target/sparc: Make sparc_cpu_tlb_fill sysemu only
[qemu.git] / hw / ppc / spapr_pci.c
blob7430bd63142b2efae67cf831add322c65bfefe96
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "hw/irq.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/ram_addr.h"
38 #include <libfdt.h>
39 #include "trace.h"
40 #include "qemu/error-report.h"
41 #include "qemu/module.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "hw/qdev-properties.h"
49 #include "sysemu/device_tree.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/numa.h"
53 #include "hw/ppc/spapr_numa.h"
54 #include "qemu/log.h"
56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
57 #define RTAS_QUERY_FN 0
58 #define RTAS_CHANGE_FN 1
59 #define RTAS_RESET_FN 2
60 #define RTAS_CHANGE_MSI_FN 3
61 #define RTAS_CHANGE_MSIX_FN 4
63 /* Interrupt types to return on RTAS_CHANGE_* */
64 #define RTAS_TYPE_MSI 1
65 #define RTAS_TYPE_MSIX 2
67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
69 SpaprPhbState *sphb;
71 QLIST_FOREACH(sphb, &spapr->phbs, list) {
72 if (sphb->buid != buid) {
73 continue;
75 return sphb;
78 return NULL;
81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
82 uint32_t config_addr)
84 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
85 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
86 int bus_num = (config_addr >> 16) & 0xFF;
87 int devfn = (config_addr >> 8) & 0xFF;
89 if (!phb) {
90 return NULL;
93 return pci_find_device(phb->bus, bus_num, devfn);
96 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
98 /* This handles the encoding of extended config space addresses */
99 return ((arg >> 20) & 0xf00) | (arg & 0xff);
102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
103 uint32_t addr, uint32_t size,
104 target_ulong rets)
106 PCIDevice *pci_dev;
107 uint32_t val;
109 if ((size != 1) && (size != 2) && (size != 4)) {
110 /* access must be 1, 2 or 4 bytes */
111 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
112 return;
115 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
116 addr = rtas_pci_cfgaddr(addr);
118 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
119 /* Access must be to a valid device, within bounds and
120 * naturally aligned */
121 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
122 return;
125 val = pci_host_config_read_common(pci_dev, addr,
126 pci_config_size(pci_dev), size);
128 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
129 rtas_st(rets, 1, val);
132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
133 uint32_t token, uint32_t nargs,
134 target_ulong args,
135 uint32_t nret, target_ulong rets)
137 uint64_t buid;
138 uint32_t size, addr;
140 if ((nargs != 4) || (nret != 2)) {
141 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
142 return;
145 buid = rtas_ldq(args, 1);
146 size = rtas_ld(args, 3);
147 addr = rtas_ld(args, 0);
149 finish_read_pci_config(spapr, buid, addr, size, rets);
152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
153 uint32_t token, uint32_t nargs,
154 target_ulong args,
155 uint32_t nret, target_ulong rets)
157 uint32_t size, addr;
159 if ((nargs != 2) || (nret != 2)) {
160 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
161 return;
164 size = rtas_ld(args, 1);
165 addr = rtas_ld(args, 0);
167 finish_read_pci_config(spapr, 0, addr, size, rets);
170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
171 uint32_t addr, uint32_t size,
172 uint32_t val, target_ulong rets)
174 PCIDevice *pci_dev;
176 if ((size != 1) && (size != 2) && (size != 4)) {
177 /* access must be 1, 2 or 4 bytes */
178 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
179 return;
182 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
183 addr = rtas_pci_cfgaddr(addr);
185 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
186 /* Access must be to a valid device, within bounds and
187 * naturally aligned */
188 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
189 return;
192 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
193 val, size);
195 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
199 uint32_t token, uint32_t nargs,
200 target_ulong args,
201 uint32_t nret, target_ulong rets)
203 uint64_t buid;
204 uint32_t val, size, addr;
206 if ((nargs != 5) || (nret != 1)) {
207 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
208 return;
211 buid = rtas_ldq(args, 1);
212 val = rtas_ld(args, 4);
213 size = rtas_ld(args, 3);
214 addr = rtas_ld(args, 0);
216 finish_write_pci_config(spapr, buid, addr, size, val, rets);
219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
220 uint32_t token, uint32_t nargs,
221 target_ulong args,
222 uint32_t nret, target_ulong rets)
224 uint32_t val, size, addr;
226 if ((nargs != 3) || (nret != 1)) {
227 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
228 return;
232 val = rtas_ld(args, 2);
233 size = rtas_ld(args, 1);
234 addr = rtas_ld(args, 0);
236 finish_write_pci_config(spapr, 0, addr, size, val, rets);
240 * Set MSI/MSIX message data.
241 * This is required for msi_notify()/msix_notify() which
242 * will write at the addresses via spapr_msi_write().
244 * If hwaddr == 0, all entries will have .data == first_irq i.e.
245 * table will be reset.
247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
248 unsigned first_irq, unsigned req_num)
250 unsigned i;
251 MSIMessage msg = { .address = addr, .data = first_irq };
253 if (!msix) {
254 msi_set_message(pdev, msg);
255 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
256 return;
259 for (i = 0; i < req_num; ++i) {
260 msix_set_message(pdev, i, msg);
261 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
262 if (addr) {
263 ++msg.data;
268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
269 uint32_t token, uint32_t nargs,
270 target_ulong args, uint32_t nret,
271 target_ulong rets)
273 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
274 uint32_t config_addr = rtas_ld(args, 0);
275 uint64_t buid = rtas_ldq(args, 1);
276 unsigned int func = rtas_ld(args, 3);
277 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
278 unsigned int seq_num = rtas_ld(args, 5);
279 unsigned int ret_intr_type;
280 unsigned int irq, max_irqs = 0;
281 SpaprPhbState *phb = NULL;
282 PCIDevice *pdev = NULL;
283 SpaprPciMsi *msi;
284 int *config_addr_key;
285 Error *err = NULL;
286 int i;
288 /* Fins SpaprPhbState */
289 phb = spapr_pci_find_phb(spapr, buid);
290 if (phb) {
291 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
293 if (!phb || !pdev) {
294 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
295 return;
298 switch (func) {
299 case RTAS_CHANGE_FN:
300 if (msi_present(pdev)) {
301 ret_intr_type = RTAS_TYPE_MSI;
302 } else if (msix_present(pdev)) {
303 ret_intr_type = RTAS_TYPE_MSIX;
304 } else {
305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306 return;
308 break;
309 case RTAS_CHANGE_MSI_FN:
310 if (msi_present(pdev)) {
311 ret_intr_type = RTAS_TYPE_MSI;
312 } else {
313 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
314 return;
316 break;
317 case RTAS_CHANGE_MSIX_FN:
318 if (msix_present(pdev)) {
319 ret_intr_type = RTAS_TYPE_MSIX;
320 } else {
321 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
322 return;
324 break;
325 default:
326 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
327 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
328 return;
331 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
333 /* Releasing MSIs */
334 if (!req_num) {
335 if (!msi) {
336 trace_spapr_pci_msi("Releasing wrong config", config_addr);
337 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
338 return;
341 if (msi_present(pdev)) {
342 spapr_msi_setmsg(pdev, 0, false, 0, 0);
344 if (msix_present(pdev)) {
345 spapr_msi_setmsg(pdev, 0, true, 0, 0);
347 g_hash_table_remove(phb->msi, &config_addr);
349 trace_spapr_pci_msi("Released MSIs", config_addr);
350 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
351 rtas_st(rets, 1, 0);
352 return;
355 /* Enabling MSI */
357 /* Check if the device supports as many IRQs as requested */
358 if (ret_intr_type == RTAS_TYPE_MSI) {
359 max_irqs = msi_nr_vectors_allocated(pdev);
360 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
361 max_irqs = pdev->msix_entries_nr;
363 if (!max_irqs) {
364 error_report("Requested interrupt type %d is not enabled for device %x",
365 ret_intr_type, config_addr);
366 rtas_st(rets, 0, -1); /* Hardware error */
367 return;
369 /* Correct the number if the guest asked for too many */
370 if (req_num > max_irqs) {
371 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
372 req_num = max_irqs;
373 irq = 0; /* to avoid misleading trace */
374 goto out;
377 /* Allocate MSIs */
378 if (smc->legacy_irq_allocation) {
379 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
380 &err);
381 } else {
382 irq = spapr_irq_msi_alloc(spapr, req_num,
383 ret_intr_type == RTAS_TYPE_MSI, &err);
385 if (err) {
386 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
387 config_addr);
388 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
389 return;
392 for (i = 0; i < req_num; i++) {
393 spapr_irq_claim(spapr, irq + i, false, &err);
394 if (err) {
395 if (i) {
396 spapr_irq_free(spapr, irq, i);
398 if (!smc->legacy_irq_allocation) {
399 spapr_irq_msi_free(spapr, irq, req_num);
401 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
402 config_addr);
403 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
404 return;
408 /* Release previous MSIs */
409 if (msi) {
410 g_hash_table_remove(phb->msi, &config_addr);
413 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
414 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
415 irq, req_num);
417 /* Add MSI device to cache */
418 msi = g_new(SpaprPciMsi, 1);
419 msi->first_irq = irq;
420 msi->num = req_num;
421 config_addr_key = g_new(int, 1);
422 *config_addr_key = config_addr;
423 g_hash_table_insert(phb->msi, config_addr_key, msi);
425 out:
426 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
427 rtas_st(rets, 1, req_num);
428 rtas_st(rets, 2, ++seq_num);
429 if (nret > 3) {
430 rtas_st(rets, 3, ret_intr_type);
433 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
436 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
437 SpaprMachineState *spapr,
438 uint32_t token,
439 uint32_t nargs,
440 target_ulong args,
441 uint32_t nret,
442 target_ulong rets)
444 uint32_t config_addr = rtas_ld(args, 0);
445 uint64_t buid = rtas_ldq(args, 1);
446 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
447 SpaprPhbState *phb = NULL;
448 PCIDevice *pdev = NULL;
449 SpaprPciMsi *msi;
451 /* Find SpaprPhbState */
452 phb = spapr_pci_find_phb(spapr, buid);
453 if (phb) {
454 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
456 if (!phb || !pdev) {
457 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
458 return;
461 /* Find device descriptor and start IRQ */
462 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
463 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
464 trace_spapr_pci_msi("Failed to return vector", config_addr);
465 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
466 return;
468 intr_src_num = msi->first_irq + ioa_intr_num;
469 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
470 intr_src_num);
472 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
473 rtas_st(rets, 1, intr_src_num);
474 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
477 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
478 SpaprMachineState *spapr,
479 uint32_t token, uint32_t nargs,
480 target_ulong args, uint32_t nret,
481 target_ulong rets)
483 SpaprPhbState *sphb;
484 uint32_t addr, option;
485 uint64_t buid;
486 int ret;
488 if ((nargs != 4) || (nret != 1)) {
489 goto param_error_exit;
492 buid = rtas_ldq(args, 1);
493 addr = rtas_ld(args, 0);
494 option = rtas_ld(args, 3);
496 sphb = spapr_pci_find_phb(spapr, buid);
497 if (!sphb) {
498 goto param_error_exit;
501 if (!spapr_phb_eeh_available(sphb)) {
502 goto param_error_exit;
505 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
506 rtas_st(rets, 0, ret);
507 return;
509 param_error_exit:
510 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
513 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
514 SpaprMachineState *spapr,
515 uint32_t token, uint32_t nargs,
516 target_ulong args, uint32_t nret,
517 target_ulong rets)
519 SpaprPhbState *sphb;
520 PCIDevice *pdev;
521 uint32_t addr, option;
522 uint64_t buid;
524 if ((nargs != 4) || (nret != 2)) {
525 goto param_error_exit;
528 buid = rtas_ldq(args, 1);
529 sphb = spapr_pci_find_phb(spapr, buid);
530 if (!sphb) {
531 goto param_error_exit;
534 if (!spapr_phb_eeh_available(sphb)) {
535 goto param_error_exit;
539 * We always have PE address of form "00BB0001". "BB"
540 * represents the bus number of PE's primary bus.
542 option = rtas_ld(args, 3);
543 switch (option) {
544 case RTAS_GET_PE_ADDR:
545 addr = rtas_ld(args, 0);
546 pdev = spapr_pci_find_dev(spapr, buid, addr);
547 if (!pdev) {
548 goto param_error_exit;
551 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
552 break;
553 case RTAS_GET_PE_MODE:
554 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
555 break;
556 default:
557 goto param_error_exit;
560 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
561 return;
563 param_error_exit:
564 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
567 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
568 SpaprMachineState *spapr,
569 uint32_t token, uint32_t nargs,
570 target_ulong args, uint32_t nret,
571 target_ulong rets)
573 SpaprPhbState *sphb;
574 uint64_t buid;
575 int state, ret;
577 if ((nargs != 3) || (nret != 4 && nret != 5)) {
578 goto param_error_exit;
581 buid = rtas_ldq(args, 1);
582 sphb = spapr_pci_find_phb(spapr, buid);
583 if (!sphb) {
584 goto param_error_exit;
587 if (!spapr_phb_eeh_available(sphb)) {
588 goto param_error_exit;
591 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
592 rtas_st(rets, 0, ret);
593 if (ret != RTAS_OUT_SUCCESS) {
594 return;
597 rtas_st(rets, 1, state);
598 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
599 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
600 if (nret >= 5) {
601 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
603 return;
605 param_error_exit:
606 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
609 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
610 SpaprMachineState *spapr,
611 uint32_t token, uint32_t nargs,
612 target_ulong args, uint32_t nret,
613 target_ulong rets)
615 SpaprPhbState *sphb;
616 uint32_t option;
617 uint64_t buid;
618 int ret;
620 if ((nargs != 4) || (nret != 1)) {
621 goto param_error_exit;
624 buid = rtas_ldq(args, 1);
625 option = rtas_ld(args, 3);
626 sphb = spapr_pci_find_phb(spapr, buid);
627 if (!sphb) {
628 goto param_error_exit;
631 if (!spapr_phb_eeh_available(sphb)) {
632 goto param_error_exit;
635 ret = spapr_phb_vfio_eeh_reset(sphb, option);
636 rtas_st(rets, 0, ret);
637 return;
639 param_error_exit:
640 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
643 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
644 SpaprMachineState *spapr,
645 uint32_t token, uint32_t nargs,
646 target_ulong args, uint32_t nret,
647 target_ulong rets)
649 SpaprPhbState *sphb;
650 uint64_t buid;
651 int ret;
653 if ((nargs != 3) || (nret != 1)) {
654 goto param_error_exit;
657 buid = rtas_ldq(args, 1);
658 sphb = spapr_pci_find_phb(spapr, buid);
659 if (!sphb) {
660 goto param_error_exit;
663 if (!spapr_phb_eeh_available(sphb)) {
664 goto param_error_exit;
667 ret = spapr_phb_vfio_eeh_configure(sphb);
668 rtas_st(rets, 0, ret);
669 return;
671 param_error_exit:
672 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
675 /* To support it later */
676 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
677 SpaprMachineState *spapr,
678 uint32_t token, uint32_t nargs,
679 target_ulong args, uint32_t nret,
680 target_ulong rets)
682 SpaprPhbState *sphb;
683 int option;
684 uint64_t buid;
686 if ((nargs != 8) || (nret != 1)) {
687 goto param_error_exit;
690 buid = rtas_ldq(args, 1);
691 sphb = spapr_pci_find_phb(spapr, buid);
692 if (!sphb) {
693 goto param_error_exit;
696 if (!spapr_phb_eeh_available(sphb)) {
697 goto param_error_exit;
700 option = rtas_ld(args, 7);
701 switch (option) {
702 case RTAS_SLOT_TEMP_ERR_LOG:
703 case RTAS_SLOT_PERM_ERR_LOG:
704 break;
705 default:
706 goto param_error_exit;
709 /* We don't have error log yet */
710 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
711 return;
713 param_error_exit:
714 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
717 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
720 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
721 * corresponding qemu_irq.
723 SpaprPhbState *phb = opaque;
724 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
726 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
727 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
730 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
732 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
733 PCIINTxRoute route;
735 route.mode = PCI_INTX_ENABLED;
736 route.irq = sphb->lsi_table[pin].irq;
738 return route;
741 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size)
743 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
744 return 0;
748 * MSI/MSIX memory region implementation.
749 * The handler handles both MSI and MSIX.
750 * The vector number is encoded in least bits in data.
752 static void spapr_msi_write(void *opaque, hwaddr addr,
753 uint64_t data, unsigned size)
755 SpaprMachineState *spapr = opaque;
756 uint32_t irq = data;
758 trace_spapr_pci_msi_write(addr, data, irq);
760 qemu_irq_pulse(spapr_qirq(spapr, irq));
763 static const MemoryRegionOps spapr_msi_ops = {
765 * .read result is undefined by PCI spec.
766 * define .read method to avoid assert failure in memory_region_init_io
768 .read = spapr_msi_read,
769 .write = spapr_msi_write,
770 .endianness = DEVICE_LITTLE_ENDIAN
774 * PHB PCI device
776 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
778 SpaprPhbState *phb = opaque;
780 return &phb->iommu_as;
783 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
785 g_autofree char *path = NULL;
786 g_autofree char *host = NULL;
787 g_autofree char *devspec = NULL;
788 char *buf = NULL;
790 /* Get the PCI VFIO host id */
791 host = object_property_get_str(OBJECT(pdev), "host", NULL);
792 if (!host) {
793 return NULL;
796 /* Construct the path of the file that will give us the DT location */
797 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
798 if (!g_file_get_contents(path, &devspec, NULL, NULL)) {
799 return NULL;
802 /* Construct and read from host device tree the loc-code */
803 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", devspec);
804 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
805 return NULL;
807 return buf;
810 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
812 char *buf;
813 const char *devtype = "qemu";
814 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
816 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
817 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
818 if (buf) {
819 return buf;
821 devtype = "vfio";
824 * For emulated devices and VFIO-failure case, make up
825 * the loc-code.
827 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
828 devtype, pdev->name, sphb->index, busnr,
829 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
830 return buf;
833 /* Macros to operate with address in OF binding to PCI */
834 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
835 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
836 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
837 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
838 #define b_ss(x) b_x((x), 24, 2) /* the space code */
839 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
840 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
841 #define b_fff(x) b_x((x), 8, 3) /* function number */
842 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
844 /* for 'reg' OF properties */
845 #define RESOURCE_CELLS_SIZE 2
846 #define RESOURCE_CELLS_ADDRESS 3
848 typedef struct ResourceFields {
849 uint32_t phys_hi;
850 uint32_t phys_mid;
851 uint32_t phys_lo;
852 uint32_t size_hi;
853 uint32_t size_lo;
854 } QEMU_PACKED ResourceFields;
856 typedef struct ResourceProps {
857 ResourceFields reg[8];
858 uint32_t reg_len;
859 } ResourceProps;
861 /* fill in the 'reg' OF properties for
862 * a PCI device. 'reg' describes resource requirements for a
863 * device's IO/MEM regions.
865 * the property is an array of ('phys-addr', 'size') pairs describing
866 * the addressable regions of the PCI device, where 'phys-addr' is a
867 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
868 * (phys.hi, phys.mid, phys.lo), and 'size' is a
869 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
871 * phys.hi = 0xYYXXXXZZ, where:
872 * 0xYY = npt000ss
873 * ||| |
874 * ||| +-- space code
875 * ||| |
876 * ||| + 00 if configuration space
877 * ||| + 01 if IO region,
878 * ||| + 10 if 32-bit MEM region
879 * ||| + 11 if 64-bit MEM region
880 * |||
881 * ||+------ for non-relocatable IO: 1 if aliased
882 * || for relocatable IO: 1 if below 64KB
883 * || for MEM: 1 if below 1MB
884 * |+------- 1 if region is prefetchable
885 * +-------- 1 if region is non-relocatable
886 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
887 * bits respectively
888 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
889 * to the region
891 * phys.mid and phys.lo correspond respectively to the hi/lo portions
892 * of the actual address of the region.
894 * note also that addresses defined in this property are, at least
895 * for PAPR guests, relative to the PHBs IO/MEM windows, and
896 * correspond directly to the addresses in the BARs.
898 * in accordance with PCI Bus Binding to Open Firmware,
899 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
900 * Appendix C.
902 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
904 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
905 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
906 b_ddddd(PCI_SLOT(d->devfn)) |
907 b_fff(PCI_FUNC(d->devfn)));
908 ResourceFields *reg;
909 int i, reg_idx = 0;
911 /* config space region */
912 reg = &rp->reg[reg_idx++];
913 reg->phys_hi = cpu_to_be32(dev_id);
914 reg->phys_mid = 0;
915 reg->phys_lo = 0;
916 reg->size_hi = 0;
917 reg->size_lo = 0;
919 for (i = 0; i < PCI_NUM_REGIONS; i++) {
920 if (!d->io_regions[i].size) {
921 continue;
924 reg = &rp->reg[reg_idx++];
926 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
927 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
928 reg->phys_hi |= cpu_to_be32(b_ss(1));
929 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
930 reg->phys_hi |= cpu_to_be32(b_ss(3));
931 } else {
932 reg->phys_hi |= cpu_to_be32(b_ss(2));
934 reg->phys_mid = 0;
935 reg->phys_lo = 0;
936 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
937 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
940 rp->reg_len = reg_idx * sizeof(ResourceFields);
943 typedef struct PCIClass PCIClass;
944 typedef struct PCISubClass PCISubClass;
945 typedef struct PCIIFace PCIIFace;
947 struct PCIIFace {
948 int iface;
949 const char *name;
952 struct PCISubClass {
953 int subclass;
954 const char *name;
955 const PCIIFace *iface;
958 struct PCIClass {
959 const char *name;
960 const PCISubClass *subc;
963 static const PCISubClass undef_subclass[] = {
964 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
965 { 0xFF, NULL, NULL },
968 static const PCISubClass mass_subclass[] = {
969 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
970 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
971 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
972 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
973 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
974 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
975 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
976 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
977 { 0xFF, NULL, NULL },
980 static const PCISubClass net_subclass[] = {
981 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
982 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
983 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
984 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
985 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
986 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
987 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
988 { 0xFF, NULL, NULL },
991 static const PCISubClass displ_subclass[] = {
992 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
993 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
994 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
995 { 0xFF, NULL, NULL },
998 static const PCISubClass media_subclass[] = {
999 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1000 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1001 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1002 { 0xFF, NULL, NULL },
1005 static const PCISubClass mem_subclass[] = {
1006 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1007 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1008 { 0xFF, NULL, NULL },
1011 static const PCISubClass bridg_subclass[] = {
1012 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1013 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1014 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1015 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1016 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1017 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1018 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1019 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1020 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1021 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1022 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1023 { 0xFF, NULL, NULL },
1026 static const PCISubClass comm_subclass[] = {
1027 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1028 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1029 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1030 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1031 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1032 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1033 { 0xFF, NULL, NULL, },
1036 static const PCIIFace pic_iface[] = {
1037 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1038 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1039 { 0xFF, NULL },
1042 static const PCISubClass sys_subclass[] = {
1043 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1044 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1045 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1046 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1047 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1048 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1049 { 0xFF, NULL, NULL },
1052 static const PCISubClass inp_subclass[] = {
1053 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1054 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1055 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1056 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1057 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1058 { 0xFF, NULL, NULL },
1061 static const PCISubClass dock_subclass[] = {
1062 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1063 { 0xFF, NULL, NULL },
1066 static const PCISubClass cpu_subclass[] = {
1067 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1068 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1069 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1070 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1071 { 0xFF, NULL, NULL },
1074 static const PCIIFace usb_iface[] = {
1075 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1076 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1077 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1078 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1079 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1080 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1081 { 0xFF, NULL },
1084 static const PCISubClass ser_subclass[] = {
1085 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1086 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1087 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1088 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1089 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1090 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1091 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1092 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1093 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1094 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1095 { 0xFF, NULL, NULL },
1098 static const PCISubClass wrl_subclass[] = {
1099 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1100 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1101 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1102 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1103 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1104 { 0xFF, NULL, NULL },
1107 static const PCISubClass sat_subclass[] = {
1108 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1109 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1110 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1111 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1112 { 0xFF, NULL, NULL },
1115 static const PCISubClass crypt_subclass[] = {
1116 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1117 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1118 "entertainment-encryption", NULL },
1119 { 0xFF, NULL, NULL },
1122 static const PCISubClass spc_subclass[] = {
1123 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1124 { PCI_CLASS_SP_PERF, "counter", NULL },
1125 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1126 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1127 { 0xFF, NULL, NULL },
1130 static const PCIClass pci_classes[] = {
1131 { "legacy-device", undef_subclass },
1132 { "mass-storage", mass_subclass },
1133 { "network", net_subclass },
1134 { "display", displ_subclass, },
1135 { "multimedia-device", media_subclass },
1136 { "memory-controller", mem_subclass },
1137 { "unknown-bridge", bridg_subclass },
1138 { "communication-controller", comm_subclass},
1139 { "system-peripheral", sys_subclass },
1140 { "input-controller", inp_subclass },
1141 { "docking-station", dock_subclass },
1142 { "cpu", cpu_subclass },
1143 { "serial-bus", ser_subclass },
1144 { "wireless-controller", wrl_subclass },
1145 { "intelligent-io", NULL },
1146 { "satellite-device", sat_subclass },
1147 { "encryption", crypt_subclass },
1148 { "data-processing-controller", spc_subclass },
1151 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1152 uint8_t iface)
1154 const PCIClass *pclass;
1155 const PCISubClass *psubclass;
1156 const PCIIFace *piface;
1157 const char *name;
1159 if (class >= ARRAY_SIZE(pci_classes)) {
1160 return "pci";
1163 pclass = pci_classes + class;
1164 name = pclass->name;
1166 if (pclass->subc == NULL) {
1167 return name;
1170 psubclass = pclass->subc;
1171 while ((psubclass->subclass & 0xff) != 0xff) {
1172 if ((psubclass->subclass & 0xff) == subclass) {
1173 name = psubclass->name;
1174 break;
1176 psubclass++;
1179 piface = psubclass->iface;
1180 if (piface == NULL) {
1181 return name;
1183 while ((piface->iface & 0xff) != 0xff) {
1184 if ((piface->iface & 0xff) == iface) {
1185 name = piface->name;
1186 break;
1188 piface++;
1191 return name;
1195 * DRC helper functions
1198 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1199 uint8_t chassis, int32_t devfn)
1201 return (phb->index << 16) | (chassis << 8) | devfn;
1204 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1205 uint8_t chassis, int32_t devfn)
1207 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1208 drc_id_from_devfn(phb, chassis, devfn));
1211 static uint8_t chassis_from_bus(PCIBus *bus)
1213 if (pci_bus_is_root(bus)) {
1214 return 0;
1215 } else {
1216 PCIDevice *bridge = pci_bridge_get_device(bus);
1218 return object_property_get_uint(OBJECT(bridge), "chassis_nr",
1219 &error_abort);
1223 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1225 uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
1227 return drc_from_devfn(phb, chassis, dev->devfn);
1230 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
1232 Object *owner;
1233 int i;
1234 uint8_t chassis;
1236 if (!phb->dr_enabled) {
1237 return;
1240 chassis = chassis_from_bus(bus);
1242 if (pci_bus_is_root(bus)) {
1243 owner = OBJECT(phb);
1244 } else {
1245 owner = OBJECT(pci_bridge_get_device(bus));
1248 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1249 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1250 drc_id_from_devfn(phb, chassis, i));
1254 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
1256 int i;
1257 uint8_t chassis;
1259 if (!phb->dr_enabled) {
1260 return;
1263 chassis = chassis_from_bus(bus);
1265 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1266 SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1268 if (drc) {
1269 object_unparent(OBJECT(drc));
1274 typedef struct PciWalkFdt {
1275 void *fdt;
1276 int offset;
1277 SpaprPhbState *sphb;
1278 int err;
1279 } PciWalkFdt;
1281 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1282 void *fdt, int parent_offset);
1284 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1285 void *opaque)
1287 PciWalkFdt *p = opaque;
1288 int err;
1290 if (p->err) {
1291 /* Something's already broken, don't keep going */
1292 return;
1295 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1296 if (err < 0) {
1297 p->err = err;
1301 /* Augment PCI device node with bridge specific information */
1302 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1303 void *fdt, int offset)
1305 Object *owner;
1306 PciWalkFdt cbinfo = {
1307 .fdt = fdt,
1308 .offset = offset,
1309 .sphb = sphb,
1310 .err = 0,
1312 int ret;
1314 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1315 RESOURCE_CELLS_ADDRESS));
1316 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1317 RESOURCE_CELLS_SIZE));
1319 assert(bus);
1320 pci_for_each_device_reverse(bus, pci_bus_num(bus),
1321 spapr_dt_pci_device_cb, &cbinfo);
1322 if (cbinfo.err) {
1323 return cbinfo.err;
1326 if (pci_bus_is_root(bus)) {
1327 owner = OBJECT(sphb);
1328 } else {
1329 owner = OBJECT(pci_bridge_get_device(bus));
1332 ret = spapr_dt_drc(fdt, offset, owner,
1333 SPAPR_DR_CONNECTOR_TYPE_PCI);
1334 if (ret) {
1335 return ret;
1338 return offset;
1341 char *spapr_pci_fw_dev_name(PCIDevice *dev)
1343 const gchar *basename;
1344 int slot = PCI_SLOT(dev->devfn);
1345 int func = PCI_FUNC(dev->devfn);
1346 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1348 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1349 ccode & 0xff);
1351 if (func != 0) {
1352 return g_strdup_printf("%s@%x,%x", basename, slot, func);
1353 } else {
1354 return g_strdup_printf("%s@%x", basename, slot);
1358 /* create OF node for pci device and required OF DT properties */
1359 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1360 void *fdt, int parent_offset)
1362 int offset;
1363 g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev);
1364 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
1365 ResourceProps rp;
1366 SpaprDrc *drc = drc_from_dev(sphb, dev);
1367 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1368 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1369 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1370 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1371 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1372 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1373 uint32_t subsystem_vendor_id =
1374 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1375 uint32_t cache_line_size =
1376 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1377 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1378 gchar *loc_code;
1380 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1382 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1383 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1384 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1385 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1387 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1388 if (irq_pin) {
1389 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1392 if (subsystem_id) {
1393 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1396 if (subsystem_vendor_id) {
1397 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1398 subsystem_vendor_id));
1401 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1404 /* the following fdt cells are masked off the pci status register */
1405 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1406 PCI_STATUS_DEVSEL_MASK & pci_status));
1408 if (pci_status & PCI_STATUS_FAST_BACK) {
1409 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1411 if (pci_status & PCI_STATUS_66MHZ) {
1412 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1414 if (pci_status & PCI_STATUS_UDF) {
1415 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1418 loc_code = spapr_phb_get_loc_code(sphb, dev);
1419 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1420 g_free(loc_code);
1422 if (drc) {
1423 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1424 spapr_drc_index(drc)));
1427 if (msi_present(dev)) {
1428 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1429 if (max_msi) {
1430 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1433 if (msix_present(dev)) {
1434 uint32_t max_msix = dev->msix_entries_nr;
1435 if (max_msix) {
1436 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1440 populate_resource_props(dev, &rp);
1441 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1443 if (sphb->pcie_ecs && pci_is_express(dev)) {
1444 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1447 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1449 if (!pc->is_bridge) {
1450 /* Properties only for non-bridges */
1451 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1452 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1453 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1454 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1455 return offset;
1456 } else {
1457 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1459 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1463 /* Callback to be called during DRC release. */
1464 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1466 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1468 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1469 object_unparent(OBJECT(dev));
1472 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1473 void *fdt, int *fdt_start_offset, Error **errp)
1475 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1476 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1477 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1479 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1480 return 0;
1483 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1484 PCIBridge *bridge)
1486 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1488 add_drcs(phb, bus);
1491 /* Returns non-zero if the value of "chassis_nr" is already in use */
1492 static int check_chassis_nr(Object *obj, void *opaque)
1494 int new_chassis_nr =
1495 object_property_get_uint(opaque, "chassis_nr", &error_abort);
1496 int chassis_nr =
1497 object_property_get_uint(obj, "chassis_nr", NULL);
1499 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
1500 return 0;
1503 /* Skip unsupported bridge types */
1504 if (!chassis_nr) {
1505 return 0;
1508 /* Skip self */
1509 if (obj == opaque) {
1510 return 0;
1513 return chassis_nr == new_chassis_nr;
1516 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
1518 int chassis_nr =
1519 object_property_get_uint(bridge, "chassis_nr", NULL);
1522 * slotid_cap_init() already ensures that "chassis_nr" isn't null for
1523 * standard PCI bridges, so this really tells if "chassis_nr" is present
1524 * or not.
1526 if (!chassis_nr) {
1527 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
1528 error_append_hint(errp, "Try -device pci-bridge instead.\n");
1529 return false;
1532 /* We want unique values for "chassis_nr" */
1533 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
1534 bridge)) {
1535 error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
1536 return false;
1539 return true;
1542 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
1543 DeviceState *plugged_dev, Error **errp)
1545 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1546 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1547 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1548 SpaprDrc *drc = drc_from_dev(phb, pdev);
1549 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1550 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1552 if (!phb->dr_enabled) {
1553 /* if this is a hotplug operation initiated by the user
1554 * we need to let them know it's not enabled
1556 if (plugged_dev->hotplugged) {
1557 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1558 object_get_typename(OBJECT(phb)));
1559 return;
1563 if (pc->is_bridge) {
1564 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
1565 return;
1569 /* Following the QEMU convention used for PCIe multifunction
1570 * hotplug, we do not allow functions to be hotplugged to a
1571 * slot that already has function 0 present
1573 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1574 PCI_FUNC(pdev->devfn) != 0) {
1575 error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
1576 " additional functions can no longer be exposed to guest.",
1577 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1580 if (drc && drc->dev) {
1581 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
1582 pci_get_function_0(PCI_DEVICE(drc->dev))->name);
1583 return;
1587 static void spapr_pci_plug(HotplugHandler *plug_handler,
1588 DeviceState *plugged_dev, Error **errp)
1590 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1591 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1592 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1593 SpaprDrc *drc = drc_from_dev(phb, pdev);
1594 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1597 * If DR is disabled we don't need to do anything in the case of
1598 * hotplug or coldplug callbacks.
1600 if (!phb->dr_enabled) {
1601 return;
1604 g_assert(drc);
1606 if (pc->is_bridge) {
1607 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
1610 /* spapr_pci_pre_plug() already checked the DRC is attachable */
1611 spapr_drc_attach(drc, DEVICE(pdev));
1613 /* If this is function 0, signal hotplug for all the device functions.
1614 * Otherwise defer sending the hotplug event.
1616 if (!spapr_drc_hotplugged(plugged_dev)) {
1617 spapr_drc_reset(drc);
1618 } else if (PCI_FUNC(pdev->devfn) == 0) {
1619 int i;
1620 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1622 for (i = 0; i < 8; i++) {
1623 SpaprDrc *func_drc;
1624 SpaprDrcClass *func_drck;
1625 SpaprDREntitySense state;
1627 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1628 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1629 state = func_drck->dr_entity_sense(func_drc);
1631 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1632 spapr_hotplug_req_add_by_index(func_drc);
1638 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1639 PCIBridge *bridge)
1641 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1643 remove_drcs(phb, bus);
1646 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1647 DeviceState *plugged_dev, Error **errp)
1649 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1650 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1652 /* some version guests do not wait for completion of a device
1653 * cleanup (generally done asynchronously by the kernel) before
1654 * signaling to QEMU that the device is safe, but instead sleep
1655 * for some 'safe' period of time. unfortunately on a busy host
1656 * this sleep isn't guaranteed to be long enough, resulting in
1657 * bad things like IRQ lines being left asserted during final
1658 * device removal. to deal with this we call reset just prior
1659 * to finalizing the device, which will put the device back into
1660 * an 'idle' state, as the device cleanup code expects.
1662 pci_device_reset(PCI_DEVICE(plugged_dev));
1664 if (pc->is_bridge) {
1665 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
1666 return;
1669 qdev_unrealize(plugged_dev);
1672 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1673 DeviceState *plugged_dev, Error **errp)
1675 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1676 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1677 SpaprDrc *drc = drc_from_dev(phb, pdev);
1679 if (!phb->dr_enabled) {
1680 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1681 object_get_typename(OBJECT(phb)));
1682 return;
1685 g_assert(drc);
1686 g_assert(drc->dev == plugged_dev);
1688 if (!spapr_drc_unplug_requested(drc)) {
1689 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1690 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1691 SpaprDrc *func_drc;
1692 SpaprDrcClass *func_drck;
1693 SpaprDREntitySense state;
1694 int i;
1695 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1697 if (pc->is_bridge) {
1698 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1699 return;
1701 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
1702 error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
1703 return;
1706 /* ensure any other present functions are pending unplug */
1707 if (PCI_FUNC(pdev->devfn) == 0) {
1708 for (i = 1; i < 8; i++) {
1709 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1710 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1711 state = func_drck->dr_entity_sense(func_drc);
1712 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1713 && !spapr_drc_unplug_requested(func_drc)) {
1715 * Attempting to remove function 0 of a multifunction
1716 * device will will cascade into removing all child
1717 * functions, even if their unplug weren't requested
1718 * beforehand.
1720 spapr_drc_unplug_request(func_drc);
1725 spapr_drc_unplug_request(drc);
1727 /* if this isn't func 0, defer unplug event. otherwise signal removal
1728 * for all present functions
1730 if (PCI_FUNC(pdev->devfn) == 0) {
1731 for (i = 7; i >= 0; i--) {
1732 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1733 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1734 state = func_drck->dr_entity_sense(func_drc);
1735 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1736 spapr_hotplug_req_remove_by_index(func_drc);
1740 } else {
1741 error_setg(errp,
1742 "PCI device unplug already in progress for device %s",
1743 drc->dev->id);
1747 static void spapr_phb_finalizefn(Object *obj)
1749 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1751 g_free(sphb->dtbusname);
1752 sphb->dtbusname = NULL;
1755 static void spapr_phb_unrealize(DeviceState *dev)
1757 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1758 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1759 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1760 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1761 SpaprTceTable *tcet;
1762 int i;
1763 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1765 spapr_phb_nvgpu_free(sphb);
1767 if (sphb->msi) {
1768 g_hash_table_unref(sphb->msi);
1769 sphb->msi = NULL;
1773 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1774 * via PHB's unrealize->object_finalize
1776 for (i = windows_supported - 1; i >= 0; i--) {
1777 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1778 if (tcet) {
1779 memory_region_del_subregion(&sphb->iommu_root,
1780 spapr_tce_get_iommu(tcet));
1784 remove_drcs(sphb, phb->bus);
1786 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1787 if (sphb->lsi_table[i].irq) {
1788 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1789 sphb->lsi_table[i].irq = 0;
1793 QLIST_REMOVE(sphb, list);
1795 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1798 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1799 * unmapped all sections. Remove the listeners now, before destroying the
1800 * address space.
1802 address_space_remove_listeners(&sphb->iommu_as);
1803 address_space_destroy(&sphb->iommu_as);
1805 qbus_set_hotplug_handler(BUS(phb->bus), NULL);
1806 pci_unregister_root_bus(phb->bus);
1808 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1809 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1810 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1812 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1815 static void spapr_phb_destroy_msi(gpointer opaque)
1817 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1818 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1819 SpaprPciMsi *msi = opaque;
1821 if (!smc->legacy_irq_allocation) {
1822 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
1824 spapr_irq_free(spapr, msi->first_irq, msi->num);
1825 g_free(msi);
1828 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1830 ERRP_GUARD();
1831 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1832 * tries to add a sPAPR PHB to a non-pseries machine.
1834 SpaprMachineState *spapr =
1835 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1836 TYPE_SPAPR_MACHINE);
1837 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1838 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1839 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1840 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1841 MachineState *ms = MACHINE(spapr);
1842 char *namebuf;
1843 int i;
1844 PCIBus *bus;
1845 uint64_t msi_window_size = 4096;
1846 SpaprTceTable *tcet;
1847 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1849 if (!spapr) {
1850 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1851 return;
1854 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1856 if (sphb->mem64_win_size != 0) {
1857 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1858 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1859 " (max 2 GiB)", sphb->mem_win_size);
1860 return;
1863 /* 64-bit window defaults to identity mapping */
1864 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1865 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1867 * For compatibility with old configuration, if no 64-bit MMIO
1868 * window is specified, but the ordinary (32-bit) memory
1869 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1870 * window, with a 64-bit MMIO window following on immediately
1871 * afterwards
1873 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1874 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1875 sphb->mem64_win_pciaddr =
1876 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1877 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1880 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1881 SpaprPhbState *s;
1883 error_setg(errp, "PCI host bridges must have unique indexes");
1884 error_append_hint(errp, "The following indexes are already in use:");
1885 QLIST_FOREACH(s, &spapr->phbs, list) {
1886 error_append_hint(errp, " %d", s->index);
1888 error_append_hint(errp, "\nTry another value for the index property\n");
1889 return;
1892 if (sphb->numa_node != -1 &&
1893 (sphb->numa_node >= MAX_NODES ||
1894 !ms->numa_state->nodes[sphb->numa_node].present)) {
1895 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1896 return;
1899 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1901 /* Initialize memory regions */
1902 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1903 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1904 g_free(namebuf);
1906 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1907 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1908 namebuf, &sphb->memspace,
1909 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1910 g_free(namebuf);
1911 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1912 &sphb->mem32window);
1914 if (sphb->mem64_win_size != 0) {
1915 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1916 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1917 namebuf, &sphb->memspace,
1918 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1919 g_free(namebuf);
1921 memory_region_add_subregion(get_system_memory(),
1922 sphb->mem64_win_addr,
1923 &sphb->mem64window);
1926 /* Initialize IO regions */
1927 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1928 memory_region_init(&sphb->iospace, OBJECT(sphb),
1929 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1930 g_free(namebuf);
1932 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1933 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1934 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1935 g_free(namebuf);
1936 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1937 &sphb->iowindow);
1939 bus = pci_register_root_bus(dev, NULL,
1940 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1941 &sphb->memspace, &sphb->iospace,
1942 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1943 TYPE_PCI_BUS);
1946 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1947 * para-virtualized PCI bus *does* permit PCI-E extended config
1948 * space access
1950 if (sphb->pcie_ecs) {
1951 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1953 phb->bus = bus;
1954 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
1957 * Initialize PHB address space.
1958 * By default there will be at least one subregion for default
1959 * 32bit DMA window.
1960 * Later the guest might want to create another DMA window
1961 * which will become another memory subregion.
1963 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1964 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1965 namebuf, UINT64_MAX);
1966 g_free(namebuf);
1967 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1968 sphb->dtbusname);
1971 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1972 * we need to allocate some memory to catch those writes coming
1973 * from msi_notify()/msix_notify().
1974 * As MSIMessage:addr is going to be the same and MSIMessage:data
1975 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1976 * be used.
1978 * For KVM we want to ensure that this memory is a full page so that
1979 * our memory slot is of page size granularity.
1981 if (kvm_enabled()) {
1982 msi_window_size = qemu_real_host_page_size;
1985 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1986 "msi", msi_window_size);
1987 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1988 &sphb->msiwindow);
1990 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1992 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1994 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1996 /* Initialize the LSI table */
1997 for (i = 0; i < PCI_NUM_PINS; i++) {
1998 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
2000 if (smc->legacy_irq_allocation) {
2001 irq = spapr_irq_findone(spapr, errp);
2002 if (irq < 0) {
2003 error_prepend(errp, "can't allocate LSIs: ");
2005 * Older machines will never support PHB hotplug, ie, this is an
2006 * init only path and QEMU will terminate. No need to rollback.
2008 return;
2012 if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
2013 error_prepend(errp, "can't allocate LSIs: ");
2014 goto unrealize;
2017 sphb->lsi_table[i].irq = irq;
2020 /* allocate connectors for child PCI devices */
2021 add_drcs(sphb, phb->bus);
2023 /* DMA setup */
2024 for (i = 0; i < windows_supported; ++i) {
2025 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2026 if (!tcet) {
2027 error_setg(errp, "Creating window#%d failed for %s",
2028 i, sphb->dtbusname);
2029 goto unrealize;
2031 memory_region_add_subregion(&sphb->iommu_root, 0,
2032 spapr_tce_get_iommu(tcet));
2035 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
2036 spapr_phb_destroy_msi);
2037 return;
2039 unrealize:
2040 spapr_phb_unrealize(dev);
2043 static int spapr_phb_children_reset(Object *child, void *opaque)
2045 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2047 if (dev) {
2048 device_legacy_reset(dev);
2051 return 0;
2054 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2056 int i;
2057 SpaprTceTable *tcet;
2059 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2060 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2062 if (tcet && tcet->nb_table) {
2063 spapr_tce_table_disable(tcet);
2067 /* Register default 32bit DMA window */
2068 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2069 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2070 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2073 static void spapr_phb_reset(DeviceState *qdev)
2075 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2076 Error *err = NULL;
2078 spapr_phb_dma_reset(sphb);
2079 spapr_phb_nvgpu_free(sphb);
2080 spapr_phb_nvgpu_setup(sphb, &err);
2081 if (err) {
2082 error_report_err(err);
2085 /* Reset the IOMMU state */
2086 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2088 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2089 spapr_phb_vfio_reset(qdev);
2092 g_hash_table_remove_all(sphb->msi);
2095 static Property spapr_phb_properties[] = {
2096 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2097 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2098 SPAPR_PCI_MEM32_WIN_SIZE),
2099 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2100 SPAPR_PCI_MEM64_WIN_SIZE),
2101 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2102 SPAPR_PCI_IO_WIN_SIZE),
2103 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2104 true),
2105 /* Default DMA window is 0..1GB */
2106 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2107 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2108 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2109 0x800000000000000ULL),
2110 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2111 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2112 (1ULL << 12) | (1ULL << 16)
2113 | (1ULL << 21) | (1ULL << 24)),
2114 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2115 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2116 pre_2_8_migration, false),
2117 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2118 pcie_ecs, true),
2119 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
2120 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
2121 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
2122 pre_5_1_assoc, false),
2123 DEFINE_PROP_END_OF_LIST(),
2126 static const VMStateDescription vmstate_spapr_pci_lsi = {
2127 .name = "spapr_pci/lsi",
2128 .version_id = 1,
2129 .minimum_version_id = 1,
2130 .fields = (VMStateField[]) {
2131 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
2133 VMSTATE_END_OF_LIST()
2137 static const VMStateDescription vmstate_spapr_pci_msi = {
2138 .name = "spapr_pci/msi",
2139 .version_id = 1,
2140 .minimum_version_id = 1,
2141 .fields = (VMStateField []) {
2142 VMSTATE_UINT32(key, SpaprPciMsiMig),
2143 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
2144 VMSTATE_UINT32(value.num, SpaprPciMsiMig),
2145 VMSTATE_END_OF_LIST()
2149 static int spapr_pci_pre_save(void *opaque)
2151 SpaprPhbState *sphb = opaque;
2152 GHashTableIter iter;
2153 gpointer key, value;
2154 int i;
2156 if (sphb->pre_2_8_migration) {
2157 sphb->mig_liobn = sphb->dma_liobn[0];
2158 sphb->mig_mem_win_addr = sphb->mem_win_addr;
2159 sphb->mig_mem_win_size = sphb->mem_win_size;
2160 sphb->mig_io_win_addr = sphb->io_win_addr;
2161 sphb->mig_io_win_size = sphb->io_win_size;
2163 if ((sphb->mem64_win_size != 0)
2164 && (sphb->mem64_win_addr
2165 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2166 sphb->mig_mem_win_size += sphb->mem64_win_size;
2170 g_free(sphb->msi_devs);
2171 sphb->msi_devs = NULL;
2172 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2173 if (!sphb->msi_devs_num) {
2174 return 0;
2176 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
2178 g_hash_table_iter_init(&iter, sphb->msi);
2179 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2180 sphb->msi_devs[i].key = *(uint32_t *) key;
2181 sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
2184 return 0;
2187 static int spapr_pci_post_save(void *opaque)
2189 SpaprPhbState *sphb = opaque;
2191 g_free(sphb->msi_devs);
2192 sphb->msi_devs = NULL;
2193 sphb->msi_devs_num = 0;
2194 return 0;
2197 static int spapr_pci_post_load(void *opaque, int version_id)
2199 SpaprPhbState *sphb = opaque;
2200 gpointer key, value;
2201 int i;
2203 for (i = 0; i < sphb->msi_devs_num; ++i) {
2204 key = g_memdup(&sphb->msi_devs[i].key,
2205 sizeof(sphb->msi_devs[i].key));
2206 value = g_memdup(&sphb->msi_devs[i].value,
2207 sizeof(sphb->msi_devs[i].value));
2208 g_hash_table_insert(sphb->msi, key, value);
2210 g_free(sphb->msi_devs);
2211 sphb->msi_devs = NULL;
2212 sphb->msi_devs_num = 0;
2214 return 0;
2217 static bool pre_2_8_migration(void *opaque, int version_id)
2219 SpaprPhbState *sphb = opaque;
2221 return sphb->pre_2_8_migration;
2224 static const VMStateDescription vmstate_spapr_pci = {
2225 .name = "spapr_pci",
2226 .version_id = 2,
2227 .minimum_version_id = 2,
2228 .pre_save = spapr_pci_pre_save,
2229 .post_save = spapr_pci_post_save,
2230 .post_load = spapr_pci_post_load,
2231 .fields = (VMStateField[]) {
2232 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2233 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2234 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2235 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2236 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2237 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2238 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2239 vmstate_spapr_pci_lsi, SpaprPciLsi),
2240 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2241 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2242 vmstate_spapr_pci_msi, SpaprPciMsiMig),
2243 VMSTATE_END_OF_LIST()
2247 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2248 PCIBus *rootbus)
2250 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2252 return sphb->dtbusname;
2255 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2257 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2258 DeviceClass *dc = DEVICE_CLASS(klass);
2259 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2261 hc->root_bus_path = spapr_phb_root_bus_path;
2262 dc->realize = spapr_phb_realize;
2263 dc->unrealize = spapr_phb_unrealize;
2264 device_class_set_props(dc, spapr_phb_properties);
2265 dc->reset = spapr_phb_reset;
2266 dc->vmsd = &vmstate_spapr_pci;
2267 /* Supported by TYPE_SPAPR_MACHINE */
2268 dc->user_creatable = true;
2269 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2270 hp->pre_plug = spapr_pci_pre_plug;
2271 hp->plug = spapr_pci_plug;
2272 hp->unplug = spapr_pci_unplug;
2273 hp->unplug_request = spapr_pci_unplug_request;
2276 static const TypeInfo spapr_phb_info = {
2277 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2278 .parent = TYPE_PCI_HOST_BRIDGE,
2279 .instance_size = sizeof(SpaprPhbState),
2280 .instance_finalize = spapr_phb_finalizefn,
2281 .class_init = spapr_phb_class_init,
2282 .interfaces = (InterfaceInfo[]) {
2283 { TYPE_HOTPLUG_HANDLER },
2288 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2289 void *opaque)
2291 unsigned int *bus_no = opaque;
2292 PCIBus *sec_bus = NULL;
2294 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2295 PCI_HEADER_TYPE_BRIDGE)) {
2296 return;
2299 (*bus_no)++;
2300 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2301 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2302 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2304 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2305 if (!sec_bus) {
2306 return;
2309 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2310 spapr_phb_pci_enumerate_bridge, bus_no);
2311 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2314 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2316 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2317 unsigned int bus_no = 0;
2319 pci_for_each_device(bus, pci_bus_num(bus),
2320 spapr_phb_pci_enumerate_bridge,
2321 &bus_no);
2325 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
2326 uint32_t intc_phandle, void *fdt, int *node_offset)
2328 int bus_off, i, j, ret;
2329 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2330 struct {
2331 uint32_t hi;
2332 uint64_t child;
2333 uint64_t parent;
2334 uint64_t size;
2335 } QEMU_PACKED ranges[] = {
2337 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2338 cpu_to_be64(phb->io_win_addr),
2339 cpu_to_be64(memory_region_size(&phb->iospace)),
2342 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2343 cpu_to_be64(phb->mem_win_addr),
2344 cpu_to_be64(phb->mem_win_size),
2347 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2348 cpu_to_be64(phb->mem64_win_addr),
2349 cpu_to_be64(phb->mem64_win_size),
2352 const unsigned sizeof_ranges =
2353 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2354 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2355 uint32_t interrupt_map_mask[] = {
2356 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2357 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2358 uint32_t ddw_applicable[] = {
2359 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2360 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2361 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2363 uint32_t ddw_extensions[] = {
2364 cpu_to_be32(1),
2365 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2367 SpaprTceTable *tcet;
2368 SpaprDrc *drc;
2369 Error *err = NULL;
2371 /* Start populating the FDT */
2372 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2373 if (node_offset) {
2374 *node_offset = bus_off;
2377 /* Write PHB properties */
2378 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2379 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2380 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2381 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2382 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2383 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2384 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2385 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2386 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
2387 spapr_irq_nr_msis(spapr)));
2389 /* Dynamic DMA window */
2390 if (phb->ddw_enabled) {
2391 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2392 sizeof(ddw_applicable)));
2393 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2394 &ddw_extensions, sizeof(ddw_extensions)));
2397 /* Advertise NUMA via ibm,associativity */
2398 if (phb->numa_node != -1) {
2399 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
2402 /* Build the interrupt-map, this must matches what is done
2403 * in pci_swizzle_map_irq_fn
2405 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2406 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2407 for (i = 0; i < PCI_SLOT_MAX; i++) {
2408 for (j = 0; j < PCI_NUM_PINS; j++) {
2409 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2410 int lsi_num = pci_swizzle(i, j);
2412 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2413 irqmap[1] = 0;
2414 irqmap[2] = 0;
2415 irqmap[3] = cpu_to_be32(j+1);
2416 irqmap[4] = cpu_to_be32(intc_phandle);
2417 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2420 /* Write interrupt map */
2421 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2422 sizeof(interrupt_map)));
2424 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2425 if (!tcet) {
2426 return -1;
2428 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2429 tcet->liobn, tcet->bus_offset,
2430 tcet->nb_table << tcet->page_shift);
2432 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2433 if (drc) {
2434 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2436 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2437 sizeof(drc_index)));
2440 /* Walk the bridges and program the bus numbers*/
2441 spapr_phb_pci_enumerate(phb);
2442 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2444 /* Walk the bridge and subordinate buses */
2445 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2446 if (ret < 0) {
2447 return ret;
2450 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err);
2451 if (err) {
2452 error_report_err(err);
2454 spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2456 return 0;
2459 void spapr_pci_rtas_init(void)
2461 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2462 rtas_read_pci_config);
2463 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2464 rtas_write_pci_config);
2465 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2466 rtas_ibm_read_pci_config);
2467 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2468 rtas_ibm_write_pci_config);
2469 if (msi_nonbroken) {
2470 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2471 "ibm,query-interrupt-source-number",
2472 rtas_ibm_query_interrupt_source_number);
2473 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2474 rtas_ibm_change_msi);
2477 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2478 "ibm,set-eeh-option",
2479 rtas_ibm_set_eeh_option);
2480 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2481 "ibm,get-config-addr-info2",
2482 rtas_ibm_get_config_addr_info2);
2483 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2484 "ibm,read-slot-reset-state2",
2485 rtas_ibm_read_slot_reset_state2);
2486 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2487 "ibm,set-slot-reset",
2488 rtas_ibm_set_slot_reset);
2489 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2490 "ibm,configure-pe",
2491 rtas_ibm_configure_pe);
2492 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2493 "ibm,slot-error-detail",
2494 rtas_ibm_slot_error_detail);
2497 static void spapr_pci_register_types(void)
2499 type_register_static(&spapr_phb_info);
2502 type_init(spapr_pci_register_types)
2504 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2506 bool be = *(bool *)opaque;
2508 if (object_dynamic_cast(OBJECT(dev), "VGA")
2509 || object_dynamic_cast(OBJECT(dev), "secondary-vga")
2510 || object_dynamic_cast(OBJECT(dev), "bochs-display")
2511 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
2512 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
2513 &error_abort);
2515 return 0;
2518 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
2520 SpaprPhbState *sphb;
2523 * For backward compatibility with existing guests, we switch
2524 * the endianness of the VGA controller when changing the guest
2525 * interrupt mode
2527 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2528 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2529 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2530 &big_endian);