target/arm: Implement SVE Floating Point Multiply Indexed Group
[qemu.git] / block / io.c
blobef4fedd36416d2569331f4905aaad39063fcaf8b
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 static AioWait drain_all_aio_wait;
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44 int64_t offset, int bytes, BdrvRequestFlags flags);
46 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47 bool ignore_bds_parents)
49 BdrvChild *c, *next;
51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
53 continue;
55 if (c->role->drained_begin) {
56 c->role->drained_begin(c);
61 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
62 bool ignore_bds_parents)
64 BdrvChild *c, *next;
66 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
67 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
68 continue;
70 if (c->role->drained_end) {
71 c->role->drained_end(c);
76 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
77 bool ignore_bds_parents)
79 BdrvChild *c, *next;
80 bool busy = false;
82 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
83 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
84 continue;
86 if (c->role->drained_poll) {
87 busy |= c->role->drained_poll(c);
91 return busy;
94 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
96 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
97 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
98 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
99 src->opt_mem_alignment);
100 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
101 src->min_mem_alignment);
102 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
105 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
107 BlockDriver *drv = bs->drv;
108 Error *local_err = NULL;
110 memset(&bs->bl, 0, sizeof(bs->bl));
112 if (!drv) {
113 return;
116 /* Default alignment based on whether driver has byte interface */
117 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
118 drv->bdrv_aio_preadv) ? 1 : 512;
120 /* Take some limits from the children as a default */
121 if (bs->file) {
122 bdrv_refresh_limits(bs->file->bs, &local_err);
123 if (local_err) {
124 error_propagate(errp, local_err);
125 return;
127 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
128 } else {
129 bs->bl.min_mem_alignment = 512;
130 bs->bl.opt_mem_alignment = getpagesize();
132 /* Safe default since most protocols use readv()/writev()/etc */
133 bs->bl.max_iov = IOV_MAX;
136 if (bs->backing) {
137 bdrv_refresh_limits(bs->backing->bs, &local_err);
138 if (local_err) {
139 error_propagate(errp, local_err);
140 return;
142 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
145 /* Then let the driver override it */
146 if (drv->bdrv_refresh_limits) {
147 drv->bdrv_refresh_limits(bs, errp);
152 * The copy-on-read flag is actually a reference count so multiple users may
153 * use the feature without worrying about clobbering its previous state.
154 * Copy-on-read stays enabled until all users have called to disable it.
156 void bdrv_enable_copy_on_read(BlockDriverState *bs)
158 atomic_inc(&bs->copy_on_read);
161 void bdrv_disable_copy_on_read(BlockDriverState *bs)
163 int old = atomic_fetch_dec(&bs->copy_on_read);
164 assert(old >= 1);
167 typedef struct {
168 Coroutine *co;
169 BlockDriverState *bs;
170 bool done;
171 bool begin;
172 bool recursive;
173 bool poll;
174 BdrvChild *parent;
175 bool ignore_bds_parents;
176 } BdrvCoDrainData;
178 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
180 BdrvCoDrainData *data = opaque;
181 BlockDriverState *bs = data->bs;
183 if (data->begin) {
184 bs->drv->bdrv_co_drain_begin(bs);
185 } else {
186 bs->drv->bdrv_co_drain_end(bs);
189 /* Set data->done before reading bs->wakeup. */
190 atomic_mb_set(&data->done, true);
191 bdrv_dec_in_flight(bs);
193 if (data->begin) {
194 g_free(data);
198 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
199 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
201 BdrvCoDrainData *data;
203 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
204 (!begin && !bs->drv->bdrv_co_drain_end)) {
205 return;
208 data = g_new(BdrvCoDrainData, 1);
209 *data = (BdrvCoDrainData) {
210 .bs = bs,
211 .done = false,
212 .begin = begin
215 /* Make sure the driver callback completes during the polling phase for
216 * drain_begin. */
217 bdrv_inc_in_flight(bs);
218 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
219 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
221 if (!begin) {
222 BDRV_POLL_WHILE(bs, !data->done);
223 g_free(data);
227 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
228 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
229 BdrvChild *ignore_parent, bool ignore_bds_parents)
231 BdrvChild *child, *next;
233 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
234 return true;
237 if (atomic_read(&bs->in_flight)) {
238 return true;
241 if (recursive) {
242 assert(!ignore_bds_parents);
243 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
244 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
245 return true;
250 return false;
253 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
254 BdrvChild *ignore_parent)
256 /* Execute pending BHs first and check everything else only after the BHs
257 * have executed. */
258 while (aio_poll(bs->aio_context, false));
260 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
263 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
264 BdrvChild *parent, bool ignore_bds_parents,
265 bool poll);
266 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
267 BdrvChild *parent, bool ignore_bds_parents);
269 static void bdrv_co_drain_bh_cb(void *opaque)
271 BdrvCoDrainData *data = opaque;
272 Coroutine *co = data->co;
273 BlockDriverState *bs = data->bs;
275 if (bs) {
276 bdrv_dec_in_flight(bs);
277 if (data->begin) {
278 bdrv_do_drained_begin(bs, data->recursive, data->parent,
279 data->ignore_bds_parents, data->poll);
280 } else {
281 bdrv_do_drained_end(bs, data->recursive, data->parent,
282 data->ignore_bds_parents);
284 } else {
285 assert(data->begin);
286 bdrv_drain_all_begin();
289 data->done = true;
290 aio_co_wake(co);
293 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
294 bool begin, bool recursive,
295 BdrvChild *parent,
296 bool ignore_bds_parents,
297 bool poll)
299 BdrvCoDrainData data;
301 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
302 * other coroutines run if they were queued by aio_co_enter(). */
304 assert(qemu_in_coroutine());
305 data = (BdrvCoDrainData) {
306 .co = qemu_coroutine_self(),
307 .bs = bs,
308 .done = false,
309 .begin = begin,
310 .recursive = recursive,
311 .parent = parent,
312 .ignore_bds_parents = ignore_bds_parents,
313 .poll = poll,
315 if (bs) {
316 bdrv_inc_in_flight(bs);
318 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
319 bdrv_co_drain_bh_cb, &data);
321 qemu_coroutine_yield();
322 /* If we are resumed from some other event (such as an aio completion or a
323 * timer callback), it is a bug in the caller that should be fixed. */
324 assert(data.done);
327 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
328 BdrvChild *parent, bool ignore_bds_parents)
330 assert(!qemu_in_coroutine());
332 /* Stop things in parent-to-child order */
333 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
334 aio_disable_external(bdrv_get_aio_context(bs));
337 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
338 bdrv_drain_invoke(bs, true);
341 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
342 BdrvChild *parent, bool ignore_bds_parents,
343 bool poll)
345 BdrvChild *child, *next;
347 if (qemu_in_coroutine()) {
348 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
349 poll);
350 return;
353 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
355 if (recursive) {
356 assert(!ignore_bds_parents);
357 bs->recursive_quiesce_counter++;
358 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
359 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
360 false);
365 * Wait for drained requests to finish.
367 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
368 * call is needed so things in this AioContext can make progress even
369 * though we don't return to the main AioContext loop - this automatically
370 * includes other nodes in the same AioContext and therefore all child
371 * nodes.
373 if (poll) {
374 assert(!ignore_bds_parents);
375 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
379 void bdrv_drained_begin(BlockDriverState *bs)
381 bdrv_do_drained_begin(bs, false, NULL, false, true);
384 void bdrv_subtree_drained_begin(BlockDriverState *bs)
386 bdrv_do_drained_begin(bs, true, NULL, false, true);
389 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
390 BdrvChild *parent, bool ignore_bds_parents)
392 BdrvChild *child, *next;
393 int old_quiesce_counter;
395 if (qemu_in_coroutine()) {
396 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
397 false);
398 return;
400 assert(bs->quiesce_counter > 0);
401 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
403 /* Re-enable things in child-to-parent order */
404 bdrv_drain_invoke(bs, false);
405 bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
406 if (old_quiesce_counter == 1) {
407 aio_enable_external(bdrv_get_aio_context(bs));
410 if (recursive) {
411 assert(!ignore_bds_parents);
412 bs->recursive_quiesce_counter--;
413 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
414 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
419 void bdrv_drained_end(BlockDriverState *bs)
421 bdrv_do_drained_end(bs, false, NULL, false);
424 void bdrv_subtree_drained_end(BlockDriverState *bs)
426 bdrv_do_drained_end(bs, true, NULL, false);
429 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
431 int i;
433 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
434 bdrv_do_drained_begin(child->bs, true, child, false, true);
438 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
440 int i;
442 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
443 bdrv_do_drained_end(child->bs, true, child, false);
448 * Wait for pending requests to complete on a single BlockDriverState subtree,
449 * and suspend block driver's internal I/O until next request arrives.
451 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
452 * AioContext.
454 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
456 assert(qemu_in_coroutine());
457 bdrv_drained_begin(bs);
458 bdrv_drained_end(bs);
461 void bdrv_drain(BlockDriverState *bs)
463 bdrv_drained_begin(bs);
464 bdrv_drained_end(bs);
467 static void bdrv_drain_assert_idle(BlockDriverState *bs)
469 BdrvChild *child, *next;
471 assert(atomic_read(&bs->in_flight) == 0);
472 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
473 bdrv_drain_assert_idle(child->bs);
477 unsigned int bdrv_drain_all_count = 0;
479 static bool bdrv_drain_all_poll(void)
481 BlockDriverState *bs = NULL;
482 bool result = false;
484 /* Execute pending BHs first (may modify the graph) and check everything
485 * else only after the BHs have executed. */
486 while (aio_poll(qemu_get_aio_context(), false));
488 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
489 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
490 while ((bs = bdrv_next_all_states(bs))) {
491 AioContext *aio_context = bdrv_get_aio_context(bs);
492 aio_context_acquire(aio_context);
493 result |= bdrv_drain_poll(bs, false, NULL, true);
494 aio_context_release(aio_context);
497 return result;
501 * Wait for pending requests to complete across all BlockDriverStates
503 * This function does not flush data to disk, use bdrv_flush_all() for that
504 * after calling this function.
506 * This pauses all block jobs and disables external clients. It must
507 * be paired with bdrv_drain_all_end().
509 * NOTE: no new block jobs or BlockDriverStates can be created between
510 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
512 void bdrv_drain_all_begin(void)
514 BlockDriverState *bs = NULL;
516 if (qemu_in_coroutine()) {
517 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
518 return;
521 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
522 * loop AioContext, so make sure we're in the main context. */
523 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
524 assert(bdrv_drain_all_count < INT_MAX);
525 bdrv_drain_all_count++;
527 /* Quiesce all nodes, without polling in-flight requests yet. The graph
528 * cannot change during this loop. */
529 while ((bs = bdrv_next_all_states(bs))) {
530 AioContext *aio_context = bdrv_get_aio_context(bs);
532 aio_context_acquire(aio_context);
533 bdrv_do_drained_begin(bs, false, NULL, true, false);
534 aio_context_release(aio_context);
537 /* Now poll the in-flight requests */
538 AIO_WAIT_WHILE(&drain_all_aio_wait, NULL, bdrv_drain_all_poll());
540 while ((bs = bdrv_next_all_states(bs))) {
541 bdrv_drain_assert_idle(bs);
545 void bdrv_drain_all_end(void)
547 BlockDriverState *bs = NULL;
549 while ((bs = bdrv_next_all_states(bs))) {
550 AioContext *aio_context = bdrv_get_aio_context(bs);
552 aio_context_acquire(aio_context);
553 bdrv_do_drained_end(bs, false, NULL, true);
554 aio_context_release(aio_context);
557 assert(bdrv_drain_all_count > 0);
558 bdrv_drain_all_count--;
561 void bdrv_drain_all(void)
563 bdrv_drain_all_begin();
564 bdrv_drain_all_end();
568 * Remove an active request from the tracked requests list
570 * This function should be called when a tracked request is completing.
572 static void tracked_request_end(BdrvTrackedRequest *req)
574 if (req->serialising) {
575 atomic_dec(&req->bs->serialising_in_flight);
578 qemu_co_mutex_lock(&req->bs->reqs_lock);
579 QLIST_REMOVE(req, list);
580 qemu_co_queue_restart_all(&req->wait_queue);
581 qemu_co_mutex_unlock(&req->bs->reqs_lock);
585 * Add an active request to the tracked requests list
587 static void tracked_request_begin(BdrvTrackedRequest *req,
588 BlockDriverState *bs,
589 int64_t offset,
590 unsigned int bytes,
591 enum BdrvTrackedRequestType type)
593 *req = (BdrvTrackedRequest){
594 .bs = bs,
595 .offset = offset,
596 .bytes = bytes,
597 .type = type,
598 .co = qemu_coroutine_self(),
599 .serialising = false,
600 .overlap_offset = offset,
601 .overlap_bytes = bytes,
604 qemu_co_queue_init(&req->wait_queue);
606 qemu_co_mutex_lock(&bs->reqs_lock);
607 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
608 qemu_co_mutex_unlock(&bs->reqs_lock);
611 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
613 int64_t overlap_offset = req->offset & ~(align - 1);
614 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
615 - overlap_offset;
617 if (!req->serialising) {
618 atomic_inc(&req->bs->serialising_in_flight);
619 req->serialising = true;
622 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
623 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
627 * Round a region to cluster boundaries
629 void bdrv_round_to_clusters(BlockDriverState *bs,
630 int64_t offset, int64_t bytes,
631 int64_t *cluster_offset,
632 int64_t *cluster_bytes)
634 BlockDriverInfo bdi;
636 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
637 *cluster_offset = offset;
638 *cluster_bytes = bytes;
639 } else {
640 int64_t c = bdi.cluster_size;
641 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
642 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
646 static int bdrv_get_cluster_size(BlockDriverState *bs)
648 BlockDriverInfo bdi;
649 int ret;
651 ret = bdrv_get_info(bs, &bdi);
652 if (ret < 0 || bdi.cluster_size == 0) {
653 return bs->bl.request_alignment;
654 } else {
655 return bdi.cluster_size;
659 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
660 int64_t offset, unsigned int bytes)
662 /* aaaa bbbb */
663 if (offset >= req->overlap_offset + req->overlap_bytes) {
664 return false;
666 /* bbbb aaaa */
667 if (req->overlap_offset >= offset + bytes) {
668 return false;
670 return true;
673 void bdrv_inc_in_flight(BlockDriverState *bs)
675 atomic_inc(&bs->in_flight);
678 void bdrv_wakeup(BlockDriverState *bs)
680 aio_wait_kick(bdrv_get_aio_wait(bs));
681 aio_wait_kick(&drain_all_aio_wait);
684 void bdrv_dec_in_flight(BlockDriverState *bs)
686 atomic_dec(&bs->in_flight);
687 bdrv_wakeup(bs);
690 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
692 BlockDriverState *bs = self->bs;
693 BdrvTrackedRequest *req;
694 bool retry;
695 bool waited = false;
697 if (!atomic_read(&bs->serialising_in_flight)) {
698 return false;
701 do {
702 retry = false;
703 qemu_co_mutex_lock(&bs->reqs_lock);
704 QLIST_FOREACH(req, &bs->tracked_requests, list) {
705 if (req == self || (!req->serialising && !self->serialising)) {
706 continue;
708 if (tracked_request_overlaps(req, self->overlap_offset,
709 self->overlap_bytes))
711 /* Hitting this means there was a reentrant request, for
712 * example, a block driver issuing nested requests. This must
713 * never happen since it means deadlock.
715 assert(qemu_coroutine_self() != req->co);
717 /* If the request is already (indirectly) waiting for us, or
718 * will wait for us as soon as it wakes up, then just go on
719 * (instead of producing a deadlock in the former case). */
720 if (!req->waiting_for) {
721 self->waiting_for = req;
722 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
723 self->waiting_for = NULL;
724 retry = true;
725 waited = true;
726 break;
730 qemu_co_mutex_unlock(&bs->reqs_lock);
731 } while (retry);
733 return waited;
736 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
737 size_t size)
739 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
740 return -EIO;
743 if (!bdrv_is_inserted(bs)) {
744 return -ENOMEDIUM;
747 if (offset < 0) {
748 return -EIO;
751 return 0;
754 typedef struct RwCo {
755 BdrvChild *child;
756 int64_t offset;
757 QEMUIOVector *qiov;
758 bool is_write;
759 int ret;
760 BdrvRequestFlags flags;
761 } RwCo;
763 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
765 RwCo *rwco = opaque;
767 if (!rwco->is_write) {
768 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
769 rwco->qiov->size, rwco->qiov,
770 rwco->flags);
771 } else {
772 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
773 rwco->qiov->size, rwco->qiov,
774 rwco->flags);
779 * Process a vectored synchronous request using coroutines
781 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
782 QEMUIOVector *qiov, bool is_write,
783 BdrvRequestFlags flags)
785 Coroutine *co;
786 RwCo rwco = {
787 .child = child,
788 .offset = offset,
789 .qiov = qiov,
790 .is_write = is_write,
791 .ret = NOT_DONE,
792 .flags = flags,
795 if (qemu_in_coroutine()) {
796 /* Fast-path if already in coroutine context */
797 bdrv_rw_co_entry(&rwco);
798 } else {
799 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
800 bdrv_coroutine_enter(child->bs, co);
801 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
803 return rwco.ret;
807 * Process a synchronous request using coroutines
809 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
810 int nb_sectors, bool is_write, BdrvRequestFlags flags)
812 QEMUIOVector qiov;
813 struct iovec iov = {
814 .iov_base = (void *)buf,
815 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
818 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
819 return -EINVAL;
822 qemu_iovec_init_external(&qiov, &iov, 1);
823 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
824 &qiov, is_write, flags);
827 /* return < 0 if error. See bdrv_write() for the return codes */
828 int bdrv_read(BdrvChild *child, int64_t sector_num,
829 uint8_t *buf, int nb_sectors)
831 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
834 /* Return < 0 if error. Important errors are:
835 -EIO generic I/O error (may happen for all errors)
836 -ENOMEDIUM No media inserted.
837 -EINVAL Invalid sector number or nb_sectors
838 -EACCES Trying to write a read-only device
840 int bdrv_write(BdrvChild *child, int64_t sector_num,
841 const uint8_t *buf, int nb_sectors)
843 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
846 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
847 int bytes, BdrvRequestFlags flags)
849 QEMUIOVector qiov;
850 struct iovec iov = {
851 .iov_base = NULL,
852 .iov_len = bytes,
855 qemu_iovec_init_external(&qiov, &iov, 1);
856 return bdrv_prwv_co(child, offset, &qiov, true,
857 BDRV_REQ_ZERO_WRITE | flags);
861 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
862 * The operation is sped up by checking the block status and only writing
863 * zeroes to the device if they currently do not return zeroes. Optional
864 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
865 * BDRV_REQ_FUA).
867 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
869 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
871 int ret;
872 int64_t target_size, bytes, offset = 0;
873 BlockDriverState *bs = child->bs;
875 target_size = bdrv_getlength(bs);
876 if (target_size < 0) {
877 return target_size;
880 for (;;) {
881 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
882 if (bytes <= 0) {
883 return 0;
885 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
886 if (ret < 0) {
887 error_report("error getting block status at offset %" PRId64 ": %s",
888 offset, strerror(-ret));
889 return ret;
891 if (ret & BDRV_BLOCK_ZERO) {
892 offset += bytes;
893 continue;
895 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
896 if (ret < 0) {
897 error_report("error writing zeroes at offset %" PRId64 ": %s",
898 offset, strerror(-ret));
899 return ret;
901 offset += bytes;
905 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
907 int ret;
909 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
910 if (ret < 0) {
911 return ret;
914 return qiov->size;
917 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
919 QEMUIOVector qiov;
920 struct iovec iov = {
921 .iov_base = (void *)buf,
922 .iov_len = bytes,
925 if (bytes < 0) {
926 return -EINVAL;
929 qemu_iovec_init_external(&qiov, &iov, 1);
930 return bdrv_preadv(child, offset, &qiov);
933 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
935 int ret;
937 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
938 if (ret < 0) {
939 return ret;
942 return qiov->size;
945 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
947 QEMUIOVector qiov;
948 struct iovec iov = {
949 .iov_base = (void *) buf,
950 .iov_len = bytes,
953 if (bytes < 0) {
954 return -EINVAL;
957 qemu_iovec_init_external(&qiov, &iov, 1);
958 return bdrv_pwritev(child, offset, &qiov);
962 * Writes to the file and ensures that no writes are reordered across this
963 * request (acts as a barrier)
965 * Returns 0 on success, -errno in error cases.
967 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
968 const void *buf, int count)
970 int ret;
972 ret = bdrv_pwrite(child, offset, buf, count);
973 if (ret < 0) {
974 return ret;
977 ret = bdrv_flush(child->bs);
978 if (ret < 0) {
979 return ret;
982 return 0;
985 typedef struct CoroutineIOCompletion {
986 Coroutine *coroutine;
987 int ret;
988 } CoroutineIOCompletion;
990 static void bdrv_co_io_em_complete(void *opaque, int ret)
992 CoroutineIOCompletion *co = opaque;
994 co->ret = ret;
995 aio_co_wake(co->coroutine);
998 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
999 uint64_t offset, uint64_t bytes,
1000 QEMUIOVector *qiov, int flags)
1002 BlockDriver *drv = bs->drv;
1003 int64_t sector_num;
1004 unsigned int nb_sectors;
1006 assert(!(flags & ~BDRV_REQ_MASK));
1008 if (!drv) {
1009 return -ENOMEDIUM;
1012 if (drv->bdrv_co_preadv) {
1013 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1016 if (drv->bdrv_aio_preadv) {
1017 BlockAIOCB *acb;
1018 CoroutineIOCompletion co = {
1019 .coroutine = qemu_coroutine_self(),
1022 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1023 bdrv_co_io_em_complete, &co);
1024 if (acb == NULL) {
1025 return -EIO;
1026 } else {
1027 qemu_coroutine_yield();
1028 return co.ret;
1032 sector_num = offset >> BDRV_SECTOR_BITS;
1033 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1035 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1036 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1037 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1038 assert(drv->bdrv_co_readv);
1040 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1043 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1044 uint64_t offset, uint64_t bytes,
1045 QEMUIOVector *qiov, int flags)
1047 BlockDriver *drv = bs->drv;
1048 int64_t sector_num;
1049 unsigned int nb_sectors;
1050 int ret;
1052 assert(!(flags & ~BDRV_REQ_MASK));
1054 if (!drv) {
1055 return -ENOMEDIUM;
1058 if (drv->bdrv_co_pwritev) {
1059 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1060 flags & bs->supported_write_flags);
1061 flags &= ~bs->supported_write_flags;
1062 goto emulate_flags;
1065 if (drv->bdrv_aio_pwritev) {
1066 BlockAIOCB *acb;
1067 CoroutineIOCompletion co = {
1068 .coroutine = qemu_coroutine_self(),
1071 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1072 flags & bs->supported_write_flags,
1073 bdrv_co_io_em_complete, &co);
1074 flags &= ~bs->supported_write_flags;
1075 if (acb == NULL) {
1076 ret = -EIO;
1077 } else {
1078 qemu_coroutine_yield();
1079 ret = co.ret;
1081 goto emulate_flags;
1084 sector_num = offset >> BDRV_SECTOR_BITS;
1085 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1087 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1088 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1089 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1091 assert(drv->bdrv_co_writev);
1092 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1093 flags & bs->supported_write_flags);
1094 flags &= ~bs->supported_write_flags;
1096 emulate_flags:
1097 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1098 ret = bdrv_co_flush(bs);
1101 return ret;
1104 static int coroutine_fn
1105 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1106 uint64_t bytes, QEMUIOVector *qiov)
1108 BlockDriver *drv = bs->drv;
1110 if (!drv) {
1111 return -ENOMEDIUM;
1114 if (!drv->bdrv_co_pwritev_compressed) {
1115 return -ENOTSUP;
1118 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1121 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1122 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1124 BlockDriverState *bs = child->bs;
1126 /* Perform I/O through a temporary buffer so that users who scribble over
1127 * their read buffer while the operation is in progress do not end up
1128 * modifying the image file. This is critical for zero-copy guest I/O
1129 * where anything might happen inside guest memory.
1131 void *bounce_buffer;
1133 BlockDriver *drv = bs->drv;
1134 struct iovec iov;
1135 QEMUIOVector local_qiov;
1136 int64_t cluster_offset;
1137 int64_t cluster_bytes;
1138 size_t skip_bytes;
1139 int ret;
1140 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1141 BDRV_REQUEST_MAX_BYTES);
1142 unsigned int progress = 0;
1144 if (!drv) {
1145 return -ENOMEDIUM;
1148 /* FIXME We cannot require callers to have write permissions when all they
1149 * are doing is a read request. If we did things right, write permissions
1150 * would be obtained anyway, but internally by the copy-on-read code. As
1151 * long as it is implemented here rather than in a separate filter driver,
1152 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1153 * it could request permissions. Therefore we have to bypass the permission
1154 * system for the moment. */
1155 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1157 /* Cover entire cluster so no additional backing file I/O is required when
1158 * allocating cluster in the image file. Note that this value may exceed
1159 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1160 * is one reason we loop rather than doing it all at once.
1162 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1163 skip_bytes = offset - cluster_offset;
1165 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1166 cluster_offset, cluster_bytes);
1168 bounce_buffer = qemu_try_blockalign(bs,
1169 MIN(MIN(max_transfer, cluster_bytes),
1170 MAX_BOUNCE_BUFFER));
1171 if (bounce_buffer == NULL) {
1172 ret = -ENOMEM;
1173 goto err;
1176 while (cluster_bytes) {
1177 int64_t pnum;
1179 ret = bdrv_is_allocated(bs, cluster_offset,
1180 MIN(cluster_bytes, max_transfer), &pnum);
1181 if (ret < 0) {
1182 /* Safe to treat errors in querying allocation as if
1183 * unallocated; we'll probably fail again soon on the
1184 * read, but at least that will set a decent errno.
1186 pnum = MIN(cluster_bytes, max_transfer);
1189 assert(skip_bytes < pnum);
1191 if (ret <= 0) {
1192 /* Must copy-on-read; use the bounce buffer */
1193 iov.iov_base = bounce_buffer;
1194 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1195 qemu_iovec_init_external(&local_qiov, &iov, 1);
1197 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1198 &local_qiov, 0);
1199 if (ret < 0) {
1200 goto err;
1203 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1204 if (drv->bdrv_co_pwrite_zeroes &&
1205 buffer_is_zero(bounce_buffer, pnum)) {
1206 /* FIXME: Should we (perhaps conditionally) be setting
1207 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1208 * that still correctly reads as zero? */
1209 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1210 BDRV_REQ_WRITE_UNCHANGED);
1211 } else {
1212 /* This does not change the data on the disk, it is not
1213 * necessary to flush even in cache=writethrough mode.
1215 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1216 &local_qiov,
1217 BDRV_REQ_WRITE_UNCHANGED);
1220 if (ret < 0) {
1221 /* It might be okay to ignore write errors for guest
1222 * requests. If this is a deliberate copy-on-read
1223 * then we don't want to ignore the error. Simply
1224 * report it in all cases.
1226 goto err;
1229 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1230 pnum - skip_bytes);
1231 } else {
1232 /* Read directly into the destination */
1233 qemu_iovec_init(&local_qiov, qiov->niov);
1234 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1235 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1236 &local_qiov, 0);
1237 qemu_iovec_destroy(&local_qiov);
1238 if (ret < 0) {
1239 goto err;
1243 cluster_offset += pnum;
1244 cluster_bytes -= pnum;
1245 progress += pnum - skip_bytes;
1246 skip_bytes = 0;
1248 ret = 0;
1250 err:
1251 qemu_vfree(bounce_buffer);
1252 return ret;
1256 * Forwards an already correctly aligned request to the BlockDriver. This
1257 * handles copy on read, zeroing after EOF, and fragmentation of large
1258 * reads; any other features must be implemented by the caller.
1260 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1261 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1262 int64_t align, QEMUIOVector *qiov, int flags)
1264 BlockDriverState *bs = child->bs;
1265 int64_t total_bytes, max_bytes;
1266 int ret = 0;
1267 uint64_t bytes_remaining = bytes;
1268 int max_transfer;
1270 assert(is_power_of_2(align));
1271 assert((offset & (align - 1)) == 0);
1272 assert((bytes & (align - 1)) == 0);
1273 assert(!qiov || bytes == qiov->size);
1274 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1275 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1276 align);
1278 /* TODO: We would need a per-BDS .supported_read_flags and
1279 * potential fallback support, if we ever implement any read flags
1280 * to pass through to drivers. For now, there aren't any
1281 * passthrough flags. */
1282 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1284 /* Handle Copy on Read and associated serialisation */
1285 if (flags & BDRV_REQ_COPY_ON_READ) {
1286 /* If we touch the same cluster it counts as an overlap. This
1287 * guarantees that allocating writes will be serialized and not race
1288 * with each other for the same cluster. For example, in copy-on-read
1289 * it ensures that the CoR read and write operations are atomic and
1290 * guest writes cannot interleave between them. */
1291 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1294 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1295 wait_serialising_requests(req);
1298 if (flags & BDRV_REQ_COPY_ON_READ) {
1299 int64_t pnum;
1301 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1302 if (ret < 0) {
1303 goto out;
1306 if (!ret || pnum != bytes) {
1307 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1308 goto out;
1312 /* Forward the request to the BlockDriver, possibly fragmenting it */
1313 total_bytes = bdrv_getlength(bs);
1314 if (total_bytes < 0) {
1315 ret = total_bytes;
1316 goto out;
1319 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1320 if (bytes <= max_bytes && bytes <= max_transfer) {
1321 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1322 goto out;
1325 while (bytes_remaining) {
1326 int num;
1328 if (max_bytes) {
1329 QEMUIOVector local_qiov;
1331 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1332 assert(num);
1333 qemu_iovec_init(&local_qiov, qiov->niov);
1334 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1336 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1337 num, &local_qiov, 0);
1338 max_bytes -= num;
1339 qemu_iovec_destroy(&local_qiov);
1340 } else {
1341 num = bytes_remaining;
1342 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1343 bytes_remaining);
1345 if (ret < 0) {
1346 goto out;
1348 bytes_remaining -= num;
1351 out:
1352 return ret < 0 ? ret : 0;
1356 * Handle a read request in coroutine context
1358 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1359 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1360 BdrvRequestFlags flags)
1362 BlockDriverState *bs = child->bs;
1363 BlockDriver *drv = bs->drv;
1364 BdrvTrackedRequest req;
1366 uint64_t align = bs->bl.request_alignment;
1367 uint8_t *head_buf = NULL;
1368 uint8_t *tail_buf = NULL;
1369 QEMUIOVector local_qiov;
1370 bool use_local_qiov = false;
1371 int ret;
1373 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1375 if (!drv) {
1376 return -ENOMEDIUM;
1379 ret = bdrv_check_byte_request(bs, offset, bytes);
1380 if (ret < 0) {
1381 return ret;
1384 bdrv_inc_in_flight(bs);
1386 /* Don't do copy-on-read if we read data before write operation */
1387 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1388 flags |= BDRV_REQ_COPY_ON_READ;
1391 /* Align read if necessary by padding qiov */
1392 if (offset & (align - 1)) {
1393 head_buf = qemu_blockalign(bs, align);
1394 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1395 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1396 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1397 use_local_qiov = true;
1399 bytes += offset & (align - 1);
1400 offset = offset & ~(align - 1);
1403 if ((offset + bytes) & (align - 1)) {
1404 if (!use_local_qiov) {
1405 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1406 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1407 use_local_qiov = true;
1409 tail_buf = qemu_blockalign(bs, align);
1410 qemu_iovec_add(&local_qiov, tail_buf,
1411 align - ((offset + bytes) & (align - 1)));
1413 bytes = ROUND_UP(bytes, align);
1416 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1417 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1418 use_local_qiov ? &local_qiov : qiov,
1419 flags);
1420 tracked_request_end(&req);
1421 bdrv_dec_in_flight(bs);
1423 if (use_local_qiov) {
1424 qemu_iovec_destroy(&local_qiov);
1425 qemu_vfree(head_buf);
1426 qemu_vfree(tail_buf);
1429 return ret;
1432 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1433 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1434 BdrvRequestFlags flags)
1436 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1437 return -EINVAL;
1440 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1441 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1444 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1445 int nb_sectors, QEMUIOVector *qiov)
1447 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1450 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1451 int64_t offset, int bytes, BdrvRequestFlags flags)
1453 BlockDriver *drv = bs->drv;
1454 QEMUIOVector qiov;
1455 struct iovec iov = {0};
1456 int ret = 0;
1457 bool need_flush = false;
1458 int head = 0;
1459 int tail = 0;
1461 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1462 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1463 bs->bl.request_alignment);
1464 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1466 if (!drv) {
1467 return -ENOMEDIUM;
1470 assert(alignment % bs->bl.request_alignment == 0);
1471 head = offset % alignment;
1472 tail = (offset + bytes) % alignment;
1473 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1474 assert(max_write_zeroes >= bs->bl.request_alignment);
1476 while (bytes > 0 && !ret) {
1477 int num = bytes;
1479 /* Align request. Block drivers can expect the "bulk" of the request
1480 * to be aligned, and that unaligned requests do not cross cluster
1481 * boundaries.
1483 if (head) {
1484 /* Make a small request up to the first aligned sector. For
1485 * convenience, limit this request to max_transfer even if
1486 * we don't need to fall back to writes. */
1487 num = MIN(MIN(bytes, max_transfer), alignment - head);
1488 head = (head + num) % alignment;
1489 assert(num < max_write_zeroes);
1490 } else if (tail && num > alignment) {
1491 /* Shorten the request to the last aligned sector. */
1492 num -= tail;
1495 /* limit request size */
1496 if (num > max_write_zeroes) {
1497 num = max_write_zeroes;
1500 ret = -ENOTSUP;
1501 /* First try the efficient write zeroes operation */
1502 if (drv->bdrv_co_pwrite_zeroes) {
1503 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1504 flags & bs->supported_zero_flags);
1505 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1506 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1507 need_flush = true;
1509 } else {
1510 assert(!bs->supported_zero_flags);
1513 if (ret == -ENOTSUP) {
1514 /* Fall back to bounce buffer if write zeroes is unsupported */
1515 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1517 if ((flags & BDRV_REQ_FUA) &&
1518 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1519 /* No need for bdrv_driver_pwrite() to do a fallback
1520 * flush on each chunk; use just one at the end */
1521 write_flags &= ~BDRV_REQ_FUA;
1522 need_flush = true;
1524 num = MIN(num, max_transfer);
1525 iov.iov_len = num;
1526 if (iov.iov_base == NULL) {
1527 iov.iov_base = qemu_try_blockalign(bs, num);
1528 if (iov.iov_base == NULL) {
1529 ret = -ENOMEM;
1530 goto fail;
1532 memset(iov.iov_base, 0, num);
1534 qemu_iovec_init_external(&qiov, &iov, 1);
1536 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1538 /* Keep bounce buffer around if it is big enough for all
1539 * all future requests.
1541 if (num < max_transfer) {
1542 qemu_vfree(iov.iov_base);
1543 iov.iov_base = NULL;
1547 offset += num;
1548 bytes -= num;
1551 fail:
1552 if (ret == 0 && need_flush) {
1553 ret = bdrv_co_flush(bs);
1555 qemu_vfree(iov.iov_base);
1556 return ret;
1560 * Forwards an already correctly aligned write request to the BlockDriver,
1561 * after possibly fragmenting it.
1563 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1564 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1565 int64_t align, QEMUIOVector *qiov, int flags)
1567 BlockDriverState *bs = child->bs;
1568 BlockDriver *drv = bs->drv;
1569 bool waited;
1570 int ret;
1572 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1573 uint64_t bytes_remaining = bytes;
1574 int max_transfer;
1576 if (!drv) {
1577 return -ENOMEDIUM;
1580 if (bdrv_has_readonly_bitmaps(bs)) {
1581 return -EPERM;
1584 assert(is_power_of_2(align));
1585 assert((offset & (align - 1)) == 0);
1586 assert((bytes & (align - 1)) == 0);
1587 assert(!qiov || bytes == qiov->size);
1588 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1589 assert(!(flags & ~BDRV_REQ_MASK));
1590 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1591 align);
1593 waited = wait_serialising_requests(req);
1594 assert(!waited || !req->serialising);
1595 assert(req->overlap_offset <= offset);
1596 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1597 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1598 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1599 } else {
1600 assert(child->perm & BLK_PERM_WRITE);
1602 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1604 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1606 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1607 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1608 qemu_iovec_is_zero(qiov)) {
1609 flags |= BDRV_REQ_ZERO_WRITE;
1610 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1611 flags |= BDRV_REQ_MAY_UNMAP;
1615 if (ret < 0) {
1616 /* Do nothing, write notifier decided to fail this request */
1617 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1618 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1619 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1620 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1621 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1622 } else if (bytes <= max_transfer) {
1623 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1624 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1625 } else {
1626 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1627 while (bytes_remaining) {
1628 int num = MIN(bytes_remaining, max_transfer);
1629 QEMUIOVector local_qiov;
1630 int local_flags = flags;
1632 assert(num);
1633 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1634 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1635 /* If FUA is going to be emulated by flush, we only
1636 * need to flush on the last iteration */
1637 local_flags &= ~BDRV_REQ_FUA;
1639 qemu_iovec_init(&local_qiov, qiov->niov);
1640 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1642 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1643 num, &local_qiov, local_flags);
1644 qemu_iovec_destroy(&local_qiov);
1645 if (ret < 0) {
1646 break;
1648 bytes_remaining -= num;
1651 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1653 atomic_inc(&bs->write_gen);
1654 bdrv_set_dirty(bs, offset, bytes);
1656 stat64_max(&bs->wr_highest_offset, offset + bytes);
1658 if (ret >= 0) {
1659 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1660 ret = 0;
1663 return ret;
1666 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1667 int64_t offset,
1668 unsigned int bytes,
1669 BdrvRequestFlags flags,
1670 BdrvTrackedRequest *req)
1672 BlockDriverState *bs = child->bs;
1673 uint8_t *buf = NULL;
1674 QEMUIOVector local_qiov;
1675 struct iovec iov;
1676 uint64_t align = bs->bl.request_alignment;
1677 unsigned int head_padding_bytes, tail_padding_bytes;
1678 int ret = 0;
1680 head_padding_bytes = offset & (align - 1);
1681 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1684 assert(flags & BDRV_REQ_ZERO_WRITE);
1685 if (head_padding_bytes || tail_padding_bytes) {
1686 buf = qemu_blockalign(bs, align);
1687 iov = (struct iovec) {
1688 .iov_base = buf,
1689 .iov_len = align,
1691 qemu_iovec_init_external(&local_qiov, &iov, 1);
1693 if (head_padding_bytes) {
1694 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1696 /* RMW the unaligned part before head. */
1697 mark_request_serialising(req, align);
1698 wait_serialising_requests(req);
1699 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1700 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1701 align, &local_qiov, 0);
1702 if (ret < 0) {
1703 goto fail;
1705 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1707 memset(buf + head_padding_bytes, 0, zero_bytes);
1708 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1709 align, &local_qiov,
1710 flags & ~BDRV_REQ_ZERO_WRITE);
1711 if (ret < 0) {
1712 goto fail;
1714 offset += zero_bytes;
1715 bytes -= zero_bytes;
1718 assert(!bytes || (offset & (align - 1)) == 0);
1719 if (bytes >= align) {
1720 /* Write the aligned part in the middle. */
1721 uint64_t aligned_bytes = bytes & ~(align - 1);
1722 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1723 NULL, flags);
1724 if (ret < 0) {
1725 goto fail;
1727 bytes -= aligned_bytes;
1728 offset += aligned_bytes;
1731 assert(!bytes || (offset & (align - 1)) == 0);
1732 if (bytes) {
1733 assert(align == tail_padding_bytes + bytes);
1734 /* RMW the unaligned part after tail. */
1735 mark_request_serialising(req, align);
1736 wait_serialising_requests(req);
1737 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1738 ret = bdrv_aligned_preadv(child, req, offset, align,
1739 align, &local_qiov, 0);
1740 if (ret < 0) {
1741 goto fail;
1743 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1745 memset(buf, 0, bytes);
1746 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1747 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1749 fail:
1750 qemu_vfree(buf);
1751 return ret;
1756 * Handle a write request in coroutine context
1758 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1759 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1760 BdrvRequestFlags flags)
1762 BlockDriverState *bs = child->bs;
1763 BdrvTrackedRequest req;
1764 uint64_t align = bs->bl.request_alignment;
1765 uint8_t *head_buf = NULL;
1766 uint8_t *tail_buf = NULL;
1767 QEMUIOVector local_qiov;
1768 bool use_local_qiov = false;
1769 int ret;
1771 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1773 if (!bs->drv) {
1774 return -ENOMEDIUM;
1776 if (bs->read_only) {
1777 return -EPERM;
1779 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1781 ret = bdrv_check_byte_request(bs, offset, bytes);
1782 if (ret < 0) {
1783 return ret;
1786 bdrv_inc_in_flight(bs);
1788 * Align write if necessary by performing a read-modify-write cycle.
1789 * Pad qiov with the read parts and be sure to have a tracked request not
1790 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1792 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1794 if (flags & BDRV_REQ_ZERO_WRITE) {
1795 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1796 goto out;
1799 if (offset & (align - 1)) {
1800 QEMUIOVector head_qiov;
1801 struct iovec head_iov;
1803 mark_request_serialising(&req, align);
1804 wait_serialising_requests(&req);
1806 head_buf = qemu_blockalign(bs, align);
1807 head_iov = (struct iovec) {
1808 .iov_base = head_buf,
1809 .iov_len = align,
1811 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1813 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1814 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1815 align, &head_qiov, 0);
1816 if (ret < 0) {
1817 goto fail;
1819 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1821 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1822 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1823 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1824 use_local_qiov = true;
1826 bytes += offset & (align - 1);
1827 offset = offset & ~(align - 1);
1829 /* We have read the tail already if the request is smaller
1830 * than one aligned block.
1832 if (bytes < align) {
1833 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1834 bytes = align;
1838 if ((offset + bytes) & (align - 1)) {
1839 QEMUIOVector tail_qiov;
1840 struct iovec tail_iov;
1841 size_t tail_bytes;
1842 bool waited;
1844 mark_request_serialising(&req, align);
1845 waited = wait_serialising_requests(&req);
1846 assert(!waited || !use_local_qiov);
1848 tail_buf = qemu_blockalign(bs, align);
1849 tail_iov = (struct iovec) {
1850 .iov_base = tail_buf,
1851 .iov_len = align,
1853 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1855 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1856 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1857 align, align, &tail_qiov, 0);
1858 if (ret < 0) {
1859 goto fail;
1861 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1863 if (!use_local_qiov) {
1864 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1865 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1866 use_local_qiov = true;
1869 tail_bytes = (offset + bytes) & (align - 1);
1870 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1872 bytes = ROUND_UP(bytes, align);
1875 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1876 use_local_qiov ? &local_qiov : qiov,
1877 flags);
1879 fail:
1881 if (use_local_qiov) {
1882 qemu_iovec_destroy(&local_qiov);
1884 qemu_vfree(head_buf);
1885 qemu_vfree(tail_buf);
1886 out:
1887 tracked_request_end(&req);
1888 bdrv_dec_in_flight(bs);
1889 return ret;
1892 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1893 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1894 BdrvRequestFlags flags)
1896 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1897 return -EINVAL;
1900 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1901 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1904 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1905 int nb_sectors, QEMUIOVector *qiov)
1907 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1910 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1911 int bytes, BdrvRequestFlags flags)
1913 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1915 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1916 flags &= ~BDRV_REQ_MAY_UNMAP;
1919 return bdrv_co_pwritev(child, offset, bytes, NULL,
1920 BDRV_REQ_ZERO_WRITE | flags);
1924 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1926 int bdrv_flush_all(void)
1928 BdrvNextIterator it;
1929 BlockDriverState *bs = NULL;
1930 int result = 0;
1932 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1933 AioContext *aio_context = bdrv_get_aio_context(bs);
1934 int ret;
1936 aio_context_acquire(aio_context);
1937 ret = bdrv_flush(bs);
1938 if (ret < 0 && !result) {
1939 result = ret;
1941 aio_context_release(aio_context);
1944 return result;
1948 typedef struct BdrvCoBlockStatusData {
1949 BlockDriverState *bs;
1950 BlockDriverState *base;
1951 bool want_zero;
1952 int64_t offset;
1953 int64_t bytes;
1954 int64_t *pnum;
1955 int64_t *map;
1956 BlockDriverState **file;
1957 int ret;
1958 bool done;
1959 } BdrvCoBlockStatusData;
1961 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1962 bool want_zero,
1963 int64_t offset,
1964 int64_t bytes,
1965 int64_t *pnum,
1966 int64_t *map,
1967 BlockDriverState **file)
1969 assert(bs->file && bs->file->bs);
1970 *pnum = bytes;
1971 *map = offset;
1972 *file = bs->file->bs;
1973 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1976 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1977 bool want_zero,
1978 int64_t offset,
1979 int64_t bytes,
1980 int64_t *pnum,
1981 int64_t *map,
1982 BlockDriverState **file)
1984 assert(bs->backing && bs->backing->bs);
1985 *pnum = bytes;
1986 *map = offset;
1987 *file = bs->backing->bs;
1988 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1992 * Returns the allocation status of the specified sectors.
1993 * Drivers not implementing the functionality are assumed to not support
1994 * backing files, hence all their sectors are reported as allocated.
1996 * If 'want_zero' is true, the caller is querying for mapping
1997 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1998 * _ZERO where possible; otherwise, the result favors larger 'pnum',
1999 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2001 * If 'offset' is beyond the end of the disk image the return value is
2002 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2004 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2005 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2006 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2008 * 'pnum' is set to the number of bytes (including and immediately
2009 * following the specified offset) that are easily known to be in the
2010 * same allocated/unallocated state. Note that a second call starting
2011 * at the original offset plus returned pnum may have the same status.
2012 * The returned value is non-zero on success except at end-of-file.
2014 * Returns negative errno on failure. Otherwise, if the
2015 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2016 * set to the host mapping and BDS corresponding to the guest offset.
2018 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2019 bool want_zero,
2020 int64_t offset, int64_t bytes,
2021 int64_t *pnum, int64_t *map,
2022 BlockDriverState **file)
2024 int64_t total_size;
2025 int64_t n; /* bytes */
2026 int ret;
2027 int64_t local_map = 0;
2028 BlockDriverState *local_file = NULL;
2029 int64_t aligned_offset, aligned_bytes;
2030 uint32_t align;
2032 assert(pnum);
2033 *pnum = 0;
2034 total_size = bdrv_getlength(bs);
2035 if (total_size < 0) {
2036 ret = total_size;
2037 goto early_out;
2040 if (offset >= total_size) {
2041 ret = BDRV_BLOCK_EOF;
2042 goto early_out;
2044 if (!bytes) {
2045 ret = 0;
2046 goto early_out;
2049 n = total_size - offset;
2050 if (n < bytes) {
2051 bytes = n;
2054 /* Must be non-NULL or bdrv_getlength() would have failed */
2055 assert(bs->drv);
2056 if (!bs->drv->bdrv_co_block_status) {
2057 *pnum = bytes;
2058 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2059 if (offset + bytes == total_size) {
2060 ret |= BDRV_BLOCK_EOF;
2062 if (bs->drv->protocol_name) {
2063 ret |= BDRV_BLOCK_OFFSET_VALID;
2064 local_map = offset;
2065 local_file = bs;
2067 goto early_out;
2070 bdrv_inc_in_flight(bs);
2072 /* Round out to request_alignment boundaries */
2073 align = bs->bl.request_alignment;
2074 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2075 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2077 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2078 aligned_bytes, pnum, &local_map,
2079 &local_file);
2080 if (ret < 0) {
2081 *pnum = 0;
2082 goto out;
2086 * The driver's result must be a non-zero multiple of request_alignment.
2087 * Clamp pnum and adjust map to original request.
2089 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2090 align > offset - aligned_offset);
2091 *pnum -= offset - aligned_offset;
2092 if (*pnum > bytes) {
2093 *pnum = bytes;
2095 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2096 local_map += offset - aligned_offset;
2099 if (ret & BDRV_BLOCK_RAW) {
2100 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2101 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2102 *pnum, pnum, &local_map, &local_file);
2103 goto out;
2106 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2107 ret |= BDRV_BLOCK_ALLOCATED;
2108 } else if (want_zero) {
2109 if (bdrv_unallocated_blocks_are_zero(bs)) {
2110 ret |= BDRV_BLOCK_ZERO;
2111 } else if (bs->backing) {
2112 BlockDriverState *bs2 = bs->backing->bs;
2113 int64_t size2 = bdrv_getlength(bs2);
2115 if (size2 >= 0 && offset >= size2) {
2116 ret |= BDRV_BLOCK_ZERO;
2121 if (want_zero && local_file && local_file != bs &&
2122 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2123 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2124 int64_t file_pnum;
2125 int ret2;
2127 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2128 *pnum, &file_pnum, NULL, NULL);
2129 if (ret2 >= 0) {
2130 /* Ignore errors. This is just providing extra information, it
2131 * is useful but not necessary.
2133 if (ret2 & BDRV_BLOCK_EOF &&
2134 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2136 * It is valid for the format block driver to read
2137 * beyond the end of the underlying file's current
2138 * size; such areas read as zero.
2140 ret |= BDRV_BLOCK_ZERO;
2141 } else {
2142 /* Limit request to the range reported by the protocol driver */
2143 *pnum = file_pnum;
2144 ret |= (ret2 & BDRV_BLOCK_ZERO);
2149 out:
2150 bdrv_dec_in_flight(bs);
2151 if (ret >= 0 && offset + *pnum == total_size) {
2152 ret |= BDRV_BLOCK_EOF;
2154 early_out:
2155 if (file) {
2156 *file = local_file;
2158 if (map) {
2159 *map = local_map;
2161 return ret;
2164 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2165 BlockDriverState *base,
2166 bool want_zero,
2167 int64_t offset,
2168 int64_t bytes,
2169 int64_t *pnum,
2170 int64_t *map,
2171 BlockDriverState **file)
2173 BlockDriverState *p;
2174 int ret = 0;
2175 bool first = true;
2177 assert(bs != base);
2178 for (p = bs; p != base; p = backing_bs(p)) {
2179 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2180 file);
2181 if (ret < 0) {
2182 break;
2184 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2186 * Reading beyond the end of the file continues to read
2187 * zeroes, but we can only widen the result to the
2188 * unallocated length we learned from an earlier
2189 * iteration.
2191 *pnum = bytes;
2193 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2194 break;
2196 /* [offset, pnum] unallocated on this layer, which could be only
2197 * the first part of [offset, bytes]. */
2198 bytes = MIN(bytes, *pnum);
2199 first = false;
2201 return ret;
2204 /* Coroutine wrapper for bdrv_block_status_above() */
2205 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2207 BdrvCoBlockStatusData *data = opaque;
2209 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2210 data->want_zero,
2211 data->offset, data->bytes,
2212 data->pnum, data->map, data->file);
2213 data->done = true;
2217 * Synchronous wrapper around bdrv_co_block_status_above().
2219 * See bdrv_co_block_status_above() for details.
2221 static int bdrv_common_block_status_above(BlockDriverState *bs,
2222 BlockDriverState *base,
2223 bool want_zero, int64_t offset,
2224 int64_t bytes, int64_t *pnum,
2225 int64_t *map,
2226 BlockDriverState **file)
2228 Coroutine *co;
2229 BdrvCoBlockStatusData data = {
2230 .bs = bs,
2231 .base = base,
2232 .want_zero = want_zero,
2233 .offset = offset,
2234 .bytes = bytes,
2235 .pnum = pnum,
2236 .map = map,
2237 .file = file,
2238 .done = false,
2241 if (qemu_in_coroutine()) {
2242 /* Fast-path if already in coroutine context */
2243 bdrv_block_status_above_co_entry(&data);
2244 } else {
2245 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2246 bdrv_coroutine_enter(bs, co);
2247 BDRV_POLL_WHILE(bs, !data.done);
2249 return data.ret;
2252 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2253 int64_t offset, int64_t bytes, int64_t *pnum,
2254 int64_t *map, BlockDriverState **file)
2256 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2257 pnum, map, file);
2260 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2261 int64_t *pnum, int64_t *map, BlockDriverState **file)
2263 return bdrv_block_status_above(bs, backing_bs(bs),
2264 offset, bytes, pnum, map, file);
2267 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2268 int64_t bytes, int64_t *pnum)
2270 int ret;
2271 int64_t dummy;
2273 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2274 bytes, pnum ? pnum : &dummy, NULL,
2275 NULL);
2276 if (ret < 0) {
2277 return ret;
2279 return !!(ret & BDRV_BLOCK_ALLOCATED);
2283 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2285 * Return true if (a prefix of) the given range is allocated in any image
2286 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2287 * offset is allocated in any image of the chain. Return false otherwise,
2288 * or negative errno on failure.
2290 * 'pnum' is set to the number of bytes (including and immediately
2291 * following the specified offset) that are known to be in the same
2292 * allocated/unallocated state. Note that a subsequent call starting
2293 * at 'offset + *pnum' may return the same allocation status (in other
2294 * words, the result is not necessarily the maximum possible range);
2295 * but 'pnum' will only be 0 when end of file is reached.
2298 int bdrv_is_allocated_above(BlockDriverState *top,
2299 BlockDriverState *base,
2300 int64_t offset, int64_t bytes, int64_t *pnum)
2302 BlockDriverState *intermediate;
2303 int ret;
2304 int64_t n = bytes;
2306 intermediate = top;
2307 while (intermediate && intermediate != base) {
2308 int64_t pnum_inter;
2309 int64_t size_inter;
2311 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2312 if (ret < 0) {
2313 return ret;
2315 if (ret) {
2316 *pnum = pnum_inter;
2317 return 1;
2320 size_inter = bdrv_getlength(intermediate);
2321 if (size_inter < 0) {
2322 return size_inter;
2324 if (n > pnum_inter &&
2325 (intermediate == top || offset + pnum_inter < size_inter)) {
2326 n = pnum_inter;
2329 intermediate = backing_bs(intermediate);
2332 *pnum = n;
2333 return 0;
2336 typedef struct BdrvVmstateCo {
2337 BlockDriverState *bs;
2338 QEMUIOVector *qiov;
2339 int64_t pos;
2340 bool is_read;
2341 int ret;
2342 } BdrvVmstateCo;
2344 static int coroutine_fn
2345 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2346 bool is_read)
2348 BlockDriver *drv = bs->drv;
2349 int ret = -ENOTSUP;
2351 bdrv_inc_in_flight(bs);
2353 if (!drv) {
2354 ret = -ENOMEDIUM;
2355 } else if (drv->bdrv_load_vmstate) {
2356 if (is_read) {
2357 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2358 } else {
2359 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2361 } else if (bs->file) {
2362 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2365 bdrv_dec_in_flight(bs);
2366 return ret;
2369 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2371 BdrvVmstateCo *co = opaque;
2372 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2375 static inline int
2376 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2377 bool is_read)
2379 if (qemu_in_coroutine()) {
2380 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2381 } else {
2382 BdrvVmstateCo data = {
2383 .bs = bs,
2384 .qiov = qiov,
2385 .pos = pos,
2386 .is_read = is_read,
2387 .ret = -EINPROGRESS,
2389 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2391 bdrv_coroutine_enter(bs, co);
2392 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2393 return data.ret;
2397 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2398 int64_t pos, int size)
2400 QEMUIOVector qiov;
2401 struct iovec iov = {
2402 .iov_base = (void *) buf,
2403 .iov_len = size,
2405 int ret;
2407 qemu_iovec_init_external(&qiov, &iov, 1);
2409 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2410 if (ret < 0) {
2411 return ret;
2414 return size;
2417 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2419 return bdrv_rw_vmstate(bs, qiov, pos, false);
2422 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2423 int64_t pos, int size)
2425 QEMUIOVector qiov;
2426 struct iovec iov = {
2427 .iov_base = buf,
2428 .iov_len = size,
2430 int ret;
2432 qemu_iovec_init_external(&qiov, &iov, 1);
2433 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2434 if (ret < 0) {
2435 return ret;
2438 return size;
2441 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2443 return bdrv_rw_vmstate(bs, qiov, pos, true);
2446 /**************************************************************/
2447 /* async I/Os */
2449 void bdrv_aio_cancel(BlockAIOCB *acb)
2451 qemu_aio_ref(acb);
2452 bdrv_aio_cancel_async(acb);
2453 while (acb->refcnt > 1) {
2454 if (acb->aiocb_info->get_aio_context) {
2455 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2456 } else if (acb->bs) {
2457 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2458 * assert that we're not using an I/O thread. Thread-safe
2459 * code should use bdrv_aio_cancel_async exclusively.
2461 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2462 aio_poll(bdrv_get_aio_context(acb->bs), true);
2463 } else {
2464 abort();
2467 qemu_aio_unref(acb);
2470 /* Async version of aio cancel. The caller is not blocked if the acb implements
2471 * cancel_async, otherwise we do nothing and let the request normally complete.
2472 * In either case the completion callback must be called. */
2473 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2475 if (acb->aiocb_info->cancel_async) {
2476 acb->aiocb_info->cancel_async(acb);
2480 /**************************************************************/
2481 /* Coroutine block device emulation */
2483 typedef struct FlushCo {
2484 BlockDriverState *bs;
2485 int ret;
2486 } FlushCo;
2489 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2491 FlushCo *rwco = opaque;
2493 rwco->ret = bdrv_co_flush(rwco->bs);
2496 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2498 int current_gen;
2499 int ret = 0;
2501 bdrv_inc_in_flight(bs);
2503 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2504 bdrv_is_sg(bs)) {
2505 goto early_exit;
2508 qemu_co_mutex_lock(&bs->reqs_lock);
2509 current_gen = atomic_read(&bs->write_gen);
2511 /* Wait until any previous flushes are completed */
2512 while (bs->active_flush_req) {
2513 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2516 /* Flushes reach this point in nondecreasing current_gen order. */
2517 bs->active_flush_req = true;
2518 qemu_co_mutex_unlock(&bs->reqs_lock);
2520 /* Write back all layers by calling one driver function */
2521 if (bs->drv->bdrv_co_flush) {
2522 ret = bs->drv->bdrv_co_flush(bs);
2523 goto out;
2526 /* Write back cached data to the OS even with cache=unsafe */
2527 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2528 if (bs->drv->bdrv_co_flush_to_os) {
2529 ret = bs->drv->bdrv_co_flush_to_os(bs);
2530 if (ret < 0) {
2531 goto out;
2535 /* But don't actually force it to the disk with cache=unsafe */
2536 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2537 goto flush_parent;
2540 /* Check if we really need to flush anything */
2541 if (bs->flushed_gen == current_gen) {
2542 goto flush_parent;
2545 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2546 if (!bs->drv) {
2547 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2548 * (even in case of apparent success) */
2549 ret = -ENOMEDIUM;
2550 goto out;
2552 if (bs->drv->bdrv_co_flush_to_disk) {
2553 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2554 } else if (bs->drv->bdrv_aio_flush) {
2555 BlockAIOCB *acb;
2556 CoroutineIOCompletion co = {
2557 .coroutine = qemu_coroutine_self(),
2560 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2561 if (acb == NULL) {
2562 ret = -EIO;
2563 } else {
2564 qemu_coroutine_yield();
2565 ret = co.ret;
2567 } else {
2569 * Some block drivers always operate in either writethrough or unsafe
2570 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2571 * know how the server works (because the behaviour is hardcoded or
2572 * depends on server-side configuration), so we can't ensure that
2573 * everything is safe on disk. Returning an error doesn't work because
2574 * that would break guests even if the server operates in writethrough
2575 * mode.
2577 * Let's hope the user knows what he's doing.
2579 ret = 0;
2582 if (ret < 0) {
2583 goto out;
2586 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2587 * in the case of cache=unsafe, so there are no useless flushes.
2589 flush_parent:
2590 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2591 out:
2592 /* Notify any pending flushes that we have completed */
2593 if (ret == 0) {
2594 bs->flushed_gen = current_gen;
2597 qemu_co_mutex_lock(&bs->reqs_lock);
2598 bs->active_flush_req = false;
2599 /* Return value is ignored - it's ok if wait queue is empty */
2600 qemu_co_queue_next(&bs->flush_queue);
2601 qemu_co_mutex_unlock(&bs->reqs_lock);
2603 early_exit:
2604 bdrv_dec_in_flight(bs);
2605 return ret;
2608 int bdrv_flush(BlockDriverState *bs)
2610 Coroutine *co;
2611 FlushCo flush_co = {
2612 .bs = bs,
2613 .ret = NOT_DONE,
2616 if (qemu_in_coroutine()) {
2617 /* Fast-path if already in coroutine context */
2618 bdrv_flush_co_entry(&flush_co);
2619 } else {
2620 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2621 bdrv_coroutine_enter(bs, co);
2622 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2625 return flush_co.ret;
2628 typedef struct DiscardCo {
2629 BlockDriverState *bs;
2630 int64_t offset;
2631 int bytes;
2632 int ret;
2633 } DiscardCo;
2634 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2636 DiscardCo *rwco = opaque;
2638 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2641 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2642 int bytes)
2644 BdrvTrackedRequest req;
2645 int max_pdiscard, ret;
2646 int head, tail, align;
2648 if (!bs->drv) {
2649 return -ENOMEDIUM;
2652 if (bdrv_has_readonly_bitmaps(bs)) {
2653 return -EPERM;
2656 ret = bdrv_check_byte_request(bs, offset, bytes);
2657 if (ret < 0) {
2658 return ret;
2659 } else if (bs->read_only) {
2660 return -EPERM;
2662 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2664 /* Do nothing if disabled. */
2665 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2666 return 0;
2669 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2670 return 0;
2673 /* Discard is advisory, but some devices track and coalesce
2674 * unaligned requests, so we must pass everything down rather than
2675 * round here. Still, most devices will just silently ignore
2676 * unaligned requests (by returning -ENOTSUP), so we must fragment
2677 * the request accordingly. */
2678 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2679 assert(align % bs->bl.request_alignment == 0);
2680 head = offset % align;
2681 tail = (offset + bytes) % align;
2683 bdrv_inc_in_flight(bs);
2684 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2686 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2687 if (ret < 0) {
2688 goto out;
2691 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2692 align);
2693 assert(max_pdiscard >= bs->bl.request_alignment);
2695 while (bytes > 0) {
2696 int num = bytes;
2698 if (head) {
2699 /* Make small requests to get to alignment boundaries. */
2700 num = MIN(bytes, align - head);
2701 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2702 num %= bs->bl.request_alignment;
2704 head = (head + num) % align;
2705 assert(num < max_pdiscard);
2706 } else if (tail) {
2707 if (num > align) {
2708 /* Shorten the request to the last aligned cluster. */
2709 num -= tail;
2710 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2711 tail > bs->bl.request_alignment) {
2712 tail %= bs->bl.request_alignment;
2713 num -= tail;
2716 /* limit request size */
2717 if (num > max_pdiscard) {
2718 num = max_pdiscard;
2721 if (!bs->drv) {
2722 ret = -ENOMEDIUM;
2723 goto out;
2725 if (bs->drv->bdrv_co_pdiscard) {
2726 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2727 } else {
2728 BlockAIOCB *acb;
2729 CoroutineIOCompletion co = {
2730 .coroutine = qemu_coroutine_self(),
2733 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2734 bdrv_co_io_em_complete, &co);
2735 if (acb == NULL) {
2736 ret = -EIO;
2737 goto out;
2738 } else {
2739 qemu_coroutine_yield();
2740 ret = co.ret;
2743 if (ret && ret != -ENOTSUP) {
2744 goto out;
2747 offset += num;
2748 bytes -= num;
2750 ret = 0;
2751 out:
2752 atomic_inc(&bs->write_gen);
2753 bdrv_set_dirty(bs, req.offset, req.bytes);
2754 tracked_request_end(&req);
2755 bdrv_dec_in_flight(bs);
2756 return ret;
2759 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2761 Coroutine *co;
2762 DiscardCo rwco = {
2763 .bs = bs,
2764 .offset = offset,
2765 .bytes = bytes,
2766 .ret = NOT_DONE,
2769 if (qemu_in_coroutine()) {
2770 /* Fast-path if already in coroutine context */
2771 bdrv_pdiscard_co_entry(&rwco);
2772 } else {
2773 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2774 bdrv_coroutine_enter(bs, co);
2775 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2778 return rwco.ret;
2781 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2783 BlockDriver *drv = bs->drv;
2784 CoroutineIOCompletion co = {
2785 .coroutine = qemu_coroutine_self(),
2787 BlockAIOCB *acb;
2789 bdrv_inc_in_flight(bs);
2790 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2791 co.ret = -ENOTSUP;
2792 goto out;
2795 if (drv->bdrv_co_ioctl) {
2796 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2797 } else {
2798 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2799 if (!acb) {
2800 co.ret = -ENOTSUP;
2801 goto out;
2803 qemu_coroutine_yield();
2805 out:
2806 bdrv_dec_in_flight(bs);
2807 return co.ret;
2810 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2812 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2815 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2817 return memset(qemu_blockalign(bs, size), 0, size);
2820 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2822 size_t align = bdrv_opt_mem_align(bs);
2824 /* Ensure that NULL is never returned on success */
2825 assert(align > 0);
2826 if (size == 0) {
2827 size = align;
2830 return qemu_try_memalign(align, size);
2833 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2835 void *mem = qemu_try_blockalign(bs, size);
2837 if (mem) {
2838 memset(mem, 0, size);
2841 return mem;
2845 * Check if all memory in this vector is sector aligned.
2847 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2849 int i;
2850 size_t alignment = bdrv_min_mem_align(bs);
2852 for (i = 0; i < qiov->niov; i++) {
2853 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2854 return false;
2856 if (qiov->iov[i].iov_len % alignment) {
2857 return false;
2861 return true;
2864 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2865 NotifierWithReturn *notifier)
2867 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2870 void bdrv_io_plug(BlockDriverState *bs)
2872 BdrvChild *child;
2874 QLIST_FOREACH(child, &bs->children, next) {
2875 bdrv_io_plug(child->bs);
2878 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2879 BlockDriver *drv = bs->drv;
2880 if (drv && drv->bdrv_io_plug) {
2881 drv->bdrv_io_plug(bs);
2886 void bdrv_io_unplug(BlockDriverState *bs)
2888 BdrvChild *child;
2890 assert(bs->io_plugged);
2891 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2892 BlockDriver *drv = bs->drv;
2893 if (drv && drv->bdrv_io_unplug) {
2894 drv->bdrv_io_unplug(bs);
2898 QLIST_FOREACH(child, &bs->children, next) {
2899 bdrv_io_unplug(child->bs);
2903 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2905 BdrvChild *child;
2907 if (bs->drv && bs->drv->bdrv_register_buf) {
2908 bs->drv->bdrv_register_buf(bs, host, size);
2910 QLIST_FOREACH(child, &bs->children, next) {
2911 bdrv_register_buf(child->bs, host, size);
2915 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2917 BdrvChild *child;
2919 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2920 bs->drv->bdrv_unregister_buf(bs, host);
2922 QLIST_FOREACH(child, &bs->children, next) {
2923 bdrv_unregister_buf(child->bs, host);
2927 static int coroutine_fn bdrv_co_copy_range_internal(BdrvChild *src,
2928 uint64_t src_offset,
2929 BdrvChild *dst,
2930 uint64_t dst_offset,
2931 uint64_t bytes,
2932 BdrvRequestFlags flags,
2933 bool recurse_src)
2935 int ret;
2937 if (!src || !dst || !src->bs || !dst->bs) {
2938 return -ENOMEDIUM;
2940 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
2941 if (ret) {
2942 return ret;
2945 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
2946 if (ret) {
2947 return ret;
2949 if (flags & BDRV_REQ_ZERO_WRITE) {
2950 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, flags);
2953 if (!src->bs->drv->bdrv_co_copy_range_from
2954 || !dst->bs->drv->bdrv_co_copy_range_to
2955 || src->bs->encrypted || dst->bs->encrypted) {
2956 return -ENOTSUP;
2958 if (recurse_src) {
2959 return src->bs->drv->bdrv_co_copy_range_from(src->bs,
2960 src, src_offset,
2961 dst, dst_offset,
2962 bytes, flags);
2963 } else {
2964 return dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
2965 src, src_offset,
2966 dst, dst_offset,
2967 bytes, flags);
2971 /* Copy range from @src to @dst.
2973 * See the comment of bdrv_co_copy_range for the parameter and return value
2974 * semantics. */
2975 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
2976 BdrvChild *dst, uint64_t dst_offset,
2977 uint64_t bytes, BdrvRequestFlags flags)
2979 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
2980 bytes, flags, true);
2983 /* Copy range from @src to @dst.
2985 * See the comment of bdrv_co_copy_range for the parameter and return value
2986 * semantics. */
2987 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
2988 BdrvChild *dst, uint64_t dst_offset,
2989 uint64_t bytes, BdrvRequestFlags flags)
2991 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
2992 bytes, flags, false);
2995 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
2996 BdrvChild *dst, uint64_t dst_offset,
2997 uint64_t bytes, BdrvRequestFlags flags)
2999 BdrvTrackedRequest src_req, dst_req;
3000 BlockDriverState *src_bs = src->bs;
3001 BlockDriverState *dst_bs = dst->bs;
3002 int ret;
3004 bdrv_inc_in_flight(src_bs);
3005 bdrv_inc_in_flight(dst_bs);
3006 tracked_request_begin(&src_req, src_bs, src_offset,
3007 bytes, BDRV_TRACKED_READ);
3008 tracked_request_begin(&dst_req, dst_bs, dst_offset,
3009 bytes, BDRV_TRACKED_WRITE);
3011 wait_serialising_requests(&src_req);
3012 wait_serialising_requests(&dst_req);
3013 ret = bdrv_co_copy_range_from(src, src_offset,
3014 dst, dst_offset,
3015 bytes, flags);
3017 tracked_request_end(&src_req);
3018 tracked_request_end(&dst_req);
3019 bdrv_dec_in_flight(src_bs);
3020 bdrv_dec_in_flight(dst_bs);
3021 return ret;