 "bootindexA", "/floppy@0",
2830 DEVICE(obj), NULL);
2831 device_add_bootindex_property(obj, &isa->bootindexB,
2832 "bootindexB", "/floppy@1",
2833 DEVICE(obj), NULL);
2836 static const TypeInfo isa_fdc_info = {
2837 .name = TYPE_ISA_FDC,
2838 .parent = TYPE_ISA_DEVICE,
2839 .instance_size = sizeof(FDCtrlISABus),
2840 .class_init = isabus_fdc_class_init,
2841 .instance_init = isabus_fdc_instance_init,
2844 static const VMStateDescription vmstate_sysbus_fdc ={
2845 .name = "fdc",
2846 .version_id = 2,
2847 .minimum_version_id = 2,
2848 .fields = (VMStateField[]) {
2849 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2850 VMSTATE_END_OF_LIST()
2854 static Property sysbus_fdc_properties[] = {
2855 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2856 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2857 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2858 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2859 FloppyDriveType),
2860 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2861 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2862 FloppyDriveType),
2863 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2864 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2865 FloppyDriveType),
2866 DEFINE_PROP_END_OF_LIST(),
2869 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2871 DeviceClass *dc = DEVICE_CLASS(klass);
2873 dc->props = sysbus_fdc_properties;
2874 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2877 static const TypeInfo sysbus_fdc_info = {
2878 .name = "sysbus-fdc",
2879 .parent = TYPE_SYSBUS_FDC,
2880 .instance_init = sysbus_fdc_initfn,
2881 .class_init = sysbus_fdc_class_init,
2884 static Property sun4m_fdc_properties[] = {
2885 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2886 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2887 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2888 FloppyDriveType),
2889 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2890 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2891 FloppyDriveType),
2892 DEFINE_PROP_END_OF_LIST(),
2895 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2897 DeviceClass *dc = DEVICE_CLASS(klass);
2899 dc->props = sun4m_fdc_properties;
2900 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2903 static const TypeInfo sun4m_fdc_info = {
2904 .name = "SUNW,fdtwo",
2905 .parent = TYPE_SYSBUS_FDC,
2906 .instance_init = sun4m_fdc_initfn,
2907 .class_init = sun4m_fdc_class_init,
2910 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2912 DeviceClass *dc = DEVICE_CLASS(klass);
2914 dc->realize = sysbus_fdc_common_realize;
2915 dc->reset = fdctrl_external_reset_sysbus;
2916 dc->vmsd = &vmstate_sysbus_fdc;
2919 static const TypeInfo sysbus_fdc_type_info = {
2920 .name = TYPE_SYSBUS_FDC,
2921 .parent = TYPE_SYS_BUS_DEVICE,
2922 .instance_size = sizeof(FDCtrlSysBus),
2923 .instance_init = sysbus_fdc_common_initfn,
2924 .abstract = true,
2925 .class_init = sysbus_fdc_common_class_init,
2928 static void fdc_register_types(void)
2930 type_register_static(&isa_fdc_info);
2931 type_register_static(&sysbus_fdc_type_info);
2932 type_register_static(&sysbus_fdc_info);
2933 type_register_static(&sun4m_fdc_info);
2934 type_register_static(&floppy_bus_info);
2935 type_register_static(&floppy_drive_info);
2938 type_init(fdc_register_types)