kvm: Drop smp_cpus argument from init functions
[qemu.git] / kvm-all.c
blob8053f921059877f8d41574f956cf793ddbc279bf
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 #ifdef KVM_CAP_COALESCED_MMIO
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 #endif
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 static KVMState *kvm_state;
85 static KVMSlot *kvm_alloc_slot(KVMState *s)
87 int i;
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 /* KVM private memory slots */
91 if (i >= 8 && i < 12) {
92 continue;
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
107 int i;
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
118 return NULL;
122 * Find overlapping slot with lowest start address
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
128 KVMSlot *found = NULL;
129 int i;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
145 return found;
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
151 int i;
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
163 return 0;
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
199 int kvm_init_vcpu(CPUState *env)
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
205 DPRINTF("kvm_init_vcpu\n");
207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 if (ret < 0) {
209 DPRINTF("kvm_create_vcpu failed\n");
210 goto err;
213 env->kvm_fd = ret;
214 env->kvm_state = s;
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
219 goto err;
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
223 env->kvm_fd, 0);
224 if (env->kvm_run == MAP_FAILED) {
225 ret = -errno;
226 DPRINTF("mmap'ing vcpu state failed\n");
227 goto err;
230 #ifdef KVM_CAP_COALESCED_MMIO
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
235 #endif
237 ret = kvm_arch_init_vcpu(env);
238 if (ret == 0) {
239 qemu_register_reset(kvm_reset_vcpu, env);
240 kvm_arch_reset_vcpu(env);
242 err:
243 return ret;
247 * dirty pages logging control
249 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
250 ram_addr_t size, int flags, int mask)
252 KVMState *s = kvm_state;
253 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
254 int old_flags;
256 if (mem == NULL) {
257 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
258 TARGET_FMT_plx "\n", __func__, phys_addr,
259 (target_phys_addr_t)(phys_addr + size - 1));
260 return -EINVAL;
263 old_flags = mem->flags;
265 flags = (mem->flags & ~mask) | flags;
266 mem->flags = flags;
268 /* If nothing changed effectively, no need to issue ioctl */
269 if (s->migration_log) {
270 flags |= KVM_MEM_LOG_DIRTY_PAGES;
272 if (flags == old_flags) {
273 return 0;
276 return kvm_set_user_memory_region(s, mem);
279 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
281 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
285 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
287 return kvm_dirty_pages_log_change(phys_addr, size, 0,
288 KVM_MEM_LOG_DIRTY_PAGES);
291 static int kvm_set_migration_log(int enable)
293 KVMState *s = kvm_state;
294 KVMSlot *mem;
295 int i, err;
297 s->migration_log = enable;
299 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
300 mem = &s->slots[i];
302 if (!mem->memory_size) {
303 continue;
305 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
306 continue;
308 err = kvm_set_user_memory_region(s, mem);
309 if (err) {
310 return err;
313 return 0;
316 /* get kvm's dirty pages bitmap and update qemu's */
317 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
318 unsigned long *bitmap,
319 unsigned long offset,
320 unsigned long mem_size)
322 unsigned int i, j;
323 unsigned long page_number, addr, addr1, c;
324 ram_addr_t ram_addr;
325 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
326 HOST_LONG_BITS;
329 * bitmap-traveling is faster than memory-traveling (for addr...)
330 * especially when most of the memory is not dirty.
332 for (i = 0; i < len; i++) {
333 if (bitmap[i] != 0) {
334 c = leul_to_cpu(bitmap[i]);
335 do {
336 j = ffsl(c) - 1;
337 c &= ~(1ul << j);
338 page_number = i * HOST_LONG_BITS + j;
339 addr1 = page_number * TARGET_PAGE_SIZE;
340 addr = offset + addr1;
341 ram_addr = cpu_get_physical_page_desc(addr);
342 cpu_physical_memory_set_dirty(ram_addr);
343 } while (c != 0);
346 return 0;
349 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
353 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
354 * This means all bits are set to dirty.
356 * @start_add: start of logged region.
357 * @end_addr: end of logged region.
359 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
360 target_phys_addr_t end_addr)
362 KVMState *s = kvm_state;
363 unsigned long size, allocated_size = 0;
364 KVMDirtyLog d;
365 KVMSlot *mem;
366 int ret = 0;
368 d.dirty_bitmap = NULL;
369 while (start_addr < end_addr) {
370 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
371 if (mem == NULL) {
372 break;
375 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
376 if (!d.dirty_bitmap) {
377 d.dirty_bitmap = qemu_malloc(size);
378 } else if (size > allocated_size) {
379 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
381 allocated_size = size;
382 memset(d.dirty_bitmap, 0, allocated_size);
384 d.slot = mem->slot;
386 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
387 DPRINTF("ioctl failed %d\n", errno);
388 ret = -1;
389 break;
392 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
393 mem->start_addr, mem->memory_size);
394 start_addr = mem->start_addr + mem->memory_size;
396 qemu_free(d.dirty_bitmap);
398 return ret;
401 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
403 int ret = -ENOSYS;
404 #ifdef KVM_CAP_COALESCED_MMIO
405 KVMState *s = kvm_state;
407 if (s->coalesced_mmio) {
408 struct kvm_coalesced_mmio_zone zone;
410 zone.addr = start;
411 zone.size = size;
413 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
415 #endif
417 return ret;
420 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
422 int ret = -ENOSYS;
423 #ifdef KVM_CAP_COALESCED_MMIO
424 KVMState *s = kvm_state;
426 if (s->coalesced_mmio) {
427 struct kvm_coalesced_mmio_zone zone;
429 zone.addr = start;
430 zone.size = size;
432 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
434 #endif
436 return ret;
439 int kvm_check_extension(KVMState *s, unsigned int extension)
441 int ret;
443 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
444 if (ret < 0) {
445 ret = 0;
448 return ret;
451 static int kvm_check_many_ioeventfds(void)
453 /* Older kernels have a 6 device limit on the KVM io bus. Find out so we
454 * can avoid creating too many ioeventfds.
456 #ifdef CONFIG_EVENTFD
457 int ioeventfds[7];
458 int i, ret = 0;
459 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
460 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
461 if (ioeventfds[i] < 0) {
462 break;
464 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
465 if (ret < 0) {
466 close(ioeventfds[i]);
467 break;
471 /* Decide whether many devices are supported or not */
472 ret = i == ARRAY_SIZE(ioeventfds);
474 while (i-- > 0) {
475 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
476 close(ioeventfds[i]);
478 return ret;
479 #else
480 return 0;
481 #endif
484 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
485 ram_addr_t phys_offset)
487 KVMState *s = kvm_state;
488 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
489 KVMSlot *mem, old;
490 int err;
492 /* kvm works in page size chunks, but the function may be called
493 with sub-page size and unaligned start address. */
494 size = TARGET_PAGE_ALIGN(size);
495 start_addr = TARGET_PAGE_ALIGN(start_addr);
497 /* KVM does not support read-only slots */
498 phys_offset &= ~IO_MEM_ROM;
500 while (1) {
501 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
502 if (!mem) {
503 break;
506 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
507 (start_addr + size <= mem->start_addr + mem->memory_size) &&
508 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
509 /* The new slot fits into the existing one and comes with
510 * identical parameters - nothing to be done. */
511 return;
514 old = *mem;
516 /* unregister the overlapping slot */
517 mem->memory_size = 0;
518 err = kvm_set_user_memory_region(s, mem);
519 if (err) {
520 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
521 __func__, strerror(-err));
522 abort();
525 /* Workaround for older KVM versions: we can't join slots, even not by
526 * unregistering the previous ones and then registering the larger
527 * slot. We have to maintain the existing fragmentation. Sigh.
529 * This workaround assumes that the new slot starts at the same
530 * address as the first existing one. If not or if some overlapping
531 * slot comes around later, we will fail (not seen in practice so far)
532 * - and actually require a recent KVM version. */
533 if (s->broken_set_mem_region &&
534 old.start_addr == start_addr && old.memory_size < size &&
535 flags < IO_MEM_UNASSIGNED) {
536 mem = kvm_alloc_slot(s);
537 mem->memory_size = old.memory_size;
538 mem->start_addr = old.start_addr;
539 mem->phys_offset = old.phys_offset;
540 mem->flags = 0;
542 err = kvm_set_user_memory_region(s, mem);
543 if (err) {
544 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
545 strerror(-err));
546 abort();
549 start_addr += old.memory_size;
550 phys_offset += old.memory_size;
551 size -= old.memory_size;
552 continue;
555 /* register prefix slot */
556 if (old.start_addr < start_addr) {
557 mem = kvm_alloc_slot(s);
558 mem->memory_size = start_addr - old.start_addr;
559 mem->start_addr = old.start_addr;
560 mem->phys_offset = old.phys_offset;
561 mem->flags = 0;
563 err = kvm_set_user_memory_region(s, mem);
564 if (err) {
565 fprintf(stderr, "%s: error registering prefix slot: %s\n",
566 __func__, strerror(-err));
567 abort();
571 /* register suffix slot */
572 if (old.start_addr + old.memory_size > start_addr + size) {
573 ram_addr_t size_delta;
575 mem = kvm_alloc_slot(s);
576 mem->start_addr = start_addr + size;
577 size_delta = mem->start_addr - old.start_addr;
578 mem->memory_size = old.memory_size - size_delta;
579 mem->phys_offset = old.phys_offset + size_delta;
580 mem->flags = 0;
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error registering suffix slot: %s\n",
585 __func__, strerror(-err));
586 abort();
591 /* in case the KVM bug workaround already "consumed" the new slot */
592 if (!size) {
593 return;
595 /* KVM does not need to know about this memory */
596 if (flags >= IO_MEM_UNASSIGNED) {
597 return;
599 mem = kvm_alloc_slot(s);
600 mem->memory_size = size;
601 mem->start_addr = start_addr;
602 mem->phys_offset = phys_offset;
603 mem->flags = 0;
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
608 strerror(-err));
609 abort();
613 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
614 target_phys_addr_t start_addr,
615 ram_addr_t size, ram_addr_t phys_offset)
617 kvm_set_phys_mem(start_addr, size, phys_offset);
620 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
621 target_phys_addr_t start_addr,
622 target_phys_addr_t end_addr)
624 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
627 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
628 int enable)
630 return kvm_set_migration_log(enable);
633 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
634 .set_memory = kvm_client_set_memory,
635 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
636 .migration_log = kvm_client_migration_log,
639 int kvm_init(void)
641 static const char upgrade_note[] =
642 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
643 "(see http://sourceforge.net/projects/kvm).\n";
644 KVMState *s;
645 int ret;
646 int i;
648 s = qemu_mallocz(sizeof(KVMState));
650 #ifdef KVM_CAP_SET_GUEST_DEBUG
651 QTAILQ_INIT(&s->kvm_sw_breakpoints);
652 #endif
653 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
654 s->slots[i].slot = i;
656 s->vmfd = -1;
657 s->fd = qemu_open("/dev/kvm", O_RDWR);
658 if (s->fd == -1) {
659 fprintf(stderr, "Could not access KVM kernel module: %m\n");
660 ret = -errno;
661 goto err;
664 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
665 if (ret < KVM_API_VERSION) {
666 if (ret > 0) {
667 ret = -EINVAL;
669 fprintf(stderr, "kvm version too old\n");
670 goto err;
673 if (ret > KVM_API_VERSION) {
674 ret = -EINVAL;
675 fprintf(stderr, "kvm version not supported\n");
676 goto err;
679 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
680 if (s->vmfd < 0) {
681 #ifdef TARGET_S390X
682 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
683 "your host kernel command line\n");
684 #endif
685 goto err;
688 /* initially, KVM allocated its own memory and we had to jump through
689 * hooks to make phys_ram_base point to this. Modern versions of KVM
690 * just use a user allocated buffer so we can use regular pages
691 * unmodified. Make sure we have a sufficiently modern version of KVM.
693 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
694 ret = -EINVAL;
695 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
696 upgrade_note);
697 goto err;
700 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
701 * destroyed properly. Since we rely on this capability, refuse to work
702 * with any kernel without this capability. */
703 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
704 ret = -EINVAL;
706 fprintf(stderr,
707 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
708 upgrade_note);
709 goto err;
712 s->coalesced_mmio = 0;
713 #ifdef KVM_CAP_COALESCED_MMIO
714 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
715 s->coalesced_mmio_ring = NULL;
716 #endif
718 s->broken_set_mem_region = 1;
719 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
720 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
721 if (ret > 0) {
722 s->broken_set_mem_region = 0;
724 #endif
726 s->vcpu_events = 0;
727 #ifdef KVM_CAP_VCPU_EVENTS
728 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
729 #endif
731 s->robust_singlestep = 0;
732 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
733 s->robust_singlestep =
734 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
735 #endif
737 s->debugregs = 0;
738 #ifdef KVM_CAP_DEBUGREGS
739 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
740 #endif
742 s->xsave = 0;
743 #ifdef KVM_CAP_XSAVE
744 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
745 #endif
747 s->xcrs = 0;
748 #ifdef KVM_CAP_XCRS
749 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
750 #endif
752 ret = kvm_arch_init(s);
753 if (ret < 0) {
754 goto err;
757 kvm_state = s;
758 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
760 s->many_ioeventfds = kvm_check_many_ioeventfds();
762 return 0;
764 err:
765 if (s) {
766 if (s->vmfd != -1) {
767 close(s->vmfd);
769 if (s->fd != -1) {
770 close(s->fd);
773 qemu_free(s);
775 return ret;
778 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
779 uint32_t count)
781 int i;
782 uint8_t *ptr = data;
784 for (i = 0; i < count; i++) {
785 if (direction == KVM_EXIT_IO_IN) {
786 switch (size) {
787 case 1:
788 stb_p(ptr, cpu_inb(port));
789 break;
790 case 2:
791 stw_p(ptr, cpu_inw(port));
792 break;
793 case 4:
794 stl_p(ptr, cpu_inl(port));
795 break;
797 } else {
798 switch (size) {
799 case 1:
800 cpu_outb(port, ldub_p(ptr));
801 break;
802 case 2:
803 cpu_outw(port, lduw_p(ptr));
804 break;
805 case 4:
806 cpu_outl(port, ldl_p(ptr));
807 break;
811 ptr += size;
814 return 1;
817 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
818 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
820 fprintf(stderr, "KVM internal error.");
821 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
822 int i;
824 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
825 for (i = 0; i < run->internal.ndata; ++i) {
826 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
827 i, (uint64_t)run->internal.data[i]);
829 } else {
830 fprintf(stderr, "\n");
832 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
833 fprintf(stderr, "emulation failure\n");
834 if (!kvm_arch_stop_on_emulation_error(env)) {
835 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
836 return 0;
839 /* FIXME: Should trigger a qmp message to let management know
840 * something went wrong.
842 return -1;
844 #endif
846 void kvm_flush_coalesced_mmio_buffer(void)
848 #ifdef KVM_CAP_COALESCED_MMIO
849 KVMState *s = kvm_state;
850 if (s->coalesced_mmio_ring) {
851 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
852 while (ring->first != ring->last) {
853 struct kvm_coalesced_mmio *ent;
855 ent = &ring->coalesced_mmio[ring->first];
857 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
858 smp_wmb();
859 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
862 #endif
865 static void do_kvm_cpu_synchronize_state(void *_env)
867 CPUState *env = _env;
869 if (!env->kvm_vcpu_dirty) {
870 kvm_arch_get_registers(env);
871 env->kvm_vcpu_dirty = 1;
875 void kvm_cpu_synchronize_state(CPUState *env)
877 if (!env->kvm_vcpu_dirty) {
878 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
882 void kvm_cpu_synchronize_post_reset(CPUState *env)
884 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
885 env->kvm_vcpu_dirty = 0;
888 void kvm_cpu_synchronize_post_init(CPUState *env)
890 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
891 env->kvm_vcpu_dirty = 0;
894 int kvm_cpu_exec(CPUState *env)
896 struct kvm_run *run = env->kvm_run;
897 int ret;
899 DPRINTF("kvm_cpu_exec()\n");
901 do {
902 #ifndef CONFIG_IOTHREAD
903 if (env->exit_request) {
904 DPRINTF("interrupt exit requested\n");
905 ret = 0;
906 break;
908 #endif
910 if (kvm_arch_process_irqchip_events(env)) {
911 ret = 0;
912 break;
915 if (env->kvm_vcpu_dirty) {
916 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
917 env->kvm_vcpu_dirty = 0;
920 kvm_arch_pre_run(env, run);
921 cpu_single_env = NULL;
922 qemu_mutex_unlock_iothread();
923 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
924 qemu_mutex_lock_iothread();
925 cpu_single_env = env;
926 kvm_arch_post_run(env, run);
928 if (ret == -EINTR || ret == -EAGAIN) {
929 cpu_exit(env);
930 DPRINTF("io window exit\n");
931 ret = 0;
932 break;
935 if (ret < 0) {
936 DPRINTF("kvm run failed %s\n", strerror(-ret));
937 abort();
940 kvm_flush_coalesced_mmio_buffer();
942 ret = 0; /* exit loop */
943 switch (run->exit_reason) {
944 case KVM_EXIT_IO:
945 DPRINTF("handle_io\n");
946 ret = kvm_handle_io(run->io.port,
947 (uint8_t *)run + run->io.data_offset,
948 run->io.direction,
949 run->io.size,
950 run->io.count);
951 break;
952 case KVM_EXIT_MMIO:
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
955 run->mmio.data,
956 run->mmio.len,
957 run->mmio.is_write);
958 ret = 1;
959 break;
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
962 break;
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
966 ret = 1;
967 break;
968 case KVM_EXIT_UNKNOWN:
969 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
970 (uint64_t)run->hw.hardware_exit_reason);
971 ret = -1;
972 break;
973 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
974 case KVM_EXIT_INTERNAL_ERROR:
975 ret = kvm_handle_internal_error(env, run);
976 break;
977 #endif
978 case KVM_EXIT_DEBUG:
979 DPRINTF("kvm_exit_debug\n");
980 #ifdef KVM_CAP_SET_GUEST_DEBUG
981 if (kvm_arch_debug(&run->debug.arch)) {
982 env->exception_index = EXCP_DEBUG;
983 return 0;
985 /* re-enter, this exception was guest-internal */
986 ret = 1;
987 #endif /* KVM_CAP_SET_GUEST_DEBUG */
988 break;
989 default:
990 DPRINTF("kvm_arch_handle_exit\n");
991 ret = kvm_arch_handle_exit(env, run);
992 break;
994 } while (ret > 0);
996 if (ret < 0) {
997 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
998 vm_stop(0);
999 env->exit_request = 1;
1001 if (env->exit_request) {
1002 env->exit_request = 0;
1003 env->exception_index = EXCP_INTERRUPT;
1006 return ret;
1009 int kvm_ioctl(KVMState *s, int type, ...)
1011 int ret;
1012 void *arg;
1013 va_list ap;
1015 va_start(ap, type);
1016 arg = va_arg(ap, void *);
1017 va_end(ap);
1019 ret = ioctl(s->fd, type, arg);
1020 if (ret == -1) {
1021 ret = -errno;
1023 return ret;
1026 int kvm_vm_ioctl(KVMState *s, int type, ...)
1028 int ret;
1029 void *arg;
1030 va_list ap;
1032 va_start(ap, type);
1033 arg = va_arg(ap, void *);
1034 va_end(ap);
1036 ret = ioctl(s->vmfd, type, arg);
1037 if (ret == -1) {
1038 ret = -errno;
1040 return ret;
1043 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1045 int ret;
1046 void *arg;
1047 va_list ap;
1049 va_start(ap, type);
1050 arg = va_arg(ap, void *);
1051 va_end(ap);
1053 ret = ioctl(env->kvm_fd, type, arg);
1054 if (ret == -1) {
1055 ret = -errno;
1057 return ret;
1060 int kvm_has_sync_mmu(void)
1062 #ifdef KVM_CAP_SYNC_MMU
1063 KVMState *s = kvm_state;
1065 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1066 #else
1067 return 0;
1068 #endif
1071 int kvm_has_vcpu_events(void)
1073 return kvm_state->vcpu_events;
1076 int kvm_has_robust_singlestep(void)
1078 return kvm_state->robust_singlestep;
1081 int kvm_has_debugregs(void)
1083 return kvm_state->debugregs;
1086 int kvm_has_xsave(void)
1088 return kvm_state->xsave;
1091 int kvm_has_xcrs(void)
1093 return kvm_state->xcrs;
1096 int kvm_has_many_ioeventfds(void)
1098 if (!kvm_enabled()) {
1099 return 0;
1101 return kvm_state->many_ioeventfds;
1104 void kvm_setup_guest_memory(void *start, size_t size)
1106 if (!kvm_has_sync_mmu()) {
1107 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1109 if (ret) {
1110 perror("qemu_madvise");
1111 fprintf(stderr,
1112 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1113 exit(1);
1118 #ifdef KVM_CAP_SET_GUEST_DEBUG
1119 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1120 target_ulong pc)
1122 struct kvm_sw_breakpoint *bp;
1124 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1125 if (bp->pc == pc) {
1126 return bp;
1129 return NULL;
1132 int kvm_sw_breakpoints_active(CPUState *env)
1134 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1137 struct kvm_set_guest_debug_data {
1138 struct kvm_guest_debug dbg;
1139 CPUState *env;
1140 int err;
1143 static void kvm_invoke_set_guest_debug(void *data)
1145 struct kvm_set_guest_debug_data *dbg_data = data;
1146 CPUState *env = dbg_data->env;
1148 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1151 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1153 struct kvm_set_guest_debug_data data;
1155 data.dbg.control = reinject_trap;
1157 if (env->singlestep_enabled) {
1158 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1160 kvm_arch_update_guest_debug(env, &data.dbg);
1161 data.env = env;
1163 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1164 return data.err;
1167 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1168 target_ulong len, int type)
1170 struct kvm_sw_breakpoint *bp;
1171 CPUState *env;
1172 int err;
1174 if (type == GDB_BREAKPOINT_SW) {
1175 bp = kvm_find_sw_breakpoint(current_env, addr);
1176 if (bp) {
1177 bp->use_count++;
1178 return 0;
1181 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1182 if (!bp) {
1183 return -ENOMEM;
1186 bp->pc = addr;
1187 bp->use_count = 1;
1188 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1189 if (err) {
1190 free(bp);
1191 return err;
1194 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1195 bp, entry);
1196 } else {
1197 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1198 if (err) {
1199 return err;
1203 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1204 err = kvm_update_guest_debug(env, 0);
1205 if (err) {
1206 return err;
1209 return 0;
1212 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1213 target_ulong len, int type)
1215 struct kvm_sw_breakpoint *bp;
1216 CPUState *env;
1217 int err;
1219 if (type == GDB_BREAKPOINT_SW) {
1220 bp = kvm_find_sw_breakpoint(current_env, addr);
1221 if (!bp) {
1222 return -ENOENT;
1225 if (bp->use_count > 1) {
1226 bp->use_count--;
1227 return 0;
1230 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1231 if (err) {
1232 return err;
1235 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1236 qemu_free(bp);
1237 } else {
1238 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1239 if (err) {
1240 return err;
1244 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1245 err = kvm_update_guest_debug(env, 0);
1246 if (err) {
1247 return err;
1250 return 0;
1253 void kvm_remove_all_breakpoints(CPUState *current_env)
1255 struct kvm_sw_breakpoint *bp, *next;
1256 KVMState *s = current_env->kvm_state;
1257 CPUState *env;
1259 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1260 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1261 /* Try harder to find a CPU that currently sees the breakpoint. */
1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1263 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1264 break;
1269 kvm_arch_remove_all_hw_breakpoints();
1271 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1272 kvm_update_guest_debug(env, 0);
1276 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1278 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1280 return -EINVAL;
1283 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1284 target_ulong len, int type)
1286 return -EINVAL;
1289 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1290 target_ulong len, int type)
1292 return -EINVAL;
1295 void kvm_remove_all_breakpoints(CPUState *current_env)
1298 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1300 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1302 struct kvm_signal_mask *sigmask;
1303 int r;
1305 if (!sigset) {
1306 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1309 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1311 sigmask->len = 8;
1312 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1313 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1314 free(sigmask);
1316 return r;
1319 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1321 #ifdef KVM_IOEVENTFD
1322 int ret;
1323 struct kvm_ioeventfd iofd;
1325 iofd.datamatch = val;
1326 iofd.addr = addr;
1327 iofd.len = 4;
1328 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1329 iofd.fd = fd;
1331 if (!kvm_enabled()) {
1332 return -ENOSYS;
1335 if (!assign) {
1336 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1339 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1341 if (ret < 0) {
1342 return -errno;
1345 return 0;
1346 #else
1347 return -ENOSYS;
1348 #endif
1351 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1353 #ifdef KVM_IOEVENTFD
1354 struct kvm_ioeventfd kick = {
1355 .datamatch = val,
1356 .addr = addr,
1357 .len = 2,
1358 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1359 .fd = fd,
1361 int r;
1362 if (!kvm_enabled()) {
1363 return -ENOSYS;
1365 if (!assign) {
1366 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1368 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1369 if (r < 0) {
1370 return r;
1372 return 0;
1373 #else
1374 return -ENOSYS;
1375 #endif