Merge remote-tracking branch 'sstabellini/disk_io' into staging
[qemu.git] / hw / xtensa_lx60.c
blobafdef494b2bc21df4a11f48bb3df4d295231976d
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "sysemu.h"
29 #include "boards.h"
30 #include "loader.h"
31 #include "elf.h"
32 #include "memory.h"
33 #include "exec-memory.h"
34 #include "pc.h"
35 #include "sysbus.h"
36 #include "flash.h"
37 #include "xtensa_bootparam.h"
39 typedef struct LxBoardDesc {
40 size_t flash_size;
41 size_t flash_sector_size;
42 size_t sram_size;
43 } LxBoardDesc;
45 typedef struct Lx60FpgaState {
46 MemoryRegion iomem;
47 uint32_t leds;
48 uint32_t switches;
49 } Lx60FpgaState;
51 static void lx60_fpga_reset(void *opaque)
53 Lx60FpgaState *s = opaque;
55 s->leds = 0;
56 s->switches = 0;
59 static uint64_t lx60_fpga_read(void *opaque, target_phys_addr_t addr,
60 unsigned size)
62 Lx60FpgaState *s = opaque;
64 switch (addr) {
65 case 0x0: /*build date code*/
66 return 0x09272011;
68 case 0x4: /*processor clock frequency, Hz*/
69 return 10000000;
71 case 0x8: /*LEDs (off = 0, on = 1)*/
72 return s->leds;
74 case 0xc: /*DIP switches (off = 0, on = 1)*/
75 return s->switches;
77 return 0;
80 static void lx60_fpga_write(void *opaque, target_phys_addr_t addr,
81 uint64_t val, unsigned size)
83 Lx60FpgaState *s = opaque;
85 switch (addr) {
86 case 0x8: /*LEDs (off = 0, on = 1)*/
87 s->leds = val;
88 break;
90 case 0x10: /*board reset*/
91 if (val == 0xdead) {
92 qemu_system_reset_request();
94 break;
98 static const MemoryRegionOps lx60_fpga_ops = {
99 .read = lx60_fpga_read,
100 .write = lx60_fpga_write,
101 .endianness = DEVICE_NATIVE_ENDIAN,
104 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
105 target_phys_addr_t base)
107 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
109 memory_region_init_io(&s->iomem, &lx60_fpga_ops, s,
110 "lx60.fpga", 0x10000);
111 memory_region_add_subregion(address_space, base, &s->iomem);
112 lx60_fpga_reset(s);
113 qemu_register_reset(lx60_fpga_reset, s);
114 return s;
117 static void lx60_net_init(MemoryRegion *address_space,
118 target_phys_addr_t base,
119 target_phys_addr_t descriptors,
120 target_phys_addr_t buffers,
121 qemu_irq irq, NICInfo *nd)
123 DeviceState *dev;
124 SysBusDevice *s;
125 MemoryRegion *ram;
127 dev = qdev_create(NULL, "open_eth");
128 qdev_set_nic_properties(dev, nd);
129 qdev_init_nofail(dev);
131 s = sysbus_from_qdev(dev);
132 sysbus_connect_irq(s, 0, irq);
133 memory_region_add_subregion(address_space, base,
134 sysbus_mmio_get_region(s, 0));
135 memory_region_add_subregion(address_space, descriptors,
136 sysbus_mmio_get_region(s, 1));
138 ram = g_malloc(sizeof(*ram));
139 memory_region_init_ram(ram, "open_eth.ram", 16384);
140 vmstate_register_ram_global(ram);
141 memory_region_add_subregion(address_space, buffers, ram);
144 static uint64_t translate_phys_addr(void *env, uint64_t addr)
146 return cpu_get_phys_page_debug(env, addr);
149 static void lx60_reset(void *opaque)
151 CPUXtensaState *env = opaque;
153 cpu_state_reset(env);
156 static void lx_init(const LxBoardDesc *board,
157 ram_addr_t ram_size, const char *boot_device,
158 const char *kernel_filename, const char *kernel_cmdline,
159 const char *initrd_filename, const char *cpu_model)
161 #ifdef TARGET_WORDS_BIGENDIAN
162 int be = 1;
163 #else
164 int be = 0;
165 #endif
166 MemoryRegion *system_memory = get_system_memory();
167 CPUXtensaState *env = NULL;
168 MemoryRegion *ram, *rom, *system_io;
169 DriveInfo *dinfo;
170 pflash_t *flash = NULL;
171 int n;
173 if (!cpu_model) {
174 cpu_model = "dc232b";
177 for (n = 0; n < smp_cpus; n++) {
178 env = cpu_init(cpu_model);
179 if (!env) {
180 fprintf(stderr, "Unable to find CPU definition\n");
181 exit(1);
183 env->sregs[PRID] = n;
184 qemu_register_reset(lx60_reset, env);
185 /* Need MMU initialized prior to ELF loading,
186 * so that ELF gets loaded into virtual addresses
188 cpu_state_reset(env);
191 ram = g_malloc(sizeof(*ram));
192 memory_region_init_ram(ram, "lx60.dram", ram_size);
193 vmstate_register_ram_global(ram);
194 memory_region_add_subregion(system_memory, 0, ram);
196 system_io = g_malloc(sizeof(*system_io));
197 memory_region_init(system_io, "lx60.io", 224 * 1024 * 1024);
198 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
199 lx60_fpga_init(system_io, 0x0d020000);
200 if (nd_table[0].vlan) {
201 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
202 xtensa_get_extint(env, 1), nd_table);
205 if (!serial_hds[0]) {
206 serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
209 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
210 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
212 dinfo = drive_get(IF_PFLASH, 0, 0);
213 if (dinfo) {
214 flash = pflash_cfi01_register(0xf8000000,
215 NULL, "lx60.io.flash", board->flash_size,
216 dinfo->bdrv, board->flash_sector_size,
217 board->flash_size / board->flash_sector_size,
218 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
219 if (flash == NULL) {
220 fprintf(stderr, "Unable to mount pflash\n");
221 exit(1);
225 /* Use presence of kernel file name as 'boot from SRAM' switch. */
226 if (kernel_filename) {
227 rom = g_malloc(sizeof(*rom));
228 memory_region_init_ram(rom, "lx60.sram", board->sram_size);
229 vmstate_register_ram_global(rom);
230 memory_region_add_subregion(system_memory, 0xfe000000, rom);
232 /* Put kernel bootparameters to the end of that SRAM */
233 if (kernel_cmdline) {
234 size_t cmdline_size = strlen(kernel_cmdline) + 1;
235 size_t bp_size = sizeof(BpTag[4]) + cmdline_size;
236 uint32_t tagptr = (0xfe000000 + board->sram_size - bp_size) & ~0xff;
238 env->regs[2] = tagptr;
240 tagptr = put_tag(tagptr, 0x7b0b, 0, NULL);
241 if (cmdline_size > 1) {
242 tagptr = put_tag(tagptr, 0x1001,
243 cmdline_size, kernel_cmdline);
245 tagptr = put_tag(tagptr, 0x7e0b, 0, NULL);
247 uint64_t elf_entry;
248 uint64_t elf_lowaddr;
249 int success = load_elf(kernel_filename, translate_phys_addr, env,
250 &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
251 if (success > 0) {
252 env->pc = elf_entry;
254 } else {
255 if (flash) {
256 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
257 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
259 memory_region_init_alias(flash_io, "lx60.flash",
260 flash_mr, 0, board->flash_size);
261 memory_region_add_subregion(system_memory, 0xfe000000,
262 flash_io);
267 static void xtensa_lx60_init(ram_addr_t ram_size,
268 const char *boot_device,
269 const char *kernel_filename, const char *kernel_cmdline,
270 const char *initrd_filename, const char *cpu_model)
272 static const LxBoardDesc lx60_board = {
273 .flash_size = 0x400000,
274 .flash_sector_size = 0x10000,
275 .sram_size = 0x20000,
277 lx_init(&lx60_board, ram_size, boot_device,
278 kernel_filename, kernel_cmdline,
279 initrd_filename, cpu_model);
282 static void xtensa_lx200_init(ram_addr_t ram_size,
283 const char *boot_device,
284 const char *kernel_filename, const char *kernel_cmdline,
285 const char *initrd_filename, const char *cpu_model)
287 static const LxBoardDesc lx200_board = {
288 .flash_size = 0x1000000,
289 .flash_sector_size = 0x20000,
290 .sram_size = 0x2000000,
292 lx_init(&lx200_board, ram_size, boot_device,
293 kernel_filename, kernel_cmdline,
294 initrd_filename, cpu_model);
297 static QEMUMachine xtensa_lx60_machine = {
298 .name = "lx60",
299 .desc = "lx60 EVB (dc232b)",
300 .init = xtensa_lx60_init,
301 .max_cpus = 4,
304 static QEMUMachine xtensa_lx200_machine = {
305 .name = "lx200",
306 .desc = "lx200 EVB (dc232b)",
307 .init = xtensa_lx200_init,
308 .max_cpus = 4,
311 static void xtensa_lx_machines_init(void)
313 qemu_register_machine(&xtensa_lx60_machine);
314 qemu_register_machine(&xtensa_lx200_machine);
317 machine_init(xtensa_lx_machines_init);