target/sparc: Make sparc_cpu_tlb_fill sysemu only
[qemu.git] / target / sparc / mmu_helper.c
blob2ad47391d0481b490ea23221c6836c0f88f5ceab
1 /*
2 * Sparc MMU helpers
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "trace.h"
26 /* Sparc MMU emulation */
28 #ifndef TARGET_SPARC64
30 * Sparc V8 Reference MMU (SRMMU)
32 static const int access_table[8][8] = {
33 { 0, 0, 0, 0, 8, 0, 12, 12 },
34 { 0, 0, 0, 0, 8, 0, 0, 0 },
35 { 8, 8, 0, 0, 0, 8, 12, 12 },
36 { 8, 8, 0, 0, 0, 8, 0, 0 },
37 { 8, 0, 8, 0, 8, 8, 12, 12 },
38 { 8, 0, 8, 0, 8, 0, 8, 0 },
39 { 8, 8, 8, 0, 8, 8, 12, 12 },
40 { 8, 8, 8, 0, 8, 8, 8, 0 }
43 static const int perm_table[2][8] = {
45 PAGE_READ,
46 PAGE_READ | PAGE_WRITE,
47 PAGE_READ | PAGE_EXEC,
48 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
49 PAGE_EXEC,
50 PAGE_READ | PAGE_WRITE,
51 PAGE_READ | PAGE_EXEC,
52 PAGE_READ | PAGE_WRITE | PAGE_EXEC
55 PAGE_READ,
56 PAGE_READ | PAGE_WRITE,
57 PAGE_READ | PAGE_EXEC,
58 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
59 PAGE_EXEC,
60 PAGE_READ,
66 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
67 int *prot, int *access_index, MemTxAttrs *attrs,
68 target_ulong address, int rw, int mmu_idx,
69 target_ulong *page_size)
71 int access_perms = 0;
72 hwaddr pde_ptr;
73 uint32_t pde;
74 int error_code = 0, is_dirty, is_user;
75 unsigned long page_offset;
76 CPUState *cs = env_cpu(env);
77 MemTxResult result;
79 is_user = mmu_idx == MMU_USER_IDX;
81 if (mmu_idx == MMU_PHYS_IDX) {
82 *page_size = TARGET_PAGE_SIZE;
83 /* Boot mode: instruction fetches are taken from PROM */
84 if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
85 *physical = env->prom_addr | (address & 0x7ffffULL);
86 *prot = PAGE_READ | PAGE_EXEC;
87 return 0;
89 *physical = address;
90 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
91 return 0;
94 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
95 *physical = 0xffffffffffff0000ULL;
97 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
98 /* Context base + context number */
99 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
100 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
101 if (result != MEMTX_OK) {
102 return 4 << 2; /* Translation fault, L = 0 */
105 /* Ctx pde */
106 switch (pde & PTE_ENTRYTYPE_MASK) {
107 default:
108 case 0: /* Invalid */
109 return 1 << 2;
110 case 2: /* L0 PTE, maybe should not happen? */
111 case 3: /* Reserved */
112 return 4 << 2;
113 case 1: /* L0 PDE */
114 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
115 pde = address_space_ldl(cs->as, pde_ptr,
116 MEMTXATTRS_UNSPECIFIED, &result);
117 if (result != MEMTX_OK) {
118 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
121 switch (pde & PTE_ENTRYTYPE_MASK) {
122 default:
123 case 0: /* Invalid */
124 return (1 << 8) | (1 << 2);
125 case 3: /* Reserved */
126 return (1 << 8) | (4 << 2);
127 case 1: /* L1 PDE */
128 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
129 pde = address_space_ldl(cs->as, pde_ptr,
130 MEMTXATTRS_UNSPECIFIED, &result);
131 if (result != MEMTX_OK) {
132 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
135 switch (pde & PTE_ENTRYTYPE_MASK) {
136 default:
137 case 0: /* Invalid */
138 return (2 << 8) | (1 << 2);
139 case 3: /* Reserved */
140 return (2 << 8) | (4 << 2);
141 case 1: /* L2 PDE */
142 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
143 pde = address_space_ldl(cs->as, pde_ptr,
144 MEMTXATTRS_UNSPECIFIED, &result);
145 if (result != MEMTX_OK) {
146 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
149 switch (pde & PTE_ENTRYTYPE_MASK) {
150 default:
151 case 0: /* Invalid */
152 return (3 << 8) | (1 << 2);
153 case 1: /* PDE, should not happen */
154 case 3: /* Reserved */
155 return (3 << 8) | (4 << 2);
156 case 2: /* L3 PTE */
157 page_offset = 0;
159 *page_size = TARGET_PAGE_SIZE;
160 break;
161 case 2: /* L2 PTE */
162 page_offset = address & 0x3f000;
163 *page_size = 0x40000;
165 break;
166 case 2: /* L1 PTE */
167 page_offset = address & 0xfff000;
168 *page_size = 0x1000000;
172 /* check access */
173 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
174 error_code = access_table[*access_index][access_perms];
175 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
176 return error_code;
179 /* update page modified and dirty bits */
180 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
181 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
182 pde |= PG_ACCESSED_MASK;
183 if (is_dirty) {
184 pde |= PG_MODIFIED_MASK;
186 stl_phys_notdirty(cs->as, pde_ptr, pde);
189 /* the page can be put in the TLB */
190 *prot = perm_table[is_user][access_perms];
191 if (!(pde & PG_MODIFIED_MASK)) {
192 /* only set write access if already dirty... otherwise wait
193 for dirty access */
194 *prot &= ~PAGE_WRITE;
197 /* Even if large ptes, we map only one 4KB page in the cache to
198 avoid filling it too fast */
199 *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
200 return error_code;
203 /* Perform address translation */
204 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
205 MMUAccessType access_type, int mmu_idx,
206 bool probe, uintptr_t retaddr)
208 SPARCCPU *cpu = SPARC_CPU(cs);
209 CPUSPARCState *env = &cpu->env;
210 hwaddr paddr;
211 target_ulong vaddr;
212 target_ulong page_size;
213 int error_code = 0, prot, access_index;
214 MemTxAttrs attrs = {};
217 * TODO: If we ever need tlb_vaddr_to_host for this target,
218 * then we must figure out how to manipulate FSR and FAR
219 * when both MMU_NF and probe are set. In the meantime,
220 * do not support this use case.
222 assert(!probe);
224 address &= TARGET_PAGE_MASK;
225 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
226 address, access_type,
227 mmu_idx, &page_size);
228 vaddr = address;
229 if (likely(error_code == 0)) {
230 qemu_log_mask(CPU_LOG_MMU,
231 "Translate at %" VADDR_PRIx " -> "
232 TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
233 address, paddr, vaddr);
234 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
235 return true;
238 if (env->mmuregs[3]) { /* Fault status register */
239 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
241 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
242 env->mmuregs[4] = address; /* Fault address register */
244 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
245 /* No fault mode: if a mapping is available, just override
246 permissions. If no mapping is available, redirect accesses to
247 neverland. Fake/overridden mappings will be flushed when
248 switching to normal mode. */
249 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
250 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
251 return true;
252 } else {
253 if (access_type == MMU_INST_FETCH) {
254 cs->exception_index = TT_TFAULT;
255 } else {
256 cs->exception_index = TT_DFAULT;
258 cpu_loop_exit_restore(cs, retaddr);
262 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
264 CPUState *cs = env_cpu(env);
265 hwaddr pde_ptr;
266 uint32_t pde;
267 MemTxResult result;
270 * TODO: MMU probe operations are supposed to set the fault
271 * status registers, but we don't do this.
274 /* Context base + context number */
275 pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
276 (env->mmuregs[2] << 2);
277 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
278 if (result != MEMTX_OK) {
279 return 0;
282 switch (pde & PTE_ENTRYTYPE_MASK) {
283 default:
284 case 0: /* Invalid */
285 case 2: /* PTE, maybe should not happen? */
286 case 3: /* Reserved */
287 return 0;
288 case 1: /* L1 PDE */
289 if (mmulev == 3) {
290 return pde;
292 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
293 pde = address_space_ldl(cs->as, pde_ptr,
294 MEMTXATTRS_UNSPECIFIED, &result);
295 if (result != MEMTX_OK) {
296 return 0;
299 switch (pde & PTE_ENTRYTYPE_MASK) {
300 default:
301 case 0: /* Invalid */
302 case 3: /* Reserved */
303 return 0;
304 case 2: /* L1 PTE */
305 return pde;
306 case 1: /* L2 PDE */
307 if (mmulev == 2) {
308 return pde;
310 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
311 pde = address_space_ldl(cs->as, pde_ptr,
312 MEMTXATTRS_UNSPECIFIED, &result);
313 if (result != MEMTX_OK) {
314 return 0;
317 switch (pde & PTE_ENTRYTYPE_MASK) {
318 default:
319 case 0: /* Invalid */
320 case 3: /* Reserved */
321 return 0;
322 case 2: /* L2 PTE */
323 return pde;
324 case 1: /* L3 PDE */
325 if (mmulev == 1) {
326 return pde;
328 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
329 pde = address_space_ldl(cs->as, pde_ptr,
330 MEMTXATTRS_UNSPECIFIED, &result);
331 if (result != MEMTX_OK) {
332 return 0;
335 switch (pde & PTE_ENTRYTYPE_MASK) {
336 default:
337 case 0: /* Invalid */
338 case 1: /* PDE, should not happen */
339 case 3: /* Reserved */
340 return 0;
341 case 2: /* L3 PTE */
342 return pde;
347 return 0;
350 void dump_mmu(CPUSPARCState *env)
352 CPUState *cs = env_cpu(env);
353 target_ulong va, va1, va2;
354 unsigned int n, m, o;
355 hwaddr pa;
356 uint32_t pde;
358 qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
359 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
360 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
361 pde = mmu_probe(env, va, 2);
362 if (pde) {
363 pa = cpu_get_phys_page_debug(cs, va);
364 qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
365 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
366 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
367 pde = mmu_probe(env, va1, 1);
368 if (pde) {
369 pa = cpu_get_phys_page_debug(cs, va1);
370 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
371 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
372 va1, pa, pde);
373 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
374 pde = mmu_probe(env, va2, 0);
375 if (pde) {
376 pa = cpu_get_phys_page_debug(cs, va2);
377 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
378 TARGET_FMT_plx " PTE: "
379 TARGET_FMT_lx "\n",
380 va2, pa, pde);
389 /* Gdb expects all registers windows to be flushed in ram. This function handles
390 * reads (and only reads) in stack frames as if windows were flushed. We assume
391 * that the sparc ABI is followed.
393 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
394 uint8_t *buf, int len, bool is_write)
396 SPARCCPU *cpu = SPARC_CPU(cs);
397 CPUSPARCState *env = &cpu->env;
398 target_ulong addr = address;
399 int i;
400 int len1;
401 int cwp = env->cwp;
403 if (!is_write) {
404 for (i = 0; i < env->nwindows; i++) {
405 int off;
406 target_ulong fp = env->regbase[cwp * 16 + 22];
408 /* Assume fp == 0 means end of frame. */
409 if (fp == 0) {
410 break;
413 cwp = cpu_cwp_inc(env, cwp + 1);
415 /* Invalid window ? */
416 if (env->wim & (1 << cwp)) {
417 break;
420 /* According to the ABI, the stack is growing downward. */
421 if (addr + len < fp) {
422 break;
425 /* Not in this frame. */
426 if (addr > fp + 64) {
427 continue;
430 /* Handle access before this window. */
431 if (addr < fp) {
432 len1 = fp - addr;
433 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
434 return -1;
436 addr += len1;
437 len -= len1;
438 buf += len1;
441 /* Access byte per byte to registers. Not very efficient but speed
442 * is not critical.
444 off = addr - fp;
445 len1 = 64 - off;
447 if (len1 > len) {
448 len1 = len;
451 for (; len1; len1--) {
452 int reg = cwp * 16 + 8 + (off >> 2);
453 union {
454 uint32_t v;
455 uint8_t c[4];
456 } u;
457 u.v = cpu_to_be32(env->regbase[reg]);
458 *buf++ = u.c[off & 3];
459 addr++;
460 len--;
461 off++;
464 if (len == 0) {
465 return 0;
469 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
472 #else /* !TARGET_SPARC64 */
474 /* 41 bit physical address space */
475 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
477 return x & 0x1ffffffffffULL;
481 * UltraSparc IIi I/DMMUs
484 /* Returns true if TTE tag is valid and matches virtual address value
485 in context requires virtual address mask value calculated from TTE
486 entry size */
487 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
488 uint64_t address, uint64_t context,
489 hwaddr *physical)
491 uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
493 /* valid, context match, virtual address match? */
494 if (TTE_IS_VALID(tlb->tte) &&
495 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
496 && compare_masked(address, tlb->tag, mask)) {
497 /* decode physical address */
498 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
499 return 1;
502 return 0;
505 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
506 int *prot, MemTxAttrs *attrs,
507 target_ulong address, int rw, int mmu_idx)
509 CPUState *cs = env_cpu(env);
510 unsigned int i;
511 uint64_t context;
512 uint64_t sfsr = 0;
513 bool is_user = false;
515 switch (mmu_idx) {
516 case MMU_PHYS_IDX:
517 g_assert_not_reached();
518 case MMU_USER_IDX:
519 is_user = true;
520 /* fallthru */
521 case MMU_KERNEL_IDX:
522 context = env->dmmu.mmu_primary_context & 0x1fff;
523 sfsr |= SFSR_CT_PRIMARY;
524 break;
525 case MMU_USER_SECONDARY_IDX:
526 is_user = true;
527 /* fallthru */
528 case MMU_KERNEL_SECONDARY_IDX:
529 context = env->dmmu.mmu_secondary_context & 0x1fff;
530 sfsr |= SFSR_CT_SECONDARY;
531 break;
532 case MMU_NUCLEUS_IDX:
533 sfsr |= SFSR_CT_NUCLEUS;
534 /* FALLTHRU */
535 default:
536 context = 0;
537 break;
540 if (rw == 1) {
541 sfsr |= SFSR_WRITE_BIT;
542 } else if (rw == 4) {
543 sfsr |= SFSR_NF_BIT;
546 for (i = 0; i < 64; i++) {
547 /* ctx match, vaddr match, valid? */
548 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
549 int do_fault = 0;
551 if (TTE_IS_IE(env->dtlb[i].tte)) {
552 attrs->byte_swap = true;
555 /* access ok? */
556 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
557 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
558 do_fault = 1;
559 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
560 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
562 if (rw == 4) {
563 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
564 do_fault = 1;
565 sfsr |= SFSR_FT_NF_E_BIT;
567 } else {
568 if (TTE_IS_NFO(env->dtlb[i].tte)) {
569 do_fault = 1;
570 sfsr |= SFSR_FT_NFO_BIT;
574 if (do_fault) {
575 /* faults above are reported with TT_DFAULT. */
576 cs->exception_index = TT_DFAULT;
577 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
578 do_fault = 1;
579 cs->exception_index = TT_DPROT;
581 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
584 if (!do_fault) {
585 *prot = PAGE_READ;
586 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
587 *prot |= PAGE_WRITE;
590 TTE_SET_USED(env->dtlb[i].tte);
592 return 0;
595 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
596 sfsr |= SFSR_OW_BIT; /* overflow (not read before
597 another fault) */
600 if (env->pstate & PS_PRIV) {
601 sfsr |= SFSR_PR_BIT;
604 /* FIXME: ASI field in SFSR must be set */
605 env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
607 env->dmmu.sfar = address; /* Fault address register */
609 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
611 return 1;
615 trace_mmu_helper_dmiss(address, context);
618 * On MMU misses:
619 * - UltraSPARC IIi: SFSR and SFAR unmodified
620 * - JPS1: SFAR updated and some fields of SFSR updated
622 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
623 cs->exception_index = TT_DMISS;
624 return 1;
627 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
628 int *prot, MemTxAttrs *attrs,
629 target_ulong address, int mmu_idx)
631 CPUState *cs = env_cpu(env);
632 unsigned int i;
633 uint64_t context;
634 bool is_user = false;
636 switch (mmu_idx) {
637 case MMU_PHYS_IDX:
638 case MMU_USER_SECONDARY_IDX:
639 case MMU_KERNEL_SECONDARY_IDX:
640 g_assert_not_reached();
641 case MMU_USER_IDX:
642 is_user = true;
643 /* fallthru */
644 case MMU_KERNEL_IDX:
645 context = env->dmmu.mmu_primary_context & 0x1fff;
646 break;
647 default:
648 context = 0;
649 break;
652 if (env->tl == 0) {
653 /* PRIMARY context */
654 context = env->dmmu.mmu_primary_context & 0x1fff;
655 } else {
656 /* NUCLEUS context */
657 context = 0;
660 for (i = 0; i < 64; i++) {
661 /* ctx match, vaddr match, valid? */
662 if (ultrasparc_tag_match(&env->itlb[i],
663 address, context, physical)) {
664 /* access ok? */
665 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
666 /* Fault status register */
667 if (env->immu.sfsr & SFSR_VALID_BIT) {
668 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
669 another fault) */
670 } else {
671 env->immu.sfsr = 0;
673 if (env->pstate & PS_PRIV) {
674 env->immu.sfsr |= SFSR_PR_BIT;
676 if (env->tl > 0) {
677 env->immu.sfsr |= SFSR_CT_NUCLEUS;
680 /* FIXME: ASI field in SFSR must be set */
681 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
682 cs->exception_index = TT_TFAULT;
684 env->immu.tag_access = (address & ~0x1fffULL) | context;
686 trace_mmu_helper_tfault(address, context);
688 return 1;
690 *prot = PAGE_EXEC;
691 TTE_SET_USED(env->itlb[i].tte);
692 return 0;
696 trace_mmu_helper_tmiss(address, context);
698 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
699 env->immu.tag_access = (address & ~0x1fffULL) | context;
700 cs->exception_index = TT_TMISS;
701 return 1;
704 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
705 int *prot, int *access_index, MemTxAttrs *attrs,
706 target_ulong address, int rw, int mmu_idx,
707 target_ulong *page_size)
709 /* ??? We treat everything as a small page, then explicitly flush
710 everything when an entry is evicted. */
711 *page_size = TARGET_PAGE_SIZE;
713 /* safety net to catch wrong softmmu index use from dynamic code */
714 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
715 if (rw == 2) {
716 trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
717 env->dmmu.mmu_primary_context,
718 env->dmmu.mmu_secondary_context,
719 address);
720 } else {
721 trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
722 env->dmmu.mmu_primary_context,
723 env->dmmu.mmu_secondary_context,
724 address);
728 if (mmu_idx == MMU_PHYS_IDX) {
729 *physical = ultrasparc_truncate_physical(address);
730 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
731 return 0;
734 if (rw == 2) {
735 return get_physical_address_code(env, physical, prot, attrs, address,
736 mmu_idx);
737 } else {
738 return get_physical_address_data(env, physical, prot, attrs, address,
739 rw, mmu_idx);
743 /* Perform address translation */
744 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
745 MMUAccessType access_type, int mmu_idx,
746 bool probe, uintptr_t retaddr)
748 SPARCCPU *cpu = SPARC_CPU(cs);
749 CPUSPARCState *env = &cpu->env;
750 target_ulong vaddr;
751 hwaddr paddr;
752 target_ulong page_size;
753 MemTxAttrs attrs = {};
754 int error_code = 0, prot, access_index;
756 address &= TARGET_PAGE_MASK;
757 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
758 address, access_type,
759 mmu_idx, &page_size);
760 if (likely(error_code == 0)) {
761 vaddr = address;
763 trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
764 env->dmmu.mmu_primary_context,
765 env->dmmu.mmu_secondary_context);
767 tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
768 page_size);
769 return true;
771 if (probe) {
772 return false;
774 cpu_loop_exit_restore(cs, retaddr);
777 void dump_mmu(CPUSPARCState *env)
779 unsigned int i;
780 const char *mask;
782 qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
783 PRId64 "\n",
784 env->dmmu.mmu_primary_context,
785 env->dmmu.mmu_secondary_context);
786 qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
787 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
788 if ((env->lsu & DMMU_E) == 0) {
789 qemu_printf("DMMU disabled\n");
790 } else {
791 qemu_printf("DMMU dump\n");
792 for (i = 0; i < 64; i++) {
793 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
794 default:
795 case 0x0:
796 mask = " 8k";
797 break;
798 case 0x1:
799 mask = " 64k";
800 break;
801 case 0x2:
802 mask = "512k";
803 break;
804 case 0x3:
805 mask = " 4M";
806 break;
808 if (TTE_IS_VALID(env->dtlb[i].tte)) {
809 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
810 ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
812 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
813 TTE_PA(env->dtlb[i].tte),
814 mask,
815 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
816 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
817 TTE_IS_LOCKED(env->dtlb[i].tte) ?
818 "locked" : "unlocked",
819 TTE_IS_IE(env->dtlb[i].tte) ?
820 "yes" : "no",
821 env->dtlb[i].tag & (uint64_t)0x1fffULL,
822 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
823 "global" : "local");
827 if ((env->lsu & IMMU_E) == 0) {
828 qemu_printf("IMMU disabled\n");
829 } else {
830 qemu_printf("IMMU dump\n");
831 for (i = 0; i < 64; i++) {
832 switch (TTE_PGSIZE(env->itlb[i].tte)) {
833 default:
834 case 0x0:
835 mask = " 8k";
836 break;
837 case 0x1:
838 mask = " 64k";
839 break;
840 case 0x2:
841 mask = "512k";
842 break;
843 case 0x3:
844 mask = " 4M";
845 break;
847 if (TTE_IS_VALID(env->itlb[i].tte)) {
848 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
849 ", %s, %s, %s, ctx %" PRId64 " %s\n",
851 env->itlb[i].tag & (uint64_t)~0x1fffULL,
852 TTE_PA(env->itlb[i].tte),
853 mask,
854 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
855 TTE_IS_LOCKED(env->itlb[i].tte) ?
856 "locked" : "unlocked",
857 env->itlb[i].tag & (uint64_t)0x1fffULL,
858 TTE_IS_GLOBAL(env->itlb[i].tte) ?
859 "global" : "local");
865 #endif /* TARGET_SPARC64 */
867 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
868 target_ulong addr, int rw, int mmu_idx)
870 target_ulong page_size;
871 int prot, access_index;
872 MemTxAttrs attrs = {};
874 return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
875 rw, mmu_idx, &page_size);
878 #if defined(TARGET_SPARC64)
879 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
880 int mmu_idx)
882 hwaddr phys_addr;
884 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
885 return -1;
887 return phys_addr;
889 #endif
891 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
893 SPARCCPU *cpu = SPARC_CPU(cs);
894 CPUSPARCState *env = &cpu->env;
895 hwaddr phys_addr;
896 int mmu_idx = cpu_mmu_index(env, false);
898 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
899 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
900 return -1;
903 return phys_addr;