qemu_next_deadline should not consider host-time timers
[qemu.git] / hw / spapr.c
blob1782cc0a943a0c6be547b528078782e40f2aa991
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
33 #include "hw/boards.h"
34 #include "hw/ppc.h"
35 #include "hw/loader.h"
37 #include "hw/spapr.h"
38 #include "hw/spapr_vio.h"
39 #include "hw/xics.h"
41 #include <libfdt.h>
43 #define KERNEL_LOAD_ADDR 0x00000000
44 #define INITRD_LOAD_ADDR 0x02800000
45 #define FDT_MAX_SIZE 0x10000
46 #define RTAS_MAX_SIZE 0x10000
47 #define FW_MAX_SIZE 0x400000
48 #define FW_FILE_NAME "slof.bin"
50 #define MIN_RAM_SLOF 512UL
52 #define TIMEBASE_FREQ 512000000ULL
54 #define MAX_CPUS 32
55 #define XICS_IRQS 1024
57 sPAPREnvironment *spapr;
59 static void *spapr_create_fdt_skel(const char *cpu_model,
60 target_phys_addr_t initrd_base,
61 target_phys_addr_t initrd_size,
62 const char *boot_device,
63 const char *kernel_cmdline,
64 long hash_shift)
66 void *fdt;
67 CPUState *env;
68 uint64_t mem_reg_property[] = { 0, cpu_to_be64(ram_size) };
69 uint32_t start_prop = cpu_to_be32(initrd_base);
70 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
71 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
72 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
73 "\0hcall-tce\0hcall-vio\0hcall-splpar";
74 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
75 int i;
76 char *modelname;
78 #define _FDT(exp) \
79 do { \
80 int ret = (exp); \
81 if (ret < 0) { \
82 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
83 #exp, fdt_strerror(ret)); \
84 exit(1); \
85 } \
86 } while (0)
88 fdt = qemu_mallocz(FDT_MAX_SIZE);
89 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
91 _FDT((fdt_finish_reservemap(fdt)));
93 /* Root node */
94 _FDT((fdt_begin_node(fdt, "")));
95 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
96 _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));
98 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
99 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
101 /* /chosen */
102 _FDT((fdt_begin_node(fdt, "chosen")));
104 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
105 _FDT((fdt_property(fdt, "linux,initrd-start",
106 &start_prop, sizeof(start_prop))));
107 _FDT((fdt_property(fdt, "linux,initrd-end",
108 &end_prop, sizeof(end_prop))));
109 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
111 _FDT((fdt_end_node(fdt)));
113 /* memory node */
114 _FDT((fdt_begin_node(fdt, "memory@0")));
116 _FDT((fdt_property_string(fdt, "device_type", "memory")));
117 _FDT((fdt_property(fdt, "reg",
118 mem_reg_property, sizeof(mem_reg_property))));
120 _FDT((fdt_end_node(fdt)));
122 /* cpus */
123 _FDT((fdt_begin_node(fdt, "cpus")));
125 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
126 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
128 modelname = qemu_strdup(cpu_model);
130 for (i = 0; i < strlen(modelname); i++) {
131 modelname[i] = toupper(modelname[i]);
134 for (env = first_cpu; env != NULL; env = env->next_cpu) {
135 int index = env->cpu_index;
136 uint32_t gserver_prop[] = {cpu_to_be32(index), 0}; /* HACK! */
137 char *nodename;
138 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
139 0xffffffff, 0xffffffff};
141 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
142 fprintf(stderr, "Allocation failure\n");
143 exit(1);
146 _FDT((fdt_begin_node(fdt, nodename)));
148 free(nodename);
150 _FDT((fdt_property_cell(fdt, "reg", index)));
151 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
153 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
154 _FDT((fdt_property_cell(fdt, "dcache-block-size",
155 env->dcache_line_size)));
156 _FDT((fdt_property_cell(fdt, "icache-block-size",
157 env->icache_line_size)));
158 _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
159 /* Hardcode CPU frequency for now. It's kind of arbitrary on
160 * full emu, for kvm we should copy it from the host */
161 _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
162 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
163 _FDT((fdt_property(fdt, "ibm,pft-size",
164 pft_size_prop, sizeof(pft_size_prop))));
165 _FDT((fdt_property_string(fdt, "status", "okay")));
166 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
167 _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", index)));
168 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
169 gserver_prop, sizeof(gserver_prop))));
171 if (env->mmu_model & POWERPC_MMU_1TSEG) {
172 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
173 segs, sizeof(segs))));
176 _FDT((fdt_end_node(fdt)));
179 qemu_free(modelname);
181 _FDT((fdt_end_node(fdt)));
183 /* RTAS */
184 _FDT((fdt_begin_node(fdt, "rtas")));
186 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
187 sizeof(hypertas_prop))));
189 _FDT((fdt_end_node(fdt)));
191 /* interrupt controller */
192 _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
194 _FDT((fdt_property_string(fdt, "device_type",
195 "PowerPC-External-Interrupt-Presentation")));
196 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
197 _FDT((fdt_property_cell(fdt, "reg", 0)));
198 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
199 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
200 interrupt_server_ranges_prop,
201 sizeof(interrupt_server_ranges_prop))));
203 _FDT((fdt_end_node(fdt)));
205 /* vdevice */
206 _FDT((fdt_begin_node(fdt, "vdevice")));
208 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
209 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
210 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
211 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
212 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
213 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
215 _FDT((fdt_end_node(fdt)));
217 _FDT((fdt_end_node(fdt))); /* close root node */
218 _FDT((fdt_finish(fdt)));
220 return fdt;
223 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
224 target_phys_addr_t fdt_addr,
225 target_phys_addr_t rtas_addr,
226 target_phys_addr_t rtas_size)
228 int ret;
229 void *fdt;
231 fdt = qemu_malloc(FDT_MAX_SIZE);
233 /* open out the base tree into a temp buffer for the final tweaks */
234 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
236 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
237 if (ret < 0) {
238 fprintf(stderr, "couldn't setup vio devices in fdt\n");
239 exit(1);
242 /* RTAS */
243 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
244 if (ret < 0) {
245 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
248 _FDT((fdt_pack(fdt)));
250 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
252 qemu_free(fdt);
255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
257 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
260 static void emulate_spapr_hypercall(CPUState *env)
262 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
265 static void spapr_reset(void *opaque)
267 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
269 fprintf(stderr, "sPAPR reset\n");
271 /* flush out the hash table */
272 memset(spapr->htab, 0, spapr->htab_size);
274 /* Load the fdt */
275 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
276 spapr->rtas_size);
278 /* Set up the entry state */
279 first_cpu->gpr[3] = spapr->fdt_addr;
280 first_cpu->gpr[5] = 0;
281 first_cpu->halted = 0;
282 first_cpu->nip = spapr->entry_point;
286 /* pSeries LPAR / sPAPR hardware init */
287 static void ppc_spapr_init(ram_addr_t ram_size,
288 const char *boot_device,
289 const char *kernel_filename,
290 const char *kernel_cmdline,
291 const char *initrd_filename,
292 const char *cpu_model)
294 CPUState *env;
295 int i;
296 ram_addr_t ram_offset;
297 uint32_t initrd_base;
298 long kernel_size, initrd_size, fw_size;
299 long pteg_shift = 17;
300 char *filename;
301 int irq = 16;
303 spapr = qemu_malloc(sizeof(*spapr));
304 cpu_ppc_hypercall = emulate_spapr_hypercall;
306 /* We place the device tree just below either the top of RAM, or
307 * 2GB, so that it can be processed with 32-bit code if
308 * necessary */
309 spapr->fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
310 spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;
312 /* init CPUs */
313 if (cpu_model == NULL) {
314 cpu_model = "POWER7";
316 for (i = 0; i < smp_cpus; i++) {
317 env = cpu_init(cpu_model);
319 if (!env) {
320 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
321 exit(1);
323 /* Set time-base frequency to 512 MHz */
324 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
325 qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
327 env->hreset_vector = 0x60;
328 env->hreset_excp_prefix = 0;
329 env->gpr[3] = env->cpu_index;
332 /* allocate RAM */
333 ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
334 cpu_register_physical_memory(0, ram_size, ram_offset);
336 /* allocate hash page table. For now we always make this 16mb,
337 * later we should probably make it scale to the size of guest
338 * RAM */
339 spapr->htab_size = 1ULL << (pteg_shift + 7);
340 spapr->htab = qemu_malloc(spapr->htab_size);
342 for (env = first_cpu; env != NULL; env = env->next_cpu) {
343 env->external_htab = spapr->htab;
344 env->htab_base = -1;
345 env->htab_mask = spapr->htab_size - 1;
348 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
349 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
350 ram_size - spapr->rtas_addr);
351 if (spapr->rtas_size < 0) {
352 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
353 exit(1);
355 qemu_free(filename);
357 /* Set up Interrupt Controller */
358 spapr->icp = xics_system_init(XICS_IRQS);
360 /* Set up VIO bus */
361 spapr->vio_bus = spapr_vio_bus_init();
363 for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
364 if (serial_hds[i]) {
365 spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
366 xics_find_qirq(spapr->icp, irq), irq);
370 for (i = 0; i < nb_nics; i++, irq++) {
371 NICInfo *nd = &nd_table[i];
373 if (!nd->model) {
374 nd->model = qemu_strdup("ibmveth");
377 if (strcmp(nd->model, "ibmveth") == 0) {
378 spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
379 xics_find_qirq(spapr->icp, irq), irq);
380 } else {
381 fprintf(stderr, "pSeries (sPAPR) platform does not support "
382 "NIC model '%s' (only ibmveth is supported)\n",
383 nd->model);
384 exit(1);
388 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
389 spapr_vscsi_create(spapr->vio_bus, 0x2000 + i,
390 xics_find_qirq(spapr->icp, irq), irq);
391 irq++;
394 if (kernel_filename) {
395 uint64_t lowaddr = 0;
397 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
398 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
399 if (kernel_size < 0) {
400 kernel_size = load_image_targphys(kernel_filename,
401 KERNEL_LOAD_ADDR,
402 ram_size - KERNEL_LOAD_ADDR);
404 if (kernel_size < 0) {
405 fprintf(stderr, "qemu: could not load kernel '%s'\n",
406 kernel_filename);
407 exit(1);
410 /* load initrd */
411 if (initrd_filename) {
412 initrd_base = INITRD_LOAD_ADDR;
413 initrd_size = load_image_targphys(initrd_filename, initrd_base,
414 ram_size - initrd_base);
415 if (initrd_size < 0) {
416 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
417 initrd_filename);
418 exit(1);
420 } else {
421 initrd_base = 0;
422 initrd_size = 0;
425 spapr->entry_point = KERNEL_LOAD_ADDR;
426 } else {
427 if (ram_size < (MIN_RAM_SLOF << 20)) {
428 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
429 "%ldM guest RAM\n", MIN_RAM_SLOF);
430 exit(1);
432 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
433 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
434 if (fw_size < 0) {
435 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
436 exit(1);
438 qemu_free(filename);
439 spapr->entry_point = 0x100;
440 initrd_base = 0;
441 initrd_size = 0;
443 /* SLOF will startup the secondary CPUs using RTAS,
444 rather than expecting a kexec() style entry */
445 for (env = first_cpu; env != NULL; env = env->next_cpu) {
446 env->halted = 1;
450 /* Prepare the device tree */
451 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
452 initrd_base, initrd_size,
453 boot_device, kernel_cmdline,
454 pteg_shift + 7);
455 assert(spapr->fdt_skel != NULL);
457 qemu_register_reset(spapr_reset, spapr);
460 static QEMUMachine spapr_machine = {
461 .name = "pseries",
462 .desc = "pSeries Logical Partition (PAPR compliant)",
463 .init = ppc_spapr_init,
464 .max_cpus = MAX_CPUS,
465 .no_vga = 1,
466 .no_parallel = 1,
467 .use_scsi = 1,
470 static void spapr_machine_init(void)
472 qemu_register_machine(&spapr_machine);
475 machine_init(spapr_machine_init);