target/arm: Implement SVE Integer Compare - Scalars Group
[qemu.git] / target / i386 / smm_helper.c
blob90621e59772075ff3b45dbc4d7900d06776ebc52
1 /*
2 * x86 SMM helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "exec/log.h"
26 /* SMM support */
28 #if defined(CONFIG_USER_ONLY)
30 void do_smm_enter(X86CPU *cpu)
34 void helper_rsm(CPUX86State *env)
38 #else
40 #ifdef TARGET_X86_64
41 #define SMM_REVISION_ID 0x00020064
42 #else
43 #define SMM_REVISION_ID 0x00020000
44 #endif
46 void do_smm_enter(X86CPU *cpu)
48 CPUX86State *env = &cpu->env;
49 CPUState *cs = CPU(cpu);
50 target_ulong sm_state;
51 SegmentCache *dt;
52 int i, offset;
54 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
55 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
57 env->hflags |= HF_SMM_MASK;
58 if (env->hflags2 & HF2_NMI_MASK) {
59 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
60 } else {
61 env->hflags2 |= HF2_NMI_MASK;
64 sm_state = env->smbase + 0x8000;
66 #ifdef TARGET_X86_64
67 for (i = 0; i < 6; i++) {
68 dt = &env->segs[i];
69 offset = 0x7e00 + i * 16;
70 x86_stw_phys(cs, sm_state + offset, dt->selector);
71 x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
72 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
73 x86_stq_phys(cs, sm_state + offset + 8, dt->base);
76 x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
77 x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
79 x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
80 x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
81 x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
82 x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
84 x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
85 x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
87 x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
88 x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
89 x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
90 x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
92 /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
93 is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has
94 7EA0-7ED7 as "reserved". What's this, and what's really
95 supposed to happen? */
96 x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
98 x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
99 x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
100 x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
101 x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
102 x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
103 x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
104 x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
105 x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
106 for (i = 8; i < 16; i++) {
107 x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
109 x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
110 x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
111 x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
112 x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
114 x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
115 x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
116 x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
118 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
119 x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
120 #else
121 x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
122 x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
123 x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
124 x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
125 x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
126 x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
127 x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
128 x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
129 x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
130 x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
131 x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
132 x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
133 x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
134 x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
136 x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
137 x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
138 x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
139 x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
141 x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
142 x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
143 x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
144 x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
146 x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
147 x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
149 x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
150 x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
152 for (i = 0; i < 6; i++) {
153 dt = &env->segs[i];
154 if (i < 3) {
155 offset = 0x7f84 + i * 12;
156 } else {
157 offset = 0x7f2c + (i - 3) * 12;
159 x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
160 x86_stl_phys(cs, sm_state + offset + 8, dt->base);
161 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
162 x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
164 x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
166 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
167 x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
168 #endif
169 /* init SMM cpu state */
171 #ifdef TARGET_X86_64
172 cpu_load_efer(env, 0);
173 #endif
174 cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
175 DF_MASK));
176 env->eip = 0x00008000;
177 cpu_x86_update_cr0(env,
178 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
179 CR0_PG_MASK));
180 cpu_x86_update_cr4(env, 0);
181 env->dr[7] = 0x00000400;
183 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
184 0xffffffff,
185 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
186 DESC_G_MASK | DESC_A_MASK);
187 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
188 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
189 DESC_G_MASK | DESC_A_MASK);
190 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
191 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
192 DESC_G_MASK | DESC_A_MASK);
193 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
194 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
195 DESC_G_MASK | DESC_A_MASK);
196 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
197 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
198 DESC_G_MASK | DESC_A_MASK);
199 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
200 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
201 DESC_G_MASK | DESC_A_MASK);
204 void helper_rsm(CPUX86State *env)
206 X86CPU *cpu = x86_env_get_cpu(env);
207 CPUState *cs = CPU(cpu);
208 target_ulong sm_state;
209 int i, offset;
210 uint32_t val;
212 sm_state = env->smbase + 0x8000;
213 #ifdef TARGET_X86_64
214 cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
216 env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
217 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
219 env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
220 env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
221 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
222 env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
224 env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
225 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
227 env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
228 env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
229 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
230 env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
232 env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
233 env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
234 env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
235 env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
236 env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
237 env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
238 env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
239 env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
240 for (i = 8; i < 16; i++) {
241 env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
243 env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
244 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
245 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
246 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
247 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
249 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
250 cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
251 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
253 for (i = 0; i < 6; i++) {
254 offset = 0x7e00 + i * 16;
255 cpu_x86_load_seg_cache(env, i,
256 x86_lduw_phys(cs, sm_state + offset),
257 x86_ldq_phys(cs, sm_state + offset + 8),
258 x86_ldl_phys(cs, sm_state + offset + 4),
259 (x86_lduw_phys(cs, sm_state + offset + 2) &
260 0xf0ff) << 8);
263 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
264 if (val & 0x20000) {
265 env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
267 #else
268 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
269 cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
270 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
271 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
272 env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
273 env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
274 env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
275 env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
276 env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
277 env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
278 env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
279 env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
280 env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
281 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
282 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
284 env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
285 env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
286 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
287 env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
289 env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
290 env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
291 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
292 env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
294 env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
295 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
297 env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
298 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
300 for (i = 0; i < 6; i++) {
301 if (i < 3) {
302 offset = 0x7f84 + i * 12;
303 } else {
304 offset = 0x7f2c + (i - 3) * 12;
306 cpu_x86_load_seg_cache(env, i,
307 x86_ldl_phys(cs,
308 sm_state + 0x7fa8 + i * 4) & 0xffff,
309 x86_ldl_phys(cs, sm_state + offset + 8),
310 x86_ldl_phys(cs, sm_state + offset + 4),
311 (x86_ldl_phys(cs,
312 sm_state + offset) & 0xf0ff) << 8);
314 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
316 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
317 if (val & 0x20000) {
318 env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
320 #endif
321 if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
322 env->hflags2 &= ~HF2_NMI_MASK;
324 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
325 env->hflags &= ~HF_SMM_MASK;
327 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
328 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
331 #endif /* !CONFIG_USER_ONLY */