target/arm: Implement SVE Integer Compare - Scalars Group
[qemu.git] / target / arm / translate-a64.c
blob8d8a4cecb0a048574138bd08e46f7beaff9011a5
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
41 static TCGv_i64 cpu_X[32];
42 static TCGv_i64 cpu_pc;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_high;
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
85 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
86 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
87 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
92 int i;
94 cpu_pc = tcg_global_mem_new_i64(cpu_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
103 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
107 static inline int get_a64_user_mem_index(DisasContext *s)
109 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
110 * if EL1, access as if EL0; otherwise access at current EL
112 ARMMMUIdx useridx;
114 switch (s->mmu_idx) {
115 case ARMMMUIdx_S12NSE1:
116 useridx = ARMMMUIdx_S12NSE0;
117 break;
118 case ARMMMUIdx_S1SE1:
119 useridx = ARMMMUIdx_S1SE0;
120 break;
121 case ARMMMUIdx_S2NS:
122 g_assert_not_reached();
123 default:
124 useridx = s->mmu_idx;
125 break;
127 return arm_to_core_mmu_idx(useridx);
130 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
131 fprintf_function cpu_fprintf, int flags)
133 ARMCPU *cpu = ARM_CPU(cs);
134 CPUARMState *env = &cpu->env;
135 uint32_t psr = pstate_read(env);
136 int i;
137 int el = arm_current_el(env);
138 const char *ns_status;
140 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
141 env->pc, env->xregs[31]);
142 for (i = 0; i < 31; i++) {
143 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
144 if ((i % 4) == 3) {
145 cpu_fprintf(f, "\n");
146 } else {
147 cpu_fprintf(f, " ");
151 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
152 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
153 } else {
154 ns_status = "";
157 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
158 psr,
159 psr & PSTATE_N ? 'N' : '-',
160 psr & PSTATE_Z ? 'Z' : '-',
161 psr & PSTATE_C ? 'C' : '-',
162 psr & PSTATE_V ? 'V' : '-',
163 ns_status,
165 psr & PSTATE_SP ? 'h' : 't');
167 if (flags & CPU_DUMP_FPU) {
168 int numvfpregs = 32;
169 for (i = 0; i < numvfpregs; i++) {
170 uint64_t *q = aa64_vfp_qreg(env, i);
171 uint64_t vlo = q[0];
172 uint64_t vhi = q[1];
173 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
174 i, vhi, vlo, (i & 1 ? '\n' : ' '));
176 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
177 vfp_get_fpcr(env), vfp_get_fpsr(env));
181 void gen_a64_set_pc_im(uint64_t val)
183 tcg_gen_movi_i64(cpu_pc, val);
186 /* Load the PC from a generic TCG variable.
188 * If address tagging is enabled via the TCR TBI bits, then loading
189 * an address into the PC will clear out any tag in the it:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addressses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * We can avoid doing this for relative-branches, because the
198 * PC + offset can never overflow into the tag bits (assuming
199 * that virtual addresses are less than 56 bits wide, as they
200 * are currently), but we must handle it for branch-to-register.
202 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
205 if (s->current_el <= 1) {
206 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
207 * examine bit 55 of address, can just generate code.
208 * If mixed, then test via generated code
210 if (s->tbi0 && s->tbi1) {
211 TCGv_i64 tmp_reg = tcg_temp_new_i64();
212 /* Both bits set, sign extension from bit 55 into [63:56] will
213 * cover both cases
215 tcg_gen_shli_i64(tmp_reg, src, 8);
216 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
217 tcg_temp_free_i64(tmp_reg);
218 } else if (!s->tbi0 && !s->tbi1) {
219 /* Neither bit set, just load it as-is */
220 tcg_gen_mov_i64(cpu_pc, src);
221 } else {
222 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
223 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
224 TCGv_i64 tcg_zero = tcg_const_i64(0);
226 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
228 if (s->tbi0) {
229 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
230 tcg_gen_andi_i64(tcg_tmpval, src,
231 0x00FFFFFFFFFFFFFFull);
232 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
234 } else {
235 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
236 tcg_gen_ori_i64(tcg_tmpval, src,
237 0xFF00000000000000ull);
238 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
241 tcg_temp_free_i64(tcg_zero);
242 tcg_temp_free_i64(tcg_bit55);
243 tcg_temp_free_i64(tcg_tmpval);
245 } else { /* EL > 1 */
246 if (s->tbi0) {
247 /* Force tag byte to all zero */
248 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
249 } else {
250 /* Load unmodified address */
251 tcg_gen_mov_i64(cpu_pc, src);
256 typedef struct DisasCompare64 {
257 TCGCond cond;
258 TCGv_i64 value;
259 } DisasCompare64;
261 static void a64_test_cc(DisasCompare64 *c64, int cc)
263 DisasCompare c32;
265 arm_test_cc(&c32, cc);
267 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
268 * properly. The NE/EQ comparisons are also fine with this choice. */
269 c64->cond = c32.cond;
270 c64->value = tcg_temp_new_i64();
271 tcg_gen_ext_i32_i64(c64->value, c32.value);
273 arm_free_cc(&c32);
276 static void a64_free_cc(DisasCompare64 *c64)
278 tcg_temp_free_i64(c64->value);
281 static void gen_exception_internal(int excp)
283 TCGv_i32 tcg_excp = tcg_const_i32(excp);
285 assert(excp_is_internal(excp));
286 gen_helper_exception_internal(cpu_env, tcg_excp);
287 tcg_temp_free_i32(tcg_excp);
290 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
292 TCGv_i32 tcg_excp = tcg_const_i32(excp);
293 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
294 TCGv_i32 tcg_el = tcg_const_i32(target_el);
296 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
297 tcg_syn, tcg_el);
298 tcg_temp_free_i32(tcg_el);
299 tcg_temp_free_i32(tcg_syn);
300 tcg_temp_free_i32(tcg_excp);
303 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
305 gen_a64_set_pc_im(s->pc - offset);
306 gen_exception_internal(excp);
307 s->base.is_jmp = DISAS_NORETURN;
310 static void gen_exception_insn(DisasContext *s, int offset, int excp,
311 uint32_t syndrome, uint32_t target_el)
313 gen_a64_set_pc_im(s->pc - offset);
314 gen_exception(excp, syndrome, target_el);
315 s->base.is_jmp = DISAS_NORETURN;
318 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
319 uint32_t syndrome)
321 TCGv_i32 tcg_syn;
323 gen_a64_set_pc_im(s->pc - offset);
324 tcg_syn = tcg_const_i32(syndrome);
325 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
326 tcg_temp_free_i32(tcg_syn);
327 s->base.is_jmp = DISAS_NORETURN;
330 static void gen_ss_advance(DisasContext *s)
332 /* If the singlestep state is Active-not-pending, advance to
333 * Active-pending.
335 if (s->ss_active) {
336 s->pstate_ss = 0;
337 gen_helper_clear_pstate_ss(cpu_env);
341 static void gen_step_complete_exception(DisasContext *s)
343 /* We just completed step of an insn. Move from Active-not-pending
344 * to Active-pending, and then also take the swstep exception.
345 * This corresponds to making the (IMPDEF) choice to prioritize
346 * swstep exceptions over asynchronous exceptions taken to an exception
347 * level where debug is disabled. This choice has the advantage that
348 * we do not need to maintain internal state corresponding to the
349 * ISV/EX syndrome bits between completion of the step and generation
350 * of the exception, and our syndrome information is always correct.
352 gen_ss_advance(s);
353 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
354 default_exception_el(s));
355 s->base.is_jmp = DISAS_NORETURN;
358 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
360 /* No direct tb linking with singlestep (either QEMU's or the ARM
361 * debug architecture kind) or deterministic io
363 if (s->base.singlestep_enabled || s->ss_active ||
364 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
365 return false;
368 #ifndef CONFIG_USER_ONLY
369 /* Only link tbs from inside the same guest page */
370 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
371 return false;
373 #endif
375 return true;
378 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
380 TranslationBlock *tb;
382 tb = s->base.tb;
383 if (use_goto_tb(s, n, dest)) {
384 tcg_gen_goto_tb(n);
385 gen_a64_set_pc_im(dest);
386 tcg_gen_exit_tb(tb, n);
387 s->base.is_jmp = DISAS_NORETURN;
388 } else {
389 gen_a64_set_pc_im(dest);
390 if (s->ss_active) {
391 gen_step_complete_exception(s);
392 } else if (s->base.singlestep_enabled) {
393 gen_exception_internal(EXCP_DEBUG);
394 } else {
395 tcg_gen_lookup_and_goto_ptr();
396 s->base.is_jmp = DISAS_NORETURN;
401 void unallocated_encoding(DisasContext *s)
403 /* Unallocated and reserved encodings are uncategorized */
404 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
405 default_exception_el(s));
408 static void init_tmp_a64_array(DisasContext *s)
410 #ifdef CONFIG_DEBUG_TCG
411 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
412 #endif
413 s->tmp_a64_count = 0;
416 static void free_tmp_a64(DisasContext *s)
418 int i;
419 for (i = 0; i < s->tmp_a64_count; i++) {
420 tcg_temp_free_i64(s->tmp_a64[i]);
422 init_tmp_a64_array(s);
425 TCGv_i64 new_tmp_a64(DisasContext *s)
427 assert(s->tmp_a64_count < TMP_A64_MAX);
428 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
431 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
433 TCGv_i64 t = new_tmp_a64(s);
434 tcg_gen_movi_i64(t, 0);
435 return t;
439 * Register access functions
441 * These functions are used for directly accessing a register in where
442 * changes to the final register value are likely to be made. If you
443 * need to use a register for temporary calculation (e.g. index type
444 * operations) use the read_* form.
446 * B1.2.1 Register mappings
448 * In instruction register encoding 31 can refer to ZR (zero register) or
449 * the SP (stack pointer) depending on context. In QEMU's case we map SP
450 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
451 * This is the point of the _sp forms.
453 TCGv_i64 cpu_reg(DisasContext *s, int reg)
455 if (reg == 31) {
456 return new_tmp_a64_zero(s);
457 } else {
458 return cpu_X[reg];
462 /* register access for when 31 == SP */
463 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
465 return cpu_X[reg];
468 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
469 * representing the register contents. This TCGv is an auto-freed
470 * temporary so it need not be explicitly freed, and may be modified.
472 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
474 TCGv_i64 v = new_tmp_a64(s);
475 if (reg != 31) {
476 if (sf) {
477 tcg_gen_mov_i64(v, cpu_X[reg]);
478 } else {
479 tcg_gen_ext32u_i64(v, cpu_X[reg]);
481 } else {
482 tcg_gen_movi_i64(v, 0);
484 return v;
487 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
489 TCGv_i64 v = new_tmp_a64(s);
490 if (sf) {
491 tcg_gen_mov_i64(v, cpu_X[reg]);
492 } else {
493 tcg_gen_ext32u_i64(v, cpu_X[reg]);
495 return v;
498 /* Return the offset into CPUARMState of a slice (from
499 * the least significant end) of FP register Qn (ie
500 * Dn, Sn, Hn or Bn).
501 * (Note that this is not the same mapping as for A32; see cpu.h)
503 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
505 return vec_reg_offset(s, regno, 0, size);
508 /* Offset of the high half of the 128 bit vector Qn */
509 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
511 return vec_reg_offset(s, regno, 1, MO_64);
514 /* Convenience accessors for reading and writing single and double
515 * FP registers. Writing clears the upper parts of the associated
516 * 128 bit vector register, as required by the architecture.
517 * Note that unlike the GP register accessors, the values returned
518 * by the read functions must be manually freed.
520 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
522 TCGv_i64 v = tcg_temp_new_i64();
524 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
525 return v;
528 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
530 TCGv_i32 v = tcg_temp_new_i32();
532 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
533 return v;
536 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
538 TCGv_i32 v = tcg_temp_new_i32();
540 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
541 return v;
544 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
545 * If SVE is not enabled, then there are only 128 bits in the vector.
547 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
549 unsigned ofs = fp_reg_offset(s, rd, MO_64);
550 unsigned vsz = vec_full_reg_size(s);
552 if (!is_q) {
553 TCGv_i64 tcg_zero = tcg_const_i64(0);
554 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
555 tcg_temp_free_i64(tcg_zero);
557 if (vsz > 16) {
558 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
562 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
564 unsigned ofs = fp_reg_offset(s, reg, MO_64);
566 tcg_gen_st_i64(v, cpu_env, ofs);
567 clear_vec_high(s, false, reg);
570 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
572 TCGv_i64 tmp = tcg_temp_new_i64();
574 tcg_gen_extu_i32_i64(tmp, v);
575 write_fp_dreg(s, reg, tmp);
576 tcg_temp_free_i64(tmp);
579 TCGv_ptr get_fpstatus_ptr(bool is_f16)
581 TCGv_ptr statusptr = tcg_temp_new_ptr();
582 int offset;
584 /* In A64 all instructions (both FP and Neon) use the FPCR; there
585 * is no equivalent of the A32 Neon "standard FPSCR value".
586 * However half-precision operations operate under a different
587 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
589 if (is_f16) {
590 offset = offsetof(CPUARMState, vfp.fp_status_f16);
591 } else {
592 offset = offsetof(CPUARMState, vfp.fp_status);
594 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
595 return statusptr;
598 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
599 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
600 GVecGen2Fn *gvec_fn, int vece)
602 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
603 is_q ? 16 : 8, vec_full_reg_size(s));
606 /* Expand a 2-operand + immediate AdvSIMD vector operation using
607 * an expander function.
609 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
610 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
612 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
613 imm, is_q ? 16 : 8, vec_full_reg_size(s));
616 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
617 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
618 GVecGen3Fn *gvec_fn, int vece)
620 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
621 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
624 /* Expand a 2-operand + immediate AdvSIMD vector operation using
625 * an op descriptor.
627 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
628 int rn, int64_t imm, const GVecGen2i *gvec_op)
630 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
631 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
634 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
635 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
636 int rn, int rm, const GVecGen3 *gvec_op)
638 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
639 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
640 vec_full_reg_size(s), gvec_op);
643 /* Expand a 3-operand + env pointer operation using
644 * an out-of-line helper.
646 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
647 int rn, int rm, gen_helper_gvec_3_ptr *fn)
649 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
650 vec_full_reg_offset(s, rn),
651 vec_full_reg_offset(s, rm), cpu_env,
652 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
655 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
656 * an out-of-line helper.
658 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
659 int rm, bool is_fp16, int data,
660 gen_helper_gvec_3_ptr *fn)
662 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
663 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
664 vec_full_reg_offset(s, rn),
665 vec_full_reg_offset(s, rm), fpst,
666 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
667 tcg_temp_free_ptr(fpst);
670 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
671 * than the 32 bit equivalent.
673 static inline void gen_set_NZ64(TCGv_i64 result)
675 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
676 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
679 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
680 static inline void gen_logic_CC(int sf, TCGv_i64 result)
682 if (sf) {
683 gen_set_NZ64(result);
684 } else {
685 tcg_gen_extrl_i64_i32(cpu_ZF, result);
686 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
688 tcg_gen_movi_i32(cpu_CF, 0);
689 tcg_gen_movi_i32(cpu_VF, 0);
692 /* dest = T0 + T1; compute C, N, V and Z flags */
693 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
695 if (sf) {
696 TCGv_i64 result, flag, tmp;
697 result = tcg_temp_new_i64();
698 flag = tcg_temp_new_i64();
699 tmp = tcg_temp_new_i64();
701 tcg_gen_movi_i64(tmp, 0);
702 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
704 tcg_gen_extrl_i64_i32(cpu_CF, flag);
706 gen_set_NZ64(result);
708 tcg_gen_xor_i64(flag, result, t0);
709 tcg_gen_xor_i64(tmp, t0, t1);
710 tcg_gen_andc_i64(flag, flag, tmp);
711 tcg_temp_free_i64(tmp);
712 tcg_gen_extrh_i64_i32(cpu_VF, flag);
714 tcg_gen_mov_i64(dest, result);
715 tcg_temp_free_i64(result);
716 tcg_temp_free_i64(flag);
717 } else {
718 /* 32 bit arithmetic */
719 TCGv_i32 t0_32 = tcg_temp_new_i32();
720 TCGv_i32 t1_32 = tcg_temp_new_i32();
721 TCGv_i32 tmp = tcg_temp_new_i32();
723 tcg_gen_movi_i32(tmp, 0);
724 tcg_gen_extrl_i64_i32(t0_32, t0);
725 tcg_gen_extrl_i64_i32(t1_32, t1);
726 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
727 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
728 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
729 tcg_gen_xor_i32(tmp, t0_32, t1_32);
730 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
731 tcg_gen_extu_i32_i64(dest, cpu_NF);
733 tcg_temp_free_i32(tmp);
734 tcg_temp_free_i32(t0_32);
735 tcg_temp_free_i32(t1_32);
739 /* dest = T0 - T1; compute C, N, V and Z flags */
740 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
742 if (sf) {
743 /* 64 bit arithmetic */
744 TCGv_i64 result, flag, tmp;
746 result = tcg_temp_new_i64();
747 flag = tcg_temp_new_i64();
748 tcg_gen_sub_i64(result, t0, t1);
750 gen_set_NZ64(result);
752 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
753 tcg_gen_extrl_i64_i32(cpu_CF, flag);
755 tcg_gen_xor_i64(flag, result, t0);
756 tmp = tcg_temp_new_i64();
757 tcg_gen_xor_i64(tmp, t0, t1);
758 tcg_gen_and_i64(flag, flag, tmp);
759 tcg_temp_free_i64(tmp);
760 tcg_gen_extrh_i64_i32(cpu_VF, flag);
761 tcg_gen_mov_i64(dest, result);
762 tcg_temp_free_i64(flag);
763 tcg_temp_free_i64(result);
764 } else {
765 /* 32 bit arithmetic */
766 TCGv_i32 t0_32 = tcg_temp_new_i32();
767 TCGv_i32 t1_32 = tcg_temp_new_i32();
768 TCGv_i32 tmp;
770 tcg_gen_extrl_i64_i32(t0_32, t0);
771 tcg_gen_extrl_i64_i32(t1_32, t1);
772 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
773 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
774 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
775 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
776 tmp = tcg_temp_new_i32();
777 tcg_gen_xor_i32(tmp, t0_32, t1_32);
778 tcg_temp_free_i32(t0_32);
779 tcg_temp_free_i32(t1_32);
780 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
781 tcg_temp_free_i32(tmp);
782 tcg_gen_extu_i32_i64(dest, cpu_NF);
786 /* dest = T0 + T1 + CF; do not compute flags. */
787 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
789 TCGv_i64 flag = tcg_temp_new_i64();
790 tcg_gen_extu_i32_i64(flag, cpu_CF);
791 tcg_gen_add_i64(dest, t0, t1);
792 tcg_gen_add_i64(dest, dest, flag);
793 tcg_temp_free_i64(flag);
795 if (!sf) {
796 tcg_gen_ext32u_i64(dest, dest);
800 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
801 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
803 if (sf) {
804 TCGv_i64 result, cf_64, vf_64, tmp;
805 result = tcg_temp_new_i64();
806 cf_64 = tcg_temp_new_i64();
807 vf_64 = tcg_temp_new_i64();
808 tmp = tcg_const_i64(0);
810 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
811 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
812 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
813 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
814 gen_set_NZ64(result);
816 tcg_gen_xor_i64(vf_64, result, t0);
817 tcg_gen_xor_i64(tmp, t0, t1);
818 tcg_gen_andc_i64(vf_64, vf_64, tmp);
819 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
821 tcg_gen_mov_i64(dest, result);
823 tcg_temp_free_i64(tmp);
824 tcg_temp_free_i64(vf_64);
825 tcg_temp_free_i64(cf_64);
826 tcg_temp_free_i64(result);
827 } else {
828 TCGv_i32 t0_32, t1_32, tmp;
829 t0_32 = tcg_temp_new_i32();
830 t1_32 = tcg_temp_new_i32();
831 tmp = tcg_const_i32(0);
833 tcg_gen_extrl_i64_i32(t0_32, t0);
834 tcg_gen_extrl_i64_i32(t1_32, t1);
835 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
836 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
838 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
839 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
840 tcg_gen_xor_i32(tmp, t0_32, t1_32);
841 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
842 tcg_gen_extu_i32_i64(dest, cpu_NF);
844 tcg_temp_free_i32(tmp);
845 tcg_temp_free_i32(t1_32);
846 tcg_temp_free_i32(t0_32);
851 * Load/Store generators
855 * Store from GPR register to memory.
857 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
858 TCGv_i64 tcg_addr, int size, int memidx,
859 bool iss_valid,
860 unsigned int iss_srt,
861 bool iss_sf, bool iss_ar)
863 g_assert(size <= 3);
864 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
866 if (iss_valid) {
867 uint32_t syn;
869 syn = syn_data_abort_with_iss(0,
870 size,
871 false,
872 iss_srt,
873 iss_sf,
874 iss_ar,
875 0, 0, 0, 0, 0, false);
876 disas_set_insn_syndrome(s, syn);
880 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
881 TCGv_i64 tcg_addr, int size,
882 bool iss_valid,
883 unsigned int iss_srt,
884 bool iss_sf, bool iss_ar)
886 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
887 iss_valid, iss_srt, iss_sf, iss_ar);
891 * Load from memory to GPR register
893 static void do_gpr_ld_memidx(DisasContext *s,
894 TCGv_i64 dest, TCGv_i64 tcg_addr,
895 int size, bool is_signed,
896 bool extend, int memidx,
897 bool iss_valid, unsigned int iss_srt,
898 bool iss_sf, bool iss_ar)
900 TCGMemOp memop = s->be_data + size;
902 g_assert(size <= 3);
904 if (is_signed) {
905 memop += MO_SIGN;
908 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
910 if (extend && is_signed) {
911 g_assert(size < 3);
912 tcg_gen_ext32u_i64(dest, dest);
915 if (iss_valid) {
916 uint32_t syn;
918 syn = syn_data_abort_with_iss(0,
919 size,
920 is_signed,
921 iss_srt,
922 iss_sf,
923 iss_ar,
924 0, 0, 0, 0, 0, false);
925 disas_set_insn_syndrome(s, syn);
929 static void do_gpr_ld(DisasContext *s,
930 TCGv_i64 dest, TCGv_i64 tcg_addr,
931 int size, bool is_signed, bool extend,
932 bool iss_valid, unsigned int iss_srt,
933 bool iss_sf, bool iss_ar)
935 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
936 get_mem_index(s),
937 iss_valid, iss_srt, iss_sf, iss_ar);
941 * Store from FP register to memory
943 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
945 /* This writes the bottom N bits of a 128 bit wide vector to memory */
946 TCGv_i64 tmp = tcg_temp_new_i64();
947 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
948 if (size < 4) {
949 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
950 s->be_data + size);
951 } else {
952 bool be = s->be_data == MO_BE;
953 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
955 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
956 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
957 s->be_data | MO_Q);
958 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
959 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
960 s->be_data | MO_Q);
961 tcg_temp_free_i64(tcg_hiaddr);
964 tcg_temp_free_i64(tmp);
968 * Load from memory to FP register
970 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
972 /* This always zero-extends and writes to a full 128 bit wide vector */
973 TCGv_i64 tmplo = tcg_temp_new_i64();
974 TCGv_i64 tmphi;
976 if (size < 4) {
977 TCGMemOp memop = s->be_data + size;
978 tmphi = tcg_const_i64(0);
979 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
980 } else {
981 bool be = s->be_data == MO_BE;
982 TCGv_i64 tcg_hiaddr;
984 tmphi = tcg_temp_new_i64();
985 tcg_hiaddr = tcg_temp_new_i64();
987 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
988 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
989 s->be_data | MO_Q);
990 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
991 s->be_data | MO_Q);
992 tcg_temp_free_i64(tcg_hiaddr);
995 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
996 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
998 tcg_temp_free_i64(tmplo);
999 tcg_temp_free_i64(tmphi);
1001 clear_vec_high(s, true, destidx);
1005 * Vector load/store helpers.
1007 * The principal difference between this and a FP load is that we don't
1008 * zero extend as we are filling a partial chunk of the vector register.
1009 * These functions don't support 128 bit loads/stores, which would be
1010 * normal load/store operations.
1012 * The _i32 versions are useful when operating on 32 bit quantities
1013 * (eg for floating point single or using Neon helper functions).
1016 /* Get value of an element within a vector register */
1017 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1018 int element, TCGMemOp memop)
1020 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1021 switch (memop) {
1022 case MO_8:
1023 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1024 break;
1025 case MO_16:
1026 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1027 break;
1028 case MO_32:
1029 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1030 break;
1031 case MO_8|MO_SIGN:
1032 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1033 break;
1034 case MO_16|MO_SIGN:
1035 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1036 break;
1037 case MO_32|MO_SIGN:
1038 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1039 break;
1040 case MO_64:
1041 case MO_64|MO_SIGN:
1042 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1043 break;
1044 default:
1045 g_assert_not_reached();
1049 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1050 int element, TCGMemOp memop)
1052 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1053 switch (memop) {
1054 case MO_8:
1055 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1056 break;
1057 case MO_16:
1058 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1059 break;
1060 case MO_8|MO_SIGN:
1061 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1062 break;
1063 case MO_16|MO_SIGN:
1064 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1065 break;
1066 case MO_32:
1067 case MO_32|MO_SIGN:
1068 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1069 break;
1070 default:
1071 g_assert_not_reached();
1075 /* Set value of an element within a vector register */
1076 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1077 int element, TCGMemOp memop)
1079 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1080 switch (memop) {
1081 case MO_8:
1082 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1083 break;
1084 case MO_16:
1085 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1086 break;
1087 case MO_32:
1088 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1089 break;
1090 case MO_64:
1091 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1092 break;
1093 default:
1094 g_assert_not_reached();
1098 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1099 int destidx, int element, TCGMemOp memop)
1101 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1102 switch (memop) {
1103 case MO_8:
1104 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1105 break;
1106 case MO_16:
1107 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1108 break;
1109 case MO_32:
1110 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1111 break;
1112 default:
1113 g_assert_not_reached();
1117 /* Store from vector register to memory */
1118 static void do_vec_st(DisasContext *s, int srcidx, int element,
1119 TCGv_i64 tcg_addr, int size)
1121 TCGMemOp memop = s->be_data + size;
1122 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1124 read_vec_element(s, tcg_tmp, srcidx, element, size);
1125 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1127 tcg_temp_free_i64(tcg_tmp);
1130 /* Load from memory to vector register */
1131 static void do_vec_ld(DisasContext *s, int destidx, int element,
1132 TCGv_i64 tcg_addr, int size)
1134 TCGMemOp memop = s->be_data + size;
1135 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1137 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1138 write_vec_element(s, tcg_tmp, destidx, element, size);
1140 tcg_temp_free_i64(tcg_tmp);
1143 /* Check that FP/Neon access is enabled. If it is, return
1144 * true. If not, emit code to generate an appropriate exception,
1145 * and return false; the caller should not emit any code for
1146 * the instruction. Note that this check must happen after all
1147 * unallocated-encoding checks (otherwise the syndrome information
1148 * for the resulting exception will be incorrect).
1150 static inline bool fp_access_check(DisasContext *s)
1152 assert(!s->fp_access_checked);
1153 s->fp_access_checked = true;
1155 if (!s->fp_excp_el) {
1156 return true;
1159 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1160 s->fp_excp_el);
1161 return false;
1164 /* Check that SVE access is enabled. If it is, return true.
1165 * If not, emit code to generate an appropriate exception and return false.
1167 bool sve_access_check(DisasContext *s)
1169 if (s->sve_excp_el) {
1170 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1171 s->sve_excp_el);
1172 return false;
1174 return fp_access_check(s);
1178 * This utility function is for doing register extension with an
1179 * optional shift. You will likely want to pass a temporary for the
1180 * destination register. See DecodeRegExtend() in the ARM ARM.
1182 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1183 int option, unsigned int shift)
1185 int extsize = extract32(option, 0, 2);
1186 bool is_signed = extract32(option, 2, 1);
1188 if (is_signed) {
1189 switch (extsize) {
1190 case 0:
1191 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1192 break;
1193 case 1:
1194 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1195 break;
1196 case 2:
1197 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1198 break;
1199 case 3:
1200 tcg_gen_mov_i64(tcg_out, tcg_in);
1201 break;
1203 } else {
1204 switch (extsize) {
1205 case 0:
1206 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1207 break;
1208 case 1:
1209 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1210 break;
1211 case 2:
1212 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1213 break;
1214 case 3:
1215 tcg_gen_mov_i64(tcg_out, tcg_in);
1216 break;
1220 if (shift) {
1221 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1225 static inline void gen_check_sp_alignment(DisasContext *s)
1227 /* The AArch64 architecture mandates that (if enabled via PSTATE
1228 * or SCTLR bits) there is a check that SP is 16-aligned on every
1229 * SP-relative load or store (with an exception generated if it is not).
1230 * In line with general QEMU practice regarding misaligned accesses,
1231 * we omit these checks for the sake of guest program performance.
1232 * This function is provided as a hook so we can more easily add these
1233 * checks in future (possibly as a "favour catching guest program bugs
1234 * over speed" user selectable option).
1239 * This provides a simple table based table lookup decoder. It is
1240 * intended to be used when the relevant bits for decode are too
1241 * awkwardly placed and switch/if based logic would be confusing and
1242 * deeply nested. Since it's a linear search through the table, tables
1243 * should be kept small.
1245 * It returns the first handler where insn & mask == pattern, or
1246 * NULL if there is no match.
1247 * The table is terminated by an empty mask (i.e. 0)
1249 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1250 uint32_t insn)
1252 const AArch64DecodeTable *tptr = table;
1254 while (tptr->mask) {
1255 if ((insn & tptr->mask) == tptr->pattern) {
1256 return tptr->disas_fn;
1258 tptr++;
1260 return NULL;
1264 * The instruction disassembly implemented here matches
1265 * the instruction encoding classifications in chapter C4
1266 * of the ARM Architecture Reference Manual (DDI0487B_a);
1267 * classification names and decode diagrams here should generally
1268 * match up with those in the manual.
1271 /* Unconditional branch (immediate)
1272 * 31 30 26 25 0
1273 * +----+-----------+-------------------------------------+
1274 * | op | 0 0 1 0 1 | imm26 |
1275 * +----+-----------+-------------------------------------+
1277 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1279 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1281 if (insn & (1U << 31)) {
1282 /* BL Branch with link */
1283 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1286 /* B Branch / BL Branch with link */
1287 gen_goto_tb(s, 0, addr);
1290 /* Compare and branch (immediate)
1291 * 31 30 25 24 23 5 4 0
1292 * +----+-------------+----+---------------------+--------+
1293 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1294 * +----+-------------+----+---------------------+--------+
1296 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1298 unsigned int sf, op, rt;
1299 uint64_t addr;
1300 TCGLabel *label_match;
1301 TCGv_i64 tcg_cmp;
1303 sf = extract32(insn, 31, 1);
1304 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1305 rt = extract32(insn, 0, 5);
1306 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1308 tcg_cmp = read_cpu_reg(s, rt, sf);
1309 label_match = gen_new_label();
1311 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1312 tcg_cmp, 0, label_match);
1314 gen_goto_tb(s, 0, s->pc);
1315 gen_set_label(label_match);
1316 gen_goto_tb(s, 1, addr);
1319 /* Test and branch (immediate)
1320 * 31 30 25 24 23 19 18 5 4 0
1321 * +----+-------------+----+-------+-------------+------+
1322 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1323 * +----+-------------+----+-------+-------------+------+
1325 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1327 unsigned int bit_pos, op, rt;
1328 uint64_t addr;
1329 TCGLabel *label_match;
1330 TCGv_i64 tcg_cmp;
1332 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1333 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1334 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1335 rt = extract32(insn, 0, 5);
1337 tcg_cmp = tcg_temp_new_i64();
1338 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1339 label_match = gen_new_label();
1340 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1341 tcg_cmp, 0, label_match);
1342 tcg_temp_free_i64(tcg_cmp);
1343 gen_goto_tb(s, 0, s->pc);
1344 gen_set_label(label_match);
1345 gen_goto_tb(s, 1, addr);
1348 /* Conditional branch (immediate)
1349 * 31 25 24 23 5 4 3 0
1350 * +---------------+----+---------------------+----+------+
1351 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1352 * +---------------+----+---------------------+----+------+
1354 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1356 unsigned int cond;
1357 uint64_t addr;
1359 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1360 unallocated_encoding(s);
1361 return;
1363 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1364 cond = extract32(insn, 0, 4);
1366 if (cond < 0x0e) {
1367 /* genuinely conditional branches */
1368 TCGLabel *label_match = gen_new_label();
1369 arm_gen_test_cc(cond, label_match);
1370 gen_goto_tb(s, 0, s->pc);
1371 gen_set_label(label_match);
1372 gen_goto_tb(s, 1, addr);
1373 } else {
1374 /* 0xe and 0xf are both "always" conditions */
1375 gen_goto_tb(s, 0, addr);
1379 /* HINT instruction group, including various allocated HINTs */
1380 static void handle_hint(DisasContext *s, uint32_t insn,
1381 unsigned int op1, unsigned int op2, unsigned int crm)
1383 unsigned int selector = crm << 3 | op2;
1385 if (op1 != 3) {
1386 unallocated_encoding(s);
1387 return;
1390 switch (selector) {
1391 case 0: /* NOP */
1392 return;
1393 case 3: /* WFI */
1394 s->base.is_jmp = DISAS_WFI;
1395 return;
1396 /* When running in MTTCG we don't generate jumps to the yield and
1397 * WFE helpers as it won't affect the scheduling of other vCPUs.
1398 * If we wanted to more completely model WFE/SEV so we don't busy
1399 * spin unnecessarily we would need to do something more involved.
1401 case 1: /* YIELD */
1402 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1403 s->base.is_jmp = DISAS_YIELD;
1405 return;
1406 case 2: /* WFE */
1407 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1408 s->base.is_jmp = DISAS_WFE;
1410 return;
1411 case 4: /* SEV */
1412 case 5: /* SEVL */
1413 /* we treat all as NOP at least for now */
1414 return;
1415 default:
1416 /* default specified as NOP equivalent */
1417 return;
1421 static void gen_clrex(DisasContext *s, uint32_t insn)
1423 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1426 /* CLREX, DSB, DMB, ISB */
1427 static void handle_sync(DisasContext *s, uint32_t insn,
1428 unsigned int op1, unsigned int op2, unsigned int crm)
1430 TCGBar bar;
1432 if (op1 != 3) {
1433 unallocated_encoding(s);
1434 return;
1437 switch (op2) {
1438 case 2: /* CLREX */
1439 gen_clrex(s, insn);
1440 return;
1441 case 4: /* DSB */
1442 case 5: /* DMB */
1443 switch (crm & 3) {
1444 case 1: /* MBReqTypes_Reads */
1445 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1446 break;
1447 case 2: /* MBReqTypes_Writes */
1448 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1449 break;
1450 default: /* MBReqTypes_All */
1451 bar = TCG_BAR_SC | TCG_MO_ALL;
1452 break;
1454 tcg_gen_mb(bar);
1455 return;
1456 case 6: /* ISB */
1457 /* We need to break the TB after this insn to execute
1458 * a self-modified code correctly and also to take
1459 * any pending interrupts immediately.
1461 gen_goto_tb(s, 0, s->pc);
1462 return;
1463 default:
1464 unallocated_encoding(s);
1465 return;
1469 /* MSR (immediate) - move immediate to processor state field */
1470 static void handle_msr_i(DisasContext *s, uint32_t insn,
1471 unsigned int op1, unsigned int op2, unsigned int crm)
1473 int op = op1 << 3 | op2;
1474 switch (op) {
1475 case 0x05: /* SPSel */
1476 if (s->current_el == 0) {
1477 unallocated_encoding(s);
1478 return;
1480 /* fall through */
1481 case 0x1e: /* DAIFSet */
1482 case 0x1f: /* DAIFClear */
1484 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1485 TCGv_i32 tcg_op = tcg_const_i32(op);
1486 gen_a64_set_pc_im(s->pc - 4);
1487 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1488 tcg_temp_free_i32(tcg_imm);
1489 tcg_temp_free_i32(tcg_op);
1490 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1491 gen_a64_set_pc_im(s->pc);
1492 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1493 break;
1495 default:
1496 unallocated_encoding(s);
1497 return;
1501 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1503 TCGv_i32 tmp = tcg_temp_new_i32();
1504 TCGv_i32 nzcv = tcg_temp_new_i32();
1506 /* build bit 31, N */
1507 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1508 /* build bit 30, Z */
1509 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1510 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1511 /* build bit 29, C */
1512 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1513 /* build bit 28, V */
1514 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1515 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1516 /* generate result */
1517 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1519 tcg_temp_free_i32(nzcv);
1520 tcg_temp_free_i32(tmp);
1523 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1526 TCGv_i32 nzcv = tcg_temp_new_i32();
1528 /* take NZCV from R[t] */
1529 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1531 /* bit 31, N */
1532 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1533 /* bit 30, Z */
1534 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1535 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1536 /* bit 29, C */
1537 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1538 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1539 /* bit 28, V */
1540 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1541 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1542 tcg_temp_free_i32(nzcv);
1545 /* MRS - move from system register
1546 * MSR (register) - move to system register
1547 * SYS
1548 * SYSL
1549 * These are all essentially the same insn in 'read' and 'write'
1550 * versions, with varying op0 fields.
1552 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1553 unsigned int op0, unsigned int op1, unsigned int op2,
1554 unsigned int crn, unsigned int crm, unsigned int rt)
1556 const ARMCPRegInfo *ri;
1557 TCGv_i64 tcg_rt;
1559 ri = get_arm_cp_reginfo(s->cp_regs,
1560 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1561 crn, crm, op0, op1, op2));
1563 if (!ri) {
1564 /* Unknown register; this might be a guest error or a QEMU
1565 * unimplemented feature.
1567 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1568 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1569 isread ? "read" : "write", op0, op1, crn, crm, op2);
1570 unallocated_encoding(s);
1571 return;
1574 /* Check access permissions */
1575 if (!cp_access_ok(s->current_el, ri, isread)) {
1576 unallocated_encoding(s);
1577 return;
1580 if (ri->accessfn) {
1581 /* Emit code to perform further access permissions checks at
1582 * runtime; this may result in an exception.
1584 TCGv_ptr tmpptr;
1585 TCGv_i32 tcg_syn, tcg_isread;
1586 uint32_t syndrome;
1588 gen_a64_set_pc_im(s->pc - 4);
1589 tmpptr = tcg_const_ptr(ri);
1590 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1591 tcg_syn = tcg_const_i32(syndrome);
1592 tcg_isread = tcg_const_i32(isread);
1593 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1594 tcg_temp_free_ptr(tmpptr);
1595 tcg_temp_free_i32(tcg_syn);
1596 tcg_temp_free_i32(tcg_isread);
1599 /* Handle special cases first */
1600 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1601 case ARM_CP_NOP:
1602 return;
1603 case ARM_CP_NZCV:
1604 tcg_rt = cpu_reg(s, rt);
1605 if (isread) {
1606 gen_get_nzcv(tcg_rt);
1607 } else {
1608 gen_set_nzcv(tcg_rt);
1610 return;
1611 case ARM_CP_CURRENTEL:
1612 /* Reads as current EL value from pstate, which is
1613 * guaranteed to be constant by the tb flags.
1615 tcg_rt = cpu_reg(s, rt);
1616 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1617 return;
1618 case ARM_CP_DC_ZVA:
1619 /* Writes clear the aligned block of memory which rt points into. */
1620 tcg_rt = cpu_reg(s, rt);
1621 gen_helper_dc_zva(cpu_env, tcg_rt);
1622 return;
1623 default:
1624 break;
1626 if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1627 return;
1629 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1630 return;
1633 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1634 gen_io_start();
1637 tcg_rt = cpu_reg(s, rt);
1639 if (isread) {
1640 if (ri->type & ARM_CP_CONST) {
1641 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1642 } else if (ri->readfn) {
1643 TCGv_ptr tmpptr;
1644 tmpptr = tcg_const_ptr(ri);
1645 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1646 tcg_temp_free_ptr(tmpptr);
1647 } else {
1648 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1650 } else {
1651 if (ri->type & ARM_CP_CONST) {
1652 /* If not forbidden by access permissions, treat as WI */
1653 return;
1654 } else if (ri->writefn) {
1655 TCGv_ptr tmpptr;
1656 tmpptr = tcg_const_ptr(ri);
1657 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1658 tcg_temp_free_ptr(tmpptr);
1659 } else {
1660 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1664 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1665 /* I/O operations must end the TB here (whether read or write) */
1666 gen_io_end();
1667 s->base.is_jmp = DISAS_UPDATE;
1668 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1669 /* We default to ending the TB on a coprocessor register write,
1670 * but allow this to be suppressed by the register definition
1671 * (usually only necessary to work around guest bugs).
1673 s->base.is_jmp = DISAS_UPDATE;
1677 /* System
1678 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1679 * +---------------------+---+-----+-----+-------+-------+-----+------+
1680 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1681 * +---------------------+---+-----+-----+-------+-------+-----+------+
1683 static void disas_system(DisasContext *s, uint32_t insn)
1685 unsigned int l, op0, op1, crn, crm, op2, rt;
1686 l = extract32(insn, 21, 1);
1687 op0 = extract32(insn, 19, 2);
1688 op1 = extract32(insn, 16, 3);
1689 crn = extract32(insn, 12, 4);
1690 crm = extract32(insn, 8, 4);
1691 op2 = extract32(insn, 5, 3);
1692 rt = extract32(insn, 0, 5);
1694 if (op0 == 0) {
1695 if (l || rt != 31) {
1696 unallocated_encoding(s);
1697 return;
1699 switch (crn) {
1700 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1701 handle_hint(s, insn, op1, op2, crm);
1702 break;
1703 case 3: /* CLREX, DSB, DMB, ISB */
1704 handle_sync(s, insn, op1, op2, crm);
1705 break;
1706 case 4: /* MSR (immediate) */
1707 handle_msr_i(s, insn, op1, op2, crm);
1708 break;
1709 default:
1710 unallocated_encoding(s);
1711 break;
1713 return;
1715 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1718 /* Exception generation
1720 * 31 24 23 21 20 5 4 2 1 0
1721 * +-----------------+-----+------------------------+-----+----+
1722 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1723 * +-----------------------+------------------------+----------+
1725 static void disas_exc(DisasContext *s, uint32_t insn)
1727 int opc = extract32(insn, 21, 3);
1728 int op2_ll = extract32(insn, 0, 5);
1729 int imm16 = extract32(insn, 5, 16);
1730 TCGv_i32 tmp;
1732 switch (opc) {
1733 case 0:
1734 /* For SVC, HVC and SMC we advance the single-step state
1735 * machine before taking the exception. This is architecturally
1736 * mandated, to ensure that single-stepping a system call
1737 * instruction works properly.
1739 switch (op2_ll) {
1740 case 1: /* SVC */
1741 gen_ss_advance(s);
1742 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1743 default_exception_el(s));
1744 break;
1745 case 2: /* HVC */
1746 if (s->current_el == 0) {
1747 unallocated_encoding(s);
1748 break;
1750 /* The pre HVC helper handles cases when HVC gets trapped
1751 * as an undefined insn by runtime configuration.
1753 gen_a64_set_pc_im(s->pc - 4);
1754 gen_helper_pre_hvc(cpu_env);
1755 gen_ss_advance(s);
1756 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1757 break;
1758 case 3: /* SMC */
1759 if (s->current_el == 0) {
1760 unallocated_encoding(s);
1761 break;
1763 gen_a64_set_pc_im(s->pc - 4);
1764 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1765 gen_helper_pre_smc(cpu_env, tmp);
1766 tcg_temp_free_i32(tmp);
1767 gen_ss_advance(s);
1768 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1769 break;
1770 default:
1771 unallocated_encoding(s);
1772 break;
1774 break;
1775 case 1:
1776 if (op2_ll != 0) {
1777 unallocated_encoding(s);
1778 break;
1780 /* BRK */
1781 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1782 break;
1783 case 2:
1784 if (op2_ll != 0) {
1785 unallocated_encoding(s);
1786 break;
1788 /* HLT. This has two purposes.
1789 * Architecturally, it is an external halting debug instruction.
1790 * Since QEMU doesn't implement external debug, we treat this as
1791 * it is required for halting debug disabled: it will UNDEF.
1792 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1794 if (semihosting_enabled() && imm16 == 0xf000) {
1795 #ifndef CONFIG_USER_ONLY
1796 /* In system mode, don't allow userspace access to semihosting,
1797 * to provide some semblance of security (and for consistency
1798 * with our 32-bit semihosting).
1800 if (s->current_el == 0) {
1801 unsupported_encoding(s, insn);
1802 break;
1804 #endif
1805 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1806 } else {
1807 unsupported_encoding(s, insn);
1809 break;
1810 case 5:
1811 if (op2_ll < 1 || op2_ll > 3) {
1812 unallocated_encoding(s);
1813 break;
1815 /* DCPS1, DCPS2, DCPS3 */
1816 unsupported_encoding(s, insn);
1817 break;
1818 default:
1819 unallocated_encoding(s);
1820 break;
1824 /* Unconditional branch (register)
1825 * 31 25 24 21 20 16 15 10 9 5 4 0
1826 * +---------------+-------+-------+-------+------+-------+
1827 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1828 * +---------------+-------+-------+-------+------+-------+
1830 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1832 unsigned int opc, op2, op3, rn, op4;
1834 opc = extract32(insn, 21, 4);
1835 op2 = extract32(insn, 16, 5);
1836 op3 = extract32(insn, 10, 6);
1837 rn = extract32(insn, 5, 5);
1838 op4 = extract32(insn, 0, 5);
1840 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1841 unallocated_encoding(s);
1842 return;
1845 switch (opc) {
1846 case 0: /* BR */
1847 case 1: /* BLR */
1848 case 2: /* RET */
1849 gen_a64_set_pc(s, cpu_reg(s, rn));
1850 /* BLR also needs to load return address */
1851 if (opc == 1) {
1852 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1854 break;
1855 case 4: /* ERET */
1856 if (s->current_el == 0) {
1857 unallocated_encoding(s);
1858 return;
1860 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1861 gen_io_start();
1863 gen_helper_exception_return(cpu_env);
1864 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1865 gen_io_end();
1867 /* Must exit loop to check un-masked IRQs */
1868 s->base.is_jmp = DISAS_EXIT;
1869 return;
1870 case 5: /* DRPS */
1871 if (rn != 0x1f) {
1872 unallocated_encoding(s);
1873 } else {
1874 unsupported_encoding(s, insn);
1876 return;
1877 default:
1878 unallocated_encoding(s);
1879 return;
1882 s->base.is_jmp = DISAS_JUMP;
1885 /* Branches, exception generating and system instructions */
1886 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1888 switch (extract32(insn, 25, 7)) {
1889 case 0x0a: case 0x0b:
1890 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1891 disas_uncond_b_imm(s, insn);
1892 break;
1893 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1894 disas_comp_b_imm(s, insn);
1895 break;
1896 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1897 disas_test_b_imm(s, insn);
1898 break;
1899 case 0x2a: /* Conditional branch (immediate) */
1900 disas_cond_b_imm(s, insn);
1901 break;
1902 case 0x6a: /* Exception generation / System */
1903 if (insn & (1 << 24)) {
1904 disas_system(s, insn);
1905 } else {
1906 disas_exc(s, insn);
1908 break;
1909 case 0x6b: /* Unconditional branch (register) */
1910 disas_uncond_b_reg(s, insn);
1911 break;
1912 default:
1913 unallocated_encoding(s);
1914 break;
1919 * Load/Store exclusive instructions are implemented by remembering
1920 * the value/address loaded, and seeing if these are the same
1921 * when the store is performed. This is not actually the architecturally
1922 * mandated semantics, but it works for typical guest code sequences
1923 * and avoids having to monitor regular stores.
1925 * The store exclusive uses the atomic cmpxchg primitives to avoid
1926 * races in multi-threaded linux-user and when MTTCG softmmu is
1927 * enabled.
1929 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1930 TCGv_i64 addr, int size, bool is_pair)
1932 int idx = get_mem_index(s);
1933 TCGMemOp memop = s->be_data;
1935 g_assert(size <= 3);
1936 if (is_pair) {
1937 g_assert(size >= 2);
1938 if (size == 2) {
1939 /* The pair must be single-copy atomic for the doubleword. */
1940 memop |= MO_64 | MO_ALIGN;
1941 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1942 if (s->be_data == MO_LE) {
1943 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
1944 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
1945 } else {
1946 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
1947 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
1949 } else {
1950 /* The pair must be single-copy atomic for *each* doubleword, not
1951 the entire quadword, however it must be quadword aligned. */
1952 memop |= MO_64;
1953 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
1954 memop | MO_ALIGN_16);
1956 TCGv_i64 addr2 = tcg_temp_new_i64();
1957 tcg_gen_addi_i64(addr2, addr, 8);
1958 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
1959 tcg_temp_free_i64(addr2);
1961 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1962 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
1964 } else {
1965 memop |= size | MO_ALIGN;
1966 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
1967 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
1969 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1972 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1973 TCGv_i64 addr, int size, int is_pair)
1975 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1976 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1977 * [addr] = {Rt};
1978 * if (is_pair) {
1979 * [addr + datasize] = {Rt2};
1981 * {Rd} = 0;
1982 * } else {
1983 * {Rd} = 1;
1985 * env->exclusive_addr = -1;
1987 TCGLabel *fail_label = gen_new_label();
1988 TCGLabel *done_label = gen_new_label();
1989 TCGv_i64 tmp;
1991 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1993 tmp = tcg_temp_new_i64();
1994 if (is_pair) {
1995 if (size == 2) {
1996 if (s->be_data == MO_LE) {
1997 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1998 } else {
1999 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2001 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2002 cpu_exclusive_val, tmp,
2003 get_mem_index(s),
2004 MO_64 | MO_ALIGN | s->be_data);
2005 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2006 } else if (s->be_data == MO_LE) {
2007 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2008 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2009 cpu_exclusive_addr,
2010 cpu_reg(s, rt),
2011 cpu_reg(s, rt2));
2012 } else {
2013 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2014 cpu_reg(s, rt), cpu_reg(s, rt2));
2016 } else {
2017 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2018 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2019 cpu_exclusive_addr,
2020 cpu_reg(s, rt),
2021 cpu_reg(s, rt2));
2022 } else {
2023 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2024 cpu_reg(s, rt), cpu_reg(s, rt2));
2027 } else {
2028 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2029 cpu_reg(s, rt), get_mem_index(s),
2030 size | MO_ALIGN | s->be_data);
2031 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2033 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2034 tcg_temp_free_i64(tmp);
2035 tcg_gen_br(done_label);
2037 gen_set_label(fail_label);
2038 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2039 gen_set_label(done_label);
2040 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2043 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2044 int rn, int size)
2046 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2047 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2048 int memidx = get_mem_index(s);
2049 TCGv_i64 addr = cpu_reg_sp(s, rn);
2051 if (rn == 31) {
2052 gen_check_sp_alignment(s);
2054 tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx,
2055 size | MO_ALIGN | s->be_data);
2058 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2059 int rn, int size)
2061 TCGv_i64 s1 = cpu_reg(s, rs);
2062 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2063 TCGv_i64 t1 = cpu_reg(s, rt);
2064 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2065 TCGv_i64 addr = cpu_reg_sp(s, rn);
2066 int memidx = get_mem_index(s);
2068 if (rn == 31) {
2069 gen_check_sp_alignment(s);
2072 if (size == 2) {
2073 TCGv_i64 cmp = tcg_temp_new_i64();
2074 TCGv_i64 val = tcg_temp_new_i64();
2076 if (s->be_data == MO_LE) {
2077 tcg_gen_concat32_i64(val, t1, t2);
2078 tcg_gen_concat32_i64(cmp, s1, s2);
2079 } else {
2080 tcg_gen_concat32_i64(val, t2, t1);
2081 tcg_gen_concat32_i64(cmp, s2, s1);
2084 tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx,
2085 MO_64 | MO_ALIGN | s->be_data);
2086 tcg_temp_free_i64(val);
2088 if (s->be_data == MO_LE) {
2089 tcg_gen_extr32_i64(s1, s2, cmp);
2090 } else {
2091 tcg_gen_extr32_i64(s2, s1, cmp);
2093 tcg_temp_free_i64(cmp);
2094 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2095 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2097 if (s->be_data == MO_LE) {
2098 gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2);
2099 } else {
2100 gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2);
2102 tcg_temp_free_i32(tcg_rs);
2103 } else {
2104 TCGv_i64 d1 = tcg_temp_new_i64();
2105 TCGv_i64 d2 = tcg_temp_new_i64();
2106 TCGv_i64 a2 = tcg_temp_new_i64();
2107 TCGv_i64 c1 = tcg_temp_new_i64();
2108 TCGv_i64 c2 = tcg_temp_new_i64();
2109 TCGv_i64 zero = tcg_const_i64(0);
2111 /* Load the two words, in memory order. */
2112 tcg_gen_qemu_ld_i64(d1, addr, memidx,
2113 MO_64 | MO_ALIGN_16 | s->be_data);
2114 tcg_gen_addi_i64(a2, addr, 8);
2115 tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data);
2117 /* Compare the two words, also in memory order. */
2118 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2119 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2120 tcg_gen_and_i64(c2, c2, c1);
2122 /* If compare equal, write back new data, else write back old data. */
2123 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2124 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2125 tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data);
2126 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2127 tcg_temp_free_i64(a2);
2128 tcg_temp_free_i64(c1);
2129 tcg_temp_free_i64(c2);
2130 tcg_temp_free_i64(zero);
2132 /* Write back the data from memory to Rs. */
2133 tcg_gen_mov_i64(s1, d1);
2134 tcg_gen_mov_i64(s2, d2);
2135 tcg_temp_free_i64(d1);
2136 tcg_temp_free_i64(d2);
2140 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2141 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2143 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2145 int opc0 = extract32(opc, 0, 1);
2146 int regsize;
2148 if (is_signed) {
2149 regsize = opc0 ? 32 : 64;
2150 } else {
2151 regsize = size == 3 ? 64 : 32;
2153 return regsize == 64;
2156 /* Load/store exclusive
2158 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2159 * +-----+-------------+----+---+----+------+----+-------+------+------+
2160 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2161 * +-----+-------------+----+---+----+------+----+-------+------+------+
2163 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2164 * L: 0 -> store, 1 -> load
2165 * o2: 0 -> exclusive, 1 -> not
2166 * o1: 0 -> single register, 1 -> register pair
2167 * o0: 1 -> load-acquire/store-release, 0 -> not
2169 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2171 int rt = extract32(insn, 0, 5);
2172 int rn = extract32(insn, 5, 5);
2173 int rt2 = extract32(insn, 10, 5);
2174 int rs = extract32(insn, 16, 5);
2175 int is_lasr = extract32(insn, 15, 1);
2176 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2177 int size = extract32(insn, 30, 2);
2178 TCGv_i64 tcg_addr;
2180 switch (o2_L_o1_o0) {
2181 case 0x0: /* STXR */
2182 case 0x1: /* STLXR */
2183 if (rn == 31) {
2184 gen_check_sp_alignment(s);
2186 if (is_lasr) {
2187 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2189 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2190 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false);
2191 return;
2193 case 0x4: /* LDXR */
2194 case 0x5: /* LDAXR */
2195 if (rn == 31) {
2196 gen_check_sp_alignment(s);
2198 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2199 s->is_ldex = true;
2200 gen_load_exclusive(s, rt, rt2, tcg_addr, size, false);
2201 if (is_lasr) {
2202 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2204 return;
2206 case 0x9: /* STLR */
2207 /* Generate ISS for non-exclusive accesses including LASR. */
2208 if (rn == 31) {
2209 gen_check_sp_alignment(s);
2211 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2212 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2213 do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt,
2214 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2215 return;
2217 case 0xd: /* LDAR */
2218 /* Generate ISS for non-exclusive accesses including LASR. */
2219 if (rn == 31) {
2220 gen_check_sp_alignment(s);
2222 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2223 do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt,
2224 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2225 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2226 return;
2228 case 0x2: case 0x3: /* CASP / STXP */
2229 if (size & 2) { /* STXP / STLXP */
2230 if (rn == 31) {
2231 gen_check_sp_alignment(s);
2233 if (is_lasr) {
2234 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2236 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2237 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true);
2238 return;
2240 if (rt2 == 31
2241 && ((rt | rs) & 1) == 0
2242 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2243 /* CASP / CASPL */
2244 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2245 return;
2247 break;
2249 case 0x6: case 0x7: /* CASPA / LDXP */
2250 if (size & 2) { /* LDXP / LDAXP */
2251 if (rn == 31) {
2252 gen_check_sp_alignment(s);
2254 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2255 s->is_ldex = true;
2256 gen_load_exclusive(s, rt, rt2, tcg_addr, size, true);
2257 if (is_lasr) {
2258 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2260 return;
2262 if (rt2 == 31
2263 && ((rt | rs) & 1) == 0
2264 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2265 /* CASPA / CASPAL */
2266 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2267 return;
2269 break;
2271 case 0xa: /* CAS */
2272 case 0xb: /* CASL */
2273 case 0xe: /* CASA */
2274 case 0xf: /* CASAL */
2275 if (rt2 == 31 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) {
2276 gen_compare_and_swap(s, rs, rt, rn, size);
2277 return;
2279 break;
2281 unallocated_encoding(s);
2285 * Load register (literal)
2287 * 31 30 29 27 26 25 24 23 5 4 0
2288 * +-----+-------+---+-----+-------------------+-------+
2289 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2290 * +-----+-------+---+-----+-------------------+-------+
2292 * V: 1 -> vector (simd/fp)
2293 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2294 * 10-> 32 bit signed, 11 -> prefetch
2295 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2297 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2299 int rt = extract32(insn, 0, 5);
2300 int64_t imm = sextract32(insn, 5, 19) << 2;
2301 bool is_vector = extract32(insn, 26, 1);
2302 int opc = extract32(insn, 30, 2);
2303 bool is_signed = false;
2304 int size = 2;
2305 TCGv_i64 tcg_rt, tcg_addr;
2307 if (is_vector) {
2308 if (opc == 3) {
2309 unallocated_encoding(s);
2310 return;
2312 size = 2 + opc;
2313 if (!fp_access_check(s)) {
2314 return;
2316 } else {
2317 if (opc == 3) {
2318 /* PRFM (literal) : prefetch */
2319 return;
2321 size = 2 + extract32(opc, 0, 1);
2322 is_signed = extract32(opc, 1, 1);
2325 tcg_rt = cpu_reg(s, rt);
2327 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2328 if (is_vector) {
2329 do_fp_ld(s, rt, tcg_addr, size);
2330 } else {
2331 /* Only unsigned 32bit loads target 32bit registers. */
2332 bool iss_sf = opc != 0;
2334 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2335 true, rt, iss_sf, false);
2337 tcg_temp_free_i64(tcg_addr);
2341 * LDNP (Load Pair - non-temporal hint)
2342 * LDP (Load Pair - non vector)
2343 * LDPSW (Load Pair Signed Word - non vector)
2344 * STNP (Store Pair - non-temporal hint)
2345 * STP (Store Pair - non vector)
2346 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2347 * LDP (Load Pair of SIMD&FP)
2348 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2349 * STP (Store Pair of SIMD&FP)
2351 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2352 * +-----+-------+---+---+-------+---+-----------------------------+
2353 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2354 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2356 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2357 * LDPSW 01
2358 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2359 * V: 0 -> GPR, 1 -> Vector
2360 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2361 * 10 -> signed offset, 11 -> pre-index
2362 * L: 0 -> Store 1 -> Load
2364 * Rt, Rt2 = GPR or SIMD registers to be stored
2365 * Rn = general purpose register containing address
2366 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2368 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2370 int rt = extract32(insn, 0, 5);
2371 int rn = extract32(insn, 5, 5);
2372 int rt2 = extract32(insn, 10, 5);
2373 uint64_t offset = sextract64(insn, 15, 7);
2374 int index = extract32(insn, 23, 2);
2375 bool is_vector = extract32(insn, 26, 1);
2376 bool is_load = extract32(insn, 22, 1);
2377 int opc = extract32(insn, 30, 2);
2379 bool is_signed = false;
2380 bool postindex = false;
2381 bool wback = false;
2383 TCGv_i64 tcg_addr; /* calculated address */
2384 int size;
2386 if (opc == 3) {
2387 unallocated_encoding(s);
2388 return;
2391 if (is_vector) {
2392 size = 2 + opc;
2393 } else {
2394 size = 2 + extract32(opc, 1, 1);
2395 is_signed = extract32(opc, 0, 1);
2396 if (!is_load && is_signed) {
2397 unallocated_encoding(s);
2398 return;
2402 switch (index) {
2403 case 1: /* post-index */
2404 postindex = true;
2405 wback = true;
2406 break;
2407 case 0:
2408 /* signed offset with "non-temporal" hint. Since we don't emulate
2409 * caches we don't care about hints to the cache system about
2410 * data access patterns, and handle this identically to plain
2411 * signed offset.
2413 if (is_signed) {
2414 /* There is no non-temporal-hint version of LDPSW */
2415 unallocated_encoding(s);
2416 return;
2418 postindex = false;
2419 break;
2420 case 2: /* signed offset, rn not updated */
2421 postindex = false;
2422 break;
2423 case 3: /* pre-index */
2424 postindex = false;
2425 wback = true;
2426 break;
2429 if (is_vector && !fp_access_check(s)) {
2430 return;
2433 offset <<= size;
2435 if (rn == 31) {
2436 gen_check_sp_alignment(s);
2439 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2441 if (!postindex) {
2442 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2445 if (is_vector) {
2446 if (is_load) {
2447 do_fp_ld(s, rt, tcg_addr, size);
2448 } else {
2449 do_fp_st(s, rt, tcg_addr, size);
2451 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2452 if (is_load) {
2453 do_fp_ld(s, rt2, tcg_addr, size);
2454 } else {
2455 do_fp_st(s, rt2, tcg_addr, size);
2457 } else {
2458 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2459 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2461 if (is_load) {
2462 TCGv_i64 tmp = tcg_temp_new_i64();
2464 /* Do not modify tcg_rt before recognizing any exception
2465 * from the second load.
2467 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2468 false, 0, false, false);
2469 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2470 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2471 false, 0, false, false);
2473 tcg_gen_mov_i64(tcg_rt, tmp);
2474 tcg_temp_free_i64(tmp);
2475 } else {
2476 do_gpr_st(s, tcg_rt, tcg_addr, size,
2477 false, 0, false, false);
2478 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2479 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2480 false, 0, false, false);
2484 if (wback) {
2485 if (postindex) {
2486 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2487 } else {
2488 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2490 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2495 * Load/store (immediate post-indexed)
2496 * Load/store (immediate pre-indexed)
2497 * Load/store (unscaled immediate)
2499 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2500 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2501 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2502 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2504 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2505 10 -> unprivileged
2506 * V = 0 -> non-vector
2507 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2508 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2510 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2511 int opc,
2512 int size,
2513 int rt,
2514 bool is_vector)
2516 int rn = extract32(insn, 5, 5);
2517 int imm9 = sextract32(insn, 12, 9);
2518 int idx = extract32(insn, 10, 2);
2519 bool is_signed = false;
2520 bool is_store = false;
2521 bool is_extended = false;
2522 bool is_unpriv = (idx == 2);
2523 bool iss_valid = !is_vector;
2524 bool post_index;
2525 bool writeback;
2527 TCGv_i64 tcg_addr;
2529 if (is_vector) {
2530 size |= (opc & 2) << 1;
2531 if (size > 4 || is_unpriv) {
2532 unallocated_encoding(s);
2533 return;
2535 is_store = ((opc & 1) == 0);
2536 if (!fp_access_check(s)) {
2537 return;
2539 } else {
2540 if (size == 3 && opc == 2) {
2541 /* PRFM - prefetch */
2542 if (is_unpriv) {
2543 unallocated_encoding(s);
2544 return;
2546 return;
2548 if (opc == 3 && size > 1) {
2549 unallocated_encoding(s);
2550 return;
2552 is_store = (opc == 0);
2553 is_signed = extract32(opc, 1, 1);
2554 is_extended = (size < 3) && extract32(opc, 0, 1);
2557 switch (idx) {
2558 case 0:
2559 case 2:
2560 post_index = false;
2561 writeback = false;
2562 break;
2563 case 1:
2564 post_index = true;
2565 writeback = true;
2566 break;
2567 case 3:
2568 post_index = false;
2569 writeback = true;
2570 break;
2571 default:
2572 g_assert_not_reached();
2575 if (rn == 31) {
2576 gen_check_sp_alignment(s);
2578 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2580 if (!post_index) {
2581 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2584 if (is_vector) {
2585 if (is_store) {
2586 do_fp_st(s, rt, tcg_addr, size);
2587 } else {
2588 do_fp_ld(s, rt, tcg_addr, size);
2590 } else {
2591 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2592 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2593 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2595 if (is_store) {
2596 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2597 iss_valid, rt, iss_sf, false);
2598 } else {
2599 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2600 is_signed, is_extended, memidx,
2601 iss_valid, rt, iss_sf, false);
2605 if (writeback) {
2606 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2607 if (post_index) {
2608 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2610 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2615 * Load/store (register offset)
2617 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2618 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2619 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2620 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2622 * For non-vector:
2623 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2624 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2625 * For vector:
2626 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2627 * opc<0>: 0 -> store, 1 -> load
2628 * V: 1 -> vector/simd
2629 * opt: extend encoding (see DecodeRegExtend)
2630 * S: if S=1 then scale (essentially index by sizeof(size))
2631 * Rt: register to transfer into/out of
2632 * Rn: address register or SP for base
2633 * Rm: offset register or ZR for offset
2635 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2636 int opc,
2637 int size,
2638 int rt,
2639 bool is_vector)
2641 int rn = extract32(insn, 5, 5);
2642 int shift = extract32(insn, 12, 1);
2643 int rm = extract32(insn, 16, 5);
2644 int opt = extract32(insn, 13, 3);
2645 bool is_signed = false;
2646 bool is_store = false;
2647 bool is_extended = false;
2649 TCGv_i64 tcg_rm;
2650 TCGv_i64 tcg_addr;
2652 if (extract32(opt, 1, 1) == 0) {
2653 unallocated_encoding(s);
2654 return;
2657 if (is_vector) {
2658 size |= (opc & 2) << 1;
2659 if (size > 4) {
2660 unallocated_encoding(s);
2661 return;
2663 is_store = !extract32(opc, 0, 1);
2664 if (!fp_access_check(s)) {
2665 return;
2667 } else {
2668 if (size == 3 && opc == 2) {
2669 /* PRFM - prefetch */
2670 return;
2672 if (opc == 3 && size > 1) {
2673 unallocated_encoding(s);
2674 return;
2676 is_store = (opc == 0);
2677 is_signed = extract32(opc, 1, 1);
2678 is_extended = (size < 3) && extract32(opc, 0, 1);
2681 if (rn == 31) {
2682 gen_check_sp_alignment(s);
2684 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2686 tcg_rm = read_cpu_reg(s, rm, 1);
2687 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2689 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2691 if (is_vector) {
2692 if (is_store) {
2693 do_fp_st(s, rt, tcg_addr, size);
2694 } else {
2695 do_fp_ld(s, rt, tcg_addr, size);
2697 } else {
2698 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2699 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2700 if (is_store) {
2701 do_gpr_st(s, tcg_rt, tcg_addr, size,
2702 true, rt, iss_sf, false);
2703 } else {
2704 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2705 is_signed, is_extended,
2706 true, rt, iss_sf, false);
2712 * Load/store (unsigned immediate)
2714 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2715 * +----+-------+---+-----+-----+------------+-------+------+
2716 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2717 * +----+-------+---+-----+-----+------------+-------+------+
2719 * For non-vector:
2720 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2721 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2722 * For vector:
2723 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2724 * opc<0>: 0 -> store, 1 -> load
2725 * Rn: base address register (inc SP)
2726 * Rt: target register
2728 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2729 int opc,
2730 int size,
2731 int rt,
2732 bool is_vector)
2734 int rn = extract32(insn, 5, 5);
2735 unsigned int imm12 = extract32(insn, 10, 12);
2736 unsigned int offset;
2738 TCGv_i64 tcg_addr;
2740 bool is_store;
2741 bool is_signed = false;
2742 bool is_extended = false;
2744 if (is_vector) {
2745 size |= (opc & 2) << 1;
2746 if (size > 4) {
2747 unallocated_encoding(s);
2748 return;
2750 is_store = !extract32(opc, 0, 1);
2751 if (!fp_access_check(s)) {
2752 return;
2754 } else {
2755 if (size == 3 && opc == 2) {
2756 /* PRFM - prefetch */
2757 return;
2759 if (opc == 3 && size > 1) {
2760 unallocated_encoding(s);
2761 return;
2763 is_store = (opc == 0);
2764 is_signed = extract32(opc, 1, 1);
2765 is_extended = (size < 3) && extract32(opc, 0, 1);
2768 if (rn == 31) {
2769 gen_check_sp_alignment(s);
2771 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2772 offset = imm12 << size;
2773 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2775 if (is_vector) {
2776 if (is_store) {
2777 do_fp_st(s, rt, tcg_addr, size);
2778 } else {
2779 do_fp_ld(s, rt, tcg_addr, size);
2781 } else {
2782 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2783 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2784 if (is_store) {
2785 do_gpr_st(s, tcg_rt, tcg_addr, size,
2786 true, rt, iss_sf, false);
2787 } else {
2788 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2789 true, rt, iss_sf, false);
2794 /* Atomic memory operations
2796 * 31 30 27 26 24 22 21 16 15 12 10 5 0
2797 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
2798 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
2799 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
2801 * Rt: the result register
2802 * Rn: base address or SP
2803 * Rs: the source register for the operation
2804 * V: vector flag (always 0 as of v8.3)
2805 * A: acquire flag
2806 * R: release flag
2808 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
2809 int size, int rt, bool is_vector)
2811 int rs = extract32(insn, 16, 5);
2812 int rn = extract32(insn, 5, 5);
2813 int o3_opc = extract32(insn, 12, 4);
2814 int feature = ARM_FEATURE_V8_ATOMICS;
2815 TCGv_i64 tcg_rn, tcg_rs;
2816 AtomicThreeOpFn *fn;
2818 if (is_vector) {
2819 unallocated_encoding(s);
2820 return;
2822 switch (o3_opc) {
2823 case 000: /* LDADD */
2824 fn = tcg_gen_atomic_fetch_add_i64;
2825 break;
2826 case 001: /* LDCLR */
2827 fn = tcg_gen_atomic_fetch_and_i64;
2828 break;
2829 case 002: /* LDEOR */
2830 fn = tcg_gen_atomic_fetch_xor_i64;
2831 break;
2832 case 003: /* LDSET */
2833 fn = tcg_gen_atomic_fetch_or_i64;
2834 break;
2835 case 004: /* LDSMAX */
2836 fn = tcg_gen_atomic_fetch_smax_i64;
2837 break;
2838 case 005: /* LDSMIN */
2839 fn = tcg_gen_atomic_fetch_smin_i64;
2840 break;
2841 case 006: /* LDUMAX */
2842 fn = tcg_gen_atomic_fetch_umax_i64;
2843 break;
2844 case 007: /* LDUMIN */
2845 fn = tcg_gen_atomic_fetch_umin_i64;
2846 break;
2847 case 010: /* SWP */
2848 fn = tcg_gen_atomic_xchg_i64;
2849 break;
2850 default:
2851 unallocated_encoding(s);
2852 return;
2854 if (!arm_dc_feature(s, feature)) {
2855 unallocated_encoding(s);
2856 return;
2859 if (rn == 31) {
2860 gen_check_sp_alignment(s);
2862 tcg_rn = cpu_reg_sp(s, rn);
2863 tcg_rs = read_cpu_reg(s, rs, true);
2865 if (o3_opc == 1) { /* LDCLR */
2866 tcg_gen_not_i64(tcg_rs, tcg_rs);
2869 /* The tcg atomic primitives are all full barriers. Therefore we
2870 * can ignore the Acquire and Release bits of this instruction.
2872 fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s),
2873 s->be_data | size | MO_ALIGN);
2876 /* Load/store register (all forms) */
2877 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2879 int rt = extract32(insn, 0, 5);
2880 int opc = extract32(insn, 22, 2);
2881 bool is_vector = extract32(insn, 26, 1);
2882 int size = extract32(insn, 30, 2);
2884 switch (extract32(insn, 24, 2)) {
2885 case 0:
2886 if (extract32(insn, 21, 1) == 0) {
2887 /* Load/store register (unscaled immediate)
2888 * Load/store immediate pre/post-indexed
2889 * Load/store register unprivileged
2891 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2892 return;
2894 switch (extract32(insn, 10, 2)) {
2895 case 0:
2896 disas_ldst_atomic(s, insn, size, rt, is_vector);
2897 return;
2898 case 2:
2899 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2900 return;
2902 break;
2903 case 1:
2904 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2905 return;
2907 unallocated_encoding(s);
2910 /* AdvSIMD load/store multiple structures
2912 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2913 * +---+---+---------------+---+-------------+--------+------+------+------+
2914 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2915 * +---+---+---------------+---+-------------+--------+------+------+------+
2917 * AdvSIMD load/store multiple structures (post-indexed)
2919 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2920 * +---+---+---------------+---+---+---------+--------+------+------+------+
2921 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2922 * +---+---+---------------+---+---+---------+--------+------+------+------+
2924 * Rt: first (or only) SIMD&FP register to be transferred
2925 * Rn: base address or SP
2926 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2928 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2930 int rt = extract32(insn, 0, 5);
2931 int rn = extract32(insn, 5, 5);
2932 int size = extract32(insn, 10, 2);
2933 int opcode = extract32(insn, 12, 4);
2934 bool is_store = !extract32(insn, 22, 1);
2935 bool is_postidx = extract32(insn, 23, 1);
2936 bool is_q = extract32(insn, 30, 1);
2937 TCGv_i64 tcg_addr, tcg_rn;
2939 int ebytes = 1 << size;
2940 int elements = (is_q ? 128 : 64) / (8 << size);
2941 int rpt; /* num iterations */
2942 int selem; /* structure elements */
2943 int r;
2945 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2946 unallocated_encoding(s);
2947 return;
2950 /* From the shared decode logic */
2951 switch (opcode) {
2952 case 0x0:
2953 rpt = 1;
2954 selem = 4;
2955 break;
2956 case 0x2:
2957 rpt = 4;
2958 selem = 1;
2959 break;
2960 case 0x4:
2961 rpt = 1;
2962 selem = 3;
2963 break;
2964 case 0x6:
2965 rpt = 3;
2966 selem = 1;
2967 break;
2968 case 0x7:
2969 rpt = 1;
2970 selem = 1;
2971 break;
2972 case 0x8:
2973 rpt = 1;
2974 selem = 2;
2975 break;
2976 case 0xa:
2977 rpt = 2;
2978 selem = 1;
2979 break;
2980 default:
2981 unallocated_encoding(s);
2982 return;
2985 if (size == 3 && !is_q && selem != 1) {
2986 /* reserved */
2987 unallocated_encoding(s);
2988 return;
2991 if (!fp_access_check(s)) {
2992 return;
2995 if (rn == 31) {
2996 gen_check_sp_alignment(s);
2999 tcg_rn = cpu_reg_sp(s, rn);
3000 tcg_addr = tcg_temp_new_i64();
3001 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3003 for (r = 0; r < rpt; r++) {
3004 int e;
3005 for (e = 0; e < elements; e++) {
3006 int tt = (rt + r) % 32;
3007 int xs;
3008 for (xs = 0; xs < selem; xs++) {
3009 if (is_store) {
3010 do_vec_st(s, tt, e, tcg_addr, size);
3011 } else {
3012 do_vec_ld(s, tt, e, tcg_addr, size);
3014 /* For non-quad operations, setting a slice of the low
3015 * 64 bits of the register clears the high 64 bits (in
3016 * the ARM ARM pseudocode this is implicit in the fact
3017 * that 'rval' is a 64 bit wide variable).
3018 * For quad operations, we might still need to zero the
3019 * high bits of SVE. We optimize by noticing that we only
3020 * need to do this the first time we touch a register.
3022 if (e == 0 && (r == 0 || xs == selem - 1)) {
3023 clear_vec_high(s, is_q, tt);
3026 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3027 tt = (tt + 1) % 32;
3032 if (is_postidx) {
3033 int rm = extract32(insn, 16, 5);
3034 if (rm == 31) {
3035 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3036 } else {
3037 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3040 tcg_temp_free_i64(tcg_addr);
3043 /* AdvSIMD load/store single structure
3045 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3046 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3047 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3048 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3050 * AdvSIMD load/store single structure (post-indexed)
3052 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3053 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3054 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3055 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3057 * Rt: first (or only) SIMD&FP register to be transferred
3058 * Rn: base address or SP
3059 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3060 * index = encoded in Q:S:size dependent on size
3062 * lane_size = encoded in R, opc
3063 * transfer width = encoded in opc, S, size
3065 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3067 int rt = extract32(insn, 0, 5);
3068 int rn = extract32(insn, 5, 5);
3069 int size = extract32(insn, 10, 2);
3070 int S = extract32(insn, 12, 1);
3071 int opc = extract32(insn, 13, 3);
3072 int R = extract32(insn, 21, 1);
3073 int is_load = extract32(insn, 22, 1);
3074 int is_postidx = extract32(insn, 23, 1);
3075 int is_q = extract32(insn, 30, 1);
3077 int scale = extract32(opc, 1, 2);
3078 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3079 bool replicate = false;
3080 int index = is_q << 3 | S << 2 | size;
3081 int ebytes, xs;
3082 TCGv_i64 tcg_addr, tcg_rn;
3084 switch (scale) {
3085 case 3:
3086 if (!is_load || S) {
3087 unallocated_encoding(s);
3088 return;
3090 scale = size;
3091 replicate = true;
3092 break;
3093 case 0:
3094 break;
3095 case 1:
3096 if (extract32(size, 0, 1)) {
3097 unallocated_encoding(s);
3098 return;
3100 index >>= 1;
3101 break;
3102 case 2:
3103 if (extract32(size, 1, 1)) {
3104 unallocated_encoding(s);
3105 return;
3107 if (!extract32(size, 0, 1)) {
3108 index >>= 2;
3109 } else {
3110 if (S) {
3111 unallocated_encoding(s);
3112 return;
3114 index >>= 3;
3115 scale = 3;
3117 break;
3118 default:
3119 g_assert_not_reached();
3122 if (!fp_access_check(s)) {
3123 return;
3126 ebytes = 1 << scale;
3128 if (rn == 31) {
3129 gen_check_sp_alignment(s);
3132 tcg_rn = cpu_reg_sp(s, rn);
3133 tcg_addr = tcg_temp_new_i64();
3134 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3136 for (xs = 0; xs < selem; xs++) {
3137 if (replicate) {
3138 /* Load and replicate to all elements */
3139 uint64_t mulconst;
3140 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3142 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
3143 get_mem_index(s), s->be_data + scale);
3144 switch (scale) {
3145 case 0:
3146 mulconst = 0x0101010101010101ULL;
3147 break;
3148 case 1:
3149 mulconst = 0x0001000100010001ULL;
3150 break;
3151 case 2:
3152 mulconst = 0x0000000100000001ULL;
3153 break;
3154 case 3:
3155 mulconst = 0;
3156 break;
3157 default:
3158 g_assert_not_reached();
3160 if (mulconst) {
3161 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
3163 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
3164 if (is_q) {
3165 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
3167 tcg_temp_free_i64(tcg_tmp);
3168 clear_vec_high(s, is_q, rt);
3169 } else {
3170 /* Load/store one element per register */
3171 if (is_load) {
3172 do_vec_ld(s, rt, index, tcg_addr, scale);
3173 } else {
3174 do_vec_st(s, rt, index, tcg_addr, scale);
3177 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3178 rt = (rt + 1) % 32;
3181 if (is_postidx) {
3182 int rm = extract32(insn, 16, 5);
3183 if (rm == 31) {
3184 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3185 } else {
3186 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3189 tcg_temp_free_i64(tcg_addr);
3192 /* Loads and stores */
3193 static void disas_ldst(DisasContext *s, uint32_t insn)
3195 switch (extract32(insn, 24, 6)) {
3196 case 0x08: /* Load/store exclusive */
3197 disas_ldst_excl(s, insn);
3198 break;
3199 case 0x18: case 0x1c: /* Load register (literal) */
3200 disas_ld_lit(s, insn);
3201 break;
3202 case 0x28: case 0x29:
3203 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3204 disas_ldst_pair(s, insn);
3205 break;
3206 case 0x38: case 0x39:
3207 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3208 disas_ldst_reg(s, insn);
3209 break;
3210 case 0x0c: /* AdvSIMD load/store multiple structures */
3211 disas_ldst_multiple_struct(s, insn);
3212 break;
3213 case 0x0d: /* AdvSIMD load/store single structure */
3214 disas_ldst_single_struct(s, insn);
3215 break;
3216 default:
3217 unallocated_encoding(s);
3218 break;
3222 /* PC-rel. addressing
3223 * 31 30 29 28 24 23 5 4 0
3224 * +----+-------+-----------+-------------------+------+
3225 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3226 * +----+-------+-----------+-------------------+------+
3228 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3230 unsigned int page, rd;
3231 uint64_t base;
3232 uint64_t offset;
3234 page = extract32(insn, 31, 1);
3235 /* SignExtend(immhi:immlo) -> offset */
3236 offset = sextract64(insn, 5, 19);
3237 offset = offset << 2 | extract32(insn, 29, 2);
3238 rd = extract32(insn, 0, 5);
3239 base = s->pc - 4;
3241 if (page) {
3242 /* ADRP (page based) */
3243 base &= ~0xfff;
3244 offset <<= 12;
3247 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3251 * Add/subtract (immediate)
3253 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3254 * +--+--+--+-----------+-----+-------------+-----+-----+
3255 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3256 * +--+--+--+-----------+-----+-------------+-----+-----+
3258 * sf: 0 -> 32bit, 1 -> 64bit
3259 * op: 0 -> add , 1 -> sub
3260 * S: 1 -> set flags
3261 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3263 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3265 int rd = extract32(insn, 0, 5);
3266 int rn = extract32(insn, 5, 5);
3267 uint64_t imm = extract32(insn, 10, 12);
3268 int shift = extract32(insn, 22, 2);
3269 bool setflags = extract32(insn, 29, 1);
3270 bool sub_op = extract32(insn, 30, 1);
3271 bool is_64bit = extract32(insn, 31, 1);
3273 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3274 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3275 TCGv_i64 tcg_result;
3277 switch (shift) {
3278 case 0x0:
3279 break;
3280 case 0x1:
3281 imm <<= 12;
3282 break;
3283 default:
3284 unallocated_encoding(s);
3285 return;
3288 tcg_result = tcg_temp_new_i64();
3289 if (!setflags) {
3290 if (sub_op) {
3291 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3292 } else {
3293 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3295 } else {
3296 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3297 if (sub_op) {
3298 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3299 } else {
3300 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3302 tcg_temp_free_i64(tcg_imm);
3305 if (is_64bit) {
3306 tcg_gen_mov_i64(tcg_rd, tcg_result);
3307 } else {
3308 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3311 tcg_temp_free_i64(tcg_result);
3314 /* The input should be a value in the bottom e bits (with higher
3315 * bits zero); returns that value replicated into every element
3316 * of size e in a 64 bit integer.
3318 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3320 assert(e != 0);
3321 while (e < 64) {
3322 mask |= mask << e;
3323 e *= 2;
3325 return mask;
3328 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3329 static inline uint64_t bitmask64(unsigned int length)
3331 assert(length > 0 && length <= 64);
3332 return ~0ULL >> (64 - length);
3335 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3336 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3337 * value (ie should cause a guest UNDEF exception), and true if they are
3338 * valid, in which case the decoded bit pattern is written to result.
3340 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3341 unsigned int imms, unsigned int immr)
3343 uint64_t mask;
3344 unsigned e, levels, s, r;
3345 int len;
3347 assert(immn < 2 && imms < 64 && immr < 64);
3349 /* The bit patterns we create here are 64 bit patterns which
3350 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3351 * 64 bits each. Each element contains the same value: a run
3352 * of between 1 and e-1 non-zero bits, rotated within the
3353 * element by between 0 and e-1 bits.
3355 * The element size and run length are encoded into immn (1 bit)
3356 * and imms (6 bits) as follows:
3357 * 64 bit elements: immn = 1, imms = <length of run - 1>
3358 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3359 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3360 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3361 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3362 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3363 * Notice that immn = 0, imms = 11111x is the only combination
3364 * not covered by one of the above options; this is reserved.
3365 * Further, <length of run - 1> all-ones is a reserved pattern.
3367 * In all cases the rotation is by immr % e (and immr is 6 bits).
3370 /* First determine the element size */
3371 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3372 if (len < 1) {
3373 /* This is the immn == 0, imms == 0x11111x case */
3374 return false;
3376 e = 1 << len;
3378 levels = e - 1;
3379 s = imms & levels;
3380 r = immr & levels;
3382 if (s == levels) {
3383 /* <length of run - 1> mustn't be all-ones. */
3384 return false;
3387 /* Create the value of one element: s+1 set bits rotated
3388 * by r within the element (which is e bits wide)...
3390 mask = bitmask64(s + 1);
3391 if (r) {
3392 mask = (mask >> r) | (mask << (e - r));
3393 mask &= bitmask64(e);
3395 /* ...then replicate the element over the whole 64 bit value */
3396 mask = bitfield_replicate(mask, e);
3397 *result = mask;
3398 return true;
3401 /* Logical (immediate)
3402 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3403 * +----+-----+-------------+---+------+------+------+------+
3404 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3405 * +----+-----+-------------+---+------+------+------+------+
3407 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3409 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3410 TCGv_i64 tcg_rd, tcg_rn;
3411 uint64_t wmask;
3412 bool is_and = false;
3414 sf = extract32(insn, 31, 1);
3415 opc = extract32(insn, 29, 2);
3416 is_n = extract32(insn, 22, 1);
3417 immr = extract32(insn, 16, 6);
3418 imms = extract32(insn, 10, 6);
3419 rn = extract32(insn, 5, 5);
3420 rd = extract32(insn, 0, 5);
3422 if (!sf && is_n) {
3423 unallocated_encoding(s);
3424 return;
3427 if (opc == 0x3) { /* ANDS */
3428 tcg_rd = cpu_reg(s, rd);
3429 } else {
3430 tcg_rd = cpu_reg_sp(s, rd);
3432 tcg_rn = cpu_reg(s, rn);
3434 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3435 /* some immediate field values are reserved */
3436 unallocated_encoding(s);
3437 return;
3440 if (!sf) {
3441 wmask &= 0xffffffff;
3444 switch (opc) {
3445 case 0x3: /* ANDS */
3446 case 0x0: /* AND */
3447 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3448 is_and = true;
3449 break;
3450 case 0x1: /* ORR */
3451 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3452 break;
3453 case 0x2: /* EOR */
3454 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3455 break;
3456 default:
3457 assert(FALSE); /* must handle all above */
3458 break;
3461 if (!sf && !is_and) {
3462 /* zero extend final result; we know we can skip this for AND
3463 * since the immediate had the high 32 bits clear.
3465 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3468 if (opc == 3) { /* ANDS */
3469 gen_logic_CC(sf, tcg_rd);
3474 * Move wide (immediate)
3476 * 31 30 29 28 23 22 21 20 5 4 0
3477 * +--+-----+-------------+-----+----------------+------+
3478 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3479 * +--+-----+-------------+-----+----------------+------+
3481 * sf: 0 -> 32 bit, 1 -> 64 bit
3482 * opc: 00 -> N, 10 -> Z, 11 -> K
3483 * hw: shift/16 (0,16, and sf only 32, 48)
3485 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3487 int rd = extract32(insn, 0, 5);
3488 uint64_t imm = extract32(insn, 5, 16);
3489 int sf = extract32(insn, 31, 1);
3490 int opc = extract32(insn, 29, 2);
3491 int pos = extract32(insn, 21, 2) << 4;
3492 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3493 TCGv_i64 tcg_imm;
3495 if (!sf && (pos >= 32)) {
3496 unallocated_encoding(s);
3497 return;
3500 switch (opc) {
3501 case 0: /* MOVN */
3502 case 2: /* MOVZ */
3503 imm <<= pos;
3504 if (opc == 0) {
3505 imm = ~imm;
3507 if (!sf) {
3508 imm &= 0xffffffffu;
3510 tcg_gen_movi_i64(tcg_rd, imm);
3511 break;
3512 case 3: /* MOVK */
3513 tcg_imm = tcg_const_i64(imm);
3514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3515 tcg_temp_free_i64(tcg_imm);
3516 if (!sf) {
3517 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3519 break;
3520 default:
3521 unallocated_encoding(s);
3522 break;
3526 /* Bitfield
3527 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3528 * +----+-----+-------------+---+------+------+------+------+
3529 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3530 * +----+-----+-------------+---+------+------+------+------+
3532 static void disas_bitfield(DisasContext *s, uint32_t insn)
3534 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3535 TCGv_i64 tcg_rd, tcg_tmp;
3537 sf = extract32(insn, 31, 1);
3538 opc = extract32(insn, 29, 2);
3539 n = extract32(insn, 22, 1);
3540 ri = extract32(insn, 16, 6);
3541 si = extract32(insn, 10, 6);
3542 rn = extract32(insn, 5, 5);
3543 rd = extract32(insn, 0, 5);
3544 bitsize = sf ? 64 : 32;
3546 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3547 unallocated_encoding(s);
3548 return;
3551 tcg_rd = cpu_reg(s, rd);
3553 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3554 to be smaller than bitsize, we'll never reference data outside the
3555 low 32-bits anyway. */
3556 tcg_tmp = read_cpu_reg(s, rn, 1);
3558 /* Recognize simple(r) extractions. */
3559 if (si >= ri) {
3560 /* Wd<s-r:0> = Wn<s:r> */
3561 len = (si - ri) + 1;
3562 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3563 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3564 goto done;
3565 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3566 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3567 return;
3569 /* opc == 1, BXFIL fall through to deposit */
3570 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3571 pos = 0;
3572 } else {
3573 /* Handle the ri > si case with a deposit
3574 * Wd<32+s-r,32-r> = Wn<s:0>
3576 len = si + 1;
3577 pos = (bitsize - ri) & (bitsize - 1);
3580 if (opc == 0 && len < ri) {
3581 /* SBFM: sign extend the destination field from len to fill
3582 the balance of the word. Let the deposit below insert all
3583 of those sign bits. */
3584 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3585 len = ri;
3588 if (opc == 1) { /* BFM, BXFIL */
3589 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3590 } else {
3591 /* SBFM or UBFM: We start with zero, and we haven't modified
3592 any bits outside bitsize, therefore the zero-extension
3593 below is unneeded. */
3594 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3595 return;
3598 done:
3599 if (!sf) { /* zero extend final result */
3600 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3604 /* Extract
3605 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3606 * +----+------+-------------+---+----+------+--------+------+------+
3607 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3608 * +----+------+-------------+---+----+------+--------+------+------+
3610 static void disas_extract(DisasContext *s, uint32_t insn)
3612 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3614 sf = extract32(insn, 31, 1);
3615 n = extract32(insn, 22, 1);
3616 rm = extract32(insn, 16, 5);
3617 imm = extract32(insn, 10, 6);
3618 rn = extract32(insn, 5, 5);
3619 rd = extract32(insn, 0, 5);
3620 op21 = extract32(insn, 29, 2);
3621 op0 = extract32(insn, 21, 1);
3622 bitsize = sf ? 64 : 32;
3624 if (sf != n || op21 || op0 || imm >= bitsize) {
3625 unallocated_encoding(s);
3626 } else {
3627 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3629 tcg_rd = cpu_reg(s, rd);
3631 if (unlikely(imm == 0)) {
3632 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3633 * so an extract from bit 0 is a special case.
3635 if (sf) {
3636 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3637 } else {
3638 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3640 } else if (rm == rn) { /* ROR */
3641 tcg_rm = cpu_reg(s, rm);
3642 if (sf) {
3643 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3644 } else {
3645 TCGv_i32 tmp = tcg_temp_new_i32();
3646 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3647 tcg_gen_rotri_i32(tmp, tmp, imm);
3648 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3649 tcg_temp_free_i32(tmp);
3651 } else {
3652 tcg_rm = read_cpu_reg(s, rm, sf);
3653 tcg_rn = read_cpu_reg(s, rn, sf);
3654 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3655 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3656 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3657 if (!sf) {
3658 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3664 /* Data processing - immediate */
3665 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3667 switch (extract32(insn, 23, 6)) {
3668 case 0x20: case 0x21: /* PC-rel. addressing */
3669 disas_pc_rel_adr(s, insn);
3670 break;
3671 case 0x22: case 0x23: /* Add/subtract (immediate) */
3672 disas_add_sub_imm(s, insn);
3673 break;
3674 case 0x24: /* Logical (immediate) */
3675 disas_logic_imm(s, insn);
3676 break;
3677 case 0x25: /* Move wide (immediate) */
3678 disas_movw_imm(s, insn);
3679 break;
3680 case 0x26: /* Bitfield */
3681 disas_bitfield(s, insn);
3682 break;
3683 case 0x27: /* Extract */
3684 disas_extract(s, insn);
3685 break;
3686 default:
3687 unallocated_encoding(s);
3688 break;
3692 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3693 * Note that it is the caller's responsibility to ensure that the
3694 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3695 * mandated semantics for out of range shifts.
3697 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3698 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3700 switch (shift_type) {
3701 case A64_SHIFT_TYPE_LSL:
3702 tcg_gen_shl_i64(dst, src, shift_amount);
3703 break;
3704 case A64_SHIFT_TYPE_LSR:
3705 tcg_gen_shr_i64(dst, src, shift_amount);
3706 break;
3707 case A64_SHIFT_TYPE_ASR:
3708 if (!sf) {
3709 tcg_gen_ext32s_i64(dst, src);
3711 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3712 break;
3713 case A64_SHIFT_TYPE_ROR:
3714 if (sf) {
3715 tcg_gen_rotr_i64(dst, src, shift_amount);
3716 } else {
3717 TCGv_i32 t0, t1;
3718 t0 = tcg_temp_new_i32();
3719 t1 = tcg_temp_new_i32();
3720 tcg_gen_extrl_i64_i32(t0, src);
3721 tcg_gen_extrl_i64_i32(t1, shift_amount);
3722 tcg_gen_rotr_i32(t0, t0, t1);
3723 tcg_gen_extu_i32_i64(dst, t0);
3724 tcg_temp_free_i32(t0);
3725 tcg_temp_free_i32(t1);
3727 break;
3728 default:
3729 assert(FALSE); /* all shift types should be handled */
3730 break;
3733 if (!sf) { /* zero extend final result */
3734 tcg_gen_ext32u_i64(dst, dst);
3738 /* Shift a TCGv src by immediate, put result in dst.
3739 * The shift amount must be in range (this should always be true as the
3740 * relevant instructions will UNDEF on bad shift immediates).
3742 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3743 enum a64_shift_type shift_type, unsigned int shift_i)
3745 assert(shift_i < (sf ? 64 : 32));
3747 if (shift_i == 0) {
3748 tcg_gen_mov_i64(dst, src);
3749 } else {
3750 TCGv_i64 shift_const;
3752 shift_const = tcg_const_i64(shift_i);
3753 shift_reg(dst, src, sf, shift_type, shift_const);
3754 tcg_temp_free_i64(shift_const);
3758 /* Logical (shifted register)
3759 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3760 * +----+-----+-----------+-------+---+------+--------+------+------+
3761 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3762 * +----+-----+-----------+-------+---+------+--------+------+------+
3764 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3766 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3767 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3769 sf = extract32(insn, 31, 1);
3770 opc = extract32(insn, 29, 2);
3771 shift_type = extract32(insn, 22, 2);
3772 invert = extract32(insn, 21, 1);
3773 rm = extract32(insn, 16, 5);
3774 shift_amount = extract32(insn, 10, 6);
3775 rn = extract32(insn, 5, 5);
3776 rd = extract32(insn, 0, 5);
3778 if (!sf && (shift_amount & (1 << 5))) {
3779 unallocated_encoding(s);
3780 return;
3783 tcg_rd = cpu_reg(s, rd);
3785 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3786 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3787 * register-register MOV and MVN, so it is worth special casing.
3789 tcg_rm = cpu_reg(s, rm);
3790 if (invert) {
3791 tcg_gen_not_i64(tcg_rd, tcg_rm);
3792 if (!sf) {
3793 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3795 } else {
3796 if (sf) {
3797 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3798 } else {
3799 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3802 return;
3805 tcg_rm = read_cpu_reg(s, rm, sf);
3807 if (shift_amount) {
3808 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3811 tcg_rn = cpu_reg(s, rn);
3813 switch (opc | (invert << 2)) {
3814 case 0: /* AND */
3815 case 3: /* ANDS */
3816 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3817 break;
3818 case 1: /* ORR */
3819 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3820 break;
3821 case 2: /* EOR */
3822 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3823 break;
3824 case 4: /* BIC */
3825 case 7: /* BICS */
3826 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3827 break;
3828 case 5: /* ORN */
3829 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3830 break;
3831 case 6: /* EON */
3832 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3833 break;
3834 default:
3835 assert(FALSE);
3836 break;
3839 if (!sf) {
3840 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3843 if (opc == 3) {
3844 gen_logic_CC(sf, tcg_rd);
3849 * Add/subtract (extended register)
3851 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3852 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3853 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3854 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3856 * sf: 0 -> 32bit, 1 -> 64bit
3857 * op: 0 -> add , 1 -> sub
3858 * S: 1 -> set flags
3859 * opt: 00
3860 * option: extension type (see DecodeRegExtend)
3861 * imm3: optional shift to Rm
3863 * Rd = Rn + LSL(extend(Rm), amount)
3865 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3867 int rd = extract32(insn, 0, 5);
3868 int rn = extract32(insn, 5, 5);
3869 int imm3 = extract32(insn, 10, 3);
3870 int option = extract32(insn, 13, 3);
3871 int rm = extract32(insn, 16, 5);
3872 bool setflags = extract32(insn, 29, 1);
3873 bool sub_op = extract32(insn, 30, 1);
3874 bool sf = extract32(insn, 31, 1);
3876 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3877 TCGv_i64 tcg_rd;
3878 TCGv_i64 tcg_result;
3880 if (imm3 > 4) {
3881 unallocated_encoding(s);
3882 return;
3885 /* non-flag setting ops may use SP */
3886 if (!setflags) {
3887 tcg_rd = cpu_reg_sp(s, rd);
3888 } else {
3889 tcg_rd = cpu_reg(s, rd);
3891 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3893 tcg_rm = read_cpu_reg(s, rm, sf);
3894 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3896 tcg_result = tcg_temp_new_i64();
3898 if (!setflags) {
3899 if (sub_op) {
3900 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3901 } else {
3902 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3904 } else {
3905 if (sub_op) {
3906 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3907 } else {
3908 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3912 if (sf) {
3913 tcg_gen_mov_i64(tcg_rd, tcg_result);
3914 } else {
3915 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3918 tcg_temp_free_i64(tcg_result);
3922 * Add/subtract (shifted register)
3924 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3925 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3926 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3927 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3929 * sf: 0 -> 32bit, 1 -> 64bit
3930 * op: 0 -> add , 1 -> sub
3931 * S: 1 -> set flags
3932 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3933 * imm6: Shift amount to apply to Rm before the add/sub
3935 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3937 int rd = extract32(insn, 0, 5);
3938 int rn = extract32(insn, 5, 5);
3939 int imm6 = extract32(insn, 10, 6);
3940 int rm = extract32(insn, 16, 5);
3941 int shift_type = extract32(insn, 22, 2);
3942 bool setflags = extract32(insn, 29, 1);
3943 bool sub_op = extract32(insn, 30, 1);
3944 bool sf = extract32(insn, 31, 1);
3946 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3947 TCGv_i64 tcg_rn, tcg_rm;
3948 TCGv_i64 tcg_result;
3950 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3951 unallocated_encoding(s);
3952 return;
3955 tcg_rn = read_cpu_reg(s, rn, sf);
3956 tcg_rm = read_cpu_reg(s, rm, sf);
3958 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3960 tcg_result = tcg_temp_new_i64();
3962 if (!setflags) {
3963 if (sub_op) {
3964 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3965 } else {
3966 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3968 } else {
3969 if (sub_op) {
3970 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3971 } else {
3972 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3976 if (sf) {
3977 tcg_gen_mov_i64(tcg_rd, tcg_result);
3978 } else {
3979 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3982 tcg_temp_free_i64(tcg_result);
3985 /* Data-processing (3 source)
3987 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3988 * +--+------+-----------+------+------+----+------+------+------+
3989 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3990 * +--+------+-----------+------+------+----+------+------+------+
3992 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3994 int rd = extract32(insn, 0, 5);
3995 int rn = extract32(insn, 5, 5);
3996 int ra = extract32(insn, 10, 5);
3997 int rm = extract32(insn, 16, 5);
3998 int op_id = (extract32(insn, 29, 3) << 4) |
3999 (extract32(insn, 21, 3) << 1) |
4000 extract32(insn, 15, 1);
4001 bool sf = extract32(insn, 31, 1);
4002 bool is_sub = extract32(op_id, 0, 1);
4003 bool is_high = extract32(op_id, 2, 1);
4004 bool is_signed = false;
4005 TCGv_i64 tcg_op1;
4006 TCGv_i64 tcg_op2;
4007 TCGv_i64 tcg_tmp;
4009 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4010 switch (op_id) {
4011 case 0x42: /* SMADDL */
4012 case 0x43: /* SMSUBL */
4013 case 0x44: /* SMULH */
4014 is_signed = true;
4015 break;
4016 case 0x0: /* MADD (32bit) */
4017 case 0x1: /* MSUB (32bit) */
4018 case 0x40: /* MADD (64bit) */
4019 case 0x41: /* MSUB (64bit) */
4020 case 0x4a: /* UMADDL */
4021 case 0x4b: /* UMSUBL */
4022 case 0x4c: /* UMULH */
4023 break;
4024 default:
4025 unallocated_encoding(s);
4026 return;
4029 if (is_high) {
4030 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4031 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4032 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4033 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4035 if (is_signed) {
4036 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4037 } else {
4038 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4041 tcg_temp_free_i64(low_bits);
4042 return;
4045 tcg_op1 = tcg_temp_new_i64();
4046 tcg_op2 = tcg_temp_new_i64();
4047 tcg_tmp = tcg_temp_new_i64();
4049 if (op_id < 0x42) {
4050 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4051 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4052 } else {
4053 if (is_signed) {
4054 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4055 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4056 } else {
4057 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4058 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4062 if (ra == 31 && !is_sub) {
4063 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4064 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4065 } else {
4066 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4067 if (is_sub) {
4068 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4069 } else {
4070 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4074 if (!sf) {
4075 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4078 tcg_temp_free_i64(tcg_op1);
4079 tcg_temp_free_i64(tcg_op2);
4080 tcg_temp_free_i64(tcg_tmp);
4083 /* Add/subtract (with carry)
4084 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4085 * +--+--+--+------------------------+------+---------+------+-----+
4086 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4087 * +--+--+--+------------------------+------+---------+------+-----+
4088 * [000000]
4091 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4093 unsigned int sf, op, setflags, rm, rn, rd;
4094 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4096 if (extract32(insn, 10, 6) != 0) {
4097 unallocated_encoding(s);
4098 return;
4101 sf = extract32(insn, 31, 1);
4102 op = extract32(insn, 30, 1);
4103 setflags = extract32(insn, 29, 1);
4104 rm = extract32(insn, 16, 5);
4105 rn = extract32(insn, 5, 5);
4106 rd = extract32(insn, 0, 5);
4108 tcg_rd = cpu_reg(s, rd);
4109 tcg_rn = cpu_reg(s, rn);
4111 if (op) {
4112 tcg_y = new_tmp_a64(s);
4113 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4114 } else {
4115 tcg_y = cpu_reg(s, rm);
4118 if (setflags) {
4119 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4120 } else {
4121 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4125 /* Conditional compare (immediate / register)
4126 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4127 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4128 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4129 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4130 * [1] y [0] [0]
4132 static void disas_cc(DisasContext *s, uint32_t insn)
4134 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4135 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4136 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4137 DisasCompare c;
4139 if (!extract32(insn, 29, 1)) {
4140 unallocated_encoding(s);
4141 return;
4143 if (insn & (1 << 10 | 1 << 4)) {
4144 unallocated_encoding(s);
4145 return;
4147 sf = extract32(insn, 31, 1);
4148 op = extract32(insn, 30, 1);
4149 is_imm = extract32(insn, 11, 1);
4150 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4151 cond = extract32(insn, 12, 4);
4152 rn = extract32(insn, 5, 5);
4153 nzcv = extract32(insn, 0, 4);
4155 /* Set T0 = !COND. */
4156 tcg_t0 = tcg_temp_new_i32();
4157 arm_test_cc(&c, cond);
4158 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4159 arm_free_cc(&c);
4161 /* Load the arguments for the new comparison. */
4162 if (is_imm) {
4163 tcg_y = new_tmp_a64(s);
4164 tcg_gen_movi_i64(tcg_y, y);
4165 } else {
4166 tcg_y = cpu_reg(s, y);
4168 tcg_rn = cpu_reg(s, rn);
4170 /* Set the flags for the new comparison. */
4171 tcg_tmp = tcg_temp_new_i64();
4172 if (op) {
4173 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4174 } else {
4175 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4177 tcg_temp_free_i64(tcg_tmp);
4179 /* If COND was false, force the flags to #nzcv. Compute two masks
4180 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4181 * For tcg hosts that support ANDC, we can make do with just T1.
4182 * In either case, allow the tcg optimizer to delete any unused mask.
4184 tcg_t1 = tcg_temp_new_i32();
4185 tcg_t2 = tcg_temp_new_i32();
4186 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4187 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4189 if (nzcv & 8) { /* N */
4190 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4191 } else {
4192 if (TCG_TARGET_HAS_andc_i32) {
4193 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4194 } else {
4195 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4198 if (nzcv & 4) { /* Z */
4199 if (TCG_TARGET_HAS_andc_i32) {
4200 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4201 } else {
4202 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4204 } else {
4205 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4207 if (nzcv & 2) { /* C */
4208 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4209 } else {
4210 if (TCG_TARGET_HAS_andc_i32) {
4211 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4212 } else {
4213 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4216 if (nzcv & 1) { /* V */
4217 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4218 } else {
4219 if (TCG_TARGET_HAS_andc_i32) {
4220 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4221 } else {
4222 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4225 tcg_temp_free_i32(tcg_t0);
4226 tcg_temp_free_i32(tcg_t1);
4227 tcg_temp_free_i32(tcg_t2);
4230 /* Conditional select
4231 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4232 * +----+----+---+-----------------+------+------+-----+------+------+
4233 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4234 * +----+----+---+-----------------+------+------+-----+------+------+
4236 static void disas_cond_select(DisasContext *s, uint32_t insn)
4238 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4239 TCGv_i64 tcg_rd, zero;
4240 DisasCompare64 c;
4242 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4243 /* S == 1 or op2<1> == 1 */
4244 unallocated_encoding(s);
4245 return;
4247 sf = extract32(insn, 31, 1);
4248 else_inv = extract32(insn, 30, 1);
4249 rm = extract32(insn, 16, 5);
4250 cond = extract32(insn, 12, 4);
4251 else_inc = extract32(insn, 10, 1);
4252 rn = extract32(insn, 5, 5);
4253 rd = extract32(insn, 0, 5);
4255 tcg_rd = cpu_reg(s, rd);
4257 a64_test_cc(&c, cond);
4258 zero = tcg_const_i64(0);
4260 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4261 /* CSET & CSETM. */
4262 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4263 if (else_inv) {
4264 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4266 } else {
4267 TCGv_i64 t_true = cpu_reg(s, rn);
4268 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4269 if (else_inv && else_inc) {
4270 tcg_gen_neg_i64(t_false, t_false);
4271 } else if (else_inv) {
4272 tcg_gen_not_i64(t_false, t_false);
4273 } else if (else_inc) {
4274 tcg_gen_addi_i64(t_false, t_false, 1);
4276 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4279 tcg_temp_free_i64(zero);
4280 a64_free_cc(&c);
4282 if (!sf) {
4283 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4287 static void handle_clz(DisasContext *s, unsigned int sf,
4288 unsigned int rn, unsigned int rd)
4290 TCGv_i64 tcg_rd, tcg_rn;
4291 tcg_rd = cpu_reg(s, rd);
4292 tcg_rn = cpu_reg(s, rn);
4294 if (sf) {
4295 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4296 } else {
4297 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4298 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4299 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4300 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4301 tcg_temp_free_i32(tcg_tmp32);
4305 static void handle_cls(DisasContext *s, unsigned int sf,
4306 unsigned int rn, unsigned int rd)
4308 TCGv_i64 tcg_rd, tcg_rn;
4309 tcg_rd = cpu_reg(s, rd);
4310 tcg_rn = cpu_reg(s, rn);
4312 if (sf) {
4313 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4314 } else {
4315 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4316 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4317 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4318 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4319 tcg_temp_free_i32(tcg_tmp32);
4323 static void handle_rbit(DisasContext *s, unsigned int sf,
4324 unsigned int rn, unsigned int rd)
4326 TCGv_i64 tcg_rd, tcg_rn;
4327 tcg_rd = cpu_reg(s, rd);
4328 tcg_rn = cpu_reg(s, rn);
4330 if (sf) {
4331 gen_helper_rbit64(tcg_rd, tcg_rn);
4332 } else {
4333 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4334 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4335 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4336 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4337 tcg_temp_free_i32(tcg_tmp32);
4341 /* REV with sf==1, opcode==3 ("REV64") */
4342 static void handle_rev64(DisasContext *s, unsigned int sf,
4343 unsigned int rn, unsigned int rd)
4345 if (!sf) {
4346 unallocated_encoding(s);
4347 return;
4349 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4352 /* REV with sf==0, opcode==2
4353 * REV32 (sf==1, opcode==2)
4355 static void handle_rev32(DisasContext *s, unsigned int sf,
4356 unsigned int rn, unsigned int rd)
4358 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4360 if (sf) {
4361 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4362 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4364 /* bswap32_i64 requires zero high word */
4365 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4366 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4367 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4368 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4369 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4371 tcg_temp_free_i64(tcg_tmp);
4372 } else {
4373 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4374 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4378 /* REV16 (opcode==1) */
4379 static void handle_rev16(DisasContext *s, unsigned int sf,
4380 unsigned int rn, unsigned int rd)
4382 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4383 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4384 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4385 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4387 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4388 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4389 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4390 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4391 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4393 tcg_temp_free_i64(mask);
4394 tcg_temp_free_i64(tcg_tmp);
4397 /* Data-processing (1 source)
4398 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4399 * +----+---+---+-----------------+---------+--------+------+------+
4400 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4401 * +----+---+---+-----------------+---------+--------+------+------+
4403 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4405 unsigned int sf, opcode, rn, rd;
4407 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4408 unallocated_encoding(s);
4409 return;
4412 sf = extract32(insn, 31, 1);
4413 opcode = extract32(insn, 10, 6);
4414 rn = extract32(insn, 5, 5);
4415 rd = extract32(insn, 0, 5);
4417 switch (opcode) {
4418 case 0: /* RBIT */
4419 handle_rbit(s, sf, rn, rd);
4420 break;
4421 case 1: /* REV16 */
4422 handle_rev16(s, sf, rn, rd);
4423 break;
4424 case 2: /* REV32 */
4425 handle_rev32(s, sf, rn, rd);
4426 break;
4427 case 3: /* REV64 */
4428 handle_rev64(s, sf, rn, rd);
4429 break;
4430 case 4: /* CLZ */
4431 handle_clz(s, sf, rn, rd);
4432 break;
4433 case 5: /* CLS */
4434 handle_cls(s, sf, rn, rd);
4435 break;
4439 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4440 unsigned int rm, unsigned int rn, unsigned int rd)
4442 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4443 tcg_rd = cpu_reg(s, rd);
4445 if (!sf && is_signed) {
4446 tcg_n = new_tmp_a64(s);
4447 tcg_m = new_tmp_a64(s);
4448 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4449 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4450 } else {
4451 tcg_n = read_cpu_reg(s, rn, sf);
4452 tcg_m = read_cpu_reg(s, rm, sf);
4455 if (is_signed) {
4456 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4457 } else {
4458 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4461 if (!sf) { /* zero extend final result */
4462 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4466 /* LSLV, LSRV, ASRV, RORV */
4467 static void handle_shift_reg(DisasContext *s,
4468 enum a64_shift_type shift_type, unsigned int sf,
4469 unsigned int rm, unsigned int rn, unsigned int rd)
4471 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4472 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4473 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4475 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4476 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4477 tcg_temp_free_i64(tcg_shift);
4480 /* CRC32[BHWX], CRC32C[BHWX] */
4481 static void handle_crc32(DisasContext *s,
4482 unsigned int sf, unsigned int sz, bool crc32c,
4483 unsigned int rm, unsigned int rn, unsigned int rd)
4485 TCGv_i64 tcg_acc, tcg_val;
4486 TCGv_i32 tcg_bytes;
4488 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4489 || (sf == 1 && sz != 3)
4490 || (sf == 0 && sz == 3)) {
4491 unallocated_encoding(s);
4492 return;
4495 if (sz == 3) {
4496 tcg_val = cpu_reg(s, rm);
4497 } else {
4498 uint64_t mask;
4499 switch (sz) {
4500 case 0:
4501 mask = 0xFF;
4502 break;
4503 case 1:
4504 mask = 0xFFFF;
4505 break;
4506 case 2:
4507 mask = 0xFFFFFFFF;
4508 break;
4509 default:
4510 g_assert_not_reached();
4512 tcg_val = new_tmp_a64(s);
4513 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4516 tcg_acc = cpu_reg(s, rn);
4517 tcg_bytes = tcg_const_i32(1 << sz);
4519 if (crc32c) {
4520 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4521 } else {
4522 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4525 tcg_temp_free_i32(tcg_bytes);
4528 /* Data-processing (2 source)
4529 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4530 * +----+---+---+-----------------+------+--------+------+------+
4531 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4532 * +----+---+---+-----------------+------+--------+------+------+
4534 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4536 unsigned int sf, rm, opcode, rn, rd;
4537 sf = extract32(insn, 31, 1);
4538 rm = extract32(insn, 16, 5);
4539 opcode = extract32(insn, 10, 6);
4540 rn = extract32(insn, 5, 5);
4541 rd = extract32(insn, 0, 5);
4543 if (extract32(insn, 29, 1)) {
4544 unallocated_encoding(s);
4545 return;
4548 switch (opcode) {
4549 case 2: /* UDIV */
4550 handle_div(s, false, sf, rm, rn, rd);
4551 break;
4552 case 3: /* SDIV */
4553 handle_div(s, true, sf, rm, rn, rd);
4554 break;
4555 case 8: /* LSLV */
4556 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4557 break;
4558 case 9: /* LSRV */
4559 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4560 break;
4561 case 10: /* ASRV */
4562 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4563 break;
4564 case 11: /* RORV */
4565 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4566 break;
4567 case 16:
4568 case 17:
4569 case 18:
4570 case 19:
4571 case 20:
4572 case 21:
4573 case 22:
4574 case 23: /* CRC32 */
4576 int sz = extract32(opcode, 0, 2);
4577 bool crc32c = extract32(opcode, 2, 1);
4578 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4579 break;
4581 default:
4582 unallocated_encoding(s);
4583 break;
4587 /* Data processing - register */
4588 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4590 switch (extract32(insn, 24, 5)) {
4591 case 0x0a: /* Logical (shifted register) */
4592 disas_logic_reg(s, insn);
4593 break;
4594 case 0x0b: /* Add/subtract */
4595 if (insn & (1 << 21)) { /* (extended register) */
4596 disas_add_sub_ext_reg(s, insn);
4597 } else {
4598 disas_add_sub_reg(s, insn);
4600 break;
4601 case 0x1b: /* Data-processing (3 source) */
4602 disas_data_proc_3src(s, insn);
4603 break;
4604 case 0x1a:
4605 switch (extract32(insn, 21, 3)) {
4606 case 0x0: /* Add/subtract (with carry) */
4607 disas_adc_sbc(s, insn);
4608 break;
4609 case 0x2: /* Conditional compare */
4610 disas_cc(s, insn); /* both imm and reg forms */
4611 break;
4612 case 0x4: /* Conditional select */
4613 disas_cond_select(s, insn);
4614 break;
4615 case 0x6: /* Data-processing */
4616 if (insn & (1 << 30)) { /* (1 source) */
4617 disas_data_proc_1src(s, insn);
4618 } else { /* (2 source) */
4619 disas_data_proc_2src(s, insn);
4621 break;
4622 default:
4623 unallocated_encoding(s);
4624 break;
4626 break;
4627 default:
4628 unallocated_encoding(s);
4629 break;
4633 static void handle_fp_compare(DisasContext *s, int size,
4634 unsigned int rn, unsigned int rm,
4635 bool cmp_with_zero, bool signal_all_nans)
4637 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4638 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
4640 if (size == MO_64) {
4641 TCGv_i64 tcg_vn, tcg_vm;
4643 tcg_vn = read_fp_dreg(s, rn);
4644 if (cmp_with_zero) {
4645 tcg_vm = tcg_const_i64(0);
4646 } else {
4647 tcg_vm = read_fp_dreg(s, rm);
4649 if (signal_all_nans) {
4650 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4651 } else {
4652 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4654 tcg_temp_free_i64(tcg_vn);
4655 tcg_temp_free_i64(tcg_vm);
4656 } else {
4657 TCGv_i32 tcg_vn = tcg_temp_new_i32();
4658 TCGv_i32 tcg_vm = tcg_temp_new_i32();
4660 read_vec_element_i32(s, tcg_vn, rn, 0, size);
4661 if (cmp_with_zero) {
4662 tcg_gen_movi_i32(tcg_vm, 0);
4663 } else {
4664 read_vec_element_i32(s, tcg_vm, rm, 0, size);
4667 switch (size) {
4668 case MO_32:
4669 if (signal_all_nans) {
4670 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4671 } else {
4672 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4674 break;
4675 case MO_16:
4676 if (signal_all_nans) {
4677 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4678 } else {
4679 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4681 break;
4682 default:
4683 g_assert_not_reached();
4686 tcg_temp_free_i32(tcg_vn);
4687 tcg_temp_free_i32(tcg_vm);
4690 tcg_temp_free_ptr(fpst);
4692 gen_set_nzcv(tcg_flags);
4694 tcg_temp_free_i64(tcg_flags);
4697 /* Floating point compare
4698 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4699 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4700 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4701 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4703 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4705 unsigned int mos, type, rm, op, rn, opc, op2r;
4706 int size;
4708 mos = extract32(insn, 29, 3);
4709 type = extract32(insn, 22, 2);
4710 rm = extract32(insn, 16, 5);
4711 op = extract32(insn, 14, 2);
4712 rn = extract32(insn, 5, 5);
4713 opc = extract32(insn, 3, 2);
4714 op2r = extract32(insn, 0, 3);
4716 if (mos || op || op2r) {
4717 unallocated_encoding(s);
4718 return;
4721 switch (type) {
4722 case 0:
4723 size = MO_32;
4724 break;
4725 case 1:
4726 size = MO_64;
4727 break;
4728 case 3:
4729 size = MO_16;
4730 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4731 break;
4733 /* fallthru */
4734 default:
4735 unallocated_encoding(s);
4736 return;
4739 if (!fp_access_check(s)) {
4740 return;
4743 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
4746 /* Floating point conditional compare
4747 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4748 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4749 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4750 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4752 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4754 unsigned int mos, type, rm, cond, rn, op, nzcv;
4755 TCGv_i64 tcg_flags;
4756 TCGLabel *label_continue = NULL;
4757 int size;
4759 mos = extract32(insn, 29, 3);
4760 type = extract32(insn, 22, 2);
4761 rm = extract32(insn, 16, 5);
4762 cond = extract32(insn, 12, 4);
4763 rn = extract32(insn, 5, 5);
4764 op = extract32(insn, 4, 1);
4765 nzcv = extract32(insn, 0, 4);
4767 if (mos) {
4768 unallocated_encoding(s);
4769 return;
4772 switch (type) {
4773 case 0:
4774 size = MO_32;
4775 break;
4776 case 1:
4777 size = MO_64;
4778 break;
4779 case 3:
4780 size = MO_16;
4781 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4782 break;
4784 /* fallthru */
4785 default:
4786 unallocated_encoding(s);
4787 return;
4790 if (!fp_access_check(s)) {
4791 return;
4794 if (cond < 0x0e) { /* not always */
4795 TCGLabel *label_match = gen_new_label();
4796 label_continue = gen_new_label();
4797 arm_gen_test_cc(cond, label_match);
4798 /* nomatch: */
4799 tcg_flags = tcg_const_i64(nzcv << 28);
4800 gen_set_nzcv(tcg_flags);
4801 tcg_temp_free_i64(tcg_flags);
4802 tcg_gen_br(label_continue);
4803 gen_set_label(label_match);
4806 handle_fp_compare(s, size, rn, rm, false, op);
4808 if (cond < 0x0e) {
4809 gen_set_label(label_continue);
4813 /* Floating point conditional select
4814 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4815 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4816 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4817 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4819 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4821 unsigned int mos, type, rm, cond, rn, rd;
4822 TCGv_i64 t_true, t_false, t_zero;
4823 DisasCompare64 c;
4824 TCGMemOp sz;
4826 mos = extract32(insn, 29, 3);
4827 type = extract32(insn, 22, 2);
4828 rm = extract32(insn, 16, 5);
4829 cond = extract32(insn, 12, 4);
4830 rn = extract32(insn, 5, 5);
4831 rd = extract32(insn, 0, 5);
4833 if (mos) {
4834 unallocated_encoding(s);
4835 return;
4838 switch (type) {
4839 case 0:
4840 sz = MO_32;
4841 break;
4842 case 1:
4843 sz = MO_64;
4844 break;
4845 case 3:
4846 sz = MO_16;
4847 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4848 break;
4850 /* fallthru */
4851 default:
4852 unallocated_encoding(s);
4853 return;
4856 if (!fp_access_check(s)) {
4857 return;
4860 /* Zero extend sreg & hreg inputs to 64 bits now. */
4861 t_true = tcg_temp_new_i64();
4862 t_false = tcg_temp_new_i64();
4863 read_vec_element(s, t_true, rn, 0, sz);
4864 read_vec_element(s, t_false, rm, 0, sz);
4866 a64_test_cc(&c, cond);
4867 t_zero = tcg_const_i64(0);
4868 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4869 tcg_temp_free_i64(t_zero);
4870 tcg_temp_free_i64(t_false);
4871 a64_free_cc(&c);
4873 /* Note that sregs & hregs write back zeros to the high bits,
4874 and we've already done the zero-extension. */
4875 write_fp_dreg(s, rd, t_true);
4876 tcg_temp_free_i64(t_true);
4879 /* Floating-point data-processing (1 source) - half precision */
4880 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4882 TCGv_ptr fpst = NULL;
4883 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
4884 TCGv_i32 tcg_res = tcg_temp_new_i32();
4886 switch (opcode) {
4887 case 0x0: /* FMOV */
4888 tcg_gen_mov_i32(tcg_res, tcg_op);
4889 break;
4890 case 0x1: /* FABS */
4891 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4892 break;
4893 case 0x2: /* FNEG */
4894 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4895 break;
4896 case 0x3: /* FSQRT */
4897 fpst = get_fpstatus_ptr(true);
4898 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
4899 break;
4900 case 0x8: /* FRINTN */
4901 case 0x9: /* FRINTP */
4902 case 0xa: /* FRINTM */
4903 case 0xb: /* FRINTZ */
4904 case 0xc: /* FRINTA */
4906 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4907 fpst = get_fpstatus_ptr(true);
4909 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4910 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4912 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4913 tcg_temp_free_i32(tcg_rmode);
4914 break;
4916 case 0xe: /* FRINTX */
4917 fpst = get_fpstatus_ptr(true);
4918 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
4919 break;
4920 case 0xf: /* FRINTI */
4921 fpst = get_fpstatus_ptr(true);
4922 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4923 break;
4924 default:
4925 abort();
4928 write_fp_sreg(s, rd, tcg_res);
4930 if (fpst) {
4931 tcg_temp_free_ptr(fpst);
4933 tcg_temp_free_i32(tcg_op);
4934 tcg_temp_free_i32(tcg_res);
4937 /* Floating-point data-processing (1 source) - single precision */
4938 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4940 TCGv_ptr fpst;
4941 TCGv_i32 tcg_op;
4942 TCGv_i32 tcg_res;
4944 fpst = get_fpstatus_ptr(false);
4945 tcg_op = read_fp_sreg(s, rn);
4946 tcg_res = tcg_temp_new_i32();
4948 switch (opcode) {
4949 case 0x0: /* FMOV */
4950 tcg_gen_mov_i32(tcg_res, tcg_op);
4951 break;
4952 case 0x1: /* FABS */
4953 gen_helper_vfp_abss(tcg_res, tcg_op);
4954 break;
4955 case 0x2: /* FNEG */
4956 gen_helper_vfp_negs(tcg_res, tcg_op);
4957 break;
4958 case 0x3: /* FSQRT */
4959 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4960 break;
4961 case 0x8: /* FRINTN */
4962 case 0x9: /* FRINTP */
4963 case 0xa: /* FRINTM */
4964 case 0xb: /* FRINTZ */
4965 case 0xc: /* FRINTA */
4967 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4969 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4970 gen_helper_rints(tcg_res, tcg_op, fpst);
4972 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4973 tcg_temp_free_i32(tcg_rmode);
4974 break;
4976 case 0xe: /* FRINTX */
4977 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4978 break;
4979 case 0xf: /* FRINTI */
4980 gen_helper_rints(tcg_res, tcg_op, fpst);
4981 break;
4982 default:
4983 abort();
4986 write_fp_sreg(s, rd, tcg_res);
4988 tcg_temp_free_ptr(fpst);
4989 tcg_temp_free_i32(tcg_op);
4990 tcg_temp_free_i32(tcg_res);
4993 /* Floating-point data-processing (1 source) - double precision */
4994 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4996 TCGv_ptr fpst;
4997 TCGv_i64 tcg_op;
4998 TCGv_i64 tcg_res;
5000 switch (opcode) {
5001 case 0x0: /* FMOV */
5002 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5003 return;
5006 fpst = get_fpstatus_ptr(false);
5007 tcg_op = read_fp_dreg(s, rn);
5008 tcg_res = tcg_temp_new_i64();
5010 switch (opcode) {
5011 case 0x1: /* FABS */
5012 gen_helper_vfp_absd(tcg_res, tcg_op);
5013 break;
5014 case 0x2: /* FNEG */
5015 gen_helper_vfp_negd(tcg_res, tcg_op);
5016 break;
5017 case 0x3: /* FSQRT */
5018 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5019 break;
5020 case 0x8: /* FRINTN */
5021 case 0x9: /* FRINTP */
5022 case 0xa: /* FRINTM */
5023 case 0xb: /* FRINTZ */
5024 case 0xc: /* FRINTA */
5026 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5028 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5029 gen_helper_rintd(tcg_res, tcg_op, fpst);
5031 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5032 tcg_temp_free_i32(tcg_rmode);
5033 break;
5035 case 0xe: /* FRINTX */
5036 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5037 break;
5038 case 0xf: /* FRINTI */
5039 gen_helper_rintd(tcg_res, tcg_op, fpst);
5040 break;
5041 default:
5042 abort();
5045 write_fp_dreg(s, rd, tcg_res);
5047 tcg_temp_free_ptr(fpst);
5048 tcg_temp_free_i64(tcg_op);
5049 tcg_temp_free_i64(tcg_res);
5052 static void handle_fp_fcvt(DisasContext *s, int opcode,
5053 int rd, int rn, int dtype, int ntype)
5055 switch (ntype) {
5056 case 0x0:
5058 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5059 if (dtype == 1) {
5060 /* Single to double */
5061 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5062 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5063 write_fp_dreg(s, rd, tcg_rd);
5064 tcg_temp_free_i64(tcg_rd);
5065 } else {
5066 /* Single to half */
5067 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5068 TCGv_i32 ahp = get_ahp_flag();
5069 TCGv_ptr fpst = get_fpstatus_ptr(false);
5071 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5072 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5073 write_fp_sreg(s, rd, tcg_rd);
5074 tcg_temp_free_i32(tcg_rd);
5075 tcg_temp_free_i32(ahp);
5076 tcg_temp_free_ptr(fpst);
5078 tcg_temp_free_i32(tcg_rn);
5079 break;
5081 case 0x1:
5083 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5084 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5085 if (dtype == 0) {
5086 /* Double to single */
5087 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5088 } else {
5089 TCGv_ptr fpst = get_fpstatus_ptr(false);
5090 TCGv_i32 ahp = get_ahp_flag();
5091 /* Double to half */
5092 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5093 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5094 tcg_temp_free_ptr(fpst);
5095 tcg_temp_free_i32(ahp);
5097 write_fp_sreg(s, rd, tcg_rd);
5098 tcg_temp_free_i32(tcg_rd);
5099 tcg_temp_free_i64(tcg_rn);
5100 break;
5102 case 0x3:
5104 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5105 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5106 TCGv_i32 tcg_ahp = get_ahp_flag();
5107 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5108 if (dtype == 0) {
5109 /* Half to single */
5110 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5111 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5112 write_fp_sreg(s, rd, tcg_rd);
5113 tcg_temp_free_ptr(tcg_fpst);
5114 tcg_temp_free_i32(tcg_ahp);
5115 tcg_temp_free_i32(tcg_rd);
5116 } else {
5117 /* Half to double */
5118 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5119 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5120 write_fp_dreg(s, rd, tcg_rd);
5121 tcg_temp_free_i64(tcg_rd);
5123 tcg_temp_free_i32(tcg_rn);
5124 break;
5126 default:
5127 abort();
5131 /* Floating point data-processing (1 source)
5132 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5133 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5134 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5135 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5137 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5139 int type = extract32(insn, 22, 2);
5140 int opcode = extract32(insn, 15, 6);
5141 int rn = extract32(insn, 5, 5);
5142 int rd = extract32(insn, 0, 5);
5144 switch (opcode) {
5145 case 0x4: case 0x5: case 0x7:
5147 /* FCVT between half, single and double precision */
5148 int dtype = extract32(opcode, 0, 2);
5149 if (type == 2 || dtype == type) {
5150 unallocated_encoding(s);
5151 return;
5153 if (!fp_access_check(s)) {
5154 return;
5157 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5158 break;
5160 case 0x0 ... 0x3:
5161 case 0x8 ... 0xc:
5162 case 0xe ... 0xf:
5163 /* 32-to-32 and 64-to-64 ops */
5164 switch (type) {
5165 case 0:
5166 if (!fp_access_check(s)) {
5167 return;
5170 handle_fp_1src_single(s, opcode, rd, rn);
5171 break;
5172 case 1:
5173 if (!fp_access_check(s)) {
5174 return;
5177 handle_fp_1src_double(s, opcode, rd, rn);
5178 break;
5179 case 3:
5180 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5181 unallocated_encoding(s);
5182 return;
5185 if (!fp_access_check(s)) {
5186 return;
5189 handle_fp_1src_half(s, opcode, rd, rn);
5190 break;
5191 default:
5192 unallocated_encoding(s);
5194 break;
5195 default:
5196 unallocated_encoding(s);
5197 break;
5201 /* Floating-point data-processing (2 source) - single precision */
5202 static void handle_fp_2src_single(DisasContext *s, int opcode,
5203 int rd, int rn, int rm)
5205 TCGv_i32 tcg_op1;
5206 TCGv_i32 tcg_op2;
5207 TCGv_i32 tcg_res;
5208 TCGv_ptr fpst;
5210 tcg_res = tcg_temp_new_i32();
5211 fpst = get_fpstatus_ptr(false);
5212 tcg_op1 = read_fp_sreg(s, rn);
5213 tcg_op2 = read_fp_sreg(s, rm);
5215 switch (opcode) {
5216 case 0x0: /* FMUL */
5217 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5218 break;
5219 case 0x1: /* FDIV */
5220 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5221 break;
5222 case 0x2: /* FADD */
5223 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5224 break;
5225 case 0x3: /* FSUB */
5226 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5227 break;
5228 case 0x4: /* FMAX */
5229 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5230 break;
5231 case 0x5: /* FMIN */
5232 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5233 break;
5234 case 0x6: /* FMAXNM */
5235 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5236 break;
5237 case 0x7: /* FMINNM */
5238 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5239 break;
5240 case 0x8: /* FNMUL */
5241 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5242 gen_helper_vfp_negs(tcg_res, tcg_res);
5243 break;
5246 write_fp_sreg(s, rd, tcg_res);
5248 tcg_temp_free_ptr(fpst);
5249 tcg_temp_free_i32(tcg_op1);
5250 tcg_temp_free_i32(tcg_op2);
5251 tcg_temp_free_i32(tcg_res);
5254 /* Floating-point data-processing (2 source) - double precision */
5255 static void handle_fp_2src_double(DisasContext *s, int opcode,
5256 int rd, int rn, int rm)
5258 TCGv_i64 tcg_op1;
5259 TCGv_i64 tcg_op2;
5260 TCGv_i64 tcg_res;
5261 TCGv_ptr fpst;
5263 tcg_res = tcg_temp_new_i64();
5264 fpst = get_fpstatus_ptr(false);
5265 tcg_op1 = read_fp_dreg(s, rn);
5266 tcg_op2 = read_fp_dreg(s, rm);
5268 switch (opcode) {
5269 case 0x0: /* FMUL */
5270 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5271 break;
5272 case 0x1: /* FDIV */
5273 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5274 break;
5275 case 0x2: /* FADD */
5276 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5277 break;
5278 case 0x3: /* FSUB */
5279 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5280 break;
5281 case 0x4: /* FMAX */
5282 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5283 break;
5284 case 0x5: /* FMIN */
5285 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5286 break;
5287 case 0x6: /* FMAXNM */
5288 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5289 break;
5290 case 0x7: /* FMINNM */
5291 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5292 break;
5293 case 0x8: /* FNMUL */
5294 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5295 gen_helper_vfp_negd(tcg_res, tcg_res);
5296 break;
5299 write_fp_dreg(s, rd, tcg_res);
5301 tcg_temp_free_ptr(fpst);
5302 tcg_temp_free_i64(tcg_op1);
5303 tcg_temp_free_i64(tcg_op2);
5304 tcg_temp_free_i64(tcg_res);
5307 /* Floating-point data-processing (2 source) - half precision */
5308 static void handle_fp_2src_half(DisasContext *s, int opcode,
5309 int rd, int rn, int rm)
5311 TCGv_i32 tcg_op1;
5312 TCGv_i32 tcg_op2;
5313 TCGv_i32 tcg_res;
5314 TCGv_ptr fpst;
5316 tcg_res = tcg_temp_new_i32();
5317 fpst = get_fpstatus_ptr(true);
5318 tcg_op1 = read_fp_hreg(s, rn);
5319 tcg_op2 = read_fp_hreg(s, rm);
5321 switch (opcode) {
5322 case 0x0: /* FMUL */
5323 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5324 break;
5325 case 0x1: /* FDIV */
5326 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5327 break;
5328 case 0x2: /* FADD */
5329 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5330 break;
5331 case 0x3: /* FSUB */
5332 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5333 break;
5334 case 0x4: /* FMAX */
5335 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5336 break;
5337 case 0x5: /* FMIN */
5338 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5339 break;
5340 case 0x6: /* FMAXNM */
5341 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5342 break;
5343 case 0x7: /* FMINNM */
5344 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5345 break;
5346 case 0x8: /* FNMUL */
5347 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5348 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5349 break;
5350 default:
5351 g_assert_not_reached();
5354 write_fp_sreg(s, rd, tcg_res);
5356 tcg_temp_free_ptr(fpst);
5357 tcg_temp_free_i32(tcg_op1);
5358 tcg_temp_free_i32(tcg_op2);
5359 tcg_temp_free_i32(tcg_res);
5362 /* Floating point data-processing (2 source)
5363 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5364 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5365 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5366 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5368 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5370 int type = extract32(insn, 22, 2);
5371 int rd = extract32(insn, 0, 5);
5372 int rn = extract32(insn, 5, 5);
5373 int rm = extract32(insn, 16, 5);
5374 int opcode = extract32(insn, 12, 4);
5376 if (opcode > 8) {
5377 unallocated_encoding(s);
5378 return;
5381 switch (type) {
5382 case 0:
5383 if (!fp_access_check(s)) {
5384 return;
5386 handle_fp_2src_single(s, opcode, rd, rn, rm);
5387 break;
5388 case 1:
5389 if (!fp_access_check(s)) {
5390 return;
5392 handle_fp_2src_double(s, opcode, rd, rn, rm);
5393 break;
5394 case 3:
5395 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5396 unallocated_encoding(s);
5397 return;
5399 if (!fp_access_check(s)) {
5400 return;
5402 handle_fp_2src_half(s, opcode, rd, rn, rm);
5403 break;
5404 default:
5405 unallocated_encoding(s);
5409 /* Floating-point data-processing (3 source) - single precision */
5410 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5411 int rd, int rn, int rm, int ra)
5413 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5414 TCGv_i32 tcg_res = tcg_temp_new_i32();
5415 TCGv_ptr fpst = get_fpstatus_ptr(false);
5417 tcg_op1 = read_fp_sreg(s, rn);
5418 tcg_op2 = read_fp_sreg(s, rm);
5419 tcg_op3 = read_fp_sreg(s, ra);
5421 /* These are fused multiply-add, and must be done as one
5422 * floating point operation with no rounding between the
5423 * multiplication and addition steps.
5424 * NB that doing the negations here as separate steps is
5425 * correct : an input NaN should come out with its sign bit
5426 * flipped if it is a negated-input.
5428 if (o1 == true) {
5429 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5432 if (o0 != o1) {
5433 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5436 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5438 write_fp_sreg(s, rd, tcg_res);
5440 tcg_temp_free_ptr(fpst);
5441 tcg_temp_free_i32(tcg_op1);
5442 tcg_temp_free_i32(tcg_op2);
5443 tcg_temp_free_i32(tcg_op3);
5444 tcg_temp_free_i32(tcg_res);
5447 /* Floating-point data-processing (3 source) - double precision */
5448 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5449 int rd, int rn, int rm, int ra)
5451 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5452 TCGv_i64 tcg_res = tcg_temp_new_i64();
5453 TCGv_ptr fpst = get_fpstatus_ptr(false);
5455 tcg_op1 = read_fp_dreg(s, rn);
5456 tcg_op2 = read_fp_dreg(s, rm);
5457 tcg_op3 = read_fp_dreg(s, ra);
5459 /* These are fused multiply-add, and must be done as one
5460 * floating point operation with no rounding between the
5461 * multiplication and addition steps.
5462 * NB that doing the negations here as separate steps is
5463 * correct : an input NaN should come out with its sign bit
5464 * flipped if it is a negated-input.
5466 if (o1 == true) {
5467 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5470 if (o0 != o1) {
5471 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5474 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5476 write_fp_dreg(s, rd, tcg_res);
5478 tcg_temp_free_ptr(fpst);
5479 tcg_temp_free_i64(tcg_op1);
5480 tcg_temp_free_i64(tcg_op2);
5481 tcg_temp_free_i64(tcg_op3);
5482 tcg_temp_free_i64(tcg_res);
5485 /* Floating-point data-processing (3 source) - half precision */
5486 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
5487 int rd, int rn, int rm, int ra)
5489 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5490 TCGv_i32 tcg_res = tcg_temp_new_i32();
5491 TCGv_ptr fpst = get_fpstatus_ptr(true);
5493 tcg_op1 = read_fp_hreg(s, rn);
5494 tcg_op2 = read_fp_hreg(s, rm);
5495 tcg_op3 = read_fp_hreg(s, ra);
5497 /* These are fused multiply-add, and must be done as one
5498 * floating point operation with no rounding between the
5499 * multiplication and addition steps.
5500 * NB that doing the negations here as separate steps is
5501 * correct : an input NaN should come out with its sign bit
5502 * flipped if it is a negated-input.
5504 if (o1 == true) {
5505 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
5508 if (o0 != o1) {
5509 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
5512 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5514 write_fp_sreg(s, rd, tcg_res);
5516 tcg_temp_free_ptr(fpst);
5517 tcg_temp_free_i32(tcg_op1);
5518 tcg_temp_free_i32(tcg_op2);
5519 tcg_temp_free_i32(tcg_op3);
5520 tcg_temp_free_i32(tcg_res);
5523 /* Floating point data-processing (3 source)
5524 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5525 * +---+---+---+-----------+------+----+------+----+------+------+------+
5526 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5527 * +---+---+---+-----------+------+----+------+----+------+------+------+
5529 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5531 int type = extract32(insn, 22, 2);
5532 int rd = extract32(insn, 0, 5);
5533 int rn = extract32(insn, 5, 5);
5534 int ra = extract32(insn, 10, 5);
5535 int rm = extract32(insn, 16, 5);
5536 bool o0 = extract32(insn, 15, 1);
5537 bool o1 = extract32(insn, 21, 1);
5539 switch (type) {
5540 case 0:
5541 if (!fp_access_check(s)) {
5542 return;
5544 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5545 break;
5546 case 1:
5547 if (!fp_access_check(s)) {
5548 return;
5550 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5551 break;
5552 case 3:
5553 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5554 unallocated_encoding(s);
5555 return;
5557 if (!fp_access_check(s)) {
5558 return;
5560 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
5561 break;
5562 default:
5563 unallocated_encoding(s);
5567 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5568 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5569 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5571 uint64_t vfp_expand_imm(int size, uint8_t imm8)
5573 uint64_t imm;
5575 switch (size) {
5576 case MO_64:
5577 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5578 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5579 extract32(imm8, 0, 6);
5580 imm <<= 48;
5581 break;
5582 case MO_32:
5583 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5584 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5585 (extract32(imm8, 0, 6) << 3);
5586 imm <<= 16;
5587 break;
5588 case MO_16:
5589 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5590 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5591 (extract32(imm8, 0, 6) << 6);
5592 break;
5593 default:
5594 g_assert_not_reached();
5596 return imm;
5599 /* Floating point immediate
5600 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5601 * +---+---+---+-----------+------+---+------------+-------+------+------+
5602 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5603 * +---+---+---+-----------+------+---+------------+-------+------+------+
5605 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5607 int rd = extract32(insn, 0, 5);
5608 int imm8 = extract32(insn, 13, 8);
5609 int type = extract32(insn, 22, 2);
5610 uint64_t imm;
5611 TCGv_i64 tcg_res;
5612 TCGMemOp sz;
5614 switch (type) {
5615 case 0:
5616 sz = MO_32;
5617 break;
5618 case 1:
5619 sz = MO_64;
5620 break;
5621 case 3:
5622 sz = MO_16;
5623 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5624 break;
5626 /* fallthru */
5627 default:
5628 unallocated_encoding(s);
5629 return;
5632 if (!fp_access_check(s)) {
5633 return;
5636 imm = vfp_expand_imm(sz, imm8);
5638 tcg_res = tcg_const_i64(imm);
5639 write_fp_dreg(s, rd, tcg_res);
5640 tcg_temp_free_i64(tcg_res);
5643 /* Handle floating point <=> fixed point conversions. Note that we can
5644 * also deal with fp <=> integer conversions as a special case (scale == 64)
5645 * OPTME: consider handling that special case specially or at least skipping
5646 * the call to scalbn in the helpers for zero shifts.
5648 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5649 bool itof, int rmode, int scale, int sf, int type)
5651 bool is_signed = !(opcode & 1);
5652 TCGv_ptr tcg_fpstatus;
5653 TCGv_i32 tcg_shift, tcg_single;
5654 TCGv_i64 tcg_double;
5656 tcg_fpstatus = get_fpstatus_ptr(type == 3);
5658 tcg_shift = tcg_const_i32(64 - scale);
5660 if (itof) {
5661 TCGv_i64 tcg_int = cpu_reg(s, rn);
5662 if (!sf) {
5663 TCGv_i64 tcg_extend = new_tmp_a64(s);
5665 if (is_signed) {
5666 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5667 } else {
5668 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5671 tcg_int = tcg_extend;
5674 switch (type) {
5675 case 1: /* float64 */
5676 tcg_double = tcg_temp_new_i64();
5677 if (is_signed) {
5678 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5679 tcg_shift, tcg_fpstatus);
5680 } else {
5681 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5682 tcg_shift, tcg_fpstatus);
5684 write_fp_dreg(s, rd, tcg_double);
5685 tcg_temp_free_i64(tcg_double);
5686 break;
5688 case 0: /* float32 */
5689 tcg_single = tcg_temp_new_i32();
5690 if (is_signed) {
5691 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5692 tcg_shift, tcg_fpstatus);
5693 } else {
5694 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5695 tcg_shift, tcg_fpstatus);
5697 write_fp_sreg(s, rd, tcg_single);
5698 tcg_temp_free_i32(tcg_single);
5699 break;
5701 case 3: /* float16 */
5702 tcg_single = tcg_temp_new_i32();
5703 if (is_signed) {
5704 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
5705 tcg_shift, tcg_fpstatus);
5706 } else {
5707 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
5708 tcg_shift, tcg_fpstatus);
5710 write_fp_sreg(s, rd, tcg_single);
5711 tcg_temp_free_i32(tcg_single);
5712 break;
5714 default:
5715 g_assert_not_reached();
5717 } else {
5718 TCGv_i64 tcg_int = cpu_reg(s, rd);
5719 TCGv_i32 tcg_rmode;
5721 if (extract32(opcode, 2, 1)) {
5722 /* There are too many rounding modes to all fit into rmode,
5723 * so FCVTA[US] is a special case.
5725 rmode = FPROUNDING_TIEAWAY;
5728 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5730 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5732 switch (type) {
5733 case 1: /* float64 */
5734 tcg_double = read_fp_dreg(s, rn);
5735 if (is_signed) {
5736 if (!sf) {
5737 gen_helper_vfp_tosld(tcg_int, tcg_double,
5738 tcg_shift, tcg_fpstatus);
5739 } else {
5740 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5741 tcg_shift, tcg_fpstatus);
5743 } else {
5744 if (!sf) {
5745 gen_helper_vfp_tould(tcg_int, tcg_double,
5746 tcg_shift, tcg_fpstatus);
5747 } else {
5748 gen_helper_vfp_touqd(tcg_int, tcg_double,
5749 tcg_shift, tcg_fpstatus);
5752 if (!sf) {
5753 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5755 tcg_temp_free_i64(tcg_double);
5756 break;
5758 case 0: /* float32 */
5759 tcg_single = read_fp_sreg(s, rn);
5760 if (sf) {
5761 if (is_signed) {
5762 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5763 tcg_shift, tcg_fpstatus);
5764 } else {
5765 gen_helper_vfp_touqs(tcg_int, tcg_single,
5766 tcg_shift, tcg_fpstatus);
5768 } else {
5769 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5770 if (is_signed) {
5771 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5772 tcg_shift, tcg_fpstatus);
5773 } else {
5774 gen_helper_vfp_touls(tcg_dest, tcg_single,
5775 tcg_shift, tcg_fpstatus);
5777 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5778 tcg_temp_free_i32(tcg_dest);
5780 tcg_temp_free_i32(tcg_single);
5781 break;
5783 case 3: /* float16 */
5784 tcg_single = read_fp_sreg(s, rn);
5785 if (sf) {
5786 if (is_signed) {
5787 gen_helper_vfp_tosqh(tcg_int, tcg_single,
5788 tcg_shift, tcg_fpstatus);
5789 } else {
5790 gen_helper_vfp_touqh(tcg_int, tcg_single,
5791 tcg_shift, tcg_fpstatus);
5793 } else {
5794 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5795 if (is_signed) {
5796 gen_helper_vfp_toslh(tcg_dest, tcg_single,
5797 tcg_shift, tcg_fpstatus);
5798 } else {
5799 gen_helper_vfp_toulh(tcg_dest, tcg_single,
5800 tcg_shift, tcg_fpstatus);
5802 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5803 tcg_temp_free_i32(tcg_dest);
5805 tcg_temp_free_i32(tcg_single);
5806 break;
5808 default:
5809 g_assert_not_reached();
5812 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5813 tcg_temp_free_i32(tcg_rmode);
5816 tcg_temp_free_ptr(tcg_fpstatus);
5817 tcg_temp_free_i32(tcg_shift);
5820 /* Floating point <-> fixed point conversions
5821 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5822 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5823 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5824 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5826 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5828 int rd = extract32(insn, 0, 5);
5829 int rn = extract32(insn, 5, 5);
5830 int scale = extract32(insn, 10, 6);
5831 int opcode = extract32(insn, 16, 3);
5832 int rmode = extract32(insn, 19, 2);
5833 int type = extract32(insn, 22, 2);
5834 bool sbit = extract32(insn, 29, 1);
5835 bool sf = extract32(insn, 31, 1);
5836 bool itof;
5838 if (sbit || (!sf && scale < 32)) {
5839 unallocated_encoding(s);
5840 return;
5843 switch (type) {
5844 case 0: /* float32 */
5845 case 1: /* float64 */
5846 break;
5847 case 3: /* float16 */
5848 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5849 break;
5851 /* fallthru */
5852 default:
5853 unallocated_encoding(s);
5854 return;
5857 switch ((rmode << 3) | opcode) {
5858 case 0x2: /* SCVTF */
5859 case 0x3: /* UCVTF */
5860 itof = true;
5861 break;
5862 case 0x18: /* FCVTZS */
5863 case 0x19: /* FCVTZU */
5864 itof = false;
5865 break;
5866 default:
5867 unallocated_encoding(s);
5868 return;
5871 if (!fp_access_check(s)) {
5872 return;
5875 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5878 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5880 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5881 * without conversion.
5884 if (itof) {
5885 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5886 TCGv_i64 tmp;
5888 switch (type) {
5889 case 0:
5890 /* 32 bit */
5891 tmp = tcg_temp_new_i64();
5892 tcg_gen_ext32u_i64(tmp, tcg_rn);
5893 write_fp_dreg(s, rd, tmp);
5894 tcg_temp_free_i64(tmp);
5895 break;
5896 case 1:
5897 /* 64 bit */
5898 write_fp_dreg(s, rd, tcg_rn);
5899 break;
5900 case 2:
5901 /* 64 bit to top half. */
5902 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5903 clear_vec_high(s, true, rd);
5904 break;
5905 case 3:
5906 /* 16 bit */
5907 tmp = tcg_temp_new_i64();
5908 tcg_gen_ext16u_i64(tmp, tcg_rn);
5909 write_fp_dreg(s, rd, tmp);
5910 tcg_temp_free_i64(tmp);
5911 break;
5912 default:
5913 g_assert_not_reached();
5915 } else {
5916 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5918 switch (type) {
5919 case 0:
5920 /* 32 bit */
5921 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5922 break;
5923 case 1:
5924 /* 64 bit */
5925 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5926 break;
5927 case 2:
5928 /* 64 bits from top half */
5929 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5930 break;
5931 case 3:
5932 /* 16 bit */
5933 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
5934 break;
5935 default:
5936 g_assert_not_reached();
5941 /* Floating point <-> integer conversions
5942 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5943 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5944 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5945 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5947 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5949 int rd = extract32(insn, 0, 5);
5950 int rn = extract32(insn, 5, 5);
5951 int opcode = extract32(insn, 16, 3);
5952 int rmode = extract32(insn, 19, 2);
5953 int type = extract32(insn, 22, 2);
5954 bool sbit = extract32(insn, 29, 1);
5955 bool sf = extract32(insn, 31, 1);
5957 if (sbit) {
5958 unallocated_encoding(s);
5959 return;
5962 if (opcode > 5) {
5963 /* FMOV */
5964 bool itof = opcode & 1;
5966 if (rmode >= 2) {
5967 unallocated_encoding(s);
5968 return;
5971 switch (sf << 3 | type << 1 | rmode) {
5972 case 0x0: /* 32 bit */
5973 case 0xa: /* 64 bit */
5974 case 0xd: /* 64 bit to top half of quad */
5975 break;
5976 case 0x6: /* 16-bit float, 32-bit int */
5977 case 0xe: /* 16-bit float, 64-bit int */
5978 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5979 break;
5981 /* fallthru */
5982 default:
5983 /* all other sf/type/rmode combinations are invalid */
5984 unallocated_encoding(s);
5985 return;
5988 if (!fp_access_check(s)) {
5989 return;
5991 handle_fmov(s, rd, rn, type, itof);
5992 } else {
5993 /* actual FP conversions */
5994 bool itof = extract32(opcode, 1, 1);
5996 if (rmode != 0 && opcode > 1) {
5997 unallocated_encoding(s);
5998 return;
6000 switch (type) {
6001 case 0: /* float32 */
6002 case 1: /* float64 */
6003 break;
6004 case 3: /* float16 */
6005 if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6006 break;
6008 /* fallthru */
6009 default:
6010 unallocated_encoding(s);
6011 return;
6014 if (!fp_access_check(s)) {
6015 return;
6017 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6021 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6022 * 31 30 29 28 25 24 0
6023 * +---+---+---+---------+-----------------------------+
6024 * | | 0 | | 1 1 1 1 | |
6025 * +---+---+---+---------+-----------------------------+
6027 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6029 if (extract32(insn, 24, 1)) {
6030 /* Floating point data-processing (3 source) */
6031 disas_fp_3src(s, insn);
6032 } else if (extract32(insn, 21, 1) == 0) {
6033 /* Floating point to fixed point conversions */
6034 disas_fp_fixed_conv(s, insn);
6035 } else {
6036 switch (extract32(insn, 10, 2)) {
6037 case 1:
6038 /* Floating point conditional compare */
6039 disas_fp_ccomp(s, insn);
6040 break;
6041 case 2:
6042 /* Floating point data-processing (2 source) */
6043 disas_fp_2src(s, insn);
6044 break;
6045 case 3:
6046 /* Floating point conditional select */
6047 disas_fp_csel(s, insn);
6048 break;
6049 case 0:
6050 switch (ctz32(extract32(insn, 12, 4))) {
6051 case 0: /* [15:12] == xxx1 */
6052 /* Floating point immediate */
6053 disas_fp_imm(s, insn);
6054 break;
6055 case 1: /* [15:12] == xx10 */
6056 /* Floating point compare */
6057 disas_fp_compare(s, insn);
6058 break;
6059 case 2: /* [15:12] == x100 */
6060 /* Floating point data-processing (1 source) */
6061 disas_fp_1src(s, insn);
6062 break;
6063 case 3: /* [15:12] == 1000 */
6064 unallocated_encoding(s);
6065 break;
6066 default: /* [15:12] == 0000 */
6067 /* Floating point <-> integer conversions */
6068 disas_fp_int_conv(s, insn);
6069 break;
6071 break;
6076 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6077 int pos)
6079 /* Extract 64 bits from the middle of two concatenated 64 bit
6080 * vector register slices left:right. The extracted bits start
6081 * at 'pos' bits into the right (least significant) side.
6082 * We return the result in tcg_right, and guarantee not to
6083 * trash tcg_left.
6085 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6086 assert(pos > 0 && pos < 64);
6088 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6089 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6090 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6092 tcg_temp_free_i64(tcg_tmp);
6095 /* EXT
6096 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6097 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6098 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6099 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6101 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6103 int is_q = extract32(insn, 30, 1);
6104 int op2 = extract32(insn, 22, 2);
6105 int imm4 = extract32(insn, 11, 4);
6106 int rm = extract32(insn, 16, 5);
6107 int rn = extract32(insn, 5, 5);
6108 int rd = extract32(insn, 0, 5);
6109 int pos = imm4 << 3;
6110 TCGv_i64 tcg_resl, tcg_resh;
6112 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6113 unallocated_encoding(s);
6114 return;
6117 if (!fp_access_check(s)) {
6118 return;
6121 tcg_resh = tcg_temp_new_i64();
6122 tcg_resl = tcg_temp_new_i64();
6124 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6125 * either extracting 128 bits from a 128:128 concatenation, or
6126 * extracting 64 bits from a 64:64 concatenation.
6128 if (!is_q) {
6129 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6130 if (pos != 0) {
6131 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6132 do_ext64(s, tcg_resh, tcg_resl, pos);
6134 tcg_gen_movi_i64(tcg_resh, 0);
6135 } else {
6136 TCGv_i64 tcg_hh;
6137 typedef struct {
6138 int reg;
6139 int elt;
6140 } EltPosns;
6141 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6142 EltPosns *elt = eltposns;
6144 if (pos >= 64) {
6145 elt++;
6146 pos -= 64;
6149 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6150 elt++;
6151 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6152 elt++;
6153 if (pos != 0) {
6154 do_ext64(s, tcg_resh, tcg_resl, pos);
6155 tcg_hh = tcg_temp_new_i64();
6156 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6157 do_ext64(s, tcg_hh, tcg_resh, pos);
6158 tcg_temp_free_i64(tcg_hh);
6162 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6163 tcg_temp_free_i64(tcg_resl);
6164 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6165 tcg_temp_free_i64(tcg_resh);
6168 /* TBL/TBX
6169 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6170 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6171 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6172 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6174 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6176 int op2 = extract32(insn, 22, 2);
6177 int is_q = extract32(insn, 30, 1);
6178 int rm = extract32(insn, 16, 5);
6179 int rn = extract32(insn, 5, 5);
6180 int rd = extract32(insn, 0, 5);
6181 int is_tblx = extract32(insn, 12, 1);
6182 int len = extract32(insn, 13, 2);
6183 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6184 TCGv_i32 tcg_regno, tcg_numregs;
6186 if (op2 != 0) {
6187 unallocated_encoding(s);
6188 return;
6191 if (!fp_access_check(s)) {
6192 return;
6195 /* This does a table lookup: for every byte element in the input
6196 * we index into a table formed from up to four vector registers,
6197 * and then the output is the result of the lookups. Our helper
6198 * function does the lookup operation for a single 64 bit part of
6199 * the input.
6201 tcg_resl = tcg_temp_new_i64();
6202 tcg_resh = tcg_temp_new_i64();
6204 if (is_tblx) {
6205 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6206 } else {
6207 tcg_gen_movi_i64(tcg_resl, 0);
6209 if (is_tblx && is_q) {
6210 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6211 } else {
6212 tcg_gen_movi_i64(tcg_resh, 0);
6215 tcg_idx = tcg_temp_new_i64();
6216 tcg_regno = tcg_const_i32(rn);
6217 tcg_numregs = tcg_const_i32(len + 1);
6218 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6219 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6220 tcg_regno, tcg_numregs);
6221 if (is_q) {
6222 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6223 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6224 tcg_regno, tcg_numregs);
6226 tcg_temp_free_i64(tcg_idx);
6227 tcg_temp_free_i32(tcg_regno);
6228 tcg_temp_free_i32(tcg_numregs);
6230 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6231 tcg_temp_free_i64(tcg_resl);
6232 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6233 tcg_temp_free_i64(tcg_resh);
6236 /* ZIP/UZP/TRN
6237 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6238 * +---+---+-------------+------+---+------+---+------------------+------+
6239 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6240 * +---+---+-------------+------+---+------+---+------------------+------+
6242 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6244 int rd = extract32(insn, 0, 5);
6245 int rn = extract32(insn, 5, 5);
6246 int rm = extract32(insn, 16, 5);
6247 int size = extract32(insn, 22, 2);
6248 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6249 * bit 2 indicates 1 vs 2 variant of the insn.
6251 int opcode = extract32(insn, 12, 2);
6252 bool part = extract32(insn, 14, 1);
6253 bool is_q = extract32(insn, 30, 1);
6254 int esize = 8 << size;
6255 int i, ofs;
6256 int datasize = is_q ? 128 : 64;
6257 int elements = datasize / esize;
6258 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6260 if (opcode == 0 || (size == 3 && !is_q)) {
6261 unallocated_encoding(s);
6262 return;
6265 if (!fp_access_check(s)) {
6266 return;
6269 tcg_resl = tcg_const_i64(0);
6270 tcg_resh = tcg_const_i64(0);
6271 tcg_res = tcg_temp_new_i64();
6273 for (i = 0; i < elements; i++) {
6274 switch (opcode) {
6275 case 1: /* UZP1/2 */
6277 int midpoint = elements / 2;
6278 if (i < midpoint) {
6279 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6280 } else {
6281 read_vec_element(s, tcg_res, rm,
6282 2 * (i - midpoint) + part, size);
6284 break;
6286 case 2: /* TRN1/2 */
6287 if (i & 1) {
6288 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6289 } else {
6290 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6292 break;
6293 case 3: /* ZIP1/2 */
6295 int base = part * elements / 2;
6296 if (i & 1) {
6297 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6298 } else {
6299 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6301 break;
6303 default:
6304 g_assert_not_reached();
6307 ofs = i * esize;
6308 if (ofs < 64) {
6309 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6310 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6311 } else {
6312 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6313 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6317 tcg_temp_free_i64(tcg_res);
6319 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6320 tcg_temp_free_i64(tcg_resl);
6321 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6322 tcg_temp_free_i64(tcg_resh);
6326 * do_reduction_op helper
6328 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6329 * important for correct NaN propagation that we do these
6330 * operations in exactly the order specified by the pseudocode.
6332 * This is a recursive function, TCG temps should be freed by the
6333 * calling function once it is done with the values.
6335 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6336 int esize, int size, int vmap, TCGv_ptr fpst)
6338 if (esize == size) {
6339 int element;
6340 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6341 TCGv_i32 tcg_elem;
6343 /* We should have one register left here */
6344 assert(ctpop8(vmap) == 1);
6345 element = ctz32(vmap);
6346 assert(element < 8);
6348 tcg_elem = tcg_temp_new_i32();
6349 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6350 return tcg_elem;
6351 } else {
6352 int bits = size / 2;
6353 int shift = ctpop8(vmap) / 2;
6354 int vmap_lo = (vmap >> shift) & vmap;
6355 int vmap_hi = (vmap & ~vmap_lo);
6356 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6358 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6359 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6360 tcg_res = tcg_temp_new_i32();
6362 switch (fpopcode) {
6363 case 0x0c: /* fmaxnmv half-precision */
6364 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6365 break;
6366 case 0x0f: /* fmaxv half-precision */
6367 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6368 break;
6369 case 0x1c: /* fminnmv half-precision */
6370 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6371 break;
6372 case 0x1f: /* fminv half-precision */
6373 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6374 break;
6375 case 0x2c: /* fmaxnmv */
6376 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6377 break;
6378 case 0x2f: /* fmaxv */
6379 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6380 break;
6381 case 0x3c: /* fminnmv */
6382 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6383 break;
6384 case 0x3f: /* fminv */
6385 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6386 break;
6387 default:
6388 g_assert_not_reached();
6391 tcg_temp_free_i32(tcg_hi);
6392 tcg_temp_free_i32(tcg_lo);
6393 return tcg_res;
6397 /* AdvSIMD across lanes
6398 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6399 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6400 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6401 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6403 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6405 int rd = extract32(insn, 0, 5);
6406 int rn = extract32(insn, 5, 5);
6407 int size = extract32(insn, 22, 2);
6408 int opcode = extract32(insn, 12, 5);
6409 bool is_q = extract32(insn, 30, 1);
6410 bool is_u = extract32(insn, 29, 1);
6411 bool is_fp = false;
6412 bool is_min = false;
6413 int esize;
6414 int elements;
6415 int i;
6416 TCGv_i64 tcg_res, tcg_elt;
6418 switch (opcode) {
6419 case 0x1b: /* ADDV */
6420 if (is_u) {
6421 unallocated_encoding(s);
6422 return;
6424 /* fall through */
6425 case 0x3: /* SADDLV, UADDLV */
6426 case 0xa: /* SMAXV, UMAXV */
6427 case 0x1a: /* SMINV, UMINV */
6428 if (size == 3 || (size == 2 && !is_q)) {
6429 unallocated_encoding(s);
6430 return;
6432 break;
6433 case 0xc: /* FMAXNMV, FMINNMV */
6434 case 0xf: /* FMAXV, FMINV */
6435 /* Bit 1 of size field encodes min vs max and the actual size
6436 * depends on the encoding of the U bit. If not set (and FP16
6437 * enabled) then we do half-precision float instead of single
6438 * precision.
6440 is_min = extract32(size, 1, 1);
6441 is_fp = true;
6442 if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6443 size = 1;
6444 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
6445 unallocated_encoding(s);
6446 return;
6447 } else {
6448 size = 2;
6450 break;
6451 default:
6452 unallocated_encoding(s);
6453 return;
6456 if (!fp_access_check(s)) {
6457 return;
6460 esize = 8 << size;
6461 elements = (is_q ? 128 : 64) / esize;
6463 tcg_res = tcg_temp_new_i64();
6464 tcg_elt = tcg_temp_new_i64();
6466 /* These instructions operate across all lanes of a vector
6467 * to produce a single result. We can guarantee that a 64
6468 * bit intermediate is sufficient:
6469 * + for [US]ADDLV the maximum element size is 32 bits, and
6470 * the result type is 64 bits
6471 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6472 * same as the element size, which is 32 bits at most
6473 * For the integer operations we can choose to work at 64
6474 * or 32 bits and truncate at the end; for simplicity
6475 * we use 64 bits always. The floating point
6476 * ops do require 32 bit intermediates, though.
6478 if (!is_fp) {
6479 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6481 for (i = 1; i < elements; i++) {
6482 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6484 switch (opcode) {
6485 case 0x03: /* SADDLV / UADDLV */
6486 case 0x1b: /* ADDV */
6487 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6488 break;
6489 case 0x0a: /* SMAXV / UMAXV */
6490 if (is_u) {
6491 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
6492 } else {
6493 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
6495 break;
6496 case 0x1a: /* SMINV / UMINV */
6497 if (is_u) {
6498 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
6499 } else {
6500 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
6502 break;
6503 default:
6504 g_assert_not_reached();
6508 } else {
6509 /* Floating point vector reduction ops which work across 32
6510 * bit (single) or 16 bit (half-precision) intermediates.
6511 * Note that correct NaN propagation requires that we do these
6512 * operations in exactly the order specified by the pseudocode.
6514 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6515 int fpopcode = opcode | is_min << 4 | is_u << 5;
6516 int vmap = (1 << elements) - 1;
6517 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6518 (is_q ? 128 : 64), vmap, fpst);
6519 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6520 tcg_temp_free_i32(tcg_res32);
6521 tcg_temp_free_ptr(fpst);
6524 tcg_temp_free_i64(tcg_elt);
6526 /* Now truncate the result to the width required for the final output */
6527 if (opcode == 0x03) {
6528 /* SADDLV, UADDLV: result is 2*esize */
6529 size++;
6532 switch (size) {
6533 case 0:
6534 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6535 break;
6536 case 1:
6537 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6538 break;
6539 case 2:
6540 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6541 break;
6542 case 3:
6543 break;
6544 default:
6545 g_assert_not_reached();
6548 write_fp_dreg(s, rd, tcg_res);
6549 tcg_temp_free_i64(tcg_res);
6552 /* DUP (Element, Vector)
6554 * 31 30 29 21 20 16 15 10 9 5 4 0
6555 * +---+---+-------------------+--------+-------------+------+------+
6556 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6557 * +---+---+-------------------+--------+-------------+------+------+
6559 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6561 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6562 int imm5)
6564 int size = ctz32(imm5);
6565 int index = imm5 >> (size + 1);
6567 if (size > 3 || (size == 3 && !is_q)) {
6568 unallocated_encoding(s);
6569 return;
6572 if (!fp_access_check(s)) {
6573 return;
6576 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6577 vec_reg_offset(s, rn, index, size),
6578 is_q ? 16 : 8, vec_full_reg_size(s));
6581 /* DUP (element, scalar)
6582 * 31 21 20 16 15 10 9 5 4 0
6583 * +-----------------------+--------+-------------+------+------+
6584 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6585 * +-----------------------+--------+-------------+------+------+
6587 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6588 int imm5)
6590 int size = ctz32(imm5);
6591 int index;
6592 TCGv_i64 tmp;
6594 if (size > 3) {
6595 unallocated_encoding(s);
6596 return;
6599 if (!fp_access_check(s)) {
6600 return;
6603 index = imm5 >> (size + 1);
6605 /* This instruction just extracts the specified element and
6606 * zero-extends it into the bottom of the destination register.
6608 tmp = tcg_temp_new_i64();
6609 read_vec_element(s, tmp, rn, index, size);
6610 write_fp_dreg(s, rd, tmp);
6611 tcg_temp_free_i64(tmp);
6614 /* DUP (General)
6616 * 31 30 29 21 20 16 15 10 9 5 4 0
6617 * +---+---+-------------------+--------+-------------+------+------+
6618 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6619 * +---+---+-------------------+--------+-------------+------+------+
6621 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6623 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6624 int imm5)
6626 int size = ctz32(imm5);
6627 uint32_t dofs, oprsz, maxsz;
6629 if (size > 3 || ((size == 3) && !is_q)) {
6630 unallocated_encoding(s);
6631 return;
6634 if (!fp_access_check(s)) {
6635 return;
6638 dofs = vec_full_reg_offset(s, rd);
6639 oprsz = is_q ? 16 : 8;
6640 maxsz = vec_full_reg_size(s);
6642 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6645 /* INS (Element)
6647 * 31 21 20 16 15 14 11 10 9 5 4 0
6648 * +-----------------------+--------+------------+---+------+------+
6649 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6650 * +-----------------------+--------+------------+---+------+------+
6652 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6653 * index: encoded in imm5<4:size+1>
6655 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6656 int imm4, int imm5)
6658 int size = ctz32(imm5);
6659 int src_index, dst_index;
6660 TCGv_i64 tmp;
6662 if (size > 3) {
6663 unallocated_encoding(s);
6664 return;
6667 if (!fp_access_check(s)) {
6668 return;
6671 dst_index = extract32(imm5, 1+size, 5);
6672 src_index = extract32(imm4, size, 4);
6674 tmp = tcg_temp_new_i64();
6676 read_vec_element(s, tmp, rn, src_index, size);
6677 write_vec_element(s, tmp, rd, dst_index, size);
6679 tcg_temp_free_i64(tmp);
6683 /* INS (General)
6685 * 31 21 20 16 15 10 9 5 4 0
6686 * +-----------------------+--------+-------------+------+------+
6687 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6688 * +-----------------------+--------+-------------+------+------+
6690 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6691 * index: encoded in imm5<4:size+1>
6693 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6695 int size = ctz32(imm5);
6696 int idx;
6698 if (size > 3) {
6699 unallocated_encoding(s);
6700 return;
6703 if (!fp_access_check(s)) {
6704 return;
6707 idx = extract32(imm5, 1 + size, 4 - size);
6708 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6712 * UMOV (General)
6713 * SMOV (General)
6715 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6716 * +---+---+-------------------+--------+-------------+------+------+
6717 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6718 * +---+---+-------------------+--------+-------------+------+------+
6720 * U: unsigned when set
6721 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6723 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6724 int rn, int rd, int imm5)
6726 int size = ctz32(imm5);
6727 int element;
6728 TCGv_i64 tcg_rd;
6730 /* Check for UnallocatedEncodings */
6731 if (is_signed) {
6732 if (size > 2 || (size == 2 && !is_q)) {
6733 unallocated_encoding(s);
6734 return;
6736 } else {
6737 if (size > 3
6738 || (size < 3 && is_q)
6739 || (size == 3 && !is_q)) {
6740 unallocated_encoding(s);
6741 return;
6745 if (!fp_access_check(s)) {
6746 return;
6749 element = extract32(imm5, 1+size, 4);
6751 tcg_rd = cpu_reg(s, rd);
6752 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6753 if (is_signed && !is_q) {
6754 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6758 /* AdvSIMD copy
6759 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6760 * +---+---+----+-----------------+------+---+------+---+------+------+
6761 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6762 * +---+---+----+-----------------+------+---+------+---+------+------+
6764 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6766 int rd = extract32(insn, 0, 5);
6767 int rn = extract32(insn, 5, 5);
6768 int imm4 = extract32(insn, 11, 4);
6769 int op = extract32(insn, 29, 1);
6770 int is_q = extract32(insn, 30, 1);
6771 int imm5 = extract32(insn, 16, 5);
6773 if (op) {
6774 if (is_q) {
6775 /* INS (element) */
6776 handle_simd_inse(s, rd, rn, imm4, imm5);
6777 } else {
6778 unallocated_encoding(s);
6780 } else {
6781 switch (imm4) {
6782 case 0:
6783 /* DUP (element - vector) */
6784 handle_simd_dupe(s, is_q, rd, rn, imm5);
6785 break;
6786 case 1:
6787 /* DUP (general) */
6788 handle_simd_dupg(s, is_q, rd, rn, imm5);
6789 break;
6790 case 3:
6791 if (is_q) {
6792 /* INS (general) */
6793 handle_simd_insg(s, rd, rn, imm5);
6794 } else {
6795 unallocated_encoding(s);
6797 break;
6798 case 5:
6799 case 7:
6800 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6801 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6802 break;
6803 default:
6804 unallocated_encoding(s);
6805 break;
6810 /* AdvSIMD modified immediate
6811 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6812 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6813 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6814 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6816 * There are a number of operations that can be carried out here:
6817 * MOVI - move (shifted) imm into register
6818 * MVNI - move inverted (shifted) imm into register
6819 * ORR - bitwise OR of (shifted) imm with register
6820 * BIC - bitwise clear of (shifted) imm with register
6821 * With ARMv8.2 we also have:
6822 * FMOV half-precision
6824 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6826 int rd = extract32(insn, 0, 5);
6827 int cmode = extract32(insn, 12, 4);
6828 int cmode_3_1 = extract32(cmode, 1, 3);
6829 int cmode_0 = extract32(cmode, 0, 1);
6830 int o2 = extract32(insn, 11, 1);
6831 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6832 bool is_neg = extract32(insn, 29, 1);
6833 bool is_q = extract32(insn, 30, 1);
6834 uint64_t imm = 0;
6836 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6837 /* Check for FMOV (vector, immediate) - half-precision */
6838 if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
6839 unallocated_encoding(s);
6840 return;
6844 if (!fp_access_check(s)) {
6845 return;
6848 /* See AdvSIMDExpandImm() in ARM ARM */
6849 switch (cmode_3_1) {
6850 case 0: /* Replicate(Zeros(24):imm8, 2) */
6851 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6852 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6853 case 3: /* Replicate(imm8:Zeros(24), 2) */
6855 int shift = cmode_3_1 * 8;
6856 imm = bitfield_replicate(abcdefgh << shift, 32);
6857 break;
6859 case 4: /* Replicate(Zeros(8):imm8, 4) */
6860 case 5: /* Replicate(imm8:Zeros(8), 4) */
6862 int shift = (cmode_3_1 & 0x1) * 8;
6863 imm = bitfield_replicate(abcdefgh << shift, 16);
6864 break;
6866 case 6:
6867 if (cmode_0) {
6868 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6869 imm = (abcdefgh << 16) | 0xffff;
6870 } else {
6871 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6872 imm = (abcdefgh << 8) | 0xff;
6874 imm = bitfield_replicate(imm, 32);
6875 break;
6876 case 7:
6877 if (!cmode_0 && !is_neg) {
6878 imm = bitfield_replicate(abcdefgh, 8);
6879 } else if (!cmode_0 && is_neg) {
6880 int i;
6881 imm = 0;
6882 for (i = 0; i < 8; i++) {
6883 if ((abcdefgh) & (1 << i)) {
6884 imm |= 0xffULL << (i * 8);
6887 } else if (cmode_0) {
6888 if (is_neg) {
6889 imm = (abcdefgh & 0x3f) << 48;
6890 if (abcdefgh & 0x80) {
6891 imm |= 0x8000000000000000ULL;
6893 if (abcdefgh & 0x40) {
6894 imm |= 0x3fc0000000000000ULL;
6895 } else {
6896 imm |= 0x4000000000000000ULL;
6898 } else {
6899 if (o2) {
6900 /* FMOV (vector, immediate) - half-precision */
6901 imm = vfp_expand_imm(MO_16, abcdefgh);
6902 /* now duplicate across the lanes */
6903 imm = bitfield_replicate(imm, 16);
6904 } else {
6905 imm = (abcdefgh & 0x3f) << 19;
6906 if (abcdefgh & 0x80) {
6907 imm |= 0x80000000;
6909 if (abcdefgh & 0x40) {
6910 imm |= 0x3e000000;
6911 } else {
6912 imm |= 0x40000000;
6914 imm |= (imm << 32);
6918 break;
6919 default:
6920 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6921 g_assert_not_reached();
6924 if (cmode_3_1 != 7 && is_neg) {
6925 imm = ~imm;
6928 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6929 /* MOVI or MVNI, with MVNI negation handled above. */
6930 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6931 vec_full_reg_size(s), imm);
6932 } else {
6933 /* ORR or BIC, with BIC negation to AND handled above. */
6934 if (is_neg) {
6935 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
6936 } else {
6937 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
6942 /* AdvSIMD scalar copy
6943 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6944 * +-----+----+-----------------+------+---+------+---+------+------+
6945 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6946 * +-----+----+-----------------+------+---+------+---+------+------+
6948 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6950 int rd = extract32(insn, 0, 5);
6951 int rn = extract32(insn, 5, 5);
6952 int imm4 = extract32(insn, 11, 4);
6953 int imm5 = extract32(insn, 16, 5);
6954 int op = extract32(insn, 29, 1);
6956 if (op != 0 || imm4 != 0) {
6957 unallocated_encoding(s);
6958 return;
6961 /* DUP (element, scalar) */
6962 handle_simd_dupes(s, rd, rn, imm5);
6965 /* AdvSIMD scalar pairwise
6966 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6967 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6968 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6969 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6971 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6973 int u = extract32(insn, 29, 1);
6974 int size = extract32(insn, 22, 2);
6975 int opcode = extract32(insn, 12, 5);
6976 int rn = extract32(insn, 5, 5);
6977 int rd = extract32(insn, 0, 5);
6978 TCGv_ptr fpst;
6980 /* For some ops (the FP ones), size[1] is part of the encoding.
6981 * For ADDP strictly it is not but size[1] is always 1 for valid
6982 * encodings.
6984 opcode |= (extract32(size, 1, 1) << 5);
6986 switch (opcode) {
6987 case 0x3b: /* ADDP */
6988 if (u || size != 3) {
6989 unallocated_encoding(s);
6990 return;
6992 if (!fp_access_check(s)) {
6993 return;
6996 fpst = NULL;
6997 break;
6998 case 0xc: /* FMAXNMP */
6999 case 0xd: /* FADDP */
7000 case 0xf: /* FMAXP */
7001 case 0x2c: /* FMINNMP */
7002 case 0x2f: /* FMINP */
7003 /* FP op, size[0] is 32 or 64 bit*/
7004 if (!u) {
7005 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7006 unallocated_encoding(s);
7007 return;
7008 } else {
7009 size = MO_16;
7011 } else {
7012 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7015 if (!fp_access_check(s)) {
7016 return;
7019 fpst = get_fpstatus_ptr(size == MO_16);
7020 break;
7021 default:
7022 unallocated_encoding(s);
7023 return;
7026 if (size == MO_64) {
7027 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7028 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7029 TCGv_i64 tcg_res = tcg_temp_new_i64();
7031 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7032 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7034 switch (opcode) {
7035 case 0x3b: /* ADDP */
7036 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7037 break;
7038 case 0xc: /* FMAXNMP */
7039 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7040 break;
7041 case 0xd: /* FADDP */
7042 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7043 break;
7044 case 0xf: /* FMAXP */
7045 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7046 break;
7047 case 0x2c: /* FMINNMP */
7048 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7049 break;
7050 case 0x2f: /* FMINP */
7051 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7052 break;
7053 default:
7054 g_assert_not_reached();
7057 write_fp_dreg(s, rd, tcg_res);
7059 tcg_temp_free_i64(tcg_op1);
7060 tcg_temp_free_i64(tcg_op2);
7061 tcg_temp_free_i64(tcg_res);
7062 } else {
7063 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7064 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7065 TCGv_i32 tcg_res = tcg_temp_new_i32();
7067 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7068 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7070 if (size == MO_16) {
7071 switch (opcode) {
7072 case 0xc: /* FMAXNMP */
7073 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7074 break;
7075 case 0xd: /* FADDP */
7076 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7077 break;
7078 case 0xf: /* FMAXP */
7079 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7080 break;
7081 case 0x2c: /* FMINNMP */
7082 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7083 break;
7084 case 0x2f: /* FMINP */
7085 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7086 break;
7087 default:
7088 g_assert_not_reached();
7090 } else {
7091 switch (opcode) {
7092 case 0xc: /* FMAXNMP */
7093 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7094 break;
7095 case 0xd: /* FADDP */
7096 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7097 break;
7098 case 0xf: /* FMAXP */
7099 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7100 break;
7101 case 0x2c: /* FMINNMP */
7102 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7103 break;
7104 case 0x2f: /* FMINP */
7105 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7106 break;
7107 default:
7108 g_assert_not_reached();
7112 write_fp_sreg(s, rd, tcg_res);
7114 tcg_temp_free_i32(tcg_op1);
7115 tcg_temp_free_i32(tcg_op2);
7116 tcg_temp_free_i32(tcg_res);
7119 if (fpst) {
7120 tcg_temp_free_ptr(fpst);
7125 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7127 * This code is handles the common shifting code and is used by both
7128 * the vector and scalar code.
7130 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7131 TCGv_i64 tcg_rnd, bool accumulate,
7132 bool is_u, int size, int shift)
7134 bool extended_result = false;
7135 bool round = tcg_rnd != NULL;
7136 int ext_lshift = 0;
7137 TCGv_i64 tcg_src_hi;
7139 if (round && size == 3) {
7140 extended_result = true;
7141 ext_lshift = 64 - shift;
7142 tcg_src_hi = tcg_temp_new_i64();
7143 } else if (shift == 64) {
7144 if (!accumulate && is_u) {
7145 /* result is zero */
7146 tcg_gen_movi_i64(tcg_res, 0);
7147 return;
7151 /* Deal with the rounding step */
7152 if (round) {
7153 if (extended_result) {
7154 TCGv_i64 tcg_zero = tcg_const_i64(0);
7155 if (!is_u) {
7156 /* take care of sign extending tcg_res */
7157 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7158 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7159 tcg_src, tcg_src_hi,
7160 tcg_rnd, tcg_zero);
7161 } else {
7162 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7163 tcg_src, tcg_zero,
7164 tcg_rnd, tcg_zero);
7166 tcg_temp_free_i64(tcg_zero);
7167 } else {
7168 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7172 /* Now do the shift right */
7173 if (round && extended_result) {
7174 /* extended case, >64 bit precision required */
7175 if (ext_lshift == 0) {
7176 /* special case, only high bits matter */
7177 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7178 } else {
7179 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7180 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7181 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7183 } else {
7184 if (is_u) {
7185 if (shift == 64) {
7186 /* essentially shifting in 64 zeros */
7187 tcg_gen_movi_i64(tcg_src, 0);
7188 } else {
7189 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7191 } else {
7192 if (shift == 64) {
7193 /* effectively extending the sign-bit */
7194 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7195 } else {
7196 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7201 if (accumulate) {
7202 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7203 } else {
7204 tcg_gen_mov_i64(tcg_res, tcg_src);
7207 if (extended_result) {
7208 tcg_temp_free_i64(tcg_src_hi);
7212 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7213 static void handle_scalar_simd_shri(DisasContext *s,
7214 bool is_u, int immh, int immb,
7215 int opcode, int rn, int rd)
7217 const int size = 3;
7218 int immhb = immh << 3 | immb;
7219 int shift = 2 * (8 << size) - immhb;
7220 bool accumulate = false;
7221 bool round = false;
7222 bool insert = false;
7223 TCGv_i64 tcg_rn;
7224 TCGv_i64 tcg_rd;
7225 TCGv_i64 tcg_round;
7227 if (!extract32(immh, 3, 1)) {
7228 unallocated_encoding(s);
7229 return;
7232 if (!fp_access_check(s)) {
7233 return;
7236 switch (opcode) {
7237 case 0x02: /* SSRA / USRA (accumulate) */
7238 accumulate = true;
7239 break;
7240 case 0x04: /* SRSHR / URSHR (rounding) */
7241 round = true;
7242 break;
7243 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7244 accumulate = round = true;
7245 break;
7246 case 0x08: /* SRI */
7247 insert = true;
7248 break;
7251 if (round) {
7252 uint64_t round_const = 1ULL << (shift - 1);
7253 tcg_round = tcg_const_i64(round_const);
7254 } else {
7255 tcg_round = NULL;
7258 tcg_rn = read_fp_dreg(s, rn);
7259 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7261 if (insert) {
7262 /* shift count same as element size is valid but does nothing;
7263 * special case to avoid potential shift by 64.
7265 int esize = 8 << size;
7266 if (shift != esize) {
7267 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7268 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7270 } else {
7271 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7272 accumulate, is_u, size, shift);
7275 write_fp_dreg(s, rd, tcg_rd);
7277 tcg_temp_free_i64(tcg_rn);
7278 tcg_temp_free_i64(tcg_rd);
7279 if (round) {
7280 tcg_temp_free_i64(tcg_round);
7284 /* SHL/SLI - Scalar shift left */
7285 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7286 int immh, int immb, int opcode,
7287 int rn, int rd)
7289 int size = 32 - clz32(immh) - 1;
7290 int immhb = immh << 3 | immb;
7291 int shift = immhb - (8 << size);
7292 TCGv_i64 tcg_rn = new_tmp_a64(s);
7293 TCGv_i64 tcg_rd = new_tmp_a64(s);
7295 if (!extract32(immh, 3, 1)) {
7296 unallocated_encoding(s);
7297 return;
7300 if (!fp_access_check(s)) {
7301 return;
7304 tcg_rn = read_fp_dreg(s, rn);
7305 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7307 if (insert) {
7308 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7309 } else {
7310 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7313 write_fp_dreg(s, rd, tcg_rd);
7315 tcg_temp_free_i64(tcg_rn);
7316 tcg_temp_free_i64(tcg_rd);
7319 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7320 * (signed/unsigned) narrowing */
7321 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7322 bool is_u_shift, bool is_u_narrow,
7323 int immh, int immb, int opcode,
7324 int rn, int rd)
7326 int immhb = immh << 3 | immb;
7327 int size = 32 - clz32(immh) - 1;
7328 int esize = 8 << size;
7329 int shift = (2 * esize) - immhb;
7330 int elements = is_scalar ? 1 : (64 / esize);
7331 bool round = extract32(opcode, 0, 1);
7332 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7333 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7334 TCGv_i32 tcg_rd_narrowed;
7335 TCGv_i64 tcg_final;
7337 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7338 { gen_helper_neon_narrow_sat_s8,
7339 gen_helper_neon_unarrow_sat8 },
7340 { gen_helper_neon_narrow_sat_s16,
7341 gen_helper_neon_unarrow_sat16 },
7342 { gen_helper_neon_narrow_sat_s32,
7343 gen_helper_neon_unarrow_sat32 },
7344 { NULL, NULL },
7346 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7347 gen_helper_neon_narrow_sat_u8,
7348 gen_helper_neon_narrow_sat_u16,
7349 gen_helper_neon_narrow_sat_u32,
7350 NULL
7352 NeonGenNarrowEnvFn *narrowfn;
7354 int i;
7356 assert(size < 4);
7358 if (extract32(immh, 3, 1)) {
7359 unallocated_encoding(s);
7360 return;
7363 if (!fp_access_check(s)) {
7364 return;
7367 if (is_u_shift) {
7368 narrowfn = unsigned_narrow_fns[size];
7369 } else {
7370 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7373 tcg_rn = tcg_temp_new_i64();
7374 tcg_rd = tcg_temp_new_i64();
7375 tcg_rd_narrowed = tcg_temp_new_i32();
7376 tcg_final = tcg_const_i64(0);
7378 if (round) {
7379 uint64_t round_const = 1ULL << (shift - 1);
7380 tcg_round = tcg_const_i64(round_const);
7381 } else {
7382 tcg_round = NULL;
7385 for (i = 0; i < elements; i++) {
7386 read_vec_element(s, tcg_rn, rn, i, ldop);
7387 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7388 false, is_u_shift, size+1, shift);
7389 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7390 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7391 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7394 if (!is_q) {
7395 write_vec_element(s, tcg_final, rd, 0, MO_64);
7396 } else {
7397 write_vec_element(s, tcg_final, rd, 1, MO_64);
7400 if (round) {
7401 tcg_temp_free_i64(tcg_round);
7403 tcg_temp_free_i64(tcg_rn);
7404 tcg_temp_free_i64(tcg_rd);
7405 tcg_temp_free_i32(tcg_rd_narrowed);
7406 tcg_temp_free_i64(tcg_final);
7408 clear_vec_high(s, is_q, rd);
7411 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
7412 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
7413 bool src_unsigned, bool dst_unsigned,
7414 int immh, int immb, int rn, int rd)
7416 int immhb = immh << 3 | immb;
7417 int size = 32 - clz32(immh) - 1;
7418 int shift = immhb - (8 << size);
7419 int pass;
7421 assert(immh != 0);
7422 assert(!(scalar && is_q));
7424 if (!scalar) {
7425 if (!is_q && extract32(immh, 3, 1)) {
7426 unallocated_encoding(s);
7427 return;
7430 /* Since we use the variable-shift helpers we must
7431 * replicate the shift count into each element of
7432 * the tcg_shift value.
7434 switch (size) {
7435 case 0:
7436 shift |= shift << 8;
7437 /* fall through */
7438 case 1:
7439 shift |= shift << 16;
7440 break;
7441 case 2:
7442 case 3:
7443 break;
7444 default:
7445 g_assert_not_reached();
7449 if (!fp_access_check(s)) {
7450 return;
7453 if (size == 3) {
7454 TCGv_i64 tcg_shift = tcg_const_i64(shift);
7455 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
7456 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
7457 { NULL, gen_helper_neon_qshl_u64 },
7459 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
7460 int maxpass = is_q ? 2 : 1;
7462 for (pass = 0; pass < maxpass; pass++) {
7463 TCGv_i64 tcg_op = tcg_temp_new_i64();
7465 read_vec_element(s, tcg_op, rn, pass, MO_64);
7466 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7467 write_vec_element(s, tcg_op, rd, pass, MO_64);
7469 tcg_temp_free_i64(tcg_op);
7471 tcg_temp_free_i64(tcg_shift);
7472 clear_vec_high(s, is_q, rd);
7473 } else {
7474 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7475 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7477 { gen_helper_neon_qshl_s8,
7478 gen_helper_neon_qshl_s16,
7479 gen_helper_neon_qshl_s32 },
7480 { gen_helper_neon_qshlu_s8,
7481 gen_helper_neon_qshlu_s16,
7482 gen_helper_neon_qshlu_s32 }
7483 }, {
7484 { NULL, NULL, NULL },
7485 { gen_helper_neon_qshl_u8,
7486 gen_helper_neon_qshl_u16,
7487 gen_helper_neon_qshl_u32 }
7490 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7491 TCGMemOp memop = scalar ? size : MO_32;
7492 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7494 for (pass = 0; pass < maxpass; pass++) {
7495 TCGv_i32 tcg_op = tcg_temp_new_i32();
7497 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7498 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7499 if (scalar) {
7500 switch (size) {
7501 case 0:
7502 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7503 break;
7504 case 1:
7505 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7506 break;
7507 case 2:
7508 break;
7509 default:
7510 g_assert_not_reached();
7512 write_fp_sreg(s, rd, tcg_op);
7513 } else {
7514 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7517 tcg_temp_free_i32(tcg_op);
7519 tcg_temp_free_i32(tcg_shift);
7521 if (!scalar) {
7522 clear_vec_high(s, is_q, rd);
7527 /* Common vector code for handling integer to FP conversion */
7528 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7529 int elements, int is_signed,
7530 int fracbits, int size)
7532 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7533 TCGv_i32 tcg_shift = NULL;
7535 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7536 int pass;
7538 if (fracbits || size == MO_64) {
7539 tcg_shift = tcg_const_i32(fracbits);
7542 if (size == MO_64) {
7543 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7544 TCGv_i64 tcg_double = tcg_temp_new_i64();
7546 for (pass = 0; pass < elements; pass++) {
7547 read_vec_element(s, tcg_int64, rn, pass, mop);
7549 if (is_signed) {
7550 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7551 tcg_shift, tcg_fpst);
7552 } else {
7553 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7554 tcg_shift, tcg_fpst);
7556 if (elements == 1) {
7557 write_fp_dreg(s, rd, tcg_double);
7558 } else {
7559 write_vec_element(s, tcg_double, rd, pass, MO_64);
7563 tcg_temp_free_i64(tcg_int64);
7564 tcg_temp_free_i64(tcg_double);
7566 } else {
7567 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7568 TCGv_i32 tcg_float = tcg_temp_new_i32();
7570 for (pass = 0; pass < elements; pass++) {
7571 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7573 switch (size) {
7574 case MO_32:
7575 if (fracbits) {
7576 if (is_signed) {
7577 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7578 tcg_shift, tcg_fpst);
7579 } else {
7580 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7581 tcg_shift, tcg_fpst);
7583 } else {
7584 if (is_signed) {
7585 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7586 } else {
7587 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7590 break;
7591 case MO_16:
7592 if (fracbits) {
7593 if (is_signed) {
7594 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7595 tcg_shift, tcg_fpst);
7596 } else {
7597 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7598 tcg_shift, tcg_fpst);
7600 } else {
7601 if (is_signed) {
7602 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7603 } else {
7604 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7607 break;
7608 default:
7609 g_assert_not_reached();
7612 if (elements == 1) {
7613 write_fp_sreg(s, rd, tcg_float);
7614 } else {
7615 write_vec_element_i32(s, tcg_float, rd, pass, size);
7619 tcg_temp_free_i32(tcg_int32);
7620 tcg_temp_free_i32(tcg_float);
7623 tcg_temp_free_ptr(tcg_fpst);
7624 if (tcg_shift) {
7625 tcg_temp_free_i32(tcg_shift);
7628 clear_vec_high(s, elements << size == 16, rd);
7631 /* UCVTF/SCVTF - Integer to FP conversion */
7632 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7633 bool is_q, bool is_u,
7634 int immh, int immb, int opcode,
7635 int rn, int rd)
7637 int size, elements, fracbits;
7638 int immhb = immh << 3 | immb;
7640 if (immh & 8) {
7641 size = MO_64;
7642 if (!is_scalar && !is_q) {
7643 unallocated_encoding(s);
7644 return;
7646 } else if (immh & 4) {
7647 size = MO_32;
7648 } else if (immh & 2) {
7649 size = MO_16;
7650 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7651 unallocated_encoding(s);
7652 return;
7654 } else {
7655 /* immh == 0 would be a failure of the decode logic */
7656 g_assert(immh == 1);
7657 unallocated_encoding(s);
7658 return;
7661 if (is_scalar) {
7662 elements = 1;
7663 } else {
7664 elements = (8 << is_q) >> size;
7666 fracbits = (16 << size) - immhb;
7668 if (!fp_access_check(s)) {
7669 return;
7672 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7675 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7676 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7677 bool is_q, bool is_u,
7678 int immh, int immb, int rn, int rd)
7680 int immhb = immh << 3 | immb;
7681 int pass, size, fracbits;
7682 TCGv_ptr tcg_fpstatus;
7683 TCGv_i32 tcg_rmode, tcg_shift;
7685 if (immh & 0x8) {
7686 size = MO_64;
7687 if (!is_scalar && !is_q) {
7688 unallocated_encoding(s);
7689 return;
7691 } else if (immh & 0x4) {
7692 size = MO_32;
7693 } else if (immh & 0x2) {
7694 size = MO_16;
7695 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7696 unallocated_encoding(s);
7697 return;
7699 } else {
7700 /* Should have split out AdvSIMD modified immediate earlier. */
7701 assert(immh == 1);
7702 unallocated_encoding(s);
7703 return;
7706 if (!fp_access_check(s)) {
7707 return;
7710 assert(!(is_scalar && is_q));
7712 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7713 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
7714 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7715 fracbits = (16 << size) - immhb;
7716 tcg_shift = tcg_const_i32(fracbits);
7718 if (size == MO_64) {
7719 int maxpass = is_scalar ? 1 : 2;
7721 for (pass = 0; pass < maxpass; pass++) {
7722 TCGv_i64 tcg_op = tcg_temp_new_i64();
7724 read_vec_element(s, tcg_op, rn, pass, MO_64);
7725 if (is_u) {
7726 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7727 } else {
7728 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7730 write_vec_element(s, tcg_op, rd, pass, MO_64);
7731 tcg_temp_free_i64(tcg_op);
7733 clear_vec_high(s, is_q, rd);
7734 } else {
7735 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
7736 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
7738 switch (size) {
7739 case MO_16:
7740 if (is_u) {
7741 fn = gen_helper_vfp_touhh;
7742 } else {
7743 fn = gen_helper_vfp_toshh;
7745 break;
7746 case MO_32:
7747 if (is_u) {
7748 fn = gen_helper_vfp_touls;
7749 } else {
7750 fn = gen_helper_vfp_tosls;
7752 break;
7753 default:
7754 g_assert_not_reached();
7757 for (pass = 0; pass < maxpass; pass++) {
7758 TCGv_i32 tcg_op = tcg_temp_new_i32();
7760 read_vec_element_i32(s, tcg_op, rn, pass, size);
7761 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7762 if (is_scalar) {
7763 write_fp_sreg(s, rd, tcg_op);
7764 } else {
7765 write_vec_element_i32(s, tcg_op, rd, pass, size);
7767 tcg_temp_free_i32(tcg_op);
7769 if (!is_scalar) {
7770 clear_vec_high(s, is_q, rd);
7774 tcg_temp_free_ptr(tcg_fpstatus);
7775 tcg_temp_free_i32(tcg_shift);
7776 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7777 tcg_temp_free_i32(tcg_rmode);
7780 /* AdvSIMD scalar shift by immediate
7781 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7782 * +-----+---+-------------+------+------+--------+---+------+------+
7783 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7784 * +-----+---+-------------+------+------+--------+---+------+------+
7786 * This is the scalar version so it works on a fixed sized registers
7788 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7790 int rd = extract32(insn, 0, 5);
7791 int rn = extract32(insn, 5, 5);
7792 int opcode = extract32(insn, 11, 5);
7793 int immb = extract32(insn, 16, 3);
7794 int immh = extract32(insn, 19, 4);
7795 bool is_u = extract32(insn, 29, 1);
7797 if (immh == 0) {
7798 unallocated_encoding(s);
7799 return;
7802 switch (opcode) {
7803 case 0x08: /* SRI */
7804 if (!is_u) {
7805 unallocated_encoding(s);
7806 return;
7808 /* fall through */
7809 case 0x00: /* SSHR / USHR */
7810 case 0x02: /* SSRA / USRA */
7811 case 0x04: /* SRSHR / URSHR */
7812 case 0x06: /* SRSRA / URSRA */
7813 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7814 break;
7815 case 0x0a: /* SHL / SLI */
7816 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7817 break;
7818 case 0x1c: /* SCVTF, UCVTF */
7819 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7820 opcode, rn, rd);
7821 break;
7822 case 0x10: /* SQSHRUN, SQSHRUN2 */
7823 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7824 if (!is_u) {
7825 unallocated_encoding(s);
7826 return;
7828 handle_vec_simd_sqshrn(s, true, false, false, true,
7829 immh, immb, opcode, rn, rd);
7830 break;
7831 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7832 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7833 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7834 immh, immb, opcode, rn, rd);
7835 break;
7836 case 0xc: /* SQSHLU */
7837 if (!is_u) {
7838 unallocated_encoding(s);
7839 return;
7841 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7842 break;
7843 case 0xe: /* SQSHL, UQSHL */
7844 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7845 break;
7846 case 0x1f: /* FCVTZS, FCVTZU */
7847 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7848 break;
7849 default:
7850 unallocated_encoding(s);
7851 break;
7855 /* AdvSIMD scalar three different
7856 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7857 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7858 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7859 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7861 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7863 bool is_u = extract32(insn, 29, 1);
7864 int size = extract32(insn, 22, 2);
7865 int opcode = extract32(insn, 12, 4);
7866 int rm = extract32(insn, 16, 5);
7867 int rn = extract32(insn, 5, 5);
7868 int rd = extract32(insn, 0, 5);
7870 if (is_u) {
7871 unallocated_encoding(s);
7872 return;
7875 switch (opcode) {
7876 case 0x9: /* SQDMLAL, SQDMLAL2 */
7877 case 0xb: /* SQDMLSL, SQDMLSL2 */
7878 case 0xd: /* SQDMULL, SQDMULL2 */
7879 if (size == 0 || size == 3) {
7880 unallocated_encoding(s);
7881 return;
7883 break;
7884 default:
7885 unallocated_encoding(s);
7886 return;
7889 if (!fp_access_check(s)) {
7890 return;
7893 if (size == 2) {
7894 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7895 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7896 TCGv_i64 tcg_res = tcg_temp_new_i64();
7898 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7899 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7901 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7902 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7904 switch (opcode) {
7905 case 0xd: /* SQDMULL, SQDMULL2 */
7906 break;
7907 case 0xb: /* SQDMLSL, SQDMLSL2 */
7908 tcg_gen_neg_i64(tcg_res, tcg_res);
7909 /* fall through */
7910 case 0x9: /* SQDMLAL, SQDMLAL2 */
7911 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7912 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7913 tcg_res, tcg_op1);
7914 break;
7915 default:
7916 g_assert_not_reached();
7919 write_fp_dreg(s, rd, tcg_res);
7921 tcg_temp_free_i64(tcg_op1);
7922 tcg_temp_free_i64(tcg_op2);
7923 tcg_temp_free_i64(tcg_res);
7924 } else {
7925 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
7926 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
7927 TCGv_i64 tcg_res = tcg_temp_new_i64();
7929 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7930 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7932 switch (opcode) {
7933 case 0xd: /* SQDMULL, SQDMULL2 */
7934 break;
7935 case 0xb: /* SQDMLSL, SQDMLSL2 */
7936 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7937 /* fall through */
7938 case 0x9: /* SQDMLAL, SQDMLAL2 */
7940 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7941 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7942 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7943 tcg_res, tcg_op3);
7944 tcg_temp_free_i64(tcg_op3);
7945 break;
7947 default:
7948 g_assert_not_reached();
7951 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7952 write_fp_dreg(s, rd, tcg_res);
7954 tcg_temp_free_i32(tcg_op1);
7955 tcg_temp_free_i32(tcg_op2);
7956 tcg_temp_free_i64(tcg_res);
7960 /* CMTST : test is "if (X & Y != 0)". */
7961 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
7963 tcg_gen_and_i32(d, a, b);
7964 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
7965 tcg_gen_neg_i32(d, d);
7968 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
7970 tcg_gen_and_i64(d, a, b);
7971 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
7972 tcg_gen_neg_i64(d, d);
7975 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
7977 tcg_gen_and_vec(vece, d, a, b);
7978 tcg_gen_dupi_vec(vece, a, 0);
7979 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
7982 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7983 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7985 /* Handle 64x64->64 opcodes which are shared between the scalar
7986 * and vector 3-same groups. We cover every opcode where size == 3
7987 * is valid in either the three-reg-same (integer, not pairwise)
7988 * or scalar-three-reg-same groups.
7990 TCGCond cond;
7992 switch (opcode) {
7993 case 0x1: /* SQADD */
7994 if (u) {
7995 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7996 } else {
7997 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7999 break;
8000 case 0x5: /* SQSUB */
8001 if (u) {
8002 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8003 } else {
8004 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8006 break;
8007 case 0x6: /* CMGT, CMHI */
8008 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8009 * We implement this using setcond (test) and then negating.
8011 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8012 do_cmop:
8013 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8014 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8015 break;
8016 case 0x7: /* CMGE, CMHS */
8017 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8018 goto do_cmop;
8019 case 0x11: /* CMTST, CMEQ */
8020 if (u) {
8021 cond = TCG_COND_EQ;
8022 goto do_cmop;
8024 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8025 break;
8026 case 0x8: /* SSHL, USHL */
8027 if (u) {
8028 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8029 } else {
8030 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8032 break;
8033 case 0x9: /* SQSHL, UQSHL */
8034 if (u) {
8035 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8036 } else {
8037 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8039 break;
8040 case 0xa: /* SRSHL, URSHL */
8041 if (u) {
8042 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8043 } else {
8044 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8046 break;
8047 case 0xb: /* SQRSHL, UQRSHL */
8048 if (u) {
8049 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8050 } else {
8051 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8053 break;
8054 case 0x10: /* ADD, SUB */
8055 if (u) {
8056 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8057 } else {
8058 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8060 break;
8061 default:
8062 g_assert_not_reached();
8066 /* Handle the 3-same-operands float operations; shared by the scalar
8067 * and vector encodings. The caller must filter out any encodings
8068 * not allocated for the encoding it is dealing with.
8070 static void handle_3same_float(DisasContext *s, int size, int elements,
8071 int fpopcode, int rd, int rn, int rm)
8073 int pass;
8074 TCGv_ptr fpst = get_fpstatus_ptr(false);
8076 for (pass = 0; pass < elements; pass++) {
8077 if (size) {
8078 /* Double */
8079 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8080 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8081 TCGv_i64 tcg_res = tcg_temp_new_i64();
8083 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8084 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8086 switch (fpopcode) {
8087 case 0x39: /* FMLS */
8088 /* As usual for ARM, separate negation for fused multiply-add */
8089 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8090 /* fall through */
8091 case 0x19: /* FMLA */
8092 read_vec_element(s, tcg_res, rd, pass, MO_64);
8093 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8094 tcg_res, fpst);
8095 break;
8096 case 0x18: /* FMAXNM */
8097 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8098 break;
8099 case 0x1a: /* FADD */
8100 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8101 break;
8102 case 0x1b: /* FMULX */
8103 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8104 break;
8105 case 0x1c: /* FCMEQ */
8106 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8107 break;
8108 case 0x1e: /* FMAX */
8109 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8110 break;
8111 case 0x1f: /* FRECPS */
8112 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8113 break;
8114 case 0x38: /* FMINNM */
8115 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8116 break;
8117 case 0x3a: /* FSUB */
8118 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8119 break;
8120 case 0x3e: /* FMIN */
8121 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8122 break;
8123 case 0x3f: /* FRSQRTS */
8124 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8125 break;
8126 case 0x5b: /* FMUL */
8127 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8128 break;
8129 case 0x5c: /* FCMGE */
8130 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8131 break;
8132 case 0x5d: /* FACGE */
8133 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8134 break;
8135 case 0x5f: /* FDIV */
8136 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8137 break;
8138 case 0x7a: /* FABD */
8139 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8140 gen_helper_vfp_absd(tcg_res, tcg_res);
8141 break;
8142 case 0x7c: /* FCMGT */
8143 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8144 break;
8145 case 0x7d: /* FACGT */
8146 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8147 break;
8148 default:
8149 g_assert_not_reached();
8152 write_vec_element(s, tcg_res, rd, pass, MO_64);
8154 tcg_temp_free_i64(tcg_res);
8155 tcg_temp_free_i64(tcg_op1);
8156 tcg_temp_free_i64(tcg_op2);
8157 } else {
8158 /* Single */
8159 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8160 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8161 TCGv_i32 tcg_res = tcg_temp_new_i32();
8163 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8164 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8166 switch (fpopcode) {
8167 case 0x39: /* FMLS */
8168 /* As usual for ARM, separate negation for fused multiply-add */
8169 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8170 /* fall through */
8171 case 0x19: /* FMLA */
8172 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8173 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8174 tcg_res, fpst);
8175 break;
8176 case 0x1a: /* FADD */
8177 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8178 break;
8179 case 0x1b: /* FMULX */
8180 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8181 break;
8182 case 0x1c: /* FCMEQ */
8183 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8184 break;
8185 case 0x1e: /* FMAX */
8186 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8187 break;
8188 case 0x1f: /* FRECPS */
8189 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8190 break;
8191 case 0x18: /* FMAXNM */
8192 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8193 break;
8194 case 0x38: /* FMINNM */
8195 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8196 break;
8197 case 0x3a: /* FSUB */
8198 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8199 break;
8200 case 0x3e: /* FMIN */
8201 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8202 break;
8203 case 0x3f: /* FRSQRTS */
8204 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8205 break;
8206 case 0x5b: /* FMUL */
8207 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8208 break;
8209 case 0x5c: /* FCMGE */
8210 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8211 break;
8212 case 0x5d: /* FACGE */
8213 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8214 break;
8215 case 0x5f: /* FDIV */
8216 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8217 break;
8218 case 0x7a: /* FABD */
8219 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8220 gen_helper_vfp_abss(tcg_res, tcg_res);
8221 break;
8222 case 0x7c: /* FCMGT */
8223 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8224 break;
8225 case 0x7d: /* FACGT */
8226 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8227 break;
8228 default:
8229 g_assert_not_reached();
8232 if (elements == 1) {
8233 /* scalar single so clear high part */
8234 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8236 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8237 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8238 tcg_temp_free_i64(tcg_tmp);
8239 } else {
8240 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8243 tcg_temp_free_i32(tcg_res);
8244 tcg_temp_free_i32(tcg_op1);
8245 tcg_temp_free_i32(tcg_op2);
8249 tcg_temp_free_ptr(fpst);
8251 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8254 /* AdvSIMD scalar three same
8255 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8256 * +-----+---+-----------+------+---+------+--------+---+------+------+
8257 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8258 * +-----+---+-----------+------+---+------+--------+---+------+------+
8260 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8262 int rd = extract32(insn, 0, 5);
8263 int rn = extract32(insn, 5, 5);
8264 int opcode = extract32(insn, 11, 5);
8265 int rm = extract32(insn, 16, 5);
8266 int size = extract32(insn, 22, 2);
8267 bool u = extract32(insn, 29, 1);
8268 TCGv_i64 tcg_rd;
8270 if (opcode >= 0x18) {
8271 /* Floating point: U, size[1] and opcode indicate operation */
8272 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8273 switch (fpopcode) {
8274 case 0x1b: /* FMULX */
8275 case 0x1f: /* FRECPS */
8276 case 0x3f: /* FRSQRTS */
8277 case 0x5d: /* FACGE */
8278 case 0x7d: /* FACGT */
8279 case 0x1c: /* FCMEQ */
8280 case 0x5c: /* FCMGE */
8281 case 0x7c: /* FCMGT */
8282 case 0x7a: /* FABD */
8283 break;
8284 default:
8285 unallocated_encoding(s);
8286 return;
8289 if (!fp_access_check(s)) {
8290 return;
8293 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8294 return;
8297 switch (opcode) {
8298 case 0x1: /* SQADD, UQADD */
8299 case 0x5: /* SQSUB, UQSUB */
8300 case 0x9: /* SQSHL, UQSHL */
8301 case 0xb: /* SQRSHL, UQRSHL */
8302 break;
8303 case 0x8: /* SSHL, USHL */
8304 case 0xa: /* SRSHL, URSHL */
8305 case 0x6: /* CMGT, CMHI */
8306 case 0x7: /* CMGE, CMHS */
8307 case 0x11: /* CMTST, CMEQ */
8308 case 0x10: /* ADD, SUB (vector) */
8309 if (size != 3) {
8310 unallocated_encoding(s);
8311 return;
8313 break;
8314 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8315 if (size != 1 && size != 2) {
8316 unallocated_encoding(s);
8317 return;
8319 break;
8320 default:
8321 unallocated_encoding(s);
8322 return;
8325 if (!fp_access_check(s)) {
8326 return;
8329 tcg_rd = tcg_temp_new_i64();
8331 if (size == 3) {
8332 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8333 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8335 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8336 tcg_temp_free_i64(tcg_rn);
8337 tcg_temp_free_i64(tcg_rm);
8338 } else {
8339 /* Do a single operation on the lowest element in the vector.
8340 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8341 * no side effects for all these operations.
8342 * OPTME: special-purpose helpers would avoid doing some
8343 * unnecessary work in the helper for the 8 and 16 bit cases.
8345 NeonGenTwoOpEnvFn *genenvfn;
8346 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8347 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8348 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8350 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8351 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8353 switch (opcode) {
8354 case 0x1: /* SQADD, UQADD */
8356 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8357 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8358 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8359 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8361 genenvfn = fns[size][u];
8362 break;
8364 case 0x5: /* SQSUB, UQSUB */
8366 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8367 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8368 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8369 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8371 genenvfn = fns[size][u];
8372 break;
8374 case 0x9: /* SQSHL, UQSHL */
8376 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8377 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8378 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8379 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8381 genenvfn = fns[size][u];
8382 break;
8384 case 0xb: /* SQRSHL, UQRSHL */
8386 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8387 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8388 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8389 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8391 genenvfn = fns[size][u];
8392 break;
8394 case 0x16: /* SQDMULH, SQRDMULH */
8396 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8397 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8398 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8400 assert(size == 1 || size == 2);
8401 genenvfn = fns[size - 1][u];
8402 break;
8404 default:
8405 g_assert_not_reached();
8408 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8409 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8410 tcg_temp_free_i32(tcg_rd32);
8411 tcg_temp_free_i32(tcg_rn);
8412 tcg_temp_free_i32(tcg_rm);
8415 write_fp_dreg(s, rd, tcg_rd);
8417 tcg_temp_free_i64(tcg_rd);
8420 /* AdvSIMD scalar three same FP16
8421 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8422 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8423 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8424 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8425 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8426 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8428 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8429 uint32_t insn)
8431 int rd = extract32(insn, 0, 5);
8432 int rn = extract32(insn, 5, 5);
8433 int opcode = extract32(insn, 11, 3);
8434 int rm = extract32(insn, 16, 5);
8435 bool u = extract32(insn, 29, 1);
8436 bool a = extract32(insn, 23, 1);
8437 int fpopcode = opcode | (a << 3) | (u << 4);
8438 TCGv_ptr fpst;
8439 TCGv_i32 tcg_op1;
8440 TCGv_i32 tcg_op2;
8441 TCGv_i32 tcg_res;
8443 switch (fpopcode) {
8444 case 0x03: /* FMULX */
8445 case 0x04: /* FCMEQ (reg) */
8446 case 0x07: /* FRECPS */
8447 case 0x0f: /* FRSQRTS */
8448 case 0x14: /* FCMGE (reg) */
8449 case 0x15: /* FACGE */
8450 case 0x1a: /* FABD */
8451 case 0x1c: /* FCMGT (reg) */
8452 case 0x1d: /* FACGT */
8453 break;
8454 default:
8455 unallocated_encoding(s);
8456 return;
8459 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
8460 unallocated_encoding(s);
8463 if (!fp_access_check(s)) {
8464 return;
8467 fpst = get_fpstatus_ptr(true);
8469 tcg_op1 = read_fp_hreg(s, rn);
8470 tcg_op2 = read_fp_hreg(s, rm);
8471 tcg_res = tcg_temp_new_i32();
8473 switch (fpopcode) {
8474 case 0x03: /* FMULX */
8475 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
8476 break;
8477 case 0x04: /* FCMEQ (reg) */
8478 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8479 break;
8480 case 0x07: /* FRECPS */
8481 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8482 break;
8483 case 0x0f: /* FRSQRTS */
8484 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8485 break;
8486 case 0x14: /* FCMGE (reg) */
8487 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8488 break;
8489 case 0x15: /* FACGE */
8490 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8491 break;
8492 case 0x1a: /* FABD */
8493 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
8494 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
8495 break;
8496 case 0x1c: /* FCMGT (reg) */
8497 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8498 break;
8499 case 0x1d: /* FACGT */
8500 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8501 break;
8502 default:
8503 g_assert_not_reached();
8506 write_fp_sreg(s, rd, tcg_res);
8509 tcg_temp_free_i32(tcg_res);
8510 tcg_temp_free_i32(tcg_op1);
8511 tcg_temp_free_i32(tcg_op2);
8512 tcg_temp_free_ptr(fpst);
8515 /* AdvSIMD scalar three same extra
8516 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8517 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8518 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8519 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8521 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8522 uint32_t insn)
8524 int rd = extract32(insn, 0, 5);
8525 int rn = extract32(insn, 5, 5);
8526 int opcode = extract32(insn, 11, 4);
8527 int rm = extract32(insn, 16, 5);
8528 int size = extract32(insn, 22, 2);
8529 bool u = extract32(insn, 29, 1);
8530 TCGv_i32 ele1, ele2, ele3;
8531 TCGv_i64 res;
8532 int feature;
8534 switch (u * 16 + opcode) {
8535 case 0x10: /* SQRDMLAH (vector) */
8536 case 0x11: /* SQRDMLSH (vector) */
8537 if (size != 1 && size != 2) {
8538 unallocated_encoding(s);
8539 return;
8541 feature = ARM_FEATURE_V8_RDM;
8542 break;
8543 default:
8544 unallocated_encoding(s);
8545 return;
8547 if (!arm_dc_feature(s, feature)) {
8548 unallocated_encoding(s);
8549 return;
8551 if (!fp_access_check(s)) {
8552 return;
8555 /* Do a single operation on the lowest element in the vector.
8556 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8557 * with no side effects for all these operations.
8558 * OPTME: special-purpose helpers would avoid doing some
8559 * unnecessary work in the helper for the 16 bit cases.
8561 ele1 = tcg_temp_new_i32();
8562 ele2 = tcg_temp_new_i32();
8563 ele3 = tcg_temp_new_i32();
8565 read_vec_element_i32(s, ele1, rn, 0, size);
8566 read_vec_element_i32(s, ele2, rm, 0, size);
8567 read_vec_element_i32(s, ele3, rd, 0, size);
8569 switch (opcode) {
8570 case 0x0: /* SQRDMLAH */
8571 if (size == 1) {
8572 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8573 } else {
8574 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8576 break;
8577 case 0x1: /* SQRDMLSH */
8578 if (size == 1) {
8579 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8580 } else {
8581 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8583 break;
8584 default:
8585 g_assert_not_reached();
8587 tcg_temp_free_i32(ele1);
8588 tcg_temp_free_i32(ele2);
8590 res = tcg_temp_new_i64();
8591 tcg_gen_extu_i32_i64(res, ele3);
8592 tcg_temp_free_i32(ele3);
8594 write_fp_dreg(s, rd, res);
8595 tcg_temp_free_i64(res);
8598 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8599 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8600 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8602 /* Handle 64->64 opcodes which are shared between the scalar and
8603 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8604 * is valid in either group and also the double-precision fp ops.
8605 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8606 * requires them.
8608 TCGCond cond;
8610 switch (opcode) {
8611 case 0x4: /* CLS, CLZ */
8612 if (u) {
8613 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8614 } else {
8615 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8617 break;
8618 case 0x5: /* NOT */
8619 /* This opcode is shared with CNT and RBIT but we have earlier
8620 * enforced that size == 3 if and only if this is the NOT insn.
8622 tcg_gen_not_i64(tcg_rd, tcg_rn);
8623 break;
8624 case 0x7: /* SQABS, SQNEG */
8625 if (u) {
8626 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8627 } else {
8628 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8630 break;
8631 case 0xa: /* CMLT */
8632 /* 64 bit integer comparison against zero, result is
8633 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8634 * subtracting 1.
8636 cond = TCG_COND_LT;
8637 do_cmop:
8638 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8639 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8640 break;
8641 case 0x8: /* CMGT, CMGE */
8642 cond = u ? TCG_COND_GE : TCG_COND_GT;
8643 goto do_cmop;
8644 case 0x9: /* CMEQ, CMLE */
8645 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8646 goto do_cmop;
8647 case 0xb: /* ABS, NEG */
8648 if (u) {
8649 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8650 } else {
8651 TCGv_i64 tcg_zero = tcg_const_i64(0);
8652 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8653 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8654 tcg_rn, tcg_rd);
8655 tcg_temp_free_i64(tcg_zero);
8657 break;
8658 case 0x2f: /* FABS */
8659 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8660 break;
8661 case 0x6f: /* FNEG */
8662 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8663 break;
8664 case 0x7f: /* FSQRT */
8665 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8666 break;
8667 case 0x1a: /* FCVTNS */
8668 case 0x1b: /* FCVTMS */
8669 case 0x1c: /* FCVTAS */
8670 case 0x3a: /* FCVTPS */
8671 case 0x3b: /* FCVTZS */
8673 TCGv_i32 tcg_shift = tcg_const_i32(0);
8674 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8675 tcg_temp_free_i32(tcg_shift);
8676 break;
8678 case 0x5a: /* FCVTNU */
8679 case 0x5b: /* FCVTMU */
8680 case 0x5c: /* FCVTAU */
8681 case 0x7a: /* FCVTPU */
8682 case 0x7b: /* FCVTZU */
8684 TCGv_i32 tcg_shift = tcg_const_i32(0);
8685 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8686 tcg_temp_free_i32(tcg_shift);
8687 break;
8689 case 0x18: /* FRINTN */
8690 case 0x19: /* FRINTM */
8691 case 0x38: /* FRINTP */
8692 case 0x39: /* FRINTZ */
8693 case 0x58: /* FRINTA */
8694 case 0x79: /* FRINTI */
8695 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8696 break;
8697 case 0x59: /* FRINTX */
8698 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8699 break;
8700 default:
8701 g_assert_not_reached();
8705 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8706 bool is_scalar, bool is_u, bool is_q,
8707 int size, int rn, int rd)
8709 bool is_double = (size == MO_64);
8710 TCGv_ptr fpst;
8712 if (!fp_access_check(s)) {
8713 return;
8716 fpst = get_fpstatus_ptr(size == MO_16);
8718 if (is_double) {
8719 TCGv_i64 tcg_op = tcg_temp_new_i64();
8720 TCGv_i64 tcg_zero = tcg_const_i64(0);
8721 TCGv_i64 tcg_res = tcg_temp_new_i64();
8722 NeonGenTwoDoubleOPFn *genfn;
8723 bool swap = false;
8724 int pass;
8726 switch (opcode) {
8727 case 0x2e: /* FCMLT (zero) */
8728 swap = true;
8729 /* fallthrough */
8730 case 0x2c: /* FCMGT (zero) */
8731 genfn = gen_helper_neon_cgt_f64;
8732 break;
8733 case 0x2d: /* FCMEQ (zero) */
8734 genfn = gen_helper_neon_ceq_f64;
8735 break;
8736 case 0x6d: /* FCMLE (zero) */
8737 swap = true;
8738 /* fall through */
8739 case 0x6c: /* FCMGE (zero) */
8740 genfn = gen_helper_neon_cge_f64;
8741 break;
8742 default:
8743 g_assert_not_reached();
8746 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8747 read_vec_element(s, tcg_op, rn, pass, MO_64);
8748 if (swap) {
8749 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8750 } else {
8751 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8753 write_vec_element(s, tcg_res, rd, pass, MO_64);
8755 tcg_temp_free_i64(tcg_res);
8756 tcg_temp_free_i64(tcg_zero);
8757 tcg_temp_free_i64(tcg_op);
8759 clear_vec_high(s, !is_scalar, rd);
8760 } else {
8761 TCGv_i32 tcg_op = tcg_temp_new_i32();
8762 TCGv_i32 tcg_zero = tcg_const_i32(0);
8763 TCGv_i32 tcg_res = tcg_temp_new_i32();
8764 NeonGenTwoSingleOPFn *genfn;
8765 bool swap = false;
8766 int pass, maxpasses;
8768 if (size == MO_16) {
8769 switch (opcode) {
8770 case 0x2e: /* FCMLT (zero) */
8771 swap = true;
8772 /* fall through */
8773 case 0x2c: /* FCMGT (zero) */
8774 genfn = gen_helper_advsimd_cgt_f16;
8775 break;
8776 case 0x2d: /* FCMEQ (zero) */
8777 genfn = gen_helper_advsimd_ceq_f16;
8778 break;
8779 case 0x6d: /* FCMLE (zero) */
8780 swap = true;
8781 /* fall through */
8782 case 0x6c: /* FCMGE (zero) */
8783 genfn = gen_helper_advsimd_cge_f16;
8784 break;
8785 default:
8786 g_assert_not_reached();
8788 } else {
8789 switch (opcode) {
8790 case 0x2e: /* FCMLT (zero) */
8791 swap = true;
8792 /* fall through */
8793 case 0x2c: /* FCMGT (zero) */
8794 genfn = gen_helper_neon_cgt_f32;
8795 break;
8796 case 0x2d: /* FCMEQ (zero) */
8797 genfn = gen_helper_neon_ceq_f32;
8798 break;
8799 case 0x6d: /* FCMLE (zero) */
8800 swap = true;
8801 /* fall through */
8802 case 0x6c: /* FCMGE (zero) */
8803 genfn = gen_helper_neon_cge_f32;
8804 break;
8805 default:
8806 g_assert_not_reached();
8810 if (is_scalar) {
8811 maxpasses = 1;
8812 } else {
8813 int vector_size = 8 << is_q;
8814 maxpasses = vector_size >> size;
8817 for (pass = 0; pass < maxpasses; pass++) {
8818 read_vec_element_i32(s, tcg_op, rn, pass, size);
8819 if (swap) {
8820 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8821 } else {
8822 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8824 if (is_scalar) {
8825 write_fp_sreg(s, rd, tcg_res);
8826 } else {
8827 write_vec_element_i32(s, tcg_res, rd, pass, size);
8830 tcg_temp_free_i32(tcg_res);
8831 tcg_temp_free_i32(tcg_zero);
8832 tcg_temp_free_i32(tcg_op);
8833 if (!is_scalar) {
8834 clear_vec_high(s, is_q, rd);
8838 tcg_temp_free_ptr(fpst);
8841 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8842 bool is_scalar, bool is_u, bool is_q,
8843 int size, int rn, int rd)
8845 bool is_double = (size == 3);
8846 TCGv_ptr fpst = get_fpstatus_ptr(false);
8848 if (is_double) {
8849 TCGv_i64 tcg_op = tcg_temp_new_i64();
8850 TCGv_i64 tcg_res = tcg_temp_new_i64();
8851 int pass;
8853 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8854 read_vec_element(s, tcg_op, rn, pass, MO_64);
8855 switch (opcode) {
8856 case 0x3d: /* FRECPE */
8857 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8858 break;
8859 case 0x3f: /* FRECPX */
8860 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8861 break;
8862 case 0x7d: /* FRSQRTE */
8863 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8864 break;
8865 default:
8866 g_assert_not_reached();
8868 write_vec_element(s, tcg_res, rd, pass, MO_64);
8870 tcg_temp_free_i64(tcg_res);
8871 tcg_temp_free_i64(tcg_op);
8872 clear_vec_high(s, !is_scalar, rd);
8873 } else {
8874 TCGv_i32 tcg_op = tcg_temp_new_i32();
8875 TCGv_i32 tcg_res = tcg_temp_new_i32();
8876 int pass, maxpasses;
8878 if (is_scalar) {
8879 maxpasses = 1;
8880 } else {
8881 maxpasses = is_q ? 4 : 2;
8884 for (pass = 0; pass < maxpasses; pass++) {
8885 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8887 switch (opcode) {
8888 case 0x3c: /* URECPE */
8889 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8890 break;
8891 case 0x3d: /* FRECPE */
8892 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8893 break;
8894 case 0x3f: /* FRECPX */
8895 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8896 break;
8897 case 0x7d: /* FRSQRTE */
8898 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8899 break;
8900 default:
8901 g_assert_not_reached();
8904 if (is_scalar) {
8905 write_fp_sreg(s, rd, tcg_res);
8906 } else {
8907 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8910 tcg_temp_free_i32(tcg_res);
8911 tcg_temp_free_i32(tcg_op);
8912 if (!is_scalar) {
8913 clear_vec_high(s, is_q, rd);
8916 tcg_temp_free_ptr(fpst);
8919 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8920 int opcode, bool u, bool is_q,
8921 int size, int rn, int rd)
8923 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8924 * in the source becomes a size element in the destination).
8926 int pass;
8927 TCGv_i32 tcg_res[2];
8928 int destelt = is_q ? 2 : 0;
8929 int passes = scalar ? 1 : 2;
8931 if (scalar) {
8932 tcg_res[1] = tcg_const_i32(0);
8935 for (pass = 0; pass < passes; pass++) {
8936 TCGv_i64 tcg_op = tcg_temp_new_i64();
8937 NeonGenNarrowFn *genfn = NULL;
8938 NeonGenNarrowEnvFn *genenvfn = NULL;
8940 if (scalar) {
8941 read_vec_element(s, tcg_op, rn, pass, size + 1);
8942 } else {
8943 read_vec_element(s, tcg_op, rn, pass, MO_64);
8945 tcg_res[pass] = tcg_temp_new_i32();
8947 switch (opcode) {
8948 case 0x12: /* XTN, SQXTUN */
8950 static NeonGenNarrowFn * const xtnfns[3] = {
8951 gen_helper_neon_narrow_u8,
8952 gen_helper_neon_narrow_u16,
8953 tcg_gen_extrl_i64_i32,
8955 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
8956 gen_helper_neon_unarrow_sat8,
8957 gen_helper_neon_unarrow_sat16,
8958 gen_helper_neon_unarrow_sat32,
8960 if (u) {
8961 genenvfn = sqxtunfns[size];
8962 } else {
8963 genfn = xtnfns[size];
8965 break;
8967 case 0x14: /* SQXTN, UQXTN */
8969 static NeonGenNarrowEnvFn * const fns[3][2] = {
8970 { gen_helper_neon_narrow_sat_s8,
8971 gen_helper_neon_narrow_sat_u8 },
8972 { gen_helper_neon_narrow_sat_s16,
8973 gen_helper_neon_narrow_sat_u16 },
8974 { gen_helper_neon_narrow_sat_s32,
8975 gen_helper_neon_narrow_sat_u32 },
8977 genenvfn = fns[size][u];
8978 break;
8980 case 0x16: /* FCVTN, FCVTN2 */
8981 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
8982 if (size == 2) {
8983 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
8984 } else {
8985 TCGv_i32 tcg_lo = tcg_temp_new_i32();
8986 TCGv_i32 tcg_hi = tcg_temp_new_i32();
8987 TCGv_ptr fpst = get_fpstatus_ptr(false);
8988 TCGv_i32 ahp = get_ahp_flag();
8990 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
8991 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
8992 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
8993 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
8994 tcg_temp_free_i32(tcg_lo);
8995 tcg_temp_free_i32(tcg_hi);
8996 tcg_temp_free_ptr(fpst);
8997 tcg_temp_free_i32(ahp);
8999 break;
9000 case 0x56: /* FCVTXN, FCVTXN2 */
9001 /* 64 bit to 32 bit float conversion
9002 * with von Neumann rounding (round to odd)
9004 assert(size == 2);
9005 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9006 break;
9007 default:
9008 g_assert_not_reached();
9011 if (genfn) {
9012 genfn(tcg_res[pass], tcg_op);
9013 } else if (genenvfn) {
9014 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9017 tcg_temp_free_i64(tcg_op);
9020 for (pass = 0; pass < 2; pass++) {
9021 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9022 tcg_temp_free_i32(tcg_res[pass]);
9024 clear_vec_high(s, is_q, rd);
9027 /* Remaining saturating accumulating ops */
9028 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9029 bool is_q, int size, int rn, int rd)
9031 bool is_double = (size == 3);
9033 if (is_double) {
9034 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9035 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9036 int pass;
9038 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9039 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9040 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9042 if (is_u) { /* USQADD */
9043 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9044 } else { /* SUQADD */
9045 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9047 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9049 tcg_temp_free_i64(tcg_rd);
9050 tcg_temp_free_i64(tcg_rn);
9051 clear_vec_high(s, !is_scalar, rd);
9052 } else {
9053 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9054 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9055 int pass, maxpasses;
9057 if (is_scalar) {
9058 maxpasses = 1;
9059 } else {
9060 maxpasses = is_q ? 4 : 2;
9063 for (pass = 0; pass < maxpasses; pass++) {
9064 if (is_scalar) {
9065 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9066 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9067 } else {
9068 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9069 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9072 if (is_u) { /* USQADD */
9073 switch (size) {
9074 case 0:
9075 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9076 break;
9077 case 1:
9078 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9079 break;
9080 case 2:
9081 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9082 break;
9083 default:
9084 g_assert_not_reached();
9086 } else { /* SUQADD */
9087 switch (size) {
9088 case 0:
9089 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9090 break;
9091 case 1:
9092 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9093 break;
9094 case 2:
9095 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9096 break;
9097 default:
9098 g_assert_not_reached();
9102 if (is_scalar) {
9103 TCGv_i64 tcg_zero = tcg_const_i64(0);
9104 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9105 tcg_temp_free_i64(tcg_zero);
9107 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9109 tcg_temp_free_i32(tcg_rd);
9110 tcg_temp_free_i32(tcg_rn);
9111 clear_vec_high(s, is_q, rd);
9115 /* AdvSIMD scalar two reg misc
9116 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9117 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9118 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9119 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9121 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9123 int rd = extract32(insn, 0, 5);
9124 int rn = extract32(insn, 5, 5);
9125 int opcode = extract32(insn, 12, 5);
9126 int size = extract32(insn, 22, 2);
9127 bool u = extract32(insn, 29, 1);
9128 bool is_fcvt = false;
9129 int rmode;
9130 TCGv_i32 tcg_rmode;
9131 TCGv_ptr tcg_fpstatus;
9133 switch (opcode) {
9134 case 0x3: /* USQADD / SUQADD*/
9135 if (!fp_access_check(s)) {
9136 return;
9138 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9139 return;
9140 case 0x7: /* SQABS / SQNEG */
9141 break;
9142 case 0xa: /* CMLT */
9143 if (u) {
9144 unallocated_encoding(s);
9145 return;
9147 /* fall through */
9148 case 0x8: /* CMGT, CMGE */
9149 case 0x9: /* CMEQ, CMLE */
9150 case 0xb: /* ABS, NEG */
9151 if (size != 3) {
9152 unallocated_encoding(s);
9153 return;
9155 break;
9156 case 0x12: /* SQXTUN */
9157 if (!u) {
9158 unallocated_encoding(s);
9159 return;
9161 /* fall through */
9162 case 0x14: /* SQXTN, UQXTN */
9163 if (size == 3) {
9164 unallocated_encoding(s);
9165 return;
9167 if (!fp_access_check(s)) {
9168 return;
9170 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9171 return;
9172 case 0xc ... 0xf:
9173 case 0x16 ... 0x1d:
9174 case 0x1f:
9175 /* Floating point: U, size[1] and opcode indicate operation;
9176 * size[0] indicates single or double precision.
9178 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9179 size = extract32(size, 0, 1) ? 3 : 2;
9180 switch (opcode) {
9181 case 0x2c: /* FCMGT (zero) */
9182 case 0x2d: /* FCMEQ (zero) */
9183 case 0x2e: /* FCMLT (zero) */
9184 case 0x6c: /* FCMGE (zero) */
9185 case 0x6d: /* FCMLE (zero) */
9186 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9187 return;
9188 case 0x1d: /* SCVTF */
9189 case 0x5d: /* UCVTF */
9191 bool is_signed = (opcode == 0x1d);
9192 if (!fp_access_check(s)) {
9193 return;
9195 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9196 return;
9198 case 0x3d: /* FRECPE */
9199 case 0x3f: /* FRECPX */
9200 case 0x7d: /* FRSQRTE */
9201 if (!fp_access_check(s)) {
9202 return;
9204 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9205 return;
9206 case 0x1a: /* FCVTNS */
9207 case 0x1b: /* FCVTMS */
9208 case 0x3a: /* FCVTPS */
9209 case 0x3b: /* FCVTZS */
9210 case 0x5a: /* FCVTNU */
9211 case 0x5b: /* FCVTMU */
9212 case 0x7a: /* FCVTPU */
9213 case 0x7b: /* FCVTZU */
9214 is_fcvt = true;
9215 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9216 break;
9217 case 0x1c: /* FCVTAS */
9218 case 0x5c: /* FCVTAU */
9219 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9220 is_fcvt = true;
9221 rmode = FPROUNDING_TIEAWAY;
9222 break;
9223 case 0x56: /* FCVTXN, FCVTXN2 */
9224 if (size == 2) {
9225 unallocated_encoding(s);
9226 return;
9228 if (!fp_access_check(s)) {
9229 return;
9231 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9232 return;
9233 default:
9234 unallocated_encoding(s);
9235 return;
9237 break;
9238 default:
9239 unallocated_encoding(s);
9240 return;
9243 if (!fp_access_check(s)) {
9244 return;
9247 if (is_fcvt) {
9248 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9249 tcg_fpstatus = get_fpstatus_ptr(false);
9250 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9251 } else {
9252 tcg_rmode = NULL;
9253 tcg_fpstatus = NULL;
9256 if (size == 3) {
9257 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9258 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9260 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9261 write_fp_dreg(s, rd, tcg_rd);
9262 tcg_temp_free_i64(tcg_rd);
9263 tcg_temp_free_i64(tcg_rn);
9264 } else {
9265 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9266 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9268 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9270 switch (opcode) {
9271 case 0x7: /* SQABS, SQNEG */
9273 NeonGenOneOpEnvFn *genfn;
9274 static NeonGenOneOpEnvFn * const fns[3][2] = {
9275 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9276 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9277 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9279 genfn = fns[size][u];
9280 genfn(tcg_rd, cpu_env, tcg_rn);
9281 break;
9283 case 0x1a: /* FCVTNS */
9284 case 0x1b: /* FCVTMS */
9285 case 0x1c: /* FCVTAS */
9286 case 0x3a: /* FCVTPS */
9287 case 0x3b: /* FCVTZS */
9289 TCGv_i32 tcg_shift = tcg_const_i32(0);
9290 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9291 tcg_temp_free_i32(tcg_shift);
9292 break;
9294 case 0x5a: /* FCVTNU */
9295 case 0x5b: /* FCVTMU */
9296 case 0x5c: /* FCVTAU */
9297 case 0x7a: /* FCVTPU */
9298 case 0x7b: /* FCVTZU */
9300 TCGv_i32 tcg_shift = tcg_const_i32(0);
9301 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9302 tcg_temp_free_i32(tcg_shift);
9303 break;
9305 default:
9306 g_assert_not_reached();
9309 write_fp_sreg(s, rd, tcg_rd);
9310 tcg_temp_free_i32(tcg_rd);
9311 tcg_temp_free_i32(tcg_rn);
9314 if (is_fcvt) {
9315 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9316 tcg_temp_free_i32(tcg_rmode);
9317 tcg_temp_free_ptr(tcg_fpstatus);
9321 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9323 tcg_gen_vec_sar8i_i64(a, a, shift);
9324 tcg_gen_vec_add8_i64(d, d, a);
9327 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9329 tcg_gen_vec_sar16i_i64(a, a, shift);
9330 tcg_gen_vec_add16_i64(d, d, a);
9333 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9335 tcg_gen_sari_i32(a, a, shift);
9336 tcg_gen_add_i32(d, d, a);
9339 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9341 tcg_gen_sari_i64(a, a, shift);
9342 tcg_gen_add_i64(d, d, a);
9345 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9347 tcg_gen_sari_vec(vece, a, a, sh);
9348 tcg_gen_add_vec(vece, d, d, a);
9351 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9353 tcg_gen_vec_shr8i_i64(a, a, shift);
9354 tcg_gen_vec_add8_i64(d, d, a);
9357 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9359 tcg_gen_vec_shr16i_i64(a, a, shift);
9360 tcg_gen_vec_add16_i64(d, d, a);
9363 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9365 tcg_gen_shri_i32(a, a, shift);
9366 tcg_gen_add_i32(d, d, a);
9369 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9371 tcg_gen_shri_i64(a, a, shift);
9372 tcg_gen_add_i64(d, d, a);
9375 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9377 tcg_gen_shri_vec(vece, a, a, sh);
9378 tcg_gen_add_vec(vece, d, d, a);
9381 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9383 uint64_t mask = dup_const(MO_8, 0xff >> shift);
9384 TCGv_i64 t = tcg_temp_new_i64();
9386 tcg_gen_shri_i64(t, a, shift);
9387 tcg_gen_andi_i64(t, t, mask);
9388 tcg_gen_andi_i64(d, d, ~mask);
9389 tcg_gen_or_i64(d, d, t);
9390 tcg_temp_free_i64(t);
9393 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9395 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
9396 TCGv_i64 t = tcg_temp_new_i64();
9398 tcg_gen_shri_i64(t, a, shift);
9399 tcg_gen_andi_i64(t, t, mask);
9400 tcg_gen_andi_i64(d, d, ~mask);
9401 tcg_gen_or_i64(d, d, t);
9402 tcg_temp_free_i64(t);
9405 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9407 tcg_gen_shri_i32(a, a, shift);
9408 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
9411 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9413 tcg_gen_shri_i64(a, a, shift);
9414 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
9417 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9419 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
9420 TCGv_vec t = tcg_temp_new_vec_matching(d);
9421 TCGv_vec m = tcg_temp_new_vec_matching(d);
9423 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
9424 tcg_gen_shri_vec(vece, t, a, sh);
9425 tcg_gen_and_vec(vece, d, d, m);
9426 tcg_gen_or_vec(vece, d, d, t);
9428 tcg_temp_free_vec(t);
9429 tcg_temp_free_vec(m);
9432 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9433 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9434 int immh, int immb, int opcode, int rn, int rd)
9436 static const GVecGen2i ssra_op[4] = {
9437 { .fni8 = gen_ssra8_i64,
9438 .fniv = gen_ssra_vec,
9439 .load_dest = true,
9440 .opc = INDEX_op_sari_vec,
9441 .vece = MO_8 },
9442 { .fni8 = gen_ssra16_i64,
9443 .fniv = gen_ssra_vec,
9444 .load_dest = true,
9445 .opc = INDEX_op_sari_vec,
9446 .vece = MO_16 },
9447 { .fni4 = gen_ssra32_i32,
9448 .fniv = gen_ssra_vec,
9449 .load_dest = true,
9450 .opc = INDEX_op_sari_vec,
9451 .vece = MO_32 },
9452 { .fni8 = gen_ssra64_i64,
9453 .fniv = gen_ssra_vec,
9454 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9455 .load_dest = true,
9456 .opc = INDEX_op_sari_vec,
9457 .vece = MO_64 },
9459 static const GVecGen2i usra_op[4] = {
9460 { .fni8 = gen_usra8_i64,
9461 .fniv = gen_usra_vec,
9462 .load_dest = true,
9463 .opc = INDEX_op_shri_vec,
9464 .vece = MO_8, },
9465 { .fni8 = gen_usra16_i64,
9466 .fniv = gen_usra_vec,
9467 .load_dest = true,
9468 .opc = INDEX_op_shri_vec,
9469 .vece = MO_16, },
9470 { .fni4 = gen_usra32_i32,
9471 .fniv = gen_usra_vec,
9472 .load_dest = true,
9473 .opc = INDEX_op_shri_vec,
9474 .vece = MO_32, },
9475 { .fni8 = gen_usra64_i64,
9476 .fniv = gen_usra_vec,
9477 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9478 .load_dest = true,
9479 .opc = INDEX_op_shri_vec,
9480 .vece = MO_64, },
9482 static const GVecGen2i sri_op[4] = {
9483 { .fni8 = gen_shr8_ins_i64,
9484 .fniv = gen_shr_ins_vec,
9485 .load_dest = true,
9486 .opc = INDEX_op_shri_vec,
9487 .vece = MO_8 },
9488 { .fni8 = gen_shr16_ins_i64,
9489 .fniv = gen_shr_ins_vec,
9490 .load_dest = true,
9491 .opc = INDEX_op_shri_vec,
9492 .vece = MO_16 },
9493 { .fni4 = gen_shr32_ins_i32,
9494 .fniv = gen_shr_ins_vec,
9495 .load_dest = true,
9496 .opc = INDEX_op_shri_vec,
9497 .vece = MO_32 },
9498 { .fni8 = gen_shr64_ins_i64,
9499 .fniv = gen_shr_ins_vec,
9500 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9501 .load_dest = true,
9502 .opc = INDEX_op_shri_vec,
9503 .vece = MO_64 },
9506 int size = 32 - clz32(immh) - 1;
9507 int immhb = immh << 3 | immb;
9508 int shift = 2 * (8 << size) - immhb;
9509 bool accumulate = false;
9510 int dsize = is_q ? 128 : 64;
9511 int esize = 8 << size;
9512 int elements = dsize/esize;
9513 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9514 TCGv_i64 tcg_rn = new_tmp_a64(s);
9515 TCGv_i64 tcg_rd = new_tmp_a64(s);
9516 TCGv_i64 tcg_round;
9517 uint64_t round_const;
9518 int i;
9520 if (extract32(immh, 3, 1) && !is_q) {
9521 unallocated_encoding(s);
9522 return;
9524 tcg_debug_assert(size <= 3);
9526 if (!fp_access_check(s)) {
9527 return;
9530 switch (opcode) {
9531 case 0x02: /* SSRA / USRA (accumulate) */
9532 if (is_u) {
9533 /* Shift count same as element size produces zero to add. */
9534 if (shift == 8 << size) {
9535 goto done;
9537 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9538 } else {
9539 /* Shift count same as element size produces all sign to add. */
9540 if (shift == 8 << size) {
9541 shift -= 1;
9543 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9545 return;
9546 case 0x08: /* SRI */
9547 /* Shift count same as element size is valid but does nothing. */
9548 if (shift == 8 << size) {
9549 goto done;
9551 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9552 return;
9554 case 0x00: /* SSHR / USHR */
9555 if (is_u) {
9556 if (shift == 8 << size) {
9557 /* Shift count the same size as element size produces zero. */
9558 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9559 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9560 } else {
9561 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9563 } else {
9564 /* Shift count the same size as element size produces all sign. */
9565 if (shift == 8 << size) {
9566 shift -= 1;
9568 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9570 return;
9572 case 0x04: /* SRSHR / URSHR (rounding) */
9573 break;
9574 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9575 accumulate = true;
9576 break;
9577 default:
9578 g_assert_not_reached();
9581 round_const = 1ULL << (shift - 1);
9582 tcg_round = tcg_const_i64(round_const);
9584 for (i = 0; i < elements; i++) {
9585 read_vec_element(s, tcg_rn, rn, i, memop);
9586 if (accumulate) {
9587 read_vec_element(s, tcg_rd, rd, i, memop);
9590 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9591 accumulate, is_u, size, shift);
9593 write_vec_element(s, tcg_rd, rd, i, size);
9595 tcg_temp_free_i64(tcg_round);
9597 done:
9598 clear_vec_high(s, is_q, rd);
9601 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9603 uint64_t mask = dup_const(MO_8, 0xff << shift);
9604 TCGv_i64 t = tcg_temp_new_i64();
9606 tcg_gen_shli_i64(t, a, shift);
9607 tcg_gen_andi_i64(t, t, mask);
9608 tcg_gen_andi_i64(d, d, ~mask);
9609 tcg_gen_or_i64(d, d, t);
9610 tcg_temp_free_i64(t);
9613 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9615 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9616 TCGv_i64 t = tcg_temp_new_i64();
9618 tcg_gen_shli_i64(t, a, shift);
9619 tcg_gen_andi_i64(t, t, mask);
9620 tcg_gen_andi_i64(d, d, ~mask);
9621 tcg_gen_or_i64(d, d, t);
9622 tcg_temp_free_i64(t);
9625 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9627 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9630 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9632 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9635 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9637 uint64_t mask = (1ull << sh) - 1;
9638 TCGv_vec t = tcg_temp_new_vec_matching(d);
9639 TCGv_vec m = tcg_temp_new_vec_matching(d);
9641 tcg_gen_dupi_vec(vece, m, mask);
9642 tcg_gen_shli_vec(vece, t, a, sh);
9643 tcg_gen_and_vec(vece, d, d, m);
9644 tcg_gen_or_vec(vece, d, d, t);
9646 tcg_temp_free_vec(t);
9647 tcg_temp_free_vec(m);
9650 /* SHL/SLI - Vector shift left */
9651 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9652 int immh, int immb, int opcode, int rn, int rd)
9654 static const GVecGen2i shi_op[4] = {
9655 { .fni8 = gen_shl8_ins_i64,
9656 .fniv = gen_shl_ins_vec,
9657 .opc = INDEX_op_shli_vec,
9658 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9659 .load_dest = true,
9660 .vece = MO_8 },
9661 { .fni8 = gen_shl16_ins_i64,
9662 .fniv = gen_shl_ins_vec,
9663 .opc = INDEX_op_shli_vec,
9664 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9665 .load_dest = true,
9666 .vece = MO_16 },
9667 { .fni4 = gen_shl32_ins_i32,
9668 .fniv = gen_shl_ins_vec,
9669 .opc = INDEX_op_shli_vec,
9670 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9671 .load_dest = true,
9672 .vece = MO_32 },
9673 { .fni8 = gen_shl64_ins_i64,
9674 .fniv = gen_shl_ins_vec,
9675 .opc = INDEX_op_shli_vec,
9676 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9677 .load_dest = true,
9678 .vece = MO_64 },
9680 int size = 32 - clz32(immh) - 1;
9681 int immhb = immh << 3 | immb;
9682 int shift = immhb - (8 << size);
9684 if (extract32(immh, 3, 1) && !is_q) {
9685 unallocated_encoding(s);
9686 return;
9689 if (size > 3 && !is_q) {
9690 unallocated_encoding(s);
9691 return;
9694 if (!fp_access_check(s)) {
9695 return;
9698 if (insert) {
9699 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9700 } else {
9701 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9705 /* USHLL/SHLL - Vector shift left with widening */
9706 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9707 int immh, int immb, int opcode, int rn, int rd)
9709 int size = 32 - clz32(immh) - 1;
9710 int immhb = immh << 3 | immb;
9711 int shift = immhb - (8 << size);
9712 int dsize = 64;
9713 int esize = 8 << size;
9714 int elements = dsize/esize;
9715 TCGv_i64 tcg_rn = new_tmp_a64(s);
9716 TCGv_i64 tcg_rd = new_tmp_a64(s);
9717 int i;
9719 if (size >= 3) {
9720 unallocated_encoding(s);
9721 return;
9724 if (!fp_access_check(s)) {
9725 return;
9728 /* For the LL variants the store is larger than the load,
9729 * so if rd == rn we would overwrite parts of our input.
9730 * So load everything right now and use shifts in the main loop.
9732 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9734 for (i = 0; i < elements; i++) {
9735 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9736 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9737 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9738 write_vec_element(s, tcg_rd, rd, i, size + 1);
9742 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9743 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9744 int immh, int immb, int opcode, int rn, int rd)
9746 int immhb = immh << 3 | immb;
9747 int size = 32 - clz32(immh) - 1;
9748 int dsize = 64;
9749 int esize = 8 << size;
9750 int elements = dsize/esize;
9751 int shift = (2 * esize) - immhb;
9752 bool round = extract32(opcode, 0, 1);
9753 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9754 TCGv_i64 tcg_round;
9755 int i;
9757 if (extract32(immh, 3, 1)) {
9758 unallocated_encoding(s);
9759 return;
9762 if (!fp_access_check(s)) {
9763 return;
9766 tcg_rn = tcg_temp_new_i64();
9767 tcg_rd = tcg_temp_new_i64();
9768 tcg_final = tcg_temp_new_i64();
9769 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9771 if (round) {
9772 uint64_t round_const = 1ULL << (shift - 1);
9773 tcg_round = tcg_const_i64(round_const);
9774 } else {
9775 tcg_round = NULL;
9778 for (i = 0; i < elements; i++) {
9779 read_vec_element(s, tcg_rn, rn, i, size+1);
9780 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9781 false, true, size+1, shift);
9783 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9786 if (!is_q) {
9787 write_vec_element(s, tcg_final, rd, 0, MO_64);
9788 } else {
9789 write_vec_element(s, tcg_final, rd, 1, MO_64);
9791 if (round) {
9792 tcg_temp_free_i64(tcg_round);
9794 tcg_temp_free_i64(tcg_rn);
9795 tcg_temp_free_i64(tcg_rd);
9796 tcg_temp_free_i64(tcg_final);
9798 clear_vec_high(s, is_q, rd);
9802 /* AdvSIMD shift by immediate
9803 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9804 * +---+---+---+-------------+------+------+--------+---+------+------+
9805 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9806 * +---+---+---+-------------+------+------+--------+---+------+------+
9808 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9810 int rd = extract32(insn, 0, 5);
9811 int rn = extract32(insn, 5, 5);
9812 int opcode = extract32(insn, 11, 5);
9813 int immb = extract32(insn, 16, 3);
9814 int immh = extract32(insn, 19, 4);
9815 bool is_u = extract32(insn, 29, 1);
9816 bool is_q = extract32(insn, 30, 1);
9818 switch (opcode) {
9819 case 0x08: /* SRI */
9820 if (!is_u) {
9821 unallocated_encoding(s);
9822 return;
9824 /* fall through */
9825 case 0x00: /* SSHR / USHR */
9826 case 0x02: /* SSRA / USRA (accumulate) */
9827 case 0x04: /* SRSHR / URSHR (rounding) */
9828 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9829 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9830 break;
9831 case 0x0a: /* SHL / SLI */
9832 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9833 break;
9834 case 0x10: /* SHRN */
9835 case 0x11: /* RSHRN / SQRSHRUN */
9836 if (is_u) {
9837 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9838 opcode, rn, rd);
9839 } else {
9840 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9842 break;
9843 case 0x12: /* SQSHRN / UQSHRN */
9844 case 0x13: /* SQRSHRN / UQRSHRN */
9845 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9846 opcode, rn, rd);
9847 break;
9848 case 0x14: /* SSHLL / USHLL */
9849 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9850 break;
9851 case 0x1c: /* SCVTF / UCVTF */
9852 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9853 opcode, rn, rd);
9854 break;
9855 case 0xc: /* SQSHLU */
9856 if (!is_u) {
9857 unallocated_encoding(s);
9858 return;
9860 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9861 break;
9862 case 0xe: /* SQSHL, UQSHL */
9863 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9864 break;
9865 case 0x1f: /* FCVTZS/ FCVTZU */
9866 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9867 return;
9868 default:
9869 unallocated_encoding(s);
9870 return;
9874 /* Generate code to do a "long" addition or subtraction, ie one done in
9875 * TCGv_i64 on vector lanes twice the width specified by size.
9877 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9878 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9880 static NeonGenTwo64OpFn * const fns[3][2] = {
9881 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9882 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9883 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9885 NeonGenTwo64OpFn *genfn;
9886 assert(size < 3);
9888 genfn = fns[size][is_sub];
9889 genfn(tcg_res, tcg_op1, tcg_op2);
9892 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9893 int opcode, int rd, int rn, int rm)
9895 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9896 TCGv_i64 tcg_res[2];
9897 int pass, accop;
9899 tcg_res[0] = tcg_temp_new_i64();
9900 tcg_res[1] = tcg_temp_new_i64();
9902 /* Does this op do an adding accumulate, a subtracting accumulate,
9903 * or no accumulate at all?
9905 switch (opcode) {
9906 case 5:
9907 case 8:
9908 case 9:
9909 accop = 1;
9910 break;
9911 case 10:
9912 case 11:
9913 accop = -1;
9914 break;
9915 default:
9916 accop = 0;
9917 break;
9920 if (accop != 0) {
9921 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9922 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9925 /* size == 2 means two 32x32->64 operations; this is worth special
9926 * casing because we can generally handle it inline.
9928 if (size == 2) {
9929 for (pass = 0; pass < 2; pass++) {
9930 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9931 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9932 TCGv_i64 tcg_passres;
9933 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
9935 int elt = pass + is_q * 2;
9937 read_vec_element(s, tcg_op1, rn, elt, memop);
9938 read_vec_element(s, tcg_op2, rm, elt, memop);
9940 if (accop == 0) {
9941 tcg_passres = tcg_res[pass];
9942 } else {
9943 tcg_passres = tcg_temp_new_i64();
9946 switch (opcode) {
9947 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9948 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
9949 break;
9950 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9951 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
9952 break;
9953 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9954 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9956 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
9957 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
9959 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
9960 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
9961 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
9962 tcg_passres,
9963 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
9964 tcg_temp_free_i64(tcg_tmp1);
9965 tcg_temp_free_i64(tcg_tmp2);
9966 break;
9968 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9969 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9970 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9971 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9972 break;
9973 case 9: /* SQDMLAL, SQDMLAL2 */
9974 case 11: /* SQDMLSL, SQDMLSL2 */
9975 case 13: /* SQDMULL, SQDMULL2 */
9976 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9977 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
9978 tcg_passres, tcg_passres);
9979 break;
9980 default:
9981 g_assert_not_reached();
9984 if (opcode == 9 || opcode == 11) {
9985 /* saturating accumulate ops */
9986 if (accop < 0) {
9987 tcg_gen_neg_i64(tcg_passres, tcg_passres);
9989 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
9990 tcg_res[pass], tcg_passres);
9991 } else if (accop > 0) {
9992 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9993 } else if (accop < 0) {
9994 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9997 if (accop != 0) {
9998 tcg_temp_free_i64(tcg_passres);
10001 tcg_temp_free_i64(tcg_op1);
10002 tcg_temp_free_i64(tcg_op2);
10004 } else {
10005 /* size 0 or 1, generally helper functions */
10006 for (pass = 0; pass < 2; pass++) {
10007 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10008 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10009 TCGv_i64 tcg_passres;
10010 int elt = pass + is_q * 2;
10012 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10013 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10015 if (accop == 0) {
10016 tcg_passres = tcg_res[pass];
10017 } else {
10018 tcg_passres = tcg_temp_new_i64();
10021 switch (opcode) {
10022 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10023 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10025 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10026 static NeonGenWidenFn * const widenfns[2][2] = {
10027 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10028 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10030 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10032 widenfn(tcg_op2_64, tcg_op2);
10033 widenfn(tcg_passres, tcg_op1);
10034 gen_neon_addl(size, (opcode == 2), tcg_passres,
10035 tcg_passres, tcg_op2_64);
10036 tcg_temp_free_i64(tcg_op2_64);
10037 break;
10039 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10040 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10041 if (size == 0) {
10042 if (is_u) {
10043 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10044 } else {
10045 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10047 } else {
10048 if (is_u) {
10049 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10050 } else {
10051 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10054 break;
10055 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10056 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10057 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10058 if (size == 0) {
10059 if (is_u) {
10060 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10061 } else {
10062 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10064 } else {
10065 if (is_u) {
10066 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10067 } else {
10068 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10071 break;
10072 case 9: /* SQDMLAL, SQDMLAL2 */
10073 case 11: /* SQDMLSL, SQDMLSL2 */
10074 case 13: /* SQDMULL, SQDMULL2 */
10075 assert(size == 1);
10076 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10077 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10078 tcg_passres, tcg_passres);
10079 break;
10080 case 14: /* PMULL */
10081 assert(size == 0);
10082 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10083 break;
10084 default:
10085 g_assert_not_reached();
10087 tcg_temp_free_i32(tcg_op1);
10088 tcg_temp_free_i32(tcg_op2);
10090 if (accop != 0) {
10091 if (opcode == 9 || opcode == 11) {
10092 /* saturating accumulate ops */
10093 if (accop < 0) {
10094 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10096 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10097 tcg_res[pass],
10098 tcg_passres);
10099 } else {
10100 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10101 tcg_res[pass], tcg_passres);
10103 tcg_temp_free_i64(tcg_passres);
10108 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10109 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10110 tcg_temp_free_i64(tcg_res[0]);
10111 tcg_temp_free_i64(tcg_res[1]);
10114 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10115 int opcode, int rd, int rn, int rm)
10117 TCGv_i64 tcg_res[2];
10118 int part = is_q ? 2 : 0;
10119 int pass;
10121 for (pass = 0; pass < 2; pass++) {
10122 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10123 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10124 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10125 static NeonGenWidenFn * const widenfns[3][2] = {
10126 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10127 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10128 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10130 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10132 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10133 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10134 widenfn(tcg_op2_wide, tcg_op2);
10135 tcg_temp_free_i32(tcg_op2);
10136 tcg_res[pass] = tcg_temp_new_i64();
10137 gen_neon_addl(size, (opcode == 3),
10138 tcg_res[pass], tcg_op1, tcg_op2_wide);
10139 tcg_temp_free_i64(tcg_op1);
10140 tcg_temp_free_i64(tcg_op2_wide);
10143 for (pass = 0; pass < 2; pass++) {
10144 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10145 tcg_temp_free_i64(tcg_res[pass]);
10149 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10151 tcg_gen_addi_i64(in, in, 1U << 31);
10152 tcg_gen_extrh_i64_i32(res, in);
10155 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10156 int opcode, int rd, int rn, int rm)
10158 TCGv_i32 tcg_res[2];
10159 int part = is_q ? 2 : 0;
10160 int pass;
10162 for (pass = 0; pass < 2; pass++) {
10163 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10164 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10165 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10166 static NeonGenNarrowFn * const narrowfns[3][2] = {
10167 { gen_helper_neon_narrow_high_u8,
10168 gen_helper_neon_narrow_round_high_u8 },
10169 { gen_helper_neon_narrow_high_u16,
10170 gen_helper_neon_narrow_round_high_u16 },
10171 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10173 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10175 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10176 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10178 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10180 tcg_temp_free_i64(tcg_op1);
10181 tcg_temp_free_i64(tcg_op2);
10183 tcg_res[pass] = tcg_temp_new_i32();
10184 gennarrow(tcg_res[pass], tcg_wideres);
10185 tcg_temp_free_i64(tcg_wideres);
10188 for (pass = 0; pass < 2; pass++) {
10189 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10190 tcg_temp_free_i32(tcg_res[pass]);
10192 clear_vec_high(s, is_q, rd);
10195 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10197 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10198 * is the only three-reg-diff instruction which produces a
10199 * 128-bit wide result from a single operation. However since
10200 * it's possible to calculate the two halves more or less
10201 * separately we just use two helper calls.
10203 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10204 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10205 TCGv_i64 tcg_res = tcg_temp_new_i64();
10207 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10208 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10209 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10210 write_vec_element(s, tcg_res, rd, 0, MO_64);
10211 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10212 write_vec_element(s, tcg_res, rd, 1, MO_64);
10214 tcg_temp_free_i64(tcg_op1);
10215 tcg_temp_free_i64(tcg_op2);
10216 tcg_temp_free_i64(tcg_res);
10219 /* AdvSIMD three different
10220 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10221 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10222 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10223 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10225 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10227 /* Instructions in this group fall into three basic classes
10228 * (in each case with the operation working on each element in
10229 * the input vectors):
10230 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10231 * 128 bit input)
10232 * (2) wide 64 x 128 -> 128
10233 * (3) narrowing 128 x 128 -> 64
10234 * Here we do initial decode, catch unallocated cases and
10235 * dispatch to separate functions for each class.
10237 int is_q = extract32(insn, 30, 1);
10238 int is_u = extract32(insn, 29, 1);
10239 int size = extract32(insn, 22, 2);
10240 int opcode = extract32(insn, 12, 4);
10241 int rm = extract32(insn, 16, 5);
10242 int rn = extract32(insn, 5, 5);
10243 int rd = extract32(insn, 0, 5);
10245 switch (opcode) {
10246 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10247 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10248 /* 64 x 128 -> 128 */
10249 if (size == 3) {
10250 unallocated_encoding(s);
10251 return;
10253 if (!fp_access_check(s)) {
10254 return;
10256 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10257 break;
10258 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10259 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10260 /* 128 x 128 -> 64 */
10261 if (size == 3) {
10262 unallocated_encoding(s);
10263 return;
10265 if (!fp_access_check(s)) {
10266 return;
10268 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10269 break;
10270 case 14: /* PMULL, PMULL2 */
10271 if (is_u || size == 1 || size == 2) {
10272 unallocated_encoding(s);
10273 return;
10275 if (size == 3) {
10276 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
10277 unallocated_encoding(s);
10278 return;
10280 if (!fp_access_check(s)) {
10281 return;
10283 handle_pmull_64(s, is_q, rd, rn, rm);
10284 return;
10286 goto is_widening;
10287 case 9: /* SQDMLAL, SQDMLAL2 */
10288 case 11: /* SQDMLSL, SQDMLSL2 */
10289 case 13: /* SQDMULL, SQDMULL2 */
10290 if (is_u || size == 0) {
10291 unallocated_encoding(s);
10292 return;
10294 /* fall through */
10295 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10296 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10297 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10298 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10299 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10300 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10301 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10302 /* 64 x 64 -> 128 */
10303 if (size == 3) {
10304 unallocated_encoding(s);
10305 return;
10307 is_widening:
10308 if (!fp_access_check(s)) {
10309 return;
10312 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10313 break;
10314 default:
10315 /* opcode 15 not allocated */
10316 unallocated_encoding(s);
10317 break;
10321 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10323 tcg_gen_xor_i64(rn, rn, rm);
10324 tcg_gen_and_i64(rn, rn, rd);
10325 tcg_gen_xor_i64(rd, rm, rn);
10328 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10330 tcg_gen_xor_i64(rn, rn, rd);
10331 tcg_gen_and_i64(rn, rn, rm);
10332 tcg_gen_xor_i64(rd, rd, rn);
10335 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
10337 tcg_gen_xor_i64(rn, rn, rd);
10338 tcg_gen_andc_i64(rn, rn, rm);
10339 tcg_gen_xor_i64(rd, rd, rn);
10342 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10344 tcg_gen_xor_vec(vece, rn, rn, rm);
10345 tcg_gen_and_vec(vece, rn, rn, rd);
10346 tcg_gen_xor_vec(vece, rd, rm, rn);
10349 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10351 tcg_gen_xor_vec(vece, rn, rn, rd);
10352 tcg_gen_and_vec(vece, rn, rn, rm);
10353 tcg_gen_xor_vec(vece, rd, rd, rn);
10356 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
10358 tcg_gen_xor_vec(vece, rn, rn, rd);
10359 tcg_gen_andc_vec(vece, rn, rn, rm);
10360 tcg_gen_xor_vec(vece, rd, rd, rn);
10363 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10364 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10366 static const GVecGen3 bsl_op = {
10367 .fni8 = gen_bsl_i64,
10368 .fniv = gen_bsl_vec,
10369 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10370 .load_dest = true
10372 static const GVecGen3 bit_op = {
10373 .fni8 = gen_bit_i64,
10374 .fniv = gen_bit_vec,
10375 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10376 .load_dest = true
10378 static const GVecGen3 bif_op = {
10379 .fni8 = gen_bif_i64,
10380 .fniv = gen_bif_vec,
10381 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10382 .load_dest = true
10385 int rd = extract32(insn, 0, 5);
10386 int rn = extract32(insn, 5, 5);
10387 int rm = extract32(insn, 16, 5);
10388 int size = extract32(insn, 22, 2);
10389 bool is_u = extract32(insn, 29, 1);
10390 bool is_q = extract32(insn, 30, 1);
10392 if (!fp_access_check(s)) {
10393 return;
10396 switch (size + 4 * is_u) {
10397 case 0: /* AND */
10398 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10399 return;
10400 case 1: /* BIC */
10401 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10402 return;
10403 case 2: /* ORR */
10404 if (rn == rm) { /* MOV */
10405 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
10406 } else {
10407 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10409 return;
10410 case 3: /* ORN */
10411 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10412 return;
10413 case 4: /* EOR */
10414 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10415 return;
10417 case 5: /* BSL bitwise select */
10418 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10419 return;
10420 case 6: /* BIT, bitwise insert if true */
10421 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10422 return;
10423 case 7: /* BIF, bitwise insert if false */
10424 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10425 return;
10427 default:
10428 g_assert_not_reached();
10432 /* Pairwise op subgroup of C3.6.16.
10434 * This is called directly or via the handle_3same_float for float pairwise
10435 * operations where the opcode and size are calculated differently.
10437 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10438 int size, int rn, int rm, int rd)
10440 TCGv_ptr fpst;
10441 int pass;
10443 /* Floating point operations need fpst */
10444 if (opcode >= 0x58) {
10445 fpst = get_fpstatus_ptr(false);
10446 } else {
10447 fpst = NULL;
10450 if (!fp_access_check(s)) {
10451 return;
10454 /* These operations work on the concatenated rm:rn, with each pair of
10455 * adjacent elements being operated on to produce an element in the result.
10457 if (size == 3) {
10458 TCGv_i64 tcg_res[2];
10460 for (pass = 0; pass < 2; pass++) {
10461 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10462 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10463 int passreg = (pass == 0) ? rn : rm;
10465 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10466 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10467 tcg_res[pass] = tcg_temp_new_i64();
10469 switch (opcode) {
10470 case 0x17: /* ADDP */
10471 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10472 break;
10473 case 0x58: /* FMAXNMP */
10474 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10475 break;
10476 case 0x5a: /* FADDP */
10477 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10478 break;
10479 case 0x5e: /* FMAXP */
10480 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10481 break;
10482 case 0x78: /* FMINNMP */
10483 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10484 break;
10485 case 0x7e: /* FMINP */
10486 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10487 break;
10488 default:
10489 g_assert_not_reached();
10492 tcg_temp_free_i64(tcg_op1);
10493 tcg_temp_free_i64(tcg_op2);
10496 for (pass = 0; pass < 2; pass++) {
10497 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10498 tcg_temp_free_i64(tcg_res[pass]);
10500 } else {
10501 int maxpass = is_q ? 4 : 2;
10502 TCGv_i32 tcg_res[4];
10504 for (pass = 0; pass < maxpass; pass++) {
10505 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10506 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10507 NeonGenTwoOpFn *genfn = NULL;
10508 int passreg = pass < (maxpass / 2) ? rn : rm;
10509 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10511 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10512 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10513 tcg_res[pass] = tcg_temp_new_i32();
10515 switch (opcode) {
10516 case 0x17: /* ADDP */
10518 static NeonGenTwoOpFn * const fns[3] = {
10519 gen_helper_neon_padd_u8,
10520 gen_helper_neon_padd_u16,
10521 tcg_gen_add_i32,
10523 genfn = fns[size];
10524 break;
10526 case 0x14: /* SMAXP, UMAXP */
10528 static NeonGenTwoOpFn * const fns[3][2] = {
10529 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10530 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10531 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10533 genfn = fns[size][u];
10534 break;
10536 case 0x15: /* SMINP, UMINP */
10538 static NeonGenTwoOpFn * const fns[3][2] = {
10539 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10540 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10541 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10543 genfn = fns[size][u];
10544 break;
10546 /* The FP operations are all on single floats (32 bit) */
10547 case 0x58: /* FMAXNMP */
10548 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10549 break;
10550 case 0x5a: /* FADDP */
10551 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10552 break;
10553 case 0x5e: /* FMAXP */
10554 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10555 break;
10556 case 0x78: /* FMINNMP */
10557 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10558 break;
10559 case 0x7e: /* FMINP */
10560 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10561 break;
10562 default:
10563 g_assert_not_reached();
10566 /* FP ops called directly, otherwise call now */
10567 if (genfn) {
10568 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10571 tcg_temp_free_i32(tcg_op1);
10572 tcg_temp_free_i32(tcg_op2);
10575 for (pass = 0; pass < maxpass; pass++) {
10576 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10577 tcg_temp_free_i32(tcg_res[pass]);
10579 clear_vec_high(s, is_q, rd);
10582 if (fpst) {
10583 tcg_temp_free_ptr(fpst);
10587 /* Floating point op subgroup of C3.6.16. */
10588 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10590 /* For floating point ops, the U, size[1] and opcode bits
10591 * together indicate the operation. size[0] indicates single
10592 * or double.
10594 int fpopcode = extract32(insn, 11, 5)
10595 | (extract32(insn, 23, 1) << 5)
10596 | (extract32(insn, 29, 1) << 6);
10597 int is_q = extract32(insn, 30, 1);
10598 int size = extract32(insn, 22, 1);
10599 int rm = extract32(insn, 16, 5);
10600 int rn = extract32(insn, 5, 5);
10601 int rd = extract32(insn, 0, 5);
10603 int datasize = is_q ? 128 : 64;
10604 int esize = 32 << size;
10605 int elements = datasize / esize;
10607 if (size == 1 && !is_q) {
10608 unallocated_encoding(s);
10609 return;
10612 switch (fpopcode) {
10613 case 0x58: /* FMAXNMP */
10614 case 0x5a: /* FADDP */
10615 case 0x5e: /* FMAXP */
10616 case 0x78: /* FMINNMP */
10617 case 0x7e: /* FMINP */
10618 if (size && !is_q) {
10619 unallocated_encoding(s);
10620 return;
10622 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10623 rn, rm, rd);
10624 return;
10625 case 0x1b: /* FMULX */
10626 case 0x1f: /* FRECPS */
10627 case 0x3f: /* FRSQRTS */
10628 case 0x5d: /* FACGE */
10629 case 0x7d: /* FACGT */
10630 case 0x19: /* FMLA */
10631 case 0x39: /* FMLS */
10632 case 0x18: /* FMAXNM */
10633 case 0x1a: /* FADD */
10634 case 0x1c: /* FCMEQ */
10635 case 0x1e: /* FMAX */
10636 case 0x38: /* FMINNM */
10637 case 0x3a: /* FSUB */
10638 case 0x3e: /* FMIN */
10639 case 0x5b: /* FMUL */
10640 case 0x5c: /* FCMGE */
10641 case 0x5f: /* FDIV */
10642 case 0x7a: /* FABD */
10643 case 0x7c: /* FCMGT */
10644 if (!fp_access_check(s)) {
10645 return;
10648 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10649 return;
10650 default:
10651 unallocated_encoding(s);
10652 return;
10656 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10658 gen_helper_neon_mul_u8(a, a, b);
10659 gen_helper_neon_add_u8(d, d, a);
10662 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10664 gen_helper_neon_mul_u16(a, a, b);
10665 gen_helper_neon_add_u16(d, d, a);
10668 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10670 tcg_gen_mul_i32(a, a, b);
10671 tcg_gen_add_i32(d, d, a);
10674 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10676 tcg_gen_mul_i64(a, a, b);
10677 tcg_gen_add_i64(d, d, a);
10680 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10682 tcg_gen_mul_vec(vece, a, a, b);
10683 tcg_gen_add_vec(vece, d, d, a);
10686 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10688 gen_helper_neon_mul_u8(a, a, b);
10689 gen_helper_neon_sub_u8(d, d, a);
10692 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10694 gen_helper_neon_mul_u16(a, a, b);
10695 gen_helper_neon_sub_u16(d, d, a);
10698 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10700 tcg_gen_mul_i32(a, a, b);
10701 tcg_gen_sub_i32(d, d, a);
10704 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10706 tcg_gen_mul_i64(a, a, b);
10707 tcg_gen_sub_i64(d, d, a);
10710 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10712 tcg_gen_mul_vec(vece, a, a, b);
10713 tcg_gen_sub_vec(vece, d, d, a);
10716 /* Integer op subgroup of C3.6.16. */
10717 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10719 static const GVecGen3 cmtst_op[4] = {
10720 { .fni4 = gen_helper_neon_tst_u8,
10721 .fniv = gen_cmtst_vec,
10722 .vece = MO_8 },
10723 { .fni4 = gen_helper_neon_tst_u16,
10724 .fniv = gen_cmtst_vec,
10725 .vece = MO_16 },
10726 { .fni4 = gen_cmtst_i32,
10727 .fniv = gen_cmtst_vec,
10728 .vece = MO_32 },
10729 { .fni8 = gen_cmtst_i64,
10730 .fniv = gen_cmtst_vec,
10731 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10732 .vece = MO_64 },
10734 static const GVecGen3 mla_op[4] = {
10735 { .fni4 = gen_mla8_i32,
10736 .fniv = gen_mla_vec,
10737 .opc = INDEX_op_mul_vec,
10738 .load_dest = true,
10739 .vece = MO_8 },
10740 { .fni4 = gen_mla16_i32,
10741 .fniv = gen_mla_vec,
10742 .opc = INDEX_op_mul_vec,
10743 .load_dest = true,
10744 .vece = MO_16 },
10745 { .fni4 = gen_mla32_i32,
10746 .fniv = gen_mla_vec,
10747 .opc = INDEX_op_mul_vec,
10748 .load_dest = true,
10749 .vece = MO_32 },
10750 { .fni8 = gen_mla64_i64,
10751 .fniv = gen_mla_vec,
10752 .opc = INDEX_op_mul_vec,
10753 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10754 .load_dest = true,
10755 .vece = MO_64 },
10757 static const GVecGen3 mls_op[4] = {
10758 { .fni4 = gen_mls8_i32,
10759 .fniv = gen_mls_vec,
10760 .opc = INDEX_op_mul_vec,
10761 .load_dest = true,
10762 .vece = MO_8 },
10763 { .fni4 = gen_mls16_i32,
10764 .fniv = gen_mls_vec,
10765 .opc = INDEX_op_mul_vec,
10766 .load_dest = true,
10767 .vece = MO_16 },
10768 { .fni4 = gen_mls32_i32,
10769 .fniv = gen_mls_vec,
10770 .opc = INDEX_op_mul_vec,
10771 .load_dest = true,
10772 .vece = MO_32 },
10773 { .fni8 = gen_mls64_i64,
10774 .fniv = gen_mls_vec,
10775 .opc = INDEX_op_mul_vec,
10776 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10777 .load_dest = true,
10778 .vece = MO_64 },
10781 int is_q = extract32(insn, 30, 1);
10782 int u = extract32(insn, 29, 1);
10783 int size = extract32(insn, 22, 2);
10784 int opcode = extract32(insn, 11, 5);
10785 int rm = extract32(insn, 16, 5);
10786 int rn = extract32(insn, 5, 5);
10787 int rd = extract32(insn, 0, 5);
10788 int pass;
10789 TCGCond cond;
10791 switch (opcode) {
10792 case 0x13: /* MUL, PMUL */
10793 if (u && size != 0) {
10794 unallocated_encoding(s);
10795 return;
10797 /* fall through */
10798 case 0x0: /* SHADD, UHADD */
10799 case 0x2: /* SRHADD, URHADD */
10800 case 0x4: /* SHSUB, UHSUB */
10801 case 0xc: /* SMAX, UMAX */
10802 case 0xd: /* SMIN, UMIN */
10803 case 0xe: /* SABD, UABD */
10804 case 0xf: /* SABA, UABA */
10805 case 0x12: /* MLA, MLS */
10806 if (size == 3) {
10807 unallocated_encoding(s);
10808 return;
10810 break;
10811 case 0x16: /* SQDMULH, SQRDMULH */
10812 if (size == 0 || size == 3) {
10813 unallocated_encoding(s);
10814 return;
10816 break;
10817 default:
10818 if (size == 3 && !is_q) {
10819 unallocated_encoding(s);
10820 return;
10822 break;
10825 if (!fp_access_check(s)) {
10826 return;
10829 switch (opcode) {
10830 case 0x10: /* ADD, SUB */
10831 if (u) {
10832 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10833 } else {
10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10836 return;
10837 case 0x13: /* MUL, PMUL */
10838 if (!u) { /* MUL */
10839 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10840 return;
10842 break;
10843 case 0x12: /* MLA, MLS */
10844 if (u) {
10845 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10846 } else {
10847 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10849 return;
10850 case 0x11:
10851 if (!u) { /* CMTST */
10852 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10853 return;
10855 /* else CMEQ */
10856 cond = TCG_COND_EQ;
10857 goto do_gvec_cmp;
10858 case 0x06: /* CMGT, CMHI */
10859 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10860 goto do_gvec_cmp;
10861 case 0x07: /* CMGE, CMHS */
10862 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10863 do_gvec_cmp:
10864 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10865 vec_full_reg_offset(s, rn),
10866 vec_full_reg_offset(s, rm),
10867 is_q ? 16 : 8, vec_full_reg_size(s));
10868 return;
10871 if (size == 3) {
10872 assert(is_q);
10873 for (pass = 0; pass < 2; pass++) {
10874 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10875 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10876 TCGv_i64 tcg_res = tcg_temp_new_i64();
10878 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10879 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10881 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10883 write_vec_element(s, tcg_res, rd, pass, MO_64);
10885 tcg_temp_free_i64(tcg_res);
10886 tcg_temp_free_i64(tcg_op1);
10887 tcg_temp_free_i64(tcg_op2);
10889 } else {
10890 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10891 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10892 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10893 TCGv_i32 tcg_res = tcg_temp_new_i32();
10894 NeonGenTwoOpFn *genfn = NULL;
10895 NeonGenTwoOpEnvFn *genenvfn = NULL;
10897 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10898 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10900 switch (opcode) {
10901 case 0x0: /* SHADD, UHADD */
10903 static NeonGenTwoOpFn * const fns[3][2] = {
10904 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10905 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10906 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10908 genfn = fns[size][u];
10909 break;
10911 case 0x1: /* SQADD, UQADD */
10913 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10914 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10915 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10916 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10918 genenvfn = fns[size][u];
10919 break;
10921 case 0x2: /* SRHADD, URHADD */
10923 static NeonGenTwoOpFn * const fns[3][2] = {
10924 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10925 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10926 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10928 genfn = fns[size][u];
10929 break;
10931 case 0x4: /* SHSUB, UHSUB */
10933 static NeonGenTwoOpFn * const fns[3][2] = {
10934 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10935 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10936 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10938 genfn = fns[size][u];
10939 break;
10941 case 0x5: /* SQSUB, UQSUB */
10943 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10944 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10945 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10946 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10948 genenvfn = fns[size][u];
10949 break;
10951 case 0x8: /* SSHL, USHL */
10953 static NeonGenTwoOpFn * const fns[3][2] = {
10954 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
10955 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
10956 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
10958 genfn = fns[size][u];
10959 break;
10961 case 0x9: /* SQSHL, UQSHL */
10963 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10964 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
10965 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
10966 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
10968 genenvfn = fns[size][u];
10969 break;
10971 case 0xa: /* SRSHL, URSHL */
10973 static NeonGenTwoOpFn * const fns[3][2] = {
10974 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
10975 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
10976 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
10978 genfn = fns[size][u];
10979 break;
10981 case 0xb: /* SQRSHL, UQRSHL */
10983 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10984 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
10985 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
10986 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
10988 genenvfn = fns[size][u];
10989 break;
10991 case 0xc: /* SMAX, UMAX */
10993 static NeonGenTwoOpFn * const fns[3][2] = {
10994 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
10995 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
10996 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10998 genfn = fns[size][u];
10999 break;
11002 case 0xd: /* SMIN, UMIN */
11004 static NeonGenTwoOpFn * const fns[3][2] = {
11005 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
11006 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
11007 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11009 genfn = fns[size][u];
11010 break;
11012 case 0xe: /* SABD, UABD */
11013 case 0xf: /* SABA, UABA */
11015 static NeonGenTwoOpFn * const fns[3][2] = {
11016 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11017 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11018 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11020 genfn = fns[size][u];
11021 break;
11023 case 0x13: /* MUL, PMUL */
11024 assert(u); /* PMUL */
11025 assert(size == 0);
11026 genfn = gen_helper_neon_mul_p8;
11027 break;
11028 case 0x16: /* SQDMULH, SQRDMULH */
11030 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11031 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11032 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11034 assert(size == 1 || size == 2);
11035 genenvfn = fns[size - 1][u];
11036 break;
11038 default:
11039 g_assert_not_reached();
11042 if (genenvfn) {
11043 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11044 } else {
11045 genfn(tcg_res, tcg_op1, tcg_op2);
11048 if (opcode == 0xf) {
11049 /* SABA, UABA: accumulating ops */
11050 static NeonGenTwoOpFn * const fns[3] = {
11051 gen_helper_neon_add_u8,
11052 gen_helper_neon_add_u16,
11053 tcg_gen_add_i32,
11056 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11057 fns[size](tcg_res, tcg_op1, tcg_res);
11060 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11062 tcg_temp_free_i32(tcg_res);
11063 tcg_temp_free_i32(tcg_op1);
11064 tcg_temp_free_i32(tcg_op2);
11067 clear_vec_high(s, is_q, rd);
11070 /* AdvSIMD three same
11071 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11072 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11073 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11074 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11076 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11078 int opcode = extract32(insn, 11, 5);
11080 switch (opcode) {
11081 case 0x3: /* logic ops */
11082 disas_simd_3same_logic(s, insn);
11083 break;
11084 case 0x17: /* ADDP */
11085 case 0x14: /* SMAXP, UMAXP */
11086 case 0x15: /* SMINP, UMINP */
11088 /* Pairwise operations */
11089 int is_q = extract32(insn, 30, 1);
11090 int u = extract32(insn, 29, 1);
11091 int size = extract32(insn, 22, 2);
11092 int rm = extract32(insn, 16, 5);
11093 int rn = extract32(insn, 5, 5);
11094 int rd = extract32(insn, 0, 5);
11095 if (opcode == 0x17) {
11096 if (u || (size == 3 && !is_q)) {
11097 unallocated_encoding(s);
11098 return;
11100 } else {
11101 if (size == 3) {
11102 unallocated_encoding(s);
11103 return;
11106 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11107 break;
11109 case 0x18 ... 0x31:
11110 /* floating point ops, sz[1] and U are part of opcode */
11111 disas_simd_3same_float(s, insn);
11112 break;
11113 default:
11114 disas_simd_3same_int(s, insn);
11115 break;
11120 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11122 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11123 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11124 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11125 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11127 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11128 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11131 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11133 int opcode, fpopcode;
11134 int is_q, u, a, rm, rn, rd;
11135 int datasize, elements;
11136 int pass;
11137 TCGv_ptr fpst;
11138 bool pairwise = false;
11140 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
11141 unallocated_encoding(s);
11142 return;
11145 if (!fp_access_check(s)) {
11146 return;
11149 /* For these floating point ops, the U, a and opcode bits
11150 * together indicate the operation.
11152 opcode = extract32(insn, 11, 3);
11153 u = extract32(insn, 29, 1);
11154 a = extract32(insn, 23, 1);
11155 is_q = extract32(insn, 30, 1);
11156 rm = extract32(insn, 16, 5);
11157 rn = extract32(insn, 5, 5);
11158 rd = extract32(insn, 0, 5);
11160 fpopcode = opcode | (a << 3) | (u << 4);
11161 datasize = is_q ? 128 : 64;
11162 elements = datasize / 16;
11164 switch (fpopcode) {
11165 case 0x10: /* FMAXNMP */
11166 case 0x12: /* FADDP */
11167 case 0x16: /* FMAXP */
11168 case 0x18: /* FMINNMP */
11169 case 0x1e: /* FMINP */
11170 pairwise = true;
11171 break;
11174 fpst = get_fpstatus_ptr(true);
11176 if (pairwise) {
11177 int maxpass = is_q ? 8 : 4;
11178 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11179 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11180 TCGv_i32 tcg_res[8];
11182 for (pass = 0; pass < maxpass; pass++) {
11183 int passreg = pass < (maxpass / 2) ? rn : rm;
11184 int passelt = (pass << 1) & (maxpass - 1);
11186 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11187 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11188 tcg_res[pass] = tcg_temp_new_i32();
11190 switch (fpopcode) {
11191 case 0x10: /* FMAXNMP */
11192 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11193 fpst);
11194 break;
11195 case 0x12: /* FADDP */
11196 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11197 break;
11198 case 0x16: /* FMAXP */
11199 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11200 break;
11201 case 0x18: /* FMINNMP */
11202 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11203 fpst);
11204 break;
11205 case 0x1e: /* FMINP */
11206 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11207 break;
11208 default:
11209 g_assert_not_reached();
11213 for (pass = 0; pass < maxpass; pass++) {
11214 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11215 tcg_temp_free_i32(tcg_res[pass]);
11218 tcg_temp_free_i32(tcg_op1);
11219 tcg_temp_free_i32(tcg_op2);
11221 } else {
11222 for (pass = 0; pass < elements; pass++) {
11223 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11224 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11225 TCGv_i32 tcg_res = tcg_temp_new_i32();
11227 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11228 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11230 switch (fpopcode) {
11231 case 0x0: /* FMAXNM */
11232 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11233 break;
11234 case 0x1: /* FMLA */
11235 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11236 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11237 fpst);
11238 break;
11239 case 0x2: /* FADD */
11240 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11241 break;
11242 case 0x3: /* FMULX */
11243 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11244 break;
11245 case 0x4: /* FCMEQ */
11246 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11247 break;
11248 case 0x6: /* FMAX */
11249 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11250 break;
11251 case 0x7: /* FRECPS */
11252 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11253 break;
11254 case 0x8: /* FMINNM */
11255 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11256 break;
11257 case 0x9: /* FMLS */
11258 /* As usual for ARM, separate negation for fused multiply-add */
11259 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11260 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11261 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11262 fpst);
11263 break;
11264 case 0xa: /* FSUB */
11265 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11266 break;
11267 case 0xe: /* FMIN */
11268 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11269 break;
11270 case 0xf: /* FRSQRTS */
11271 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11272 break;
11273 case 0x13: /* FMUL */
11274 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11275 break;
11276 case 0x14: /* FCMGE */
11277 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11278 break;
11279 case 0x15: /* FACGE */
11280 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11281 break;
11282 case 0x17: /* FDIV */
11283 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11284 break;
11285 case 0x1a: /* FABD */
11286 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11287 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11288 break;
11289 case 0x1c: /* FCMGT */
11290 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11291 break;
11292 case 0x1d: /* FACGT */
11293 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11294 break;
11295 default:
11296 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11297 __func__, insn, fpopcode, s->pc);
11298 g_assert_not_reached();
11301 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11302 tcg_temp_free_i32(tcg_res);
11303 tcg_temp_free_i32(tcg_op1);
11304 tcg_temp_free_i32(tcg_op2);
11308 tcg_temp_free_ptr(fpst);
11310 clear_vec_high(s, is_q, rd);
11313 /* AdvSIMD three same extra
11314 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11315 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11316 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11317 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11319 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11321 int rd = extract32(insn, 0, 5);
11322 int rn = extract32(insn, 5, 5);
11323 int opcode = extract32(insn, 11, 4);
11324 int rm = extract32(insn, 16, 5);
11325 int size = extract32(insn, 22, 2);
11326 bool u = extract32(insn, 29, 1);
11327 bool is_q = extract32(insn, 30, 1);
11328 int feature, rot;
11330 switch (u * 16 + opcode) {
11331 case 0x10: /* SQRDMLAH (vector) */
11332 case 0x11: /* SQRDMLSH (vector) */
11333 if (size != 1 && size != 2) {
11334 unallocated_encoding(s);
11335 return;
11337 feature = ARM_FEATURE_V8_RDM;
11338 break;
11339 case 0x8: /* FCMLA, #0 */
11340 case 0x9: /* FCMLA, #90 */
11341 case 0xa: /* FCMLA, #180 */
11342 case 0xb: /* FCMLA, #270 */
11343 case 0xc: /* FCADD, #90 */
11344 case 0xe: /* FCADD, #270 */
11345 if (size == 0
11346 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
11347 || (size == 3 && !is_q)) {
11348 unallocated_encoding(s);
11349 return;
11351 feature = ARM_FEATURE_V8_FCMA;
11352 break;
11353 default:
11354 unallocated_encoding(s);
11355 return;
11357 if (!arm_dc_feature(s, feature)) {
11358 unallocated_encoding(s);
11359 return;
11361 if (!fp_access_check(s)) {
11362 return;
11365 switch (opcode) {
11366 case 0x0: /* SQRDMLAH (vector) */
11367 switch (size) {
11368 case 1:
11369 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11370 break;
11371 case 2:
11372 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11373 break;
11374 default:
11375 g_assert_not_reached();
11377 return;
11379 case 0x1: /* SQRDMLSH (vector) */
11380 switch (size) {
11381 case 1:
11382 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11383 break;
11384 case 2:
11385 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11386 break;
11387 default:
11388 g_assert_not_reached();
11390 return;
11392 case 0x8: /* FCMLA, #0 */
11393 case 0x9: /* FCMLA, #90 */
11394 case 0xa: /* FCMLA, #180 */
11395 case 0xb: /* FCMLA, #270 */
11396 rot = extract32(opcode, 0, 2);
11397 switch (size) {
11398 case 1:
11399 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11400 gen_helper_gvec_fcmlah);
11401 break;
11402 case 2:
11403 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11404 gen_helper_gvec_fcmlas);
11405 break;
11406 case 3:
11407 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11408 gen_helper_gvec_fcmlad);
11409 break;
11410 default:
11411 g_assert_not_reached();
11413 return;
11415 case 0xc: /* FCADD, #90 */
11416 case 0xe: /* FCADD, #270 */
11417 rot = extract32(opcode, 1, 1);
11418 switch (size) {
11419 case 1:
11420 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11421 gen_helper_gvec_fcaddh);
11422 break;
11423 case 2:
11424 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11425 gen_helper_gvec_fcadds);
11426 break;
11427 case 3:
11428 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11429 gen_helper_gvec_fcaddd);
11430 break;
11431 default:
11432 g_assert_not_reached();
11434 return;
11436 default:
11437 g_assert_not_reached();
11441 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11442 int size, int rn, int rd)
11444 /* Handle 2-reg-misc ops which are widening (so each size element
11445 * in the source becomes a 2*size element in the destination.
11446 * The only instruction like this is FCVTL.
11448 int pass;
11450 if (size == 3) {
11451 /* 32 -> 64 bit fp conversion */
11452 TCGv_i64 tcg_res[2];
11453 int srcelt = is_q ? 2 : 0;
11455 for (pass = 0; pass < 2; pass++) {
11456 TCGv_i32 tcg_op = tcg_temp_new_i32();
11457 tcg_res[pass] = tcg_temp_new_i64();
11459 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11460 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11461 tcg_temp_free_i32(tcg_op);
11463 for (pass = 0; pass < 2; pass++) {
11464 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11465 tcg_temp_free_i64(tcg_res[pass]);
11467 } else {
11468 /* 16 -> 32 bit fp conversion */
11469 int srcelt = is_q ? 4 : 0;
11470 TCGv_i32 tcg_res[4];
11471 TCGv_ptr fpst = get_fpstatus_ptr(false);
11472 TCGv_i32 ahp = get_ahp_flag();
11474 for (pass = 0; pass < 4; pass++) {
11475 tcg_res[pass] = tcg_temp_new_i32();
11477 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11478 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11479 fpst, ahp);
11481 for (pass = 0; pass < 4; pass++) {
11482 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11483 tcg_temp_free_i32(tcg_res[pass]);
11486 tcg_temp_free_ptr(fpst);
11487 tcg_temp_free_i32(ahp);
11491 static void handle_rev(DisasContext *s, int opcode, bool u,
11492 bool is_q, int size, int rn, int rd)
11494 int op = (opcode << 1) | u;
11495 int opsz = op + size;
11496 int grp_size = 3 - opsz;
11497 int dsize = is_q ? 128 : 64;
11498 int i;
11500 if (opsz >= 3) {
11501 unallocated_encoding(s);
11502 return;
11505 if (!fp_access_check(s)) {
11506 return;
11509 if (size == 0) {
11510 /* Special case bytes, use bswap op on each group of elements */
11511 int groups = dsize / (8 << grp_size);
11513 for (i = 0; i < groups; i++) {
11514 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11516 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11517 switch (grp_size) {
11518 case MO_16:
11519 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11520 break;
11521 case MO_32:
11522 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11523 break;
11524 case MO_64:
11525 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11526 break;
11527 default:
11528 g_assert_not_reached();
11530 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11531 tcg_temp_free_i64(tcg_tmp);
11533 clear_vec_high(s, is_q, rd);
11534 } else {
11535 int revmask = (1 << grp_size) - 1;
11536 int esize = 8 << size;
11537 int elements = dsize / esize;
11538 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11539 TCGv_i64 tcg_rd = tcg_const_i64(0);
11540 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11542 for (i = 0; i < elements; i++) {
11543 int e_rev = (i & 0xf) ^ revmask;
11544 int off = e_rev * esize;
11545 read_vec_element(s, tcg_rn, rn, i, size);
11546 if (off >= 64) {
11547 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11548 tcg_rn, off - 64, esize);
11549 } else {
11550 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11553 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11554 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11556 tcg_temp_free_i64(tcg_rd_hi);
11557 tcg_temp_free_i64(tcg_rd);
11558 tcg_temp_free_i64(tcg_rn);
11562 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11563 bool is_q, int size, int rn, int rd)
11565 /* Implement the pairwise operations from 2-misc:
11566 * SADDLP, UADDLP, SADALP, UADALP.
11567 * These all add pairs of elements in the input to produce a
11568 * double-width result element in the output (possibly accumulating).
11570 bool accum = (opcode == 0x6);
11571 int maxpass = is_q ? 2 : 1;
11572 int pass;
11573 TCGv_i64 tcg_res[2];
11575 if (size == 2) {
11576 /* 32 + 32 -> 64 op */
11577 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11579 for (pass = 0; pass < maxpass; pass++) {
11580 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11581 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11583 tcg_res[pass] = tcg_temp_new_i64();
11585 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11586 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11587 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11588 if (accum) {
11589 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11590 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11593 tcg_temp_free_i64(tcg_op1);
11594 tcg_temp_free_i64(tcg_op2);
11596 } else {
11597 for (pass = 0; pass < maxpass; pass++) {
11598 TCGv_i64 tcg_op = tcg_temp_new_i64();
11599 NeonGenOneOpFn *genfn;
11600 static NeonGenOneOpFn * const fns[2][2] = {
11601 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11602 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11605 genfn = fns[size][u];
11607 tcg_res[pass] = tcg_temp_new_i64();
11609 read_vec_element(s, tcg_op, rn, pass, MO_64);
11610 genfn(tcg_res[pass], tcg_op);
11612 if (accum) {
11613 read_vec_element(s, tcg_op, rd, pass, MO_64);
11614 if (size == 0) {
11615 gen_helper_neon_addl_u16(tcg_res[pass],
11616 tcg_res[pass], tcg_op);
11617 } else {
11618 gen_helper_neon_addl_u32(tcg_res[pass],
11619 tcg_res[pass], tcg_op);
11622 tcg_temp_free_i64(tcg_op);
11625 if (!is_q) {
11626 tcg_res[1] = tcg_const_i64(0);
11628 for (pass = 0; pass < 2; pass++) {
11629 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11630 tcg_temp_free_i64(tcg_res[pass]);
11634 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11636 /* Implement SHLL and SHLL2 */
11637 int pass;
11638 int part = is_q ? 2 : 0;
11639 TCGv_i64 tcg_res[2];
11641 for (pass = 0; pass < 2; pass++) {
11642 static NeonGenWidenFn * const widenfns[3] = {
11643 gen_helper_neon_widen_u8,
11644 gen_helper_neon_widen_u16,
11645 tcg_gen_extu_i32_i64,
11647 NeonGenWidenFn *widenfn = widenfns[size];
11648 TCGv_i32 tcg_op = tcg_temp_new_i32();
11650 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11651 tcg_res[pass] = tcg_temp_new_i64();
11652 widenfn(tcg_res[pass], tcg_op);
11653 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11655 tcg_temp_free_i32(tcg_op);
11658 for (pass = 0; pass < 2; pass++) {
11659 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11660 tcg_temp_free_i64(tcg_res[pass]);
11664 /* AdvSIMD two reg misc
11665 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11666 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11667 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11668 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11670 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11672 int size = extract32(insn, 22, 2);
11673 int opcode = extract32(insn, 12, 5);
11674 bool u = extract32(insn, 29, 1);
11675 bool is_q = extract32(insn, 30, 1);
11676 int rn = extract32(insn, 5, 5);
11677 int rd = extract32(insn, 0, 5);
11678 bool need_fpstatus = false;
11679 bool need_rmode = false;
11680 int rmode = -1;
11681 TCGv_i32 tcg_rmode;
11682 TCGv_ptr tcg_fpstatus;
11684 switch (opcode) {
11685 case 0x0: /* REV64, REV32 */
11686 case 0x1: /* REV16 */
11687 handle_rev(s, opcode, u, is_q, size, rn, rd);
11688 return;
11689 case 0x5: /* CNT, NOT, RBIT */
11690 if (u && size == 0) {
11691 /* NOT */
11692 break;
11693 } else if (u && size == 1) {
11694 /* RBIT */
11695 break;
11696 } else if (!u && size == 0) {
11697 /* CNT */
11698 break;
11700 unallocated_encoding(s);
11701 return;
11702 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11703 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11704 if (size == 3) {
11705 unallocated_encoding(s);
11706 return;
11708 if (!fp_access_check(s)) {
11709 return;
11712 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11713 return;
11714 case 0x4: /* CLS, CLZ */
11715 if (size == 3) {
11716 unallocated_encoding(s);
11717 return;
11719 break;
11720 case 0x2: /* SADDLP, UADDLP */
11721 case 0x6: /* SADALP, UADALP */
11722 if (size == 3) {
11723 unallocated_encoding(s);
11724 return;
11726 if (!fp_access_check(s)) {
11727 return;
11729 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11730 return;
11731 case 0x13: /* SHLL, SHLL2 */
11732 if (u == 0 || size == 3) {
11733 unallocated_encoding(s);
11734 return;
11736 if (!fp_access_check(s)) {
11737 return;
11739 handle_shll(s, is_q, size, rn, rd);
11740 return;
11741 case 0xa: /* CMLT */
11742 if (u == 1) {
11743 unallocated_encoding(s);
11744 return;
11746 /* fall through */
11747 case 0x8: /* CMGT, CMGE */
11748 case 0x9: /* CMEQ, CMLE */
11749 case 0xb: /* ABS, NEG */
11750 if (size == 3 && !is_q) {
11751 unallocated_encoding(s);
11752 return;
11754 break;
11755 case 0x3: /* SUQADD, USQADD */
11756 if (size == 3 && !is_q) {
11757 unallocated_encoding(s);
11758 return;
11760 if (!fp_access_check(s)) {
11761 return;
11763 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11764 return;
11765 case 0x7: /* SQABS, SQNEG */
11766 if (size == 3 && !is_q) {
11767 unallocated_encoding(s);
11768 return;
11770 break;
11771 case 0xc ... 0xf:
11772 case 0x16 ... 0x1d:
11773 case 0x1f:
11775 /* Floating point: U, size[1] and opcode indicate operation;
11776 * size[0] indicates single or double precision.
11778 int is_double = extract32(size, 0, 1);
11779 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11780 size = is_double ? 3 : 2;
11781 switch (opcode) {
11782 case 0x2f: /* FABS */
11783 case 0x6f: /* FNEG */
11784 if (size == 3 && !is_q) {
11785 unallocated_encoding(s);
11786 return;
11788 break;
11789 case 0x1d: /* SCVTF */
11790 case 0x5d: /* UCVTF */
11792 bool is_signed = (opcode == 0x1d) ? true : false;
11793 int elements = is_double ? 2 : is_q ? 4 : 2;
11794 if (is_double && !is_q) {
11795 unallocated_encoding(s);
11796 return;
11798 if (!fp_access_check(s)) {
11799 return;
11801 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11802 return;
11804 case 0x2c: /* FCMGT (zero) */
11805 case 0x2d: /* FCMEQ (zero) */
11806 case 0x2e: /* FCMLT (zero) */
11807 case 0x6c: /* FCMGE (zero) */
11808 case 0x6d: /* FCMLE (zero) */
11809 if (size == 3 && !is_q) {
11810 unallocated_encoding(s);
11811 return;
11813 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11814 return;
11815 case 0x7f: /* FSQRT */
11816 if (size == 3 && !is_q) {
11817 unallocated_encoding(s);
11818 return;
11820 break;
11821 case 0x1a: /* FCVTNS */
11822 case 0x1b: /* FCVTMS */
11823 case 0x3a: /* FCVTPS */
11824 case 0x3b: /* FCVTZS */
11825 case 0x5a: /* FCVTNU */
11826 case 0x5b: /* FCVTMU */
11827 case 0x7a: /* FCVTPU */
11828 case 0x7b: /* FCVTZU */
11829 need_fpstatus = true;
11830 need_rmode = true;
11831 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11832 if (size == 3 && !is_q) {
11833 unallocated_encoding(s);
11834 return;
11836 break;
11837 case 0x5c: /* FCVTAU */
11838 case 0x1c: /* FCVTAS */
11839 need_fpstatus = true;
11840 need_rmode = true;
11841 rmode = FPROUNDING_TIEAWAY;
11842 if (size == 3 && !is_q) {
11843 unallocated_encoding(s);
11844 return;
11846 break;
11847 case 0x3c: /* URECPE */
11848 if (size == 3) {
11849 unallocated_encoding(s);
11850 return;
11852 /* fall through */
11853 case 0x3d: /* FRECPE */
11854 case 0x7d: /* FRSQRTE */
11855 if (size == 3 && !is_q) {
11856 unallocated_encoding(s);
11857 return;
11859 if (!fp_access_check(s)) {
11860 return;
11862 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11863 return;
11864 case 0x56: /* FCVTXN, FCVTXN2 */
11865 if (size == 2) {
11866 unallocated_encoding(s);
11867 return;
11869 /* fall through */
11870 case 0x16: /* FCVTN, FCVTN2 */
11871 /* handle_2misc_narrow does a 2*size -> size operation, but these
11872 * instructions encode the source size rather than dest size.
11874 if (!fp_access_check(s)) {
11875 return;
11877 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11878 return;
11879 case 0x17: /* FCVTL, FCVTL2 */
11880 if (!fp_access_check(s)) {
11881 return;
11883 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11884 return;
11885 case 0x18: /* FRINTN */
11886 case 0x19: /* FRINTM */
11887 case 0x38: /* FRINTP */
11888 case 0x39: /* FRINTZ */
11889 need_rmode = true;
11890 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11891 /* fall through */
11892 case 0x59: /* FRINTX */
11893 case 0x79: /* FRINTI */
11894 need_fpstatus = true;
11895 if (size == 3 && !is_q) {
11896 unallocated_encoding(s);
11897 return;
11899 break;
11900 case 0x58: /* FRINTA */
11901 need_rmode = true;
11902 rmode = FPROUNDING_TIEAWAY;
11903 need_fpstatus = true;
11904 if (size == 3 && !is_q) {
11905 unallocated_encoding(s);
11906 return;
11908 break;
11909 case 0x7c: /* URSQRTE */
11910 if (size == 3) {
11911 unallocated_encoding(s);
11912 return;
11914 need_fpstatus = true;
11915 break;
11916 default:
11917 unallocated_encoding(s);
11918 return;
11920 break;
11922 default:
11923 unallocated_encoding(s);
11924 return;
11927 if (!fp_access_check(s)) {
11928 return;
11931 if (need_fpstatus || need_rmode) {
11932 tcg_fpstatus = get_fpstatus_ptr(false);
11933 } else {
11934 tcg_fpstatus = NULL;
11936 if (need_rmode) {
11937 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11938 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11939 } else {
11940 tcg_rmode = NULL;
11943 switch (opcode) {
11944 case 0x5:
11945 if (u && size == 0) { /* NOT */
11946 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11947 return;
11949 break;
11950 case 0xb:
11951 if (u) { /* NEG */
11952 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11953 return;
11955 break;
11958 if (size == 3) {
11959 /* All 64-bit element operations can be shared with scalar 2misc */
11960 int pass;
11962 /* Coverity claims (size == 3 && !is_q) has been eliminated
11963 * from all paths leading to here.
11965 tcg_debug_assert(is_q);
11966 for (pass = 0; pass < 2; pass++) {
11967 TCGv_i64 tcg_op = tcg_temp_new_i64();
11968 TCGv_i64 tcg_res = tcg_temp_new_i64();
11970 read_vec_element(s, tcg_op, rn, pass, MO_64);
11972 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11973 tcg_rmode, tcg_fpstatus);
11975 write_vec_element(s, tcg_res, rd, pass, MO_64);
11977 tcg_temp_free_i64(tcg_res);
11978 tcg_temp_free_i64(tcg_op);
11980 } else {
11981 int pass;
11983 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11984 TCGv_i32 tcg_op = tcg_temp_new_i32();
11985 TCGv_i32 tcg_res = tcg_temp_new_i32();
11986 TCGCond cond;
11988 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11990 if (size == 2) {
11991 /* Special cases for 32 bit elements */
11992 switch (opcode) {
11993 case 0xa: /* CMLT */
11994 /* 32 bit integer comparison against zero, result is
11995 * test ? (2^32 - 1) : 0. We implement via setcond(test)
11996 * and inverting.
11998 cond = TCG_COND_LT;
11999 do_cmop:
12000 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12001 tcg_gen_neg_i32(tcg_res, tcg_res);
12002 break;
12003 case 0x8: /* CMGT, CMGE */
12004 cond = u ? TCG_COND_GE : TCG_COND_GT;
12005 goto do_cmop;
12006 case 0x9: /* CMEQ, CMLE */
12007 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12008 goto do_cmop;
12009 case 0x4: /* CLS */
12010 if (u) {
12011 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12012 } else {
12013 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12015 break;
12016 case 0x7: /* SQABS, SQNEG */
12017 if (u) {
12018 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12019 } else {
12020 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12022 break;
12023 case 0xb: /* ABS, NEG */
12024 if (u) {
12025 tcg_gen_neg_i32(tcg_res, tcg_op);
12026 } else {
12027 TCGv_i32 tcg_zero = tcg_const_i32(0);
12028 tcg_gen_neg_i32(tcg_res, tcg_op);
12029 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12030 tcg_zero, tcg_op, tcg_res);
12031 tcg_temp_free_i32(tcg_zero);
12033 break;
12034 case 0x2f: /* FABS */
12035 gen_helper_vfp_abss(tcg_res, tcg_op);
12036 break;
12037 case 0x6f: /* FNEG */
12038 gen_helper_vfp_negs(tcg_res, tcg_op);
12039 break;
12040 case 0x7f: /* FSQRT */
12041 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12042 break;
12043 case 0x1a: /* FCVTNS */
12044 case 0x1b: /* FCVTMS */
12045 case 0x1c: /* FCVTAS */
12046 case 0x3a: /* FCVTPS */
12047 case 0x3b: /* FCVTZS */
12049 TCGv_i32 tcg_shift = tcg_const_i32(0);
12050 gen_helper_vfp_tosls(tcg_res, tcg_op,
12051 tcg_shift, tcg_fpstatus);
12052 tcg_temp_free_i32(tcg_shift);
12053 break;
12055 case 0x5a: /* FCVTNU */
12056 case 0x5b: /* FCVTMU */
12057 case 0x5c: /* FCVTAU */
12058 case 0x7a: /* FCVTPU */
12059 case 0x7b: /* FCVTZU */
12061 TCGv_i32 tcg_shift = tcg_const_i32(0);
12062 gen_helper_vfp_touls(tcg_res, tcg_op,
12063 tcg_shift, tcg_fpstatus);
12064 tcg_temp_free_i32(tcg_shift);
12065 break;
12067 case 0x18: /* FRINTN */
12068 case 0x19: /* FRINTM */
12069 case 0x38: /* FRINTP */
12070 case 0x39: /* FRINTZ */
12071 case 0x58: /* FRINTA */
12072 case 0x79: /* FRINTI */
12073 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12074 break;
12075 case 0x59: /* FRINTX */
12076 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12077 break;
12078 case 0x7c: /* URSQRTE */
12079 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12080 break;
12081 default:
12082 g_assert_not_reached();
12084 } else {
12085 /* Use helpers for 8 and 16 bit elements */
12086 switch (opcode) {
12087 case 0x5: /* CNT, RBIT */
12088 /* For these two insns size is part of the opcode specifier
12089 * (handled earlier); they always operate on byte elements.
12091 if (u) {
12092 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12093 } else {
12094 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12096 break;
12097 case 0x7: /* SQABS, SQNEG */
12099 NeonGenOneOpEnvFn *genfn;
12100 static NeonGenOneOpEnvFn * const fns[2][2] = {
12101 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12102 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12104 genfn = fns[size][u];
12105 genfn(tcg_res, cpu_env, tcg_op);
12106 break;
12108 case 0x8: /* CMGT, CMGE */
12109 case 0x9: /* CMEQ, CMLE */
12110 case 0xa: /* CMLT */
12112 static NeonGenTwoOpFn * const fns[3][2] = {
12113 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12114 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12115 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12117 NeonGenTwoOpFn *genfn;
12118 int comp;
12119 bool reverse;
12120 TCGv_i32 tcg_zero = tcg_const_i32(0);
12122 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12123 comp = (opcode - 0x8) * 2 + u;
12124 /* ...but LE, LT are implemented as reverse GE, GT */
12125 reverse = (comp > 2);
12126 if (reverse) {
12127 comp = 4 - comp;
12129 genfn = fns[comp][size];
12130 if (reverse) {
12131 genfn(tcg_res, tcg_zero, tcg_op);
12132 } else {
12133 genfn(tcg_res, tcg_op, tcg_zero);
12135 tcg_temp_free_i32(tcg_zero);
12136 break;
12138 case 0xb: /* ABS, NEG */
12139 if (u) {
12140 TCGv_i32 tcg_zero = tcg_const_i32(0);
12141 if (size) {
12142 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12143 } else {
12144 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12146 tcg_temp_free_i32(tcg_zero);
12147 } else {
12148 if (size) {
12149 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12150 } else {
12151 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12154 break;
12155 case 0x4: /* CLS, CLZ */
12156 if (u) {
12157 if (size == 0) {
12158 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12159 } else {
12160 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12162 } else {
12163 if (size == 0) {
12164 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12165 } else {
12166 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12169 break;
12170 default:
12171 g_assert_not_reached();
12175 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12177 tcg_temp_free_i32(tcg_res);
12178 tcg_temp_free_i32(tcg_op);
12181 clear_vec_high(s, is_q, rd);
12183 if (need_rmode) {
12184 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12185 tcg_temp_free_i32(tcg_rmode);
12187 if (need_fpstatus) {
12188 tcg_temp_free_ptr(tcg_fpstatus);
12192 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12194 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12195 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12196 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12197 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12198 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12199 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12201 * This actually covers two groups where scalar access is governed by
12202 * bit 28. A bunch of the instructions (float to integral) only exist
12203 * in the vector form and are un-allocated for the scalar decode. Also
12204 * in the scalar decode Q is always 1.
12206 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12208 int fpop, opcode, a, u;
12209 int rn, rd;
12210 bool is_q;
12211 bool is_scalar;
12212 bool only_in_vector = false;
12214 int pass;
12215 TCGv_i32 tcg_rmode = NULL;
12216 TCGv_ptr tcg_fpstatus = NULL;
12217 bool need_rmode = false;
12218 bool need_fpst = true;
12219 int rmode;
12221 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12222 unallocated_encoding(s);
12223 return;
12226 rd = extract32(insn, 0, 5);
12227 rn = extract32(insn, 5, 5);
12229 a = extract32(insn, 23, 1);
12230 u = extract32(insn, 29, 1);
12231 is_scalar = extract32(insn, 28, 1);
12232 is_q = extract32(insn, 30, 1);
12234 opcode = extract32(insn, 12, 5);
12235 fpop = deposit32(opcode, 5, 1, a);
12236 fpop = deposit32(fpop, 6, 1, u);
12238 rd = extract32(insn, 0, 5);
12239 rn = extract32(insn, 5, 5);
12241 switch (fpop) {
12242 case 0x1d: /* SCVTF */
12243 case 0x5d: /* UCVTF */
12245 int elements;
12247 if (is_scalar) {
12248 elements = 1;
12249 } else {
12250 elements = (is_q ? 8 : 4);
12253 if (!fp_access_check(s)) {
12254 return;
12256 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12257 return;
12259 break;
12260 case 0x2c: /* FCMGT (zero) */
12261 case 0x2d: /* FCMEQ (zero) */
12262 case 0x2e: /* FCMLT (zero) */
12263 case 0x6c: /* FCMGE (zero) */
12264 case 0x6d: /* FCMLE (zero) */
12265 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12266 return;
12267 case 0x3d: /* FRECPE */
12268 case 0x3f: /* FRECPX */
12269 break;
12270 case 0x18: /* FRINTN */
12271 need_rmode = true;
12272 only_in_vector = true;
12273 rmode = FPROUNDING_TIEEVEN;
12274 break;
12275 case 0x19: /* FRINTM */
12276 need_rmode = true;
12277 only_in_vector = true;
12278 rmode = FPROUNDING_NEGINF;
12279 break;
12280 case 0x38: /* FRINTP */
12281 need_rmode = true;
12282 only_in_vector = true;
12283 rmode = FPROUNDING_POSINF;
12284 break;
12285 case 0x39: /* FRINTZ */
12286 need_rmode = true;
12287 only_in_vector = true;
12288 rmode = FPROUNDING_ZERO;
12289 break;
12290 case 0x58: /* FRINTA */
12291 need_rmode = true;
12292 only_in_vector = true;
12293 rmode = FPROUNDING_TIEAWAY;
12294 break;
12295 case 0x59: /* FRINTX */
12296 case 0x79: /* FRINTI */
12297 only_in_vector = true;
12298 /* current rounding mode */
12299 break;
12300 case 0x1a: /* FCVTNS */
12301 need_rmode = true;
12302 rmode = FPROUNDING_TIEEVEN;
12303 break;
12304 case 0x1b: /* FCVTMS */
12305 need_rmode = true;
12306 rmode = FPROUNDING_NEGINF;
12307 break;
12308 case 0x1c: /* FCVTAS */
12309 need_rmode = true;
12310 rmode = FPROUNDING_TIEAWAY;
12311 break;
12312 case 0x3a: /* FCVTPS */
12313 need_rmode = true;
12314 rmode = FPROUNDING_POSINF;
12315 break;
12316 case 0x3b: /* FCVTZS */
12317 need_rmode = true;
12318 rmode = FPROUNDING_ZERO;
12319 break;
12320 case 0x5a: /* FCVTNU */
12321 need_rmode = true;
12322 rmode = FPROUNDING_TIEEVEN;
12323 break;
12324 case 0x5b: /* FCVTMU */
12325 need_rmode = true;
12326 rmode = FPROUNDING_NEGINF;
12327 break;
12328 case 0x5c: /* FCVTAU */
12329 need_rmode = true;
12330 rmode = FPROUNDING_TIEAWAY;
12331 break;
12332 case 0x7a: /* FCVTPU */
12333 need_rmode = true;
12334 rmode = FPROUNDING_POSINF;
12335 break;
12336 case 0x7b: /* FCVTZU */
12337 need_rmode = true;
12338 rmode = FPROUNDING_ZERO;
12339 break;
12340 case 0x2f: /* FABS */
12341 case 0x6f: /* FNEG */
12342 need_fpst = false;
12343 break;
12344 case 0x7d: /* FRSQRTE */
12345 case 0x7f: /* FSQRT (vector) */
12346 break;
12347 default:
12348 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12349 g_assert_not_reached();
12353 /* Check additional constraints for the scalar encoding */
12354 if (is_scalar) {
12355 if (!is_q) {
12356 unallocated_encoding(s);
12357 return;
12359 /* FRINTxx is only in the vector form */
12360 if (only_in_vector) {
12361 unallocated_encoding(s);
12362 return;
12366 if (!fp_access_check(s)) {
12367 return;
12370 if (need_rmode || need_fpst) {
12371 tcg_fpstatus = get_fpstatus_ptr(true);
12374 if (need_rmode) {
12375 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12376 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12379 if (is_scalar) {
12380 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12381 TCGv_i32 tcg_res = tcg_temp_new_i32();
12383 switch (fpop) {
12384 case 0x1a: /* FCVTNS */
12385 case 0x1b: /* FCVTMS */
12386 case 0x1c: /* FCVTAS */
12387 case 0x3a: /* FCVTPS */
12388 case 0x3b: /* FCVTZS */
12389 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12390 break;
12391 case 0x3d: /* FRECPE */
12392 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12393 break;
12394 case 0x3f: /* FRECPX */
12395 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12396 break;
12397 case 0x5a: /* FCVTNU */
12398 case 0x5b: /* FCVTMU */
12399 case 0x5c: /* FCVTAU */
12400 case 0x7a: /* FCVTPU */
12401 case 0x7b: /* FCVTZU */
12402 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12403 break;
12404 case 0x6f: /* FNEG */
12405 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12406 break;
12407 case 0x7d: /* FRSQRTE */
12408 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12409 break;
12410 default:
12411 g_assert_not_reached();
12414 /* limit any sign extension going on */
12415 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12416 write_fp_sreg(s, rd, tcg_res);
12418 tcg_temp_free_i32(tcg_res);
12419 tcg_temp_free_i32(tcg_op);
12420 } else {
12421 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12422 TCGv_i32 tcg_op = tcg_temp_new_i32();
12423 TCGv_i32 tcg_res = tcg_temp_new_i32();
12425 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12427 switch (fpop) {
12428 case 0x1a: /* FCVTNS */
12429 case 0x1b: /* FCVTMS */
12430 case 0x1c: /* FCVTAS */
12431 case 0x3a: /* FCVTPS */
12432 case 0x3b: /* FCVTZS */
12433 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12434 break;
12435 case 0x3d: /* FRECPE */
12436 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12437 break;
12438 case 0x5a: /* FCVTNU */
12439 case 0x5b: /* FCVTMU */
12440 case 0x5c: /* FCVTAU */
12441 case 0x7a: /* FCVTPU */
12442 case 0x7b: /* FCVTZU */
12443 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12444 break;
12445 case 0x18: /* FRINTN */
12446 case 0x19: /* FRINTM */
12447 case 0x38: /* FRINTP */
12448 case 0x39: /* FRINTZ */
12449 case 0x58: /* FRINTA */
12450 case 0x79: /* FRINTI */
12451 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12452 break;
12453 case 0x59: /* FRINTX */
12454 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12455 break;
12456 case 0x2f: /* FABS */
12457 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12458 break;
12459 case 0x6f: /* FNEG */
12460 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12461 break;
12462 case 0x7d: /* FRSQRTE */
12463 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12464 break;
12465 case 0x7f: /* FSQRT */
12466 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12467 break;
12468 default:
12469 g_assert_not_reached();
12472 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12474 tcg_temp_free_i32(tcg_res);
12475 tcg_temp_free_i32(tcg_op);
12478 clear_vec_high(s, is_q, rd);
12481 if (tcg_rmode) {
12482 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12483 tcg_temp_free_i32(tcg_rmode);
12486 if (tcg_fpstatus) {
12487 tcg_temp_free_ptr(tcg_fpstatus);
12491 /* AdvSIMD scalar x indexed element
12492 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12493 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12494 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12495 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12496 * AdvSIMD vector x indexed element
12497 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12498 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12499 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12500 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12502 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12504 /* This encoding has two kinds of instruction:
12505 * normal, where we perform elt x idxelt => elt for each
12506 * element in the vector
12507 * long, where we perform elt x idxelt and generate a result of
12508 * double the width of the input element
12509 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12511 bool is_scalar = extract32(insn, 28, 1);
12512 bool is_q = extract32(insn, 30, 1);
12513 bool u = extract32(insn, 29, 1);
12514 int size = extract32(insn, 22, 2);
12515 int l = extract32(insn, 21, 1);
12516 int m = extract32(insn, 20, 1);
12517 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12518 int rm = extract32(insn, 16, 4);
12519 int opcode = extract32(insn, 12, 4);
12520 int h = extract32(insn, 11, 1);
12521 int rn = extract32(insn, 5, 5);
12522 int rd = extract32(insn, 0, 5);
12523 bool is_long = false;
12524 int is_fp = 0;
12525 bool is_fp16 = false;
12526 int index;
12527 TCGv_ptr fpst;
12529 switch (16 * u + opcode) {
12530 case 0x08: /* MUL */
12531 case 0x10: /* MLA */
12532 case 0x14: /* MLS */
12533 if (is_scalar) {
12534 unallocated_encoding(s);
12535 return;
12537 break;
12538 case 0x02: /* SMLAL, SMLAL2 */
12539 case 0x12: /* UMLAL, UMLAL2 */
12540 case 0x06: /* SMLSL, SMLSL2 */
12541 case 0x16: /* UMLSL, UMLSL2 */
12542 case 0x0a: /* SMULL, SMULL2 */
12543 case 0x1a: /* UMULL, UMULL2 */
12544 if (is_scalar) {
12545 unallocated_encoding(s);
12546 return;
12548 is_long = true;
12549 break;
12550 case 0x03: /* SQDMLAL, SQDMLAL2 */
12551 case 0x07: /* SQDMLSL, SQDMLSL2 */
12552 case 0x0b: /* SQDMULL, SQDMULL2 */
12553 is_long = true;
12554 break;
12555 case 0x0c: /* SQDMULH */
12556 case 0x0d: /* SQRDMULH */
12557 break;
12558 case 0x01: /* FMLA */
12559 case 0x05: /* FMLS */
12560 case 0x09: /* FMUL */
12561 case 0x19: /* FMULX */
12562 is_fp = 1;
12563 break;
12564 case 0x1d: /* SQRDMLAH */
12565 case 0x1f: /* SQRDMLSH */
12566 if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
12567 unallocated_encoding(s);
12568 return;
12570 break;
12571 case 0x11: /* FCMLA #0 */
12572 case 0x13: /* FCMLA #90 */
12573 case 0x15: /* FCMLA #180 */
12574 case 0x17: /* FCMLA #270 */
12575 if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) {
12576 unallocated_encoding(s);
12577 return;
12579 is_fp = 2;
12580 break;
12581 default:
12582 unallocated_encoding(s);
12583 return;
12586 switch (is_fp) {
12587 case 1: /* normal fp */
12588 /* convert insn encoded size to TCGMemOp size */
12589 switch (size) {
12590 case 0: /* half-precision */
12591 size = MO_16;
12592 is_fp16 = true;
12593 break;
12594 case MO_32: /* single precision */
12595 case MO_64: /* double precision */
12596 break;
12597 default:
12598 unallocated_encoding(s);
12599 return;
12601 break;
12603 case 2: /* complex fp */
12604 /* Each indexable element is a complex pair. */
12605 size <<= 1;
12606 switch (size) {
12607 case MO_32:
12608 if (h && !is_q) {
12609 unallocated_encoding(s);
12610 return;
12612 is_fp16 = true;
12613 break;
12614 case MO_64:
12615 break;
12616 default:
12617 unallocated_encoding(s);
12618 return;
12620 break;
12622 default: /* integer */
12623 switch (size) {
12624 case MO_8:
12625 case MO_64:
12626 unallocated_encoding(s);
12627 return;
12629 break;
12631 if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12632 unallocated_encoding(s);
12633 return;
12636 /* Given TCGMemOp size, adjust register and indexing. */
12637 switch (size) {
12638 case MO_16:
12639 index = h << 2 | l << 1 | m;
12640 break;
12641 case MO_32:
12642 index = h << 1 | l;
12643 rm |= m << 4;
12644 break;
12645 case MO_64:
12646 if (l || !is_q) {
12647 unallocated_encoding(s);
12648 return;
12650 index = h;
12651 rm |= m << 4;
12652 break;
12653 default:
12654 g_assert_not_reached();
12657 if (!fp_access_check(s)) {
12658 return;
12661 if (is_fp) {
12662 fpst = get_fpstatus_ptr(is_fp16);
12663 } else {
12664 fpst = NULL;
12667 switch (16 * u + opcode) {
12668 case 0x11: /* FCMLA #0 */
12669 case 0x13: /* FCMLA #90 */
12670 case 0x15: /* FCMLA #180 */
12671 case 0x17: /* FCMLA #270 */
12672 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12673 vec_full_reg_offset(s, rn),
12674 vec_reg_offset(s, rm, index, size), fpst,
12675 is_q ? 16 : 8, vec_full_reg_size(s),
12676 extract32(insn, 13, 2), /* rot */
12677 size == MO_64
12678 ? gen_helper_gvec_fcmlas_idx
12679 : gen_helper_gvec_fcmlah_idx);
12680 tcg_temp_free_ptr(fpst);
12681 return;
12684 if (size == 3) {
12685 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12686 int pass;
12688 assert(is_fp && is_q && !is_long);
12690 read_vec_element(s, tcg_idx, rm, index, MO_64);
12692 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12693 TCGv_i64 tcg_op = tcg_temp_new_i64();
12694 TCGv_i64 tcg_res = tcg_temp_new_i64();
12696 read_vec_element(s, tcg_op, rn, pass, MO_64);
12698 switch (16 * u + opcode) {
12699 case 0x05: /* FMLS */
12700 /* As usual for ARM, separate negation for fused multiply-add */
12701 gen_helper_vfp_negd(tcg_op, tcg_op);
12702 /* fall through */
12703 case 0x01: /* FMLA */
12704 read_vec_element(s, tcg_res, rd, pass, MO_64);
12705 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12706 break;
12707 case 0x09: /* FMUL */
12708 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12709 break;
12710 case 0x19: /* FMULX */
12711 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12712 break;
12713 default:
12714 g_assert_not_reached();
12717 write_vec_element(s, tcg_res, rd, pass, MO_64);
12718 tcg_temp_free_i64(tcg_op);
12719 tcg_temp_free_i64(tcg_res);
12722 tcg_temp_free_i64(tcg_idx);
12723 clear_vec_high(s, !is_scalar, rd);
12724 } else if (!is_long) {
12725 /* 32 bit floating point, or 16 or 32 bit integer.
12726 * For the 16 bit scalar case we use the usual Neon helpers and
12727 * rely on the fact that 0 op 0 == 0 with no side effects.
12729 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12730 int pass, maxpasses;
12732 if (is_scalar) {
12733 maxpasses = 1;
12734 } else {
12735 maxpasses = is_q ? 4 : 2;
12738 read_vec_element_i32(s, tcg_idx, rm, index, size);
12740 if (size == 1 && !is_scalar) {
12741 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12742 * the index into both halves of the 32 bit tcg_idx and then use
12743 * the usual Neon helpers.
12745 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12748 for (pass = 0; pass < maxpasses; pass++) {
12749 TCGv_i32 tcg_op = tcg_temp_new_i32();
12750 TCGv_i32 tcg_res = tcg_temp_new_i32();
12752 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12754 switch (16 * u + opcode) {
12755 case 0x08: /* MUL */
12756 case 0x10: /* MLA */
12757 case 0x14: /* MLS */
12759 static NeonGenTwoOpFn * const fns[2][2] = {
12760 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12761 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12763 NeonGenTwoOpFn *genfn;
12764 bool is_sub = opcode == 0x4;
12766 if (size == 1) {
12767 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12768 } else {
12769 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12771 if (opcode == 0x8) {
12772 break;
12774 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12775 genfn = fns[size - 1][is_sub];
12776 genfn(tcg_res, tcg_op, tcg_res);
12777 break;
12779 case 0x05: /* FMLS */
12780 case 0x01: /* FMLA */
12781 read_vec_element_i32(s, tcg_res, rd, pass,
12782 is_scalar ? size : MO_32);
12783 switch (size) {
12784 case 1:
12785 if (opcode == 0x5) {
12786 /* As usual for ARM, separate negation for fused
12787 * multiply-add */
12788 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12790 if (is_scalar) {
12791 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12792 tcg_res, fpst);
12793 } else {
12794 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12795 tcg_res, fpst);
12797 break;
12798 case 2:
12799 if (opcode == 0x5) {
12800 /* As usual for ARM, separate negation for
12801 * fused multiply-add */
12802 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12804 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12805 tcg_res, fpst);
12806 break;
12807 default:
12808 g_assert_not_reached();
12810 break;
12811 case 0x09: /* FMUL */
12812 switch (size) {
12813 case 1:
12814 if (is_scalar) {
12815 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12816 tcg_idx, fpst);
12817 } else {
12818 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12819 tcg_idx, fpst);
12821 break;
12822 case 2:
12823 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12824 break;
12825 default:
12826 g_assert_not_reached();
12828 break;
12829 case 0x19: /* FMULX */
12830 switch (size) {
12831 case 1:
12832 if (is_scalar) {
12833 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12834 tcg_idx, fpst);
12835 } else {
12836 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12837 tcg_idx, fpst);
12839 break;
12840 case 2:
12841 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12842 break;
12843 default:
12844 g_assert_not_reached();
12846 break;
12847 case 0x0c: /* SQDMULH */
12848 if (size == 1) {
12849 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12850 tcg_op, tcg_idx);
12851 } else {
12852 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12853 tcg_op, tcg_idx);
12855 break;
12856 case 0x0d: /* SQRDMULH */
12857 if (size == 1) {
12858 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12859 tcg_op, tcg_idx);
12860 } else {
12861 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12862 tcg_op, tcg_idx);
12864 break;
12865 case 0x1d: /* SQRDMLAH */
12866 read_vec_element_i32(s, tcg_res, rd, pass,
12867 is_scalar ? size : MO_32);
12868 if (size == 1) {
12869 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12870 tcg_op, tcg_idx, tcg_res);
12871 } else {
12872 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12873 tcg_op, tcg_idx, tcg_res);
12875 break;
12876 case 0x1f: /* SQRDMLSH */
12877 read_vec_element_i32(s, tcg_res, rd, pass,
12878 is_scalar ? size : MO_32);
12879 if (size == 1) {
12880 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12881 tcg_op, tcg_idx, tcg_res);
12882 } else {
12883 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12884 tcg_op, tcg_idx, tcg_res);
12886 break;
12887 default:
12888 g_assert_not_reached();
12891 if (is_scalar) {
12892 write_fp_sreg(s, rd, tcg_res);
12893 } else {
12894 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12897 tcg_temp_free_i32(tcg_op);
12898 tcg_temp_free_i32(tcg_res);
12901 tcg_temp_free_i32(tcg_idx);
12902 clear_vec_high(s, is_q, rd);
12903 } else {
12904 /* long ops: 16x16->32 or 32x32->64 */
12905 TCGv_i64 tcg_res[2];
12906 int pass;
12907 bool satop = extract32(opcode, 0, 1);
12908 TCGMemOp memop = MO_32;
12910 if (satop || !u) {
12911 memop |= MO_SIGN;
12914 if (size == 2) {
12915 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12917 read_vec_element(s, tcg_idx, rm, index, memop);
12919 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12920 TCGv_i64 tcg_op = tcg_temp_new_i64();
12921 TCGv_i64 tcg_passres;
12922 int passelt;
12924 if (is_scalar) {
12925 passelt = 0;
12926 } else {
12927 passelt = pass + (is_q * 2);
12930 read_vec_element(s, tcg_op, rn, passelt, memop);
12932 tcg_res[pass] = tcg_temp_new_i64();
12934 if (opcode == 0xa || opcode == 0xb) {
12935 /* Non-accumulating ops */
12936 tcg_passres = tcg_res[pass];
12937 } else {
12938 tcg_passres = tcg_temp_new_i64();
12941 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12942 tcg_temp_free_i64(tcg_op);
12944 if (satop) {
12945 /* saturating, doubling */
12946 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12947 tcg_passres, tcg_passres);
12950 if (opcode == 0xa || opcode == 0xb) {
12951 continue;
12954 /* Accumulating op: handle accumulate step */
12955 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12957 switch (opcode) {
12958 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12959 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12960 break;
12961 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12962 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12963 break;
12964 case 0x7: /* SQDMLSL, SQDMLSL2 */
12965 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12966 /* fall through */
12967 case 0x3: /* SQDMLAL, SQDMLAL2 */
12968 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
12969 tcg_res[pass],
12970 tcg_passres);
12971 break;
12972 default:
12973 g_assert_not_reached();
12975 tcg_temp_free_i64(tcg_passres);
12977 tcg_temp_free_i64(tcg_idx);
12979 clear_vec_high(s, !is_scalar, rd);
12980 } else {
12981 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12983 assert(size == 1);
12984 read_vec_element_i32(s, tcg_idx, rm, index, size);
12986 if (!is_scalar) {
12987 /* The simplest way to handle the 16x16 indexed ops is to
12988 * duplicate the index into both halves of the 32 bit tcg_idx
12989 * and then use the usual Neon helpers.
12991 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12994 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12995 TCGv_i32 tcg_op = tcg_temp_new_i32();
12996 TCGv_i64 tcg_passres;
12998 if (is_scalar) {
12999 read_vec_element_i32(s, tcg_op, rn, pass, size);
13000 } else {
13001 read_vec_element_i32(s, tcg_op, rn,
13002 pass + (is_q * 2), MO_32);
13005 tcg_res[pass] = tcg_temp_new_i64();
13007 if (opcode == 0xa || opcode == 0xb) {
13008 /* Non-accumulating ops */
13009 tcg_passres = tcg_res[pass];
13010 } else {
13011 tcg_passres = tcg_temp_new_i64();
13014 if (memop & MO_SIGN) {
13015 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13016 } else {
13017 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13019 if (satop) {
13020 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13021 tcg_passres, tcg_passres);
13023 tcg_temp_free_i32(tcg_op);
13025 if (opcode == 0xa || opcode == 0xb) {
13026 continue;
13029 /* Accumulating op: handle accumulate step */
13030 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13032 switch (opcode) {
13033 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13034 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13035 tcg_passres);
13036 break;
13037 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13038 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13039 tcg_passres);
13040 break;
13041 case 0x7: /* SQDMLSL, SQDMLSL2 */
13042 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13043 /* fall through */
13044 case 0x3: /* SQDMLAL, SQDMLAL2 */
13045 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13046 tcg_res[pass],
13047 tcg_passres);
13048 break;
13049 default:
13050 g_assert_not_reached();
13052 tcg_temp_free_i64(tcg_passres);
13054 tcg_temp_free_i32(tcg_idx);
13056 if (is_scalar) {
13057 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13061 if (is_scalar) {
13062 tcg_res[1] = tcg_const_i64(0);
13065 for (pass = 0; pass < 2; pass++) {
13066 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13067 tcg_temp_free_i64(tcg_res[pass]);
13071 if (fpst) {
13072 tcg_temp_free_ptr(fpst);
13076 /* Crypto AES
13077 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13078 * +-----------------+------+-----------+--------+-----+------+------+
13079 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13080 * +-----------------+------+-----------+--------+-----+------+------+
13082 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13084 int size = extract32(insn, 22, 2);
13085 int opcode = extract32(insn, 12, 5);
13086 int rn = extract32(insn, 5, 5);
13087 int rd = extract32(insn, 0, 5);
13088 int decrypt;
13089 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13090 TCGv_i32 tcg_decrypt;
13091 CryptoThreeOpIntFn *genfn;
13093 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
13094 || size != 0) {
13095 unallocated_encoding(s);
13096 return;
13099 switch (opcode) {
13100 case 0x4: /* AESE */
13101 decrypt = 0;
13102 genfn = gen_helper_crypto_aese;
13103 break;
13104 case 0x6: /* AESMC */
13105 decrypt = 0;
13106 genfn = gen_helper_crypto_aesmc;
13107 break;
13108 case 0x5: /* AESD */
13109 decrypt = 1;
13110 genfn = gen_helper_crypto_aese;
13111 break;
13112 case 0x7: /* AESIMC */
13113 decrypt = 1;
13114 genfn = gen_helper_crypto_aesmc;
13115 break;
13116 default:
13117 unallocated_encoding(s);
13118 return;
13121 if (!fp_access_check(s)) {
13122 return;
13125 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13126 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13127 tcg_decrypt = tcg_const_i32(decrypt);
13129 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13131 tcg_temp_free_ptr(tcg_rd_ptr);
13132 tcg_temp_free_ptr(tcg_rn_ptr);
13133 tcg_temp_free_i32(tcg_decrypt);
13136 /* Crypto three-reg SHA
13137 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13138 * +-----------------+------+---+------+---+--------+-----+------+------+
13139 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13140 * +-----------------+------+---+------+---+--------+-----+------+------+
13142 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13144 int size = extract32(insn, 22, 2);
13145 int opcode = extract32(insn, 12, 3);
13146 int rm = extract32(insn, 16, 5);
13147 int rn = extract32(insn, 5, 5);
13148 int rd = extract32(insn, 0, 5);
13149 CryptoThreeOpFn *genfn;
13150 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13151 int feature = ARM_FEATURE_V8_SHA256;
13153 if (size != 0) {
13154 unallocated_encoding(s);
13155 return;
13158 switch (opcode) {
13159 case 0: /* SHA1C */
13160 case 1: /* SHA1P */
13161 case 2: /* SHA1M */
13162 case 3: /* SHA1SU0 */
13163 genfn = NULL;
13164 feature = ARM_FEATURE_V8_SHA1;
13165 break;
13166 case 4: /* SHA256H */
13167 genfn = gen_helper_crypto_sha256h;
13168 break;
13169 case 5: /* SHA256H2 */
13170 genfn = gen_helper_crypto_sha256h2;
13171 break;
13172 case 6: /* SHA256SU1 */
13173 genfn = gen_helper_crypto_sha256su1;
13174 break;
13175 default:
13176 unallocated_encoding(s);
13177 return;
13180 if (!arm_dc_feature(s, feature)) {
13181 unallocated_encoding(s);
13182 return;
13185 if (!fp_access_check(s)) {
13186 return;
13189 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13190 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13191 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13193 if (genfn) {
13194 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13195 } else {
13196 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13198 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13199 tcg_rm_ptr, tcg_opcode);
13200 tcg_temp_free_i32(tcg_opcode);
13203 tcg_temp_free_ptr(tcg_rd_ptr);
13204 tcg_temp_free_ptr(tcg_rn_ptr);
13205 tcg_temp_free_ptr(tcg_rm_ptr);
13208 /* Crypto two-reg SHA
13209 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13210 * +-----------------+------+-----------+--------+-----+------+------+
13211 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13212 * +-----------------+------+-----------+--------+-----+------+------+
13214 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13216 int size = extract32(insn, 22, 2);
13217 int opcode = extract32(insn, 12, 5);
13218 int rn = extract32(insn, 5, 5);
13219 int rd = extract32(insn, 0, 5);
13220 CryptoTwoOpFn *genfn;
13221 int feature;
13222 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13224 if (size != 0) {
13225 unallocated_encoding(s);
13226 return;
13229 switch (opcode) {
13230 case 0: /* SHA1H */
13231 feature = ARM_FEATURE_V8_SHA1;
13232 genfn = gen_helper_crypto_sha1h;
13233 break;
13234 case 1: /* SHA1SU1 */
13235 feature = ARM_FEATURE_V8_SHA1;
13236 genfn = gen_helper_crypto_sha1su1;
13237 break;
13238 case 2: /* SHA256SU0 */
13239 feature = ARM_FEATURE_V8_SHA256;
13240 genfn = gen_helper_crypto_sha256su0;
13241 break;
13242 default:
13243 unallocated_encoding(s);
13244 return;
13247 if (!arm_dc_feature(s, feature)) {
13248 unallocated_encoding(s);
13249 return;
13252 if (!fp_access_check(s)) {
13253 return;
13256 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13257 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13259 genfn(tcg_rd_ptr, tcg_rn_ptr);
13261 tcg_temp_free_ptr(tcg_rd_ptr);
13262 tcg_temp_free_ptr(tcg_rn_ptr);
13265 /* Crypto three-reg SHA512
13266 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13267 * +-----------------------+------+---+---+-----+--------+------+------+
13268 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13269 * +-----------------------+------+---+---+-----+--------+------+------+
13271 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13273 int opcode = extract32(insn, 10, 2);
13274 int o = extract32(insn, 14, 1);
13275 int rm = extract32(insn, 16, 5);
13276 int rn = extract32(insn, 5, 5);
13277 int rd = extract32(insn, 0, 5);
13278 int feature;
13279 CryptoThreeOpFn *genfn;
13281 if (o == 0) {
13282 switch (opcode) {
13283 case 0: /* SHA512H */
13284 feature = ARM_FEATURE_V8_SHA512;
13285 genfn = gen_helper_crypto_sha512h;
13286 break;
13287 case 1: /* SHA512H2 */
13288 feature = ARM_FEATURE_V8_SHA512;
13289 genfn = gen_helper_crypto_sha512h2;
13290 break;
13291 case 2: /* SHA512SU1 */
13292 feature = ARM_FEATURE_V8_SHA512;
13293 genfn = gen_helper_crypto_sha512su1;
13294 break;
13295 case 3: /* RAX1 */
13296 feature = ARM_FEATURE_V8_SHA3;
13297 genfn = NULL;
13298 break;
13300 } else {
13301 switch (opcode) {
13302 case 0: /* SM3PARTW1 */
13303 feature = ARM_FEATURE_V8_SM3;
13304 genfn = gen_helper_crypto_sm3partw1;
13305 break;
13306 case 1: /* SM3PARTW2 */
13307 feature = ARM_FEATURE_V8_SM3;
13308 genfn = gen_helper_crypto_sm3partw2;
13309 break;
13310 case 2: /* SM4EKEY */
13311 feature = ARM_FEATURE_V8_SM4;
13312 genfn = gen_helper_crypto_sm4ekey;
13313 break;
13314 default:
13315 unallocated_encoding(s);
13316 return;
13320 if (!arm_dc_feature(s, feature)) {
13321 unallocated_encoding(s);
13322 return;
13325 if (!fp_access_check(s)) {
13326 return;
13329 if (genfn) {
13330 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13332 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13333 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13334 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13336 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13338 tcg_temp_free_ptr(tcg_rd_ptr);
13339 tcg_temp_free_ptr(tcg_rn_ptr);
13340 tcg_temp_free_ptr(tcg_rm_ptr);
13341 } else {
13342 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13343 int pass;
13345 tcg_op1 = tcg_temp_new_i64();
13346 tcg_op2 = tcg_temp_new_i64();
13347 tcg_res[0] = tcg_temp_new_i64();
13348 tcg_res[1] = tcg_temp_new_i64();
13350 for (pass = 0; pass < 2; pass++) {
13351 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13352 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13354 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13355 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13357 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13358 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13360 tcg_temp_free_i64(tcg_op1);
13361 tcg_temp_free_i64(tcg_op2);
13362 tcg_temp_free_i64(tcg_res[0]);
13363 tcg_temp_free_i64(tcg_res[1]);
13367 /* Crypto two-reg SHA512
13368 * 31 12 11 10 9 5 4 0
13369 * +-----------------------------------------+--------+------+------+
13370 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13371 * +-----------------------------------------+--------+------+------+
13373 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13375 int opcode = extract32(insn, 10, 2);
13376 int rn = extract32(insn, 5, 5);
13377 int rd = extract32(insn, 0, 5);
13378 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13379 int feature;
13380 CryptoTwoOpFn *genfn;
13382 switch (opcode) {
13383 case 0: /* SHA512SU0 */
13384 feature = ARM_FEATURE_V8_SHA512;
13385 genfn = gen_helper_crypto_sha512su0;
13386 break;
13387 case 1: /* SM4E */
13388 feature = ARM_FEATURE_V8_SM4;
13389 genfn = gen_helper_crypto_sm4e;
13390 break;
13391 default:
13392 unallocated_encoding(s);
13393 return;
13396 if (!arm_dc_feature(s, feature)) {
13397 unallocated_encoding(s);
13398 return;
13401 if (!fp_access_check(s)) {
13402 return;
13405 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13406 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13408 genfn(tcg_rd_ptr, tcg_rn_ptr);
13410 tcg_temp_free_ptr(tcg_rd_ptr);
13411 tcg_temp_free_ptr(tcg_rn_ptr);
13414 /* Crypto four-register
13415 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13416 * +-------------------+-----+------+---+------+------+------+
13417 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13418 * +-------------------+-----+------+---+------+------+------+
13420 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13422 int op0 = extract32(insn, 21, 2);
13423 int rm = extract32(insn, 16, 5);
13424 int ra = extract32(insn, 10, 5);
13425 int rn = extract32(insn, 5, 5);
13426 int rd = extract32(insn, 0, 5);
13427 int feature;
13429 switch (op0) {
13430 case 0: /* EOR3 */
13431 case 1: /* BCAX */
13432 feature = ARM_FEATURE_V8_SHA3;
13433 break;
13434 case 2: /* SM3SS1 */
13435 feature = ARM_FEATURE_V8_SM3;
13436 break;
13437 default:
13438 unallocated_encoding(s);
13439 return;
13442 if (!arm_dc_feature(s, feature)) {
13443 unallocated_encoding(s);
13444 return;
13447 if (!fp_access_check(s)) {
13448 return;
13451 if (op0 < 2) {
13452 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13453 int pass;
13455 tcg_op1 = tcg_temp_new_i64();
13456 tcg_op2 = tcg_temp_new_i64();
13457 tcg_op3 = tcg_temp_new_i64();
13458 tcg_res[0] = tcg_temp_new_i64();
13459 tcg_res[1] = tcg_temp_new_i64();
13461 for (pass = 0; pass < 2; pass++) {
13462 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13463 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13464 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13466 if (op0 == 0) {
13467 /* EOR3 */
13468 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13469 } else {
13470 /* BCAX */
13471 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13473 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13475 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13476 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13478 tcg_temp_free_i64(tcg_op1);
13479 tcg_temp_free_i64(tcg_op2);
13480 tcg_temp_free_i64(tcg_op3);
13481 tcg_temp_free_i64(tcg_res[0]);
13482 tcg_temp_free_i64(tcg_res[1]);
13483 } else {
13484 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13486 tcg_op1 = tcg_temp_new_i32();
13487 tcg_op2 = tcg_temp_new_i32();
13488 tcg_op3 = tcg_temp_new_i32();
13489 tcg_res = tcg_temp_new_i32();
13490 tcg_zero = tcg_const_i32(0);
13492 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13493 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13494 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13496 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13497 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13498 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13499 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13501 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13502 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13503 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13504 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13506 tcg_temp_free_i32(tcg_op1);
13507 tcg_temp_free_i32(tcg_op2);
13508 tcg_temp_free_i32(tcg_op3);
13509 tcg_temp_free_i32(tcg_res);
13510 tcg_temp_free_i32(tcg_zero);
13514 /* Crypto XAR
13515 * 31 21 20 16 15 10 9 5 4 0
13516 * +-----------------------+------+--------+------+------+
13517 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13518 * +-----------------------+------+--------+------+------+
13520 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13522 int rm = extract32(insn, 16, 5);
13523 int imm6 = extract32(insn, 10, 6);
13524 int rn = extract32(insn, 5, 5);
13525 int rd = extract32(insn, 0, 5);
13526 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13527 int pass;
13529 if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
13530 unallocated_encoding(s);
13531 return;
13534 if (!fp_access_check(s)) {
13535 return;
13538 tcg_op1 = tcg_temp_new_i64();
13539 tcg_op2 = tcg_temp_new_i64();
13540 tcg_res[0] = tcg_temp_new_i64();
13541 tcg_res[1] = tcg_temp_new_i64();
13543 for (pass = 0; pass < 2; pass++) {
13544 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13545 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13547 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13548 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13550 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13551 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13553 tcg_temp_free_i64(tcg_op1);
13554 tcg_temp_free_i64(tcg_op2);
13555 tcg_temp_free_i64(tcg_res[0]);
13556 tcg_temp_free_i64(tcg_res[1]);
13559 /* Crypto three-reg imm2
13560 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13561 * +-----------------------+------+-----+------+--------+------+------+
13562 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13563 * +-----------------------+------+-----+------+--------+------+------+
13565 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13567 int opcode = extract32(insn, 10, 2);
13568 int imm2 = extract32(insn, 12, 2);
13569 int rm = extract32(insn, 16, 5);
13570 int rn = extract32(insn, 5, 5);
13571 int rd = extract32(insn, 0, 5);
13572 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13573 TCGv_i32 tcg_imm2, tcg_opcode;
13575 if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
13576 unallocated_encoding(s);
13577 return;
13580 if (!fp_access_check(s)) {
13581 return;
13584 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13585 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13586 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13587 tcg_imm2 = tcg_const_i32(imm2);
13588 tcg_opcode = tcg_const_i32(opcode);
13590 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13591 tcg_opcode);
13593 tcg_temp_free_ptr(tcg_rd_ptr);
13594 tcg_temp_free_ptr(tcg_rn_ptr);
13595 tcg_temp_free_ptr(tcg_rm_ptr);
13596 tcg_temp_free_i32(tcg_imm2);
13597 tcg_temp_free_i32(tcg_opcode);
13600 /* C3.6 Data processing - SIMD, inc Crypto
13602 * As the decode gets a little complex we are using a table based
13603 * approach for this part of the decode.
13605 static const AArch64DecodeTable data_proc_simd[] = {
13606 /* pattern , mask , fn */
13607 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13608 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13609 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13610 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13611 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13612 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13613 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13614 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13615 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13616 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13617 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13618 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13619 { 0x2e000000, 0xbf208400, disas_simd_ext },
13620 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13621 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13622 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13623 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13624 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13625 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13626 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13627 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13628 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13629 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13630 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13631 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13632 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13633 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13634 { 0xce800000, 0xffe00000, disas_crypto_xar },
13635 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13636 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13637 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13638 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13639 { 0x00000000, 0x00000000, NULL }
13642 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13644 /* Note that this is called with all non-FP cases from
13645 * table C3-6 so it must UNDEF for entries not specifically
13646 * allocated to instructions in that table.
13648 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13649 if (fn) {
13650 fn(s, insn);
13651 } else {
13652 unallocated_encoding(s);
13656 /* C3.6 Data processing - SIMD and floating point */
13657 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13659 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13660 disas_data_proc_fp(s, insn);
13661 } else {
13662 /* SIMD, including crypto */
13663 disas_data_proc_simd(s, insn);
13667 /* C3.1 A64 instruction index by encoding */
13668 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13670 uint32_t insn;
13672 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13673 s->insn = insn;
13674 s->pc += 4;
13676 s->fp_access_checked = false;
13678 switch (extract32(insn, 25, 4)) {
13679 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
13680 unallocated_encoding(s);
13681 break;
13682 case 0x2:
13683 if (!arm_dc_feature(s, ARM_FEATURE_SVE) || !disas_sve(s, insn)) {
13684 unallocated_encoding(s);
13686 break;
13687 case 0x8: case 0x9: /* Data processing - immediate */
13688 disas_data_proc_imm(s, insn);
13689 break;
13690 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13691 disas_b_exc_sys(s, insn);
13692 break;
13693 case 0x4:
13694 case 0x6:
13695 case 0xc:
13696 case 0xe: /* Loads and stores */
13697 disas_ldst(s, insn);
13698 break;
13699 case 0x5:
13700 case 0xd: /* Data processing - register */
13701 disas_data_proc_reg(s, insn);
13702 break;
13703 case 0x7:
13704 case 0xf: /* Data processing - SIMD and floating point */
13705 disas_data_proc_simd_fp(s, insn);
13706 break;
13707 default:
13708 assert(FALSE); /* all 15 cases should be handled above */
13709 break;
13712 /* if we allocated any temporaries, free them here */
13713 free_tmp_a64(s);
13716 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13717 CPUState *cpu)
13719 DisasContext *dc = container_of(dcbase, DisasContext, base);
13720 CPUARMState *env = cpu->env_ptr;
13721 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13722 int bound;
13724 dc->pc = dc->base.pc_first;
13725 dc->condjmp = 0;
13727 dc->aarch64 = 1;
13728 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13729 * there is no secure EL1, so we route exceptions to EL3.
13731 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13732 !arm_el_is_aa64(env, 3);
13733 dc->thumb = 0;
13734 dc->sctlr_b = 0;
13735 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13736 dc->condexec_mask = 0;
13737 dc->condexec_cond = 0;
13738 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13739 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13740 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13741 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13742 #if !defined(CONFIG_USER_ONLY)
13743 dc->user = (dc->current_el == 0);
13744 #endif
13745 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13746 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13747 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13748 dc->vec_len = 0;
13749 dc->vec_stride = 0;
13750 dc->cp_regs = arm_cpu->cp_regs;
13751 dc->features = env->features;
13753 /* Single step state. The code-generation logic here is:
13754 * SS_ACTIVE == 0:
13755 * generate code with no special handling for single-stepping (except
13756 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13757 * this happens anyway because those changes are all system register or
13758 * PSTATE writes).
13759 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13760 * emit code for one insn
13761 * emit code to clear PSTATE.SS
13762 * emit code to generate software step exception for completed step
13763 * end TB (as usual for having generated an exception)
13764 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13765 * emit code to generate a software step exception
13766 * end the TB
13768 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13769 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13770 dc->is_ldex = false;
13771 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13773 /* Bound the number of insns to execute to those left on the page. */
13774 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13776 /* If architectural single step active, limit to 1. */
13777 if (dc->ss_active) {
13778 bound = 1;
13780 dc->base.max_insns = MIN(dc->base.max_insns, bound);
13782 init_tmp_a64_array(dc);
13785 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13787 tcg_clear_temp_count();
13790 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13792 DisasContext *dc = container_of(dcbase, DisasContext, base);
13794 tcg_gen_insn_start(dc->pc, 0, 0);
13795 dc->insn_start = tcg_last_op();
13798 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13799 const CPUBreakpoint *bp)
13801 DisasContext *dc = container_of(dcbase, DisasContext, base);
13803 if (bp->flags & BP_CPU) {
13804 gen_a64_set_pc_im(dc->pc);
13805 gen_helper_check_breakpoints(cpu_env);
13806 /* End the TB early; it likely won't be executed */
13807 dc->base.is_jmp = DISAS_TOO_MANY;
13808 } else {
13809 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13810 /* The address covered by the breakpoint must be
13811 included in [tb->pc, tb->pc + tb->size) in order
13812 to for it to be properly cleared -- thus we
13813 increment the PC here so that the logic setting
13814 tb->size below does the right thing. */
13815 dc->pc += 4;
13816 dc->base.is_jmp = DISAS_NORETURN;
13819 return true;
13822 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13824 DisasContext *dc = container_of(dcbase, DisasContext, base);
13825 CPUARMState *env = cpu->env_ptr;
13827 if (dc->ss_active && !dc->pstate_ss) {
13828 /* Singlestep state is Active-pending.
13829 * If we're in this state at the start of a TB then either
13830 * a) we just took an exception to an EL which is being debugged
13831 * and this is the first insn in the exception handler
13832 * b) debug exceptions were masked and we just unmasked them
13833 * without changing EL (eg by clearing PSTATE.D)
13834 * In either case we're going to take a swstep exception in the
13835 * "did not step an insn" case, and so the syndrome ISV and EX
13836 * bits should be zero.
13838 assert(dc->base.num_insns == 1);
13839 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13840 default_exception_el(dc));
13841 dc->base.is_jmp = DISAS_NORETURN;
13842 } else {
13843 disas_a64_insn(env, dc);
13846 dc->base.pc_next = dc->pc;
13847 translator_loop_temp_check(&dc->base);
13850 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13852 DisasContext *dc = container_of(dcbase, DisasContext, base);
13854 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13855 /* Note that this means single stepping WFI doesn't halt the CPU.
13856 * For conditional branch insns this is harmless unreachable code as
13857 * gen_goto_tb() has already handled emitting the debug exception
13858 * (and thus a tb-jump is not possible when singlestepping).
13860 switch (dc->base.is_jmp) {
13861 default:
13862 gen_a64_set_pc_im(dc->pc);
13863 /* fall through */
13864 case DISAS_EXIT:
13865 case DISAS_JUMP:
13866 if (dc->base.singlestep_enabled) {
13867 gen_exception_internal(EXCP_DEBUG);
13868 } else {
13869 gen_step_complete_exception(dc);
13871 break;
13872 case DISAS_NORETURN:
13873 break;
13875 } else {
13876 switch (dc->base.is_jmp) {
13877 case DISAS_NEXT:
13878 case DISAS_TOO_MANY:
13879 gen_goto_tb(dc, 1, dc->pc);
13880 break;
13881 default:
13882 case DISAS_UPDATE:
13883 gen_a64_set_pc_im(dc->pc);
13884 /* fall through */
13885 case DISAS_EXIT:
13886 tcg_gen_exit_tb(NULL, 0);
13887 break;
13888 case DISAS_JUMP:
13889 tcg_gen_lookup_and_goto_ptr();
13890 break;
13891 case DISAS_NORETURN:
13892 case DISAS_SWI:
13893 break;
13894 case DISAS_WFE:
13895 gen_a64_set_pc_im(dc->pc);
13896 gen_helper_wfe(cpu_env);
13897 break;
13898 case DISAS_YIELD:
13899 gen_a64_set_pc_im(dc->pc);
13900 gen_helper_yield(cpu_env);
13901 break;
13902 case DISAS_WFI:
13904 /* This is a special case because we don't want to just halt the CPU
13905 * if trying to debug across a WFI.
13907 TCGv_i32 tmp = tcg_const_i32(4);
13909 gen_a64_set_pc_im(dc->pc);
13910 gen_helper_wfi(cpu_env, tmp);
13911 tcg_temp_free_i32(tmp);
13912 /* The helper doesn't necessarily throw an exception, but we
13913 * must go back to the main loop to check for interrupts anyway.
13915 tcg_gen_exit_tb(NULL, 0);
13916 break;
13921 /* Functions above can change dc->pc, so re-align db->pc_next */
13922 dc->base.pc_next = dc->pc;
13925 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13926 CPUState *cpu)
13928 DisasContext *dc = container_of(dcbase, DisasContext, base);
13930 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13931 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13934 const TranslatorOps aarch64_translator_ops = {
13935 .init_disas_context = aarch64_tr_init_disas_context,
13936 .tb_start = aarch64_tr_tb_start,
13937 .insn_start = aarch64_tr_insn_start,
13938 .breakpoint_check = aarch64_tr_breakpoint_check,
13939 .translate_insn = aarch64_tr_translate_insn,
13940 .tb_stop = aarch64_tr_tb_stop,
13941 .disas_log = aarch64_tr_disas_log,