s390-virtio: Accommodate guests using virtqueues too early
[qemu.git] / block / io.c
blob1ce62c4fbc86c1695db3b4e82391856ef7ce1ed7
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "trace.h"
26 #include "sysemu/qtest.h"
27 #include "block/blockjob.h"
28 #include "block/block_int.h"
30 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
32 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
33 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
34 BlockCompletionFunc *cb, void *opaque);
35 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
39 int64_t sector_num, int nb_sectors,
40 QEMUIOVector *iov);
41 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
45 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
46 BdrvRequestFlags flags);
47 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
51 int64_t sector_num,
52 QEMUIOVector *qiov,
53 int nb_sectors,
54 BdrvRequestFlags flags,
55 BlockCompletionFunc *cb,
56 void *opaque,
57 bool is_write);
58 static void coroutine_fn bdrv_co_do_rw(void *opaque);
59 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
60 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
62 /* throttling disk I/O limits */
63 void bdrv_set_io_limits(BlockDriverState *bs,
64 ThrottleConfig *cfg)
66 int i;
68 throttle_config(&bs->throttle_state, cfg);
70 for (i = 0; i < 2; i++) {
71 qemu_co_enter_next(&bs->throttled_reqs[i]);
75 /* this function drain all the throttled IOs */
76 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
78 bool drained = false;
79 bool enabled = bs->io_limits_enabled;
80 int i;
82 bs->io_limits_enabled = false;
84 for (i = 0; i < 2; i++) {
85 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
86 drained = true;
90 bs->io_limits_enabled = enabled;
92 return drained;
95 void bdrv_io_limits_disable(BlockDriverState *bs)
97 bs->io_limits_enabled = false;
99 bdrv_start_throttled_reqs(bs);
101 throttle_destroy(&bs->throttle_state);
104 static void bdrv_throttle_read_timer_cb(void *opaque)
106 BlockDriverState *bs = opaque;
107 qemu_co_enter_next(&bs->throttled_reqs[0]);
110 static void bdrv_throttle_write_timer_cb(void *opaque)
112 BlockDriverState *bs = opaque;
113 qemu_co_enter_next(&bs->throttled_reqs[1]);
116 /* should be called before bdrv_set_io_limits if a limit is set */
117 void bdrv_io_limits_enable(BlockDriverState *bs)
119 int clock_type = QEMU_CLOCK_REALTIME;
121 if (qtest_enabled()) {
122 /* For testing block IO throttling only */
123 clock_type = QEMU_CLOCK_VIRTUAL;
125 assert(!bs->io_limits_enabled);
126 throttle_init(&bs->throttle_state,
127 bdrv_get_aio_context(bs),
128 clock_type,
129 bdrv_throttle_read_timer_cb,
130 bdrv_throttle_write_timer_cb,
131 bs);
132 bs->io_limits_enabled = true;
135 /* This function makes an IO wait if needed
137 * @nb_sectors: the number of sectors of the IO
138 * @is_write: is the IO a write
140 static void bdrv_io_limits_intercept(BlockDriverState *bs,
141 unsigned int bytes,
142 bool is_write)
144 /* does this io must wait */
145 bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
147 /* if must wait or any request of this type throttled queue the IO */
148 if (must_wait ||
149 !qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
150 qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
153 /* the IO will be executed, do the accounting */
154 throttle_account(&bs->throttle_state, is_write, bytes);
157 /* if the next request must wait -> do nothing */
158 if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
159 return;
162 /* else queue next request for execution */
163 qemu_co_queue_next(&bs->throttled_reqs[is_write]);
166 void bdrv_setup_io_funcs(BlockDriver *bdrv)
168 /* Block drivers without coroutine functions need emulation */
169 if (!bdrv->bdrv_co_readv) {
170 bdrv->bdrv_co_readv = bdrv_co_readv_em;
171 bdrv->bdrv_co_writev = bdrv_co_writev_em;
173 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
174 * the block driver lacks aio we need to emulate that too.
176 if (!bdrv->bdrv_aio_readv) {
177 /* add AIO emulation layer */
178 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
179 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
184 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
186 BlockDriver *drv = bs->drv;
187 Error *local_err = NULL;
189 memset(&bs->bl, 0, sizeof(bs->bl));
191 if (!drv) {
192 return;
195 /* Take some limits from the children as a default */
196 if (bs->file) {
197 bdrv_refresh_limits(bs->file, &local_err);
198 if (local_err) {
199 error_propagate(errp, local_err);
200 return;
202 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
203 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
204 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
205 } else {
206 bs->bl.opt_mem_alignment = 512;
209 if (bs->backing_hd) {
210 bdrv_refresh_limits(bs->backing_hd, &local_err);
211 if (local_err) {
212 error_propagate(errp, local_err);
213 return;
215 bs->bl.opt_transfer_length =
216 MAX(bs->bl.opt_transfer_length,
217 bs->backing_hd->bl.opt_transfer_length);
218 bs->bl.max_transfer_length =
219 MIN_NON_ZERO(bs->bl.max_transfer_length,
220 bs->backing_hd->bl.max_transfer_length);
221 bs->bl.opt_mem_alignment =
222 MAX(bs->bl.opt_mem_alignment,
223 bs->backing_hd->bl.opt_mem_alignment);
226 /* Then let the driver override it */
227 if (drv->bdrv_refresh_limits) {
228 drv->bdrv_refresh_limits(bs, errp);
233 * The copy-on-read flag is actually a reference count so multiple users may
234 * use the feature without worrying about clobbering its previous state.
235 * Copy-on-read stays enabled until all users have called to disable it.
237 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 bs->copy_on_read++;
242 void bdrv_disable_copy_on_read(BlockDriverState *bs)
244 assert(bs->copy_on_read > 0);
245 bs->copy_on_read--;
248 /* Check if any requests are in-flight (including throttled requests) */
249 static bool bdrv_requests_pending(BlockDriverState *bs)
251 if (!QLIST_EMPTY(&bs->tracked_requests)) {
252 return true;
254 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
255 return true;
257 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
258 return true;
260 if (bs->file && bdrv_requests_pending(bs->file)) {
261 return true;
263 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
264 return true;
266 return false;
269 static bool bdrv_drain_one(BlockDriverState *bs)
271 bool bs_busy;
273 bdrv_flush_io_queue(bs);
274 bdrv_start_throttled_reqs(bs);
275 bs_busy = bdrv_requests_pending(bs);
276 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
277 return bs_busy;
281 * Wait for pending requests to complete on a single BlockDriverState subtree
283 * See the warning in bdrv_drain_all(). This function can only be called if
284 * you are sure nothing can generate I/O because you have op blockers
285 * installed.
287 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
288 * AioContext.
290 void bdrv_drain(BlockDriverState *bs)
292 while (bdrv_drain_one(bs)) {
293 /* Keep iterating */
298 * Wait for pending requests to complete across all BlockDriverStates
300 * This function does not flush data to disk, use bdrv_flush_all() for that
301 * after calling this function.
303 * Note that completion of an asynchronous I/O operation can trigger any
304 * number of other I/O operations on other devices---for example a coroutine
305 * can be arbitrarily complex and a constant flow of I/O can come until the
306 * coroutine is complete. Because of this, it is not possible to have a
307 * function to drain a single device's I/O queue.
309 void bdrv_drain_all(void)
311 /* Always run first iteration so any pending completion BHs run */
312 bool busy = true;
313 BlockDriverState *bs = NULL;
315 while ((bs = bdrv_next(bs))) {
316 AioContext *aio_context = bdrv_get_aio_context(bs);
318 aio_context_acquire(aio_context);
319 if (bs->job) {
320 block_job_pause(bs->job);
322 aio_context_release(aio_context);
325 while (busy) {
326 busy = false;
327 bs = NULL;
329 while ((bs = bdrv_next(bs))) {
330 AioContext *aio_context = bdrv_get_aio_context(bs);
332 aio_context_acquire(aio_context);
333 busy |= bdrv_drain_one(bs);
334 aio_context_release(aio_context);
338 bs = NULL;
339 while ((bs = bdrv_next(bs))) {
340 AioContext *aio_context = bdrv_get_aio_context(bs);
342 aio_context_acquire(aio_context);
343 if (bs->job) {
344 block_job_resume(bs->job);
346 aio_context_release(aio_context);
351 * Remove an active request from the tracked requests list
353 * This function should be called when a tracked request is completing.
355 static void tracked_request_end(BdrvTrackedRequest *req)
357 if (req->serialising) {
358 req->bs->serialising_in_flight--;
361 QLIST_REMOVE(req, list);
362 qemu_co_queue_restart_all(&req->wait_queue);
366 * Add an active request to the tracked requests list
368 static void tracked_request_begin(BdrvTrackedRequest *req,
369 BlockDriverState *bs,
370 int64_t offset,
371 unsigned int bytes, bool is_write)
373 *req = (BdrvTrackedRequest){
374 .bs = bs,
375 .offset = offset,
376 .bytes = bytes,
377 .is_write = is_write,
378 .co = qemu_coroutine_self(),
379 .serialising = false,
380 .overlap_offset = offset,
381 .overlap_bytes = bytes,
384 qemu_co_queue_init(&req->wait_queue);
386 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
389 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
391 int64_t overlap_offset = req->offset & ~(align - 1);
392 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
393 - overlap_offset;
395 if (!req->serialising) {
396 req->bs->serialising_in_flight++;
397 req->serialising = true;
400 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
401 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
405 * Round a region to cluster boundaries
407 void bdrv_round_to_clusters(BlockDriverState *bs,
408 int64_t sector_num, int nb_sectors,
409 int64_t *cluster_sector_num,
410 int *cluster_nb_sectors)
412 BlockDriverInfo bdi;
414 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
415 *cluster_sector_num = sector_num;
416 *cluster_nb_sectors = nb_sectors;
417 } else {
418 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
419 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
420 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
421 nb_sectors, c);
425 static int bdrv_get_cluster_size(BlockDriverState *bs)
427 BlockDriverInfo bdi;
428 int ret;
430 ret = bdrv_get_info(bs, &bdi);
431 if (ret < 0 || bdi.cluster_size == 0) {
432 return bs->request_alignment;
433 } else {
434 return bdi.cluster_size;
438 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
439 int64_t offset, unsigned int bytes)
441 /* aaaa bbbb */
442 if (offset >= req->overlap_offset + req->overlap_bytes) {
443 return false;
445 /* bbbb aaaa */
446 if (req->overlap_offset >= offset + bytes) {
447 return false;
449 return true;
452 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
454 BlockDriverState *bs = self->bs;
455 BdrvTrackedRequest *req;
456 bool retry;
457 bool waited = false;
459 if (!bs->serialising_in_flight) {
460 return false;
463 do {
464 retry = false;
465 QLIST_FOREACH(req, &bs->tracked_requests, list) {
466 if (req == self || (!req->serialising && !self->serialising)) {
467 continue;
469 if (tracked_request_overlaps(req, self->overlap_offset,
470 self->overlap_bytes))
472 /* Hitting this means there was a reentrant request, for
473 * example, a block driver issuing nested requests. This must
474 * never happen since it means deadlock.
476 assert(qemu_coroutine_self() != req->co);
478 /* If the request is already (indirectly) waiting for us, or
479 * will wait for us as soon as it wakes up, then just go on
480 * (instead of producing a deadlock in the former case). */
481 if (!req->waiting_for) {
482 self->waiting_for = req;
483 qemu_co_queue_wait(&req->wait_queue);
484 self->waiting_for = NULL;
485 retry = true;
486 waited = true;
487 break;
491 } while (retry);
493 return waited;
496 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
497 size_t size)
499 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
500 return -EIO;
503 if (!bdrv_is_inserted(bs)) {
504 return -ENOMEDIUM;
507 if (offset < 0) {
508 return -EIO;
511 return 0;
514 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
515 int nb_sectors)
517 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
518 return -EIO;
521 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
522 nb_sectors * BDRV_SECTOR_SIZE);
525 typedef struct RwCo {
526 BlockDriverState *bs;
527 int64_t offset;
528 QEMUIOVector *qiov;
529 bool is_write;
530 int ret;
531 BdrvRequestFlags flags;
532 } RwCo;
534 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
536 RwCo *rwco = opaque;
538 if (!rwco->is_write) {
539 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
540 rwco->qiov->size, rwco->qiov,
541 rwco->flags);
542 } else {
543 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
544 rwco->qiov->size, rwco->qiov,
545 rwco->flags);
550 * Process a vectored synchronous request using coroutines
552 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
553 QEMUIOVector *qiov, bool is_write,
554 BdrvRequestFlags flags)
556 Coroutine *co;
557 RwCo rwco = {
558 .bs = bs,
559 .offset = offset,
560 .qiov = qiov,
561 .is_write = is_write,
562 .ret = NOT_DONE,
563 .flags = flags,
567 * In sync call context, when the vcpu is blocked, this throttling timer
568 * will not fire; so the I/O throttling function has to be disabled here
569 * if it has been enabled.
571 if (bs->io_limits_enabled) {
572 fprintf(stderr, "Disabling I/O throttling on '%s' due "
573 "to synchronous I/O.\n", bdrv_get_device_name(bs));
574 bdrv_io_limits_disable(bs);
577 if (qemu_in_coroutine()) {
578 /* Fast-path if already in coroutine context */
579 bdrv_rw_co_entry(&rwco);
580 } else {
581 AioContext *aio_context = bdrv_get_aio_context(bs);
583 co = qemu_coroutine_create(bdrv_rw_co_entry);
584 qemu_coroutine_enter(co, &rwco);
585 while (rwco.ret == NOT_DONE) {
586 aio_poll(aio_context, true);
589 return rwco.ret;
593 * Process a synchronous request using coroutines
595 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
596 int nb_sectors, bool is_write, BdrvRequestFlags flags)
598 QEMUIOVector qiov;
599 struct iovec iov = {
600 .iov_base = (void *)buf,
601 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
604 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
605 return -EINVAL;
608 qemu_iovec_init_external(&qiov, &iov, 1);
609 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
610 &qiov, is_write, flags);
613 /* return < 0 if error. See bdrv_write() for the return codes */
614 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
615 uint8_t *buf, int nb_sectors)
617 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
620 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
621 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
622 uint8_t *buf, int nb_sectors)
624 bool enabled;
625 int ret;
627 enabled = bs->io_limits_enabled;
628 bs->io_limits_enabled = false;
629 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
630 bs->io_limits_enabled = enabled;
631 return ret;
634 /* Return < 0 if error. Important errors are:
635 -EIO generic I/O error (may happen for all errors)
636 -ENOMEDIUM No media inserted.
637 -EINVAL Invalid sector number or nb_sectors
638 -EACCES Trying to write a read-only device
640 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
641 const uint8_t *buf, int nb_sectors)
643 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
646 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
647 int nb_sectors, BdrvRequestFlags flags)
649 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
650 BDRV_REQ_ZERO_WRITE | flags);
654 * Completely zero out a block device with the help of bdrv_write_zeroes.
655 * The operation is sped up by checking the block status and only writing
656 * zeroes to the device if they currently do not return zeroes. Optional
657 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
659 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
661 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
663 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
664 int n;
666 target_sectors = bdrv_nb_sectors(bs);
667 if (target_sectors < 0) {
668 return target_sectors;
671 for (;;) {
672 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
673 if (nb_sectors <= 0) {
674 return 0;
676 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
677 if (ret < 0) {
678 error_report("error getting block status at sector %" PRId64 ": %s",
679 sector_num, strerror(-ret));
680 return ret;
682 if (ret & BDRV_BLOCK_ZERO) {
683 sector_num += n;
684 continue;
686 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
687 if (ret < 0) {
688 error_report("error writing zeroes at sector %" PRId64 ": %s",
689 sector_num, strerror(-ret));
690 return ret;
692 sector_num += n;
696 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
698 QEMUIOVector qiov;
699 struct iovec iov = {
700 .iov_base = (void *)buf,
701 .iov_len = bytes,
703 int ret;
705 if (bytes < 0) {
706 return -EINVAL;
709 qemu_iovec_init_external(&qiov, &iov, 1);
710 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
711 if (ret < 0) {
712 return ret;
715 return bytes;
718 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
720 int ret;
722 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
723 if (ret < 0) {
724 return ret;
727 return qiov->size;
730 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
731 const void *buf, int bytes)
733 QEMUIOVector qiov;
734 struct iovec iov = {
735 .iov_base = (void *) buf,
736 .iov_len = bytes,
739 if (bytes < 0) {
740 return -EINVAL;
743 qemu_iovec_init_external(&qiov, &iov, 1);
744 return bdrv_pwritev(bs, offset, &qiov);
748 * Writes to the file and ensures that no writes are reordered across this
749 * request (acts as a barrier)
751 * Returns 0 on success, -errno in error cases.
753 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
754 const void *buf, int count)
756 int ret;
758 ret = bdrv_pwrite(bs, offset, buf, count);
759 if (ret < 0) {
760 return ret;
763 /* No flush needed for cache modes that already do it */
764 if (bs->enable_write_cache) {
765 bdrv_flush(bs);
768 return 0;
771 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
772 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
774 /* Perform I/O through a temporary buffer so that users who scribble over
775 * their read buffer while the operation is in progress do not end up
776 * modifying the image file. This is critical for zero-copy guest I/O
777 * where anything might happen inside guest memory.
779 void *bounce_buffer;
781 BlockDriver *drv = bs->drv;
782 struct iovec iov;
783 QEMUIOVector bounce_qiov;
784 int64_t cluster_sector_num;
785 int cluster_nb_sectors;
786 size_t skip_bytes;
787 int ret;
789 /* Cover entire cluster so no additional backing file I/O is required when
790 * allocating cluster in the image file.
792 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
793 &cluster_sector_num, &cluster_nb_sectors);
795 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
796 cluster_sector_num, cluster_nb_sectors);
798 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
799 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
800 if (bounce_buffer == NULL) {
801 ret = -ENOMEM;
802 goto err;
805 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
807 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
808 &bounce_qiov);
809 if (ret < 0) {
810 goto err;
813 if (drv->bdrv_co_write_zeroes &&
814 buffer_is_zero(bounce_buffer, iov.iov_len)) {
815 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
816 cluster_nb_sectors, 0);
817 } else {
818 /* This does not change the data on the disk, it is not necessary
819 * to flush even in cache=writethrough mode.
821 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
822 &bounce_qiov);
825 if (ret < 0) {
826 /* It might be okay to ignore write errors for guest requests. If this
827 * is a deliberate copy-on-read then we don't want to ignore the error.
828 * Simply report it in all cases.
830 goto err;
833 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
834 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
835 nb_sectors * BDRV_SECTOR_SIZE);
837 err:
838 qemu_vfree(bounce_buffer);
839 return ret;
843 * Forwards an already correctly aligned request to the BlockDriver. This
844 * handles copy on read and zeroing after EOF; any other features must be
845 * implemented by the caller.
847 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
848 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
849 int64_t align, QEMUIOVector *qiov, int flags)
851 BlockDriver *drv = bs->drv;
852 int ret;
854 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
855 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
857 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
858 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
859 assert(!qiov || bytes == qiov->size);
861 /* Handle Copy on Read and associated serialisation */
862 if (flags & BDRV_REQ_COPY_ON_READ) {
863 /* If we touch the same cluster it counts as an overlap. This
864 * guarantees that allocating writes will be serialized and not race
865 * with each other for the same cluster. For example, in copy-on-read
866 * it ensures that the CoR read and write operations are atomic and
867 * guest writes cannot interleave between them. */
868 mark_request_serialising(req, bdrv_get_cluster_size(bs));
871 wait_serialising_requests(req);
873 if (flags & BDRV_REQ_COPY_ON_READ) {
874 int pnum;
876 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
877 if (ret < 0) {
878 goto out;
881 if (!ret || pnum != nb_sectors) {
882 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
883 goto out;
887 /* Forward the request to the BlockDriver */
888 if (!bs->zero_beyond_eof) {
889 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
890 } else {
891 /* Read zeros after EOF */
892 int64_t total_sectors, max_nb_sectors;
894 total_sectors = bdrv_nb_sectors(bs);
895 if (total_sectors < 0) {
896 ret = total_sectors;
897 goto out;
900 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
901 align >> BDRV_SECTOR_BITS);
902 if (nb_sectors < max_nb_sectors) {
903 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
904 } else if (max_nb_sectors > 0) {
905 QEMUIOVector local_qiov;
907 qemu_iovec_init(&local_qiov, qiov->niov);
908 qemu_iovec_concat(&local_qiov, qiov, 0,
909 max_nb_sectors * BDRV_SECTOR_SIZE);
911 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
912 &local_qiov);
914 qemu_iovec_destroy(&local_qiov);
915 } else {
916 ret = 0;
919 /* Reading beyond end of file is supposed to produce zeroes */
920 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
921 uint64_t offset = MAX(0, total_sectors - sector_num);
922 uint64_t bytes = (sector_num + nb_sectors - offset) *
923 BDRV_SECTOR_SIZE;
924 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
928 out:
929 return ret;
932 static inline uint64_t bdrv_get_align(BlockDriverState *bs)
934 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
935 return MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
938 static inline bool bdrv_req_is_aligned(BlockDriverState *bs,
939 int64_t offset, size_t bytes)
941 int64_t align = bdrv_get_align(bs);
942 return !(offset & (align - 1) || (bytes & (align - 1)));
946 * Handle a read request in coroutine context
948 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
949 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
950 BdrvRequestFlags flags)
952 BlockDriver *drv = bs->drv;
953 BdrvTrackedRequest req;
955 uint64_t align = bdrv_get_align(bs);
956 uint8_t *head_buf = NULL;
957 uint8_t *tail_buf = NULL;
958 QEMUIOVector local_qiov;
959 bool use_local_qiov = false;
960 int ret;
962 if (!drv) {
963 return -ENOMEDIUM;
966 ret = bdrv_check_byte_request(bs, offset, bytes);
967 if (ret < 0) {
968 return ret;
971 if (bs->copy_on_read) {
972 flags |= BDRV_REQ_COPY_ON_READ;
975 /* throttling disk I/O */
976 if (bs->io_limits_enabled) {
977 bdrv_io_limits_intercept(bs, bytes, false);
980 /* Align read if necessary by padding qiov */
981 if (offset & (align - 1)) {
982 head_buf = qemu_blockalign(bs, align);
983 qemu_iovec_init(&local_qiov, qiov->niov + 2);
984 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
985 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
986 use_local_qiov = true;
988 bytes += offset & (align - 1);
989 offset = offset & ~(align - 1);
992 if ((offset + bytes) & (align - 1)) {
993 if (!use_local_qiov) {
994 qemu_iovec_init(&local_qiov, qiov->niov + 1);
995 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
996 use_local_qiov = true;
998 tail_buf = qemu_blockalign(bs, align);
999 qemu_iovec_add(&local_qiov, tail_buf,
1000 align - ((offset + bytes) & (align - 1)));
1002 bytes = ROUND_UP(bytes, align);
1005 tracked_request_begin(&req, bs, offset, bytes, false);
1006 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1007 use_local_qiov ? &local_qiov : qiov,
1008 flags);
1009 tracked_request_end(&req);
1011 if (use_local_qiov) {
1012 qemu_iovec_destroy(&local_qiov);
1013 qemu_vfree(head_buf);
1014 qemu_vfree(tail_buf);
1017 return ret;
1020 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1021 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1022 BdrvRequestFlags flags)
1024 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1025 return -EINVAL;
1028 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1029 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1032 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1033 int nb_sectors, QEMUIOVector *qiov)
1035 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1037 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1040 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1041 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1043 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1045 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1046 BDRV_REQ_COPY_ON_READ);
1049 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1051 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1052 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1054 BlockDriver *drv = bs->drv;
1055 QEMUIOVector qiov;
1056 struct iovec iov = {0};
1057 int ret = 0;
1059 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1060 BDRV_REQUEST_MAX_SECTORS);
1062 while (nb_sectors > 0 && !ret) {
1063 int num = nb_sectors;
1065 /* Align request. Block drivers can expect the "bulk" of the request
1066 * to be aligned.
1068 if (bs->bl.write_zeroes_alignment
1069 && num > bs->bl.write_zeroes_alignment) {
1070 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1071 /* Make a small request up to the first aligned sector. */
1072 num = bs->bl.write_zeroes_alignment;
1073 num -= sector_num % bs->bl.write_zeroes_alignment;
1074 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1075 /* Shorten the request to the last aligned sector. num cannot
1076 * underflow because num > bs->bl.write_zeroes_alignment.
1078 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1082 /* limit request size */
1083 if (num > max_write_zeroes) {
1084 num = max_write_zeroes;
1087 ret = -ENOTSUP;
1088 /* First try the efficient write zeroes operation */
1089 if (drv->bdrv_co_write_zeroes) {
1090 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1093 if (ret == -ENOTSUP) {
1094 /* Fall back to bounce buffer if write zeroes is unsupported */
1095 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1096 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1097 num = MIN(num, max_xfer_len);
1098 iov.iov_len = num * BDRV_SECTOR_SIZE;
1099 if (iov.iov_base == NULL) {
1100 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1101 if (iov.iov_base == NULL) {
1102 ret = -ENOMEM;
1103 goto fail;
1105 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1107 qemu_iovec_init_external(&qiov, &iov, 1);
1109 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1111 /* Keep bounce buffer around if it is big enough for all
1112 * all future requests.
1114 if (num < max_xfer_len) {
1115 qemu_vfree(iov.iov_base);
1116 iov.iov_base = NULL;
1120 sector_num += num;
1121 nb_sectors -= num;
1124 fail:
1125 qemu_vfree(iov.iov_base);
1126 return ret;
1130 * Forwards an already correctly aligned write request to the BlockDriver.
1132 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1133 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1134 QEMUIOVector *qiov, int flags)
1136 BlockDriver *drv = bs->drv;
1137 bool waited;
1138 int ret;
1140 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1141 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1143 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1144 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1145 assert(!qiov || bytes == qiov->size);
1147 waited = wait_serialising_requests(req);
1148 assert(!waited || !req->serialising);
1149 assert(req->overlap_offset <= offset);
1150 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1152 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1154 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1155 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1156 qemu_iovec_is_zero(qiov)) {
1157 flags |= BDRV_REQ_ZERO_WRITE;
1158 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1159 flags |= BDRV_REQ_MAY_UNMAP;
1163 if (ret < 0) {
1164 /* Do nothing, write notifier decided to fail this request */
1165 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1166 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1167 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1168 } else {
1169 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1170 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1172 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1174 if (ret == 0 && !bs->enable_write_cache) {
1175 ret = bdrv_co_flush(bs);
1178 bdrv_set_dirty(bs, sector_num, nb_sectors);
1180 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1182 if (ret >= 0) {
1183 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1186 return ret;
1190 * Handle a write request in coroutine context
1192 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1193 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1194 BdrvRequestFlags flags)
1196 BdrvTrackedRequest req;
1197 uint64_t align = bdrv_get_align(bs);
1198 uint8_t *head_buf = NULL;
1199 uint8_t *tail_buf = NULL;
1200 QEMUIOVector local_qiov;
1201 bool use_local_qiov = false;
1202 int ret;
1204 if (!bs->drv) {
1205 return -ENOMEDIUM;
1207 if (bs->read_only) {
1208 return -EACCES;
1211 ret = bdrv_check_byte_request(bs, offset, bytes);
1212 if (ret < 0) {
1213 return ret;
1216 /* throttling disk I/O */
1217 if (bs->io_limits_enabled) {
1218 bdrv_io_limits_intercept(bs, bytes, true);
1222 * Align write if necessary by performing a read-modify-write cycle.
1223 * Pad qiov with the read parts and be sure to have a tracked request not
1224 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1226 tracked_request_begin(&req, bs, offset, bytes, true);
1228 if (offset & (align - 1)) {
1229 QEMUIOVector head_qiov;
1230 struct iovec head_iov;
1232 mark_request_serialising(&req, align);
1233 wait_serialising_requests(&req);
1235 head_buf = qemu_blockalign(bs, align);
1236 head_iov = (struct iovec) {
1237 .iov_base = head_buf,
1238 .iov_len = align,
1240 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1242 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1243 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1244 align, &head_qiov, 0);
1245 if (ret < 0) {
1246 goto fail;
1248 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1250 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1251 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1252 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1253 use_local_qiov = true;
1255 bytes += offset & (align - 1);
1256 offset = offset & ~(align - 1);
1259 if ((offset + bytes) & (align - 1)) {
1260 QEMUIOVector tail_qiov;
1261 struct iovec tail_iov;
1262 size_t tail_bytes;
1263 bool waited;
1265 mark_request_serialising(&req, align);
1266 waited = wait_serialising_requests(&req);
1267 assert(!waited || !use_local_qiov);
1269 tail_buf = qemu_blockalign(bs, align);
1270 tail_iov = (struct iovec) {
1271 .iov_base = tail_buf,
1272 .iov_len = align,
1274 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1276 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1277 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1278 align, &tail_qiov, 0);
1279 if (ret < 0) {
1280 goto fail;
1282 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1284 if (!use_local_qiov) {
1285 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1286 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1287 use_local_qiov = true;
1290 tail_bytes = (offset + bytes) & (align - 1);
1291 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1293 bytes = ROUND_UP(bytes, align);
1296 if (use_local_qiov) {
1297 /* Local buffer may have non-zero data. */
1298 flags &= ~BDRV_REQ_ZERO_WRITE;
1300 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1301 use_local_qiov ? &local_qiov : qiov,
1302 flags);
1304 fail:
1305 tracked_request_end(&req);
1307 if (use_local_qiov) {
1308 qemu_iovec_destroy(&local_qiov);
1310 qemu_vfree(head_buf);
1311 qemu_vfree(tail_buf);
1313 return ret;
1316 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1317 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1318 BdrvRequestFlags flags)
1320 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1321 return -EINVAL;
1324 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1325 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1328 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1329 int nb_sectors, QEMUIOVector *qiov)
1331 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1333 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1336 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1337 int64_t sector_num, int nb_sectors,
1338 BdrvRequestFlags flags)
1340 int ret;
1342 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1344 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1345 flags &= ~BDRV_REQ_MAY_UNMAP;
1347 if (bdrv_req_is_aligned(bs, sector_num << BDRV_SECTOR_BITS,
1348 nb_sectors << BDRV_SECTOR_BITS)) {
1349 ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1350 BDRV_REQ_ZERO_WRITE | flags);
1351 } else {
1352 uint8_t *buf;
1353 QEMUIOVector local_qiov;
1354 size_t bytes = nb_sectors << BDRV_SECTOR_BITS;
1356 buf = qemu_memalign(bdrv_opt_mem_align(bs), bytes);
1357 memset(buf, 0, bytes);
1358 qemu_iovec_init(&local_qiov, 1);
1359 qemu_iovec_add(&local_qiov, buf, bytes);
1361 ret = bdrv_co_do_writev(bs, sector_num, nb_sectors, &local_qiov,
1362 BDRV_REQ_ZERO_WRITE | flags);
1363 qemu_vfree(buf);
1365 return ret;
1368 int bdrv_flush_all(void)
1370 BlockDriverState *bs = NULL;
1371 int result = 0;
1373 while ((bs = bdrv_next(bs))) {
1374 AioContext *aio_context = bdrv_get_aio_context(bs);
1375 int ret;
1377 aio_context_acquire(aio_context);
1378 ret = bdrv_flush(bs);
1379 if (ret < 0 && !result) {
1380 result = ret;
1382 aio_context_release(aio_context);
1385 return result;
1388 typedef struct BdrvCoGetBlockStatusData {
1389 BlockDriverState *bs;
1390 BlockDriverState *base;
1391 int64_t sector_num;
1392 int nb_sectors;
1393 int *pnum;
1394 int64_t ret;
1395 bool done;
1396 } BdrvCoGetBlockStatusData;
1399 * Returns the allocation status of the specified sectors.
1400 * Drivers not implementing the functionality are assumed to not support
1401 * backing files, hence all their sectors are reported as allocated.
1403 * If 'sector_num' is beyond the end of the disk image the return value is 0
1404 * and 'pnum' is set to 0.
1406 * 'pnum' is set to the number of sectors (including and immediately following
1407 * the specified sector) that are known to be in the same
1408 * allocated/unallocated state.
1410 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1411 * beyond the end of the disk image it will be clamped.
1413 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1414 int64_t sector_num,
1415 int nb_sectors, int *pnum)
1417 int64_t total_sectors;
1418 int64_t n;
1419 int64_t ret, ret2;
1421 total_sectors = bdrv_nb_sectors(bs);
1422 if (total_sectors < 0) {
1423 return total_sectors;
1426 if (sector_num >= total_sectors) {
1427 *pnum = 0;
1428 return 0;
1431 n = total_sectors - sector_num;
1432 if (n < nb_sectors) {
1433 nb_sectors = n;
1436 if (!bs->drv->bdrv_co_get_block_status) {
1437 *pnum = nb_sectors;
1438 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1439 if (bs->drv->protocol_name) {
1440 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1442 return ret;
1445 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1446 if (ret < 0) {
1447 *pnum = 0;
1448 return ret;
1451 if (ret & BDRV_BLOCK_RAW) {
1452 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1453 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1454 *pnum, pnum);
1457 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1458 ret |= BDRV_BLOCK_ALLOCATED;
1461 if (!(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO)) {
1462 if (bdrv_unallocated_blocks_are_zero(bs)) {
1463 ret |= BDRV_BLOCK_ZERO;
1464 } else if (bs->backing_hd) {
1465 BlockDriverState *bs2 = bs->backing_hd;
1466 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1467 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1468 ret |= BDRV_BLOCK_ZERO;
1473 if (bs->file &&
1474 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1475 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1476 int file_pnum;
1478 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1479 *pnum, &file_pnum);
1480 if (ret2 >= 0) {
1481 /* Ignore errors. This is just providing extra information, it
1482 * is useful but not necessary.
1484 if (!file_pnum) {
1485 /* !file_pnum indicates an offset at or beyond the EOF; it is
1486 * perfectly valid for the format block driver to point to such
1487 * offsets, so catch it and mark everything as zero */
1488 ret |= BDRV_BLOCK_ZERO;
1489 } else {
1490 /* Limit request to the range reported by the protocol driver */
1491 *pnum = file_pnum;
1492 ret |= (ret2 & BDRV_BLOCK_ZERO);
1497 return ret;
1500 /* Coroutine wrapper for bdrv_get_block_status() */
1501 static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1503 BdrvCoGetBlockStatusData *data = opaque;
1504 BlockDriverState *bs = data->bs;
1506 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1507 data->pnum);
1508 data->done = true;
1512 * Synchronous wrapper around bdrv_co_get_block_status().
1514 * See bdrv_co_get_block_status() for details.
1516 int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1517 int nb_sectors, int *pnum)
1519 Coroutine *co;
1520 BdrvCoGetBlockStatusData data = {
1521 .bs = bs,
1522 .sector_num = sector_num,
1523 .nb_sectors = nb_sectors,
1524 .pnum = pnum,
1525 .done = false,
1528 if (qemu_in_coroutine()) {
1529 /* Fast-path if already in coroutine context */
1530 bdrv_get_block_status_co_entry(&data);
1531 } else {
1532 AioContext *aio_context = bdrv_get_aio_context(bs);
1534 co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1535 qemu_coroutine_enter(co, &data);
1536 while (!data.done) {
1537 aio_poll(aio_context, true);
1540 return data.ret;
1543 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1544 int nb_sectors, int *pnum)
1546 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1547 if (ret < 0) {
1548 return ret;
1550 return !!(ret & BDRV_BLOCK_ALLOCATED);
1554 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1556 * Return true if the given sector is allocated in any image between
1557 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1558 * sector is allocated in any image of the chain. Return false otherwise.
1560 * 'pnum' is set to the number of sectors (including and immediately following
1561 * the specified sector) that are known to be in the same
1562 * allocated/unallocated state.
1565 int bdrv_is_allocated_above(BlockDriverState *top,
1566 BlockDriverState *base,
1567 int64_t sector_num,
1568 int nb_sectors, int *pnum)
1570 BlockDriverState *intermediate;
1571 int ret, n = nb_sectors;
1573 intermediate = top;
1574 while (intermediate && intermediate != base) {
1575 int pnum_inter;
1576 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1577 &pnum_inter);
1578 if (ret < 0) {
1579 return ret;
1580 } else if (ret) {
1581 *pnum = pnum_inter;
1582 return 1;
1586 * [sector_num, nb_sectors] is unallocated on top but intermediate
1587 * might have
1589 * [sector_num+x, nr_sectors] allocated.
1591 if (n > pnum_inter &&
1592 (intermediate == top ||
1593 sector_num + pnum_inter < intermediate->total_sectors)) {
1594 n = pnum_inter;
1597 intermediate = intermediate->backing_hd;
1600 *pnum = n;
1601 return 0;
1604 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1605 const uint8_t *buf, int nb_sectors)
1607 BlockDriver *drv = bs->drv;
1608 int ret;
1610 if (!drv) {
1611 return -ENOMEDIUM;
1613 if (!drv->bdrv_write_compressed) {
1614 return -ENOTSUP;
1616 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1617 if (ret < 0) {
1618 return ret;
1621 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1623 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1626 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1627 int64_t pos, int size)
1629 QEMUIOVector qiov;
1630 struct iovec iov = {
1631 .iov_base = (void *) buf,
1632 .iov_len = size,
1635 qemu_iovec_init_external(&qiov, &iov, 1);
1636 return bdrv_writev_vmstate(bs, &qiov, pos);
1639 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1641 BlockDriver *drv = bs->drv;
1643 if (!drv) {
1644 return -ENOMEDIUM;
1645 } else if (drv->bdrv_save_vmstate) {
1646 return drv->bdrv_save_vmstate(bs, qiov, pos);
1647 } else if (bs->file) {
1648 return bdrv_writev_vmstate(bs->file, qiov, pos);
1651 return -ENOTSUP;
1654 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1655 int64_t pos, int size)
1657 BlockDriver *drv = bs->drv;
1658 if (!drv)
1659 return -ENOMEDIUM;
1660 if (drv->bdrv_load_vmstate)
1661 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1662 if (bs->file)
1663 return bdrv_load_vmstate(bs->file, buf, pos, size);
1664 return -ENOTSUP;
1667 /**************************************************************/
1668 /* async I/Os */
1670 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1671 QEMUIOVector *qiov, int nb_sectors,
1672 BlockCompletionFunc *cb, void *opaque)
1674 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1676 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1677 cb, opaque, false);
1680 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1681 QEMUIOVector *qiov, int nb_sectors,
1682 BlockCompletionFunc *cb, void *opaque)
1684 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1686 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1687 cb, opaque, true);
1690 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1691 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1692 BlockCompletionFunc *cb, void *opaque)
1694 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1696 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1697 BDRV_REQ_ZERO_WRITE | flags,
1698 cb, opaque, true);
1702 typedef struct MultiwriteCB {
1703 int error;
1704 int num_requests;
1705 int num_callbacks;
1706 struct {
1707 BlockCompletionFunc *cb;
1708 void *opaque;
1709 QEMUIOVector *free_qiov;
1710 } callbacks[];
1711 } MultiwriteCB;
1713 static void multiwrite_user_cb(MultiwriteCB *mcb)
1715 int i;
1717 for (i = 0; i < mcb->num_callbacks; i++) {
1718 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1719 if (mcb->callbacks[i].free_qiov) {
1720 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1722 g_free(mcb->callbacks[i].free_qiov);
1726 static void multiwrite_cb(void *opaque, int ret)
1728 MultiwriteCB *mcb = opaque;
1730 trace_multiwrite_cb(mcb, ret);
1732 if (ret < 0 && !mcb->error) {
1733 mcb->error = ret;
1736 mcb->num_requests--;
1737 if (mcb->num_requests == 0) {
1738 multiwrite_user_cb(mcb);
1739 g_free(mcb);
1743 static int multiwrite_req_compare(const void *a, const void *b)
1745 const BlockRequest *req1 = a, *req2 = b;
1748 * Note that we can't simply subtract req2->sector from req1->sector
1749 * here as that could overflow the return value.
1751 if (req1->sector > req2->sector) {
1752 return 1;
1753 } else if (req1->sector < req2->sector) {
1754 return -1;
1755 } else {
1756 return 0;
1761 * Takes a bunch of requests and tries to merge them. Returns the number of
1762 * requests that remain after merging.
1764 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1765 int num_reqs, MultiwriteCB *mcb)
1767 int i, outidx;
1769 // Sort requests by start sector
1770 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1772 // Check if adjacent requests touch the same clusters. If so, combine them,
1773 // filling up gaps with zero sectors.
1774 outidx = 0;
1775 for (i = 1; i < num_reqs; i++) {
1776 int merge = 0;
1777 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1779 // Handle exactly sequential writes and overlapping writes.
1780 if (reqs[i].sector <= oldreq_last) {
1781 merge = 1;
1784 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1785 merge = 0;
1788 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1789 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1790 merge = 0;
1793 if (merge) {
1794 size_t size;
1795 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1796 qemu_iovec_init(qiov,
1797 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1799 // Add the first request to the merged one. If the requests are
1800 // overlapping, drop the last sectors of the first request.
1801 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1802 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1804 // We should need to add any zeros between the two requests
1805 assert (reqs[i].sector <= oldreq_last);
1807 // Add the second request
1808 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1810 // Add tail of first request, if necessary
1811 if (qiov->size < reqs[outidx].qiov->size) {
1812 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1813 reqs[outidx].qiov->size - qiov->size);
1816 reqs[outidx].nb_sectors = qiov->size >> 9;
1817 reqs[outidx].qiov = qiov;
1819 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1820 } else {
1821 outidx++;
1822 reqs[outidx].sector = reqs[i].sector;
1823 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1824 reqs[outidx].qiov = reqs[i].qiov;
1828 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1830 return outidx + 1;
1834 * Submit multiple AIO write requests at once.
1836 * On success, the function returns 0 and all requests in the reqs array have
1837 * been submitted. In error case this function returns -1, and any of the
1838 * requests may or may not be submitted yet. In particular, this means that the
1839 * callback will be called for some of the requests, for others it won't. The
1840 * caller must check the error field of the BlockRequest to wait for the right
1841 * callbacks (if error != 0, no callback will be called).
1843 * The implementation may modify the contents of the reqs array, e.g. to merge
1844 * requests. However, the fields opaque and error are left unmodified as they
1845 * are used to signal failure for a single request to the caller.
1847 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1849 MultiwriteCB *mcb;
1850 int i;
1852 /* don't submit writes if we don't have a medium */
1853 if (bs->drv == NULL) {
1854 for (i = 0; i < num_reqs; i++) {
1855 reqs[i].error = -ENOMEDIUM;
1857 return -1;
1860 if (num_reqs == 0) {
1861 return 0;
1864 // Create MultiwriteCB structure
1865 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1866 mcb->num_requests = 0;
1867 mcb->num_callbacks = num_reqs;
1869 for (i = 0; i < num_reqs; i++) {
1870 mcb->callbacks[i].cb = reqs[i].cb;
1871 mcb->callbacks[i].opaque = reqs[i].opaque;
1874 // Check for mergable requests
1875 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1877 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1879 /* Run the aio requests. */
1880 mcb->num_requests = num_reqs;
1881 for (i = 0; i < num_reqs; i++) {
1882 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1883 reqs[i].nb_sectors, reqs[i].flags,
1884 multiwrite_cb, mcb,
1885 true);
1888 return 0;
1891 void bdrv_aio_cancel(BlockAIOCB *acb)
1893 qemu_aio_ref(acb);
1894 bdrv_aio_cancel_async(acb);
1895 while (acb->refcnt > 1) {
1896 if (acb->aiocb_info->get_aio_context) {
1897 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1898 } else if (acb->bs) {
1899 aio_poll(bdrv_get_aio_context(acb->bs), true);
1900 } else {
1901 abort();
1904 qemu_aio_unref(acb);
1907 /* Async version of aio cancel. The caller is not blocked if the acb implements
1908 * cancel_async, otherwise we do nothing and let the request normally complete.
1909 * In either case the completion callback must be called. */
1910 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1912 if (acb->aiocb_info->cancel_async) {
1913 acb->aiocb_info->cancel_async(acb);
1917 /**************************************************************/
1918 /* async block device emulation */
1920 typedef struct BlockAIOCBSync {
1921 BlockAIOCB common;
1922 QEMUBH *bh;
1923 int ret;
1924 /* vector translation state */
1925 QEMUIOVector *qiov;
1926 uint8_t *bounce;
1927 int is_write;
1928 } BlockAIOCBSync;
1930 static const AIOCBInfo bdrv_em_aiocb_info = {
1931 .aiocb_size = sizeof(BlockAIOCBSync),
1934 static void bdrv_aio_bh_cb(void *opaque)
1936 BlockAIOCBSync *acb = opaque;
1938 if (!acb->is_write && acb->ret >= 0) {
1939 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
1941 qemu_vfree(acb->bounce);
1942 acb->common.cb(acb->common.opaque, acb->ret);
1943 qemu_bh_delete(acb->bh);
1944 acb->bh = NULL;
1945 qemu_aio_unref(acb);
1948 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
1949 int64_t sector_num,
1950 QEMUIOVector *qiov,
1951 int nb_sectors,
1952 BlockCompletionFunc *cb,
1953 void *opaque,
1954 int is_write)
1957 BlockAIOCBSync *acb;
1959 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
1960 acb->is_write = is_write;
1961 acb->qiov = qiov;
1962 acb->bounce = qemu_try_blockalign(bs, qiov->size);
1963 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
1965 if (acb->bounce == NULL) {
1966 acb->ret = -ENOMEM;
1967 } else if (is_write) {
1968 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
1969 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
1970 } else {
1971 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
1974 qemu_bh_schedule(acb->bh);
1976 return &acb->common;
1979 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
1980 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1981 BlockCompletionFunc *cb, void *opaque)
1983 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1986 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
1987 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1988 BlockCompletionFunc *cb, void *opaque)
1990 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
1994 typedef struct BlockAIOCBCoroutine {
1995 BlockAIOCB common;
1996 BlockRequest req;
1997 bool is_write;
1998 bool need_bh;
1999 bool *done;
2000 QEMUBH* bh;
2001 } BlockAIOCBCoroutine;
2003 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2004 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2007 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2009 if (!acb->need_bh) {
2010 acb->common.cb(acb->common.opaque, acb->req.error);
2011 qemu_aio_unref(acb);
2015 static void bdrv_co_em_bh(void *opaque)
2017 BlockAIOCBCoroutine *acb = opaque;
2019 assert(!acb->need_bh);
2020 qemu_bh_delete(acb->bh);
2021 bdrv_co_complete(acb);
2024 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2026 acb->need_bh = false;
2027 if (acb->req.error != -EINPROGRESS) {
2028 BlockDriverState *bs = acb->common.bs;
2030 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2031 qemu_bh_schedule(acb->bh);
2035 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2036 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2038 BlockAIOCBCoroutine *acb = opaque;
2039 BlockDriverState *bs = acb->common.bs;
2041 if (!acb->is_write) {
2042 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2043 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2044 } else {
2045 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2046 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2049 bdrv_co_complete(acb);
2052 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2053 int64_t sector_num,
2054 QEMUIOVector *qiov,
2055 int nb_sectors,
2056 BdrvRequestFlags flags,
2057 BlockCompletionFunc *cb,
2058 void *opaque,
2059 bool is_write)
2061 Coroutine *co;
2062 BlockAIOCBCoroutine *acb;
2064 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2065 acb->need_bh = true;
2066 acb->req.error = -EINPROGRESS;
2067 acb->req.sector = sector_num;
2068 acb->req.nb_sectors = nb_sectors;
2069 acb->req.qiov = qiov;
2070 acb->req.flags = flags;
2071 acb->is_write = is_write;
2073 co = qemu_coroutine_create(bdrv_co_do_rw);
2074 qemu_coroutine_enter(co, acb);
2076 bdrv_co_maybe_schedule_bh(acb);
2077 return &acb->common;
2080 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2082 BlockAIOCBCoroutine *acb = opaque;
2083 BlockDriverState *bs = acb->common.bs;
2085 acb->req.error = bdrv_co_flush(bs);
2086 bdrv_co_complete(acb);
2089 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2090 BlockCompletionFunc *cb, void *opaque)
2092 trace_bdrv_aio_flush(bs, opaque);
2094 Coroutine *co;
2095 BlockAIOCBCoroutine *acb;
2097 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2098 acb->need_bh = true;
2099 acb->req.error = -EINPROGRESS;
2101 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2102 qemu_coroutine_enter(co, acb);
2104 bdrv_co_maybe_schedule_bh(acb);
2105 return &acb->common;
2108 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2110 BlockAIOCBCoroutine *acb = opaque;
2111 BlockDriverState *bs = acb->common.bs;
2113 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2114 bdrv_co_complete(acb);
2117 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2118 int64_t sector_num, int nb_sectors,
2119 BlockCompletionFunc *cb, void *opaque)
2121 Coroutine *co;
2122 BlockAIOCBCoroutine *acb;
2124 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2126 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2127 acb->need_bh = true;
2128 acb->req.error = -EINPROGRESS;
2129 acb->req.sector = sector_num;
2130 acb->req.nb_sectors = nb_sectors;
2131 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2132 qemu_coroutine_enter(co, acb);
2134 bdrv_co_maybe_schedule_bh(acb);
2135 return &acb->common;
2138 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2139 BlockCompletionFunc *cb, void *opaque)
2141 BlockAIOCB *acb;
2143 acb = g_slice_alloc(aiocb_info->aiocb_size);
2144 acb->aiocb_info = aiocb_info;
2145 acb->bs = bs;
2146 acb->cb = cb;
2147 acb->opaque = opaque;
2148 acb->refcnt = 1;
2149 return acb;
2152 void qemu_aio_ref(void *p)
2154 BlockAIOCB *acb = p;
2155 acb->refcnt++;
2158 void qemu_aio_unref(void *p)
2160 BlockAIOCB *acb = p;
2161 assert(acb->refcnt > 0);
2162 if (--acb->refcnt == 0) {
2163 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2167 /**************************************************************/
2168 /* Coroutine block device emulation */
2170 typedef struct CoroutineIOCompletion {
2171 Coroutine *coroutine;
2172 int ret;
2173 } CoroutineIOCompletion;
2175 static void bdrv_co_io_em_complete(void *opaque, int ret)
2177 CoroutineIOCompletion *co = opaque;
2179 co->ret = ret;
2180 qemu_coroutine_enter(co->coroutine, NULL);
2183 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2184 int nb_sectors, QEMUIOVector *iov,
2185 bool is_write)
2187 CoroutineIOCompletion co = {
2188 .coroutine = qemu_coroutine_self(),
2190 BlockAIOCB *acb;
2192 if (is_write) {
2193 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2194 bdrv_co_io_em_complete, &co);
2195 } else {
2196 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2197 bdrv_co_io_em_complete, &co);
2200 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2201 if (!acb) {
2202 return -EIO;
2204 qemu_coroutine_yield();
2206 return co.ret;
2209 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2210 int64_t sector_num, int nb_sectors,
2211 QEMUIOVector *iov)
2213 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2216 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2217 int64_t sector_num, int nb_sectors,
2218 QEMUIOVector *iov)
2220 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2223 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2225 RwCo *rwco = opaque;
2227 rwco->ret = bdrv_co_flush(rwco->bs);
2230 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2232 int ret;
2234 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2235 return 0;
2238 /* Write back cached data to the OS even with cache=unsafe */
2239 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2240 if (bs->drv->bdrv_co_flush_to_os) {
2241 ret = bs->drv->bdrv_co_flush_to_os(bs);
2242 if (ret < 0) {
2243 return ret;
2247 /* But don't actually force it to the disk with cache=unsafe */
2248 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2249 goto flush_parent;
2252 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2253 if (bs->drv->bdrv_co_flush_to_disk) {
2254 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2255 } else if (bs->drv->bdrv_aio_flush) {
2256 BlockAIOCB *acb;
2257 CoroutineIOCompletion co = {
2258 .coroutine = qemu_coroutine_self(),
2261 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2262 if (acb == NULL) {
2263 ret = -EIO;
2264 } else {
2265 qemu_coroutine_yield();
2266 ret = co.ret;
2268 } else {
2270 * Some block drivers always operate in either writethrough or unsafe
2271 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2272 * know how the server works (because the behaviour is hardcoded or
2273 * depends on server-side configuration), so we can't ensure that
2274 * everything is safe on disk. Returning an error doesn't work because
2275 * that would break guests even if the server operates in writethrough
2276 * mode.
2278 * Let's hope the user knows what he's doing.
2280 ret = 0;
2282 if (ret < 0) {
2283 return ret;
2286 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2287 * in the case of cache=unsafe, so there are no useless flushes.
2289 flush_parent:
2290 return bdrv_co_flush(bs->file);
2293 int bdrv_flush(BlockDriverState *bs)
2295 Coroutine *co;
2296 RwCo rwco = {
2297 .bs = bs,
2298 .ret = NOT_DONE,
2301 if (qemu_in_coroutine()) {
2302 /* Fast-path if already in coroutine context */
2303 bdrv_flush_co_entry(&rwco);
2304 } else {
2305 AioContext *aio_context = bdrv_get_aio_context(bs);
2307 co = qemu_coroutine_create(bdrv_flush_co_entry);
2308 qemu_coroutine_enter(co, &rwco);
2309 while (rwco.ret == NOT_DONE) {
2310 aio_poll(aio_context, true);
2314 return rwco.ret;
2317 typedef struct DiscardCo {
2318 BlockDriverState *bs;
2319 int64_t sector_num;
2320 int nb_sectors;
2321 int ret;
2322 } DiscardCo;
2323 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2325 DiscardCo *rwco = opaque;
2327 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2330 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2331 int nb_sectors)
2333 int max_discard, ret;
2335 if (!bs->drv) {
2336 return -ENOMEDIUM;
2339 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2340 if (ret < 0) {
2341 return ret;
2342 } else if (bs->read_only) {
2343 return -EROFS;
2346 bdrv_reset_dirty(bs, sector_num, nb_sectors);
2348 /* Do nothing if disabled. */
2349 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2350 return 0;
2353 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2354 return 0;
2357 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2358 while (nb_sectors > 0) {
2359 int ret;
2360 int num = nb_sectors;
2362 /* align request */
2363 if (bs->bl.discard_alignment &&
2364 num >= bs->bl.discard_alignment &&
2365 sector_num % bs->bl.discard_alignment) {
2366 if (num > bs->bl.discard_alignment) {
2367 num = bs->bl.discard_alignment;
2369 num -= sector_num % bs->bl.discard_alignment;
2372 /* limit request size */
2373 if (num > max_discard) {
2374 num = max_discard;
2377 if (bs->drv->bdrv_co_discard) {
2378 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2379 } else {
2380 BlockAIOCB *acb;
2381 CoroutineIOCompletion co = {
2382 .coroutine = qemu_coroutine_self(),
2385 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2386 bdrv_co_io_em_complete, &co);
2387 if (acb == NULL) {
2388 return -EIO;
2389 } else {
2390 qemu_coroutine_yield();
2391 ret = co.ret;
2394 if (ret && ret != -ENOTSUP) {
2395 return ret;
2398 sector_num += num;
2399 nb_sectors -= num;
2401 return 0;
2404 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2406 Coroutine *co;
2407 DiscardCo rwco = {
2408 .bs = bs,
2409 .sector_num = sector_num,
2410 .nb_sectors = nb_sectors,
2411 .ret = NOT_DONE,
2414 if (qemu_in_coroutine()) {
2415 /* Fast-path if already in coroutine context */
2416 bdrv_discard_co_entry(&rwco);
2417 } else {
2418 AioContext *aio_context = bdrv_get_aio_context(bs);
2420 co = qemu_coroutine_create(bdrv_discard_co_entry);
2421 qemu_coroutine_enter(co, &rwco);
2422 while (rwco.ret == NOT_DONE) {
2423 aio_poll(aio_context, true);
2427 return rwco.ret;
2430 /* needed for generic scsi interface */
2432 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2434 BlockDriver *drv = bs->drv;
2436 if (drv && drv->bdrv_ioctl)
2437 return drv->bdrv_ioctl(bs, req, buf);
2438 return -ENOTSUP;
2441 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2442 unsigned long int req, void *buf,
2443 BlockCompletionFunc *cb, void *opaque)
2445 BlockDriver *drv = bs->drv;
2447 if (drv && drv->bdrv_aio_ioctl)
2448 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2449 return NULL;
2452 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2454 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2457 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2459 return memset(qemu_blockalign(bs, size), 0, size);
2462 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2464 size_t align = bdrv_opt_mem_align(bs);
2466 /* Ensure that NULL is never returned on success */
2467 assert(align > 0);
2468 if (size == 0) {
2469 size = align;
2472 return qemu_try_memalign(align, size);
2475 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2477 void *mem = qemu_try_blockalign(bs, size);
2479 if (mem) {
2480 memset(mem, 0, size);
2483 return mem;
2487 * Check if all memory in this vector is sector aligned.
2489 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2491 int i;
2492 size_t alignment = bdrv_opt_mem_align(bs);
2494 for (i = 0; i < qiov->niov; i++) {
2495 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2496 return false;
2498 if (qiov->iov[i].iov_len % alignment) {
2499 return false;
2503 return true;
2506 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2507 NotifierWithReturn *notifier)
2509 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2512 void bdrv_io_plug(BlockDriverState *bs)
2514 BlockDriver *drv = bs->drv;
2515 if (drv && drv->bdrv_io_plug) {
2516 drv->bdrv_io_plug(bs);
2517 } else if (bs->file) {
2518 bdrv_io_plug(bs->file);
2522 void bdrv_io_unplug(BlockDriverState *bs)
2524 BlockDriver *drv = bs->drv;
2525 if (drv && drv->bdrv_io_unplug) {
2526 drv->bdrv_io_unplug(bs);
2527 } else if (bs->file) {
2528 bdrv_io_unplug(bs->file);
2532 void bdrv_flush_io_queue(BlockDriverState *bs)
2534 BlockDriver *drv = bs->drv;
2535 if (drv && drv->bdrv_flush_io_queue) {
2536 drv->bdrv_flush_io_queue(bs);
2537 } else if (bs->file) {
2538 bdrv_flush_io_queue(bs->file);