kvm: refactor start address calculation
[qemu.git] / kvm-all.c
blobcb62ba43335de399eadd448e689333069b0f2a91
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
37 #include "trace.h"
39 /* This check must be after config-host.h is included */
40 #ifdef CONFIG_EVENTFD
41 #include <sys/eventfd.h>
42 #endif
44 #ifdef CONFIG_VALGRIND_H
45 #include <valgrind/memcheck.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 KVMSlot *slots;
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
82 bool coalesced_flush_in_progress;
83 int broken_set_mem_region;
84 int migration_log;
85 int vcpu_events;
86 int robust_singlestep;
87 int debugregs;
88 #ifdef KVM_CAP_SET_GUEST_DEBUG
89 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
90 #endif
91 int pit_state2;
92 int xsave, xcrs;
93 int many_ioeventfds;
94 int intx_set_mask;
95 /* The man page (and posix) say ioctl numbers are signed int, but
96 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
97 * unsigned, and treating them as signed here can break things */
98 unsigned irq_set_ioctl;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing *irq_routes;
101 int nr_allocated_irq_routes;
102 uint32_t *used_gsi_bitmap;
103 unsigned int gsi_count;
104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 bool direct_msi;
106 #endif
109 KVMState *kvm_state;
110 bool kvm_kernel_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_irqfds_allowed;
114 bool kvm_msi_via_irqfd_allowed;
115 bool kvm_gsi_routing_allowed;
116 bool kvm_gsi_direct_mapping;
117 bool kvm_allowed;
118 bool kvm_readonly_mem_allowed;
120 static const KVMCapabilityInfo kvm_required_capabilites[] = {
121 KVM_CAP_INFO(USER_MEMORY),
122 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
123 KVM_CAP_LAST_INFO
126 static KVMSlot *kvm_alloc_slot(KVMState *s)
128 int i;
130 for (i = 0; i < s->nr_slots; i++) {
131 if (s->slots[i].memory_size == 0) {
132 return &s->slots[i];
136 fprintf(stderr, "%s: no free slot available\n", __func__);
137 abort();
140 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
141 hwaddr start_addr,
142 hwaddr end_addr)
144 int i;
146 for (i = 0; i < s->nr_slots; i++) {
147 KVMSlot *mem = &s->slots[i];
149 if (start_addr == mem->start_addr &&
150 end_addr == mem->start_addr + mem->memory_size) {
151 return mem;
155 return NULL;
159 * Find overlapping slot with lowest start address
161 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
162 hwaddr start_addr,
163 hwaddr end_addr)
165 KVMSlot *found = NULL;
166 int i;
168 for (i = 0; i < s->nr_slots; i++) {
169 KVMSlot *mem = &s->slots[i];
171 if (mem->memory_size == 0 ||
172 (found && found->start_addr < mem->start_addr)) {
173 continue;
176 if (end_addr > mem->start_addr &&
177 start_addr < mem->start_addr + mem->memory_size) {
178 found = mem;
182 return found;
185 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
186 hwaddr *phys_addr)
188 int i;
190 for (i = 0; i < s->nr_slots; i++) {
191 KVMSlot *mem = &s->slots[i];
193 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
194 *phys_addr = mem->start_addr + (ram - mem->ram);
195 return 1;
199 return 0;
202 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
204 struct kvm_userspace_memory_region mem;
206 mem.slot = slot->slot;
207 mem.guest_phys_addr = slot->start_addr;
208 mem.userspace_addr = (unsigned long)slot->ram;
209 mem.flags = slot->flags;
210 if (s->migration_log) {
211 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
214 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
215 /* Set the slot size to 0 before setting the slot to the desired
216 * value. This is needed based on KVM commit 75d61fbc. */
217 mem.memory_size = 0;
218 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
220 mem.memory_size = slot->memory_size;
221 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
224 static void kvm_reset_vcpu(void *opaque)
226 CPUState *cpu = opaque;
228 kvm_arch_reset_vcpu(cpu);
231 int kvm_init_vcpu(CPUState *cpu)
233 KVMState *s = kvm_state;
234 long mmap_size;
235 int ret;
237 DPRINTF("kvm_init_vcpu\n");
239 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
240 if (ret < 0) {
241 DPRINTF("kvm_create_vcpu failed\n");
242 goto err;
245 cpu->kvm_fd = ret;
246 cpu->kvm_state = s;
247 cpu->kvm_vcpu_dirty = true;
249 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
250 if (mmap_size < 0) {
251 ret = mmap_size;
252 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 goto err;
256 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
257 cpu->kvm_fd, 0);
258 if (cpu->kvm_run == MAP_FAILED) {
259 ret = -errno;
260 DPRINTF("mmap'ing vcpu state failed\n");
261 goto err;
264 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
265 s->coalesced_mmio_ring =
266 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
269 ret = kvm_arch_init_vcpu(cpu);
270 if (ret == 0) {
271 qemu_register_reset(kvm_reset_vcpu, cpu);
272 kvm_arch_reset_vcpu(cpu);
274 err:
275 return ret;
279 * dirty pages logging control
282 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
284 int flags = 0;
285 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
286 if (readonly && kvm_readonly_mem_allowed) {
287 flags |= KVM_MEM_READONLY;
289 return flags;
292 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
294 KVMState *s = kvm_state;
295 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
296 int old_flags;
298 old_flags = mem->flags;
300 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
301 mem->flags = flags;
303 /* If nothing changed effectively, no need to issue ioctl */
304 if (s->migration_log) {
305 flags |= KVM_MEM_LOG_DIRTY_PAGES;
308 if (flags == old_flags) {
309 return 0;
312 return kvm_set_user_memory_region(s, mem);
315 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
316 ram_addr_t size, bool log_dirty)
318 KVMState *s = kvm_state;
319 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
321 if (mem == NULL) {
322 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
323 TARGET_FMT_plx "\n", __func__, phys_addr,
324 (hwaddr)(phys_addr + size - 1));
325 return -EINVAL;
327 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
330 static void kvm_log_start(MemoryListener *listener,
331 MemoryRegionSection *section)
333 int r;
335 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
336 int128_get64(section->size), true);
337 if (r < 0) {
338 abort();
342 static void kvm_log_stop(MemoryListener *listener,
343 MemoryRegionSection *section)
345 int r;
347 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
348 int128_get64(section->size), false);
349 if (r < 0) {
350 abort();
354 static int kvm_set_migration_log(int enable)
356 KVMState *s = kvm_state;
357 KVMSlot *mem;
358 int i, err;
360 s->migration_log = enable;
362 for (i = 0; i < s->nr_slots; i++) {
363 mem = &s->slots[i];
365 if (!mem->memory_size) {
366 continue;
368 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
369 continue;
371 err = kvm_set_user_memory_region(s, mem);
372 if (err) {
373 return err;
376 return 0;
379 /* get kvm's dirty pages bitmap and update qemu's */
380 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
381 unsigned long *bitmap)
383 unsigned int i, j;
384 unsigned long page_number, c;
385 hwaddr addr;
386 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
387 ram_addr_t ram_addr;
388 unsigned int pages = int128_get64(section->size) / getpagesize();
389 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
390 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
393 * bitmap-traveling is faster than memory-traveling (for addr...)
394 * especially when most of the memory is not dirty.
396 for (i = 0; i < len; i++) {
397 if (bitmap[i] != 0) {
398 c = leul_to_cpu(bitmap[i]);
399 do {
400 j = ffsl(c) - 1;
401 c &= ~(1ul << j);
402 page_number = (i * HOST_LONG_BITS + j) * hpratio;
403 addr = page_number * TARGET_PAGE_SIZE;
404 ram_addr = start + addr;
405 cpu_physical_memory_set_dirty_range(ram_addr,
406 TARGET_PAGE_SIZE * hpratio);
407 } while (c != 0);
410 return 0;
413 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
416 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
417 * This function updates qemu's dirty bitmap using
418 * memory_region_set_dirty(). This means all bits are set
419 * to dirty.
421 * @start_add: start of logged region.
422 * @end_addr: end of logged region.
424 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
426 KVMState *s = kvm_state;
427 unsigned long size, allocated_size = 0;
428 KVMDirtyLog d;
429 KVMSlot *mem;
430 int ret = 0;
431 hwaddr start_addr = section->offset_within_address_space;
432 hwaddr end_addr = start_addr + int128_get64(section->size);
434 d.dirty_bitmap = NULL;
435 while (start_addr < end_addr) {
436 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
437 if (mem == NULL) {
438 break;
441 /* XXX bad kernel interface alert
442 * For dirty bitmap, kernel allocates array of size aligned to
443 * bits-per-long. But for case when the kernel is 64bits and
444 * the userspace is 32bits, userspace can't align to the same
445 * bits-per-long, since sizeof(long) is different between kernel
446 * and user space. This way, userspace will provide buffer which
447 * may be 4 bytes less than the kernel will use, resulting in
448 * userspace memory corruption (which is not detectable by valgrind
449 * too, in most cases).
450 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
451 * a hope that sizeof(long) wont become >8 any time soon.
453 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
454 /*HOST_LONG_BITS*/ 64) / 8;
455 if (!d.dirty_bitmap) {
456 d.dirty_bitmap = g_malloc(size);
457 } else if (size > allocated_size) {
458 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
460 allocated_size = size;
461 memset(d.dirty_bitmap, 0, allocated_size);
463 d.slot = mem->slot;
465 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
466 DPRINTF("ioctl failed %d\n", errno);
467 ret = -1;
468 break;
471 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
472 start_addr = mem->start_addr + mem->memory_size;
474 g_free(d.dirty_bitmap);
476 return ret;
479 static void kvm_coalesce_mmio_region(MemoryListener *listener,
480 MemoryRegionSection *secion,
481 hwaddr start, hwaddr size)
483 KVMState *s = kvm_state;
485 if (s->coalesced_mmio) {
486 struct kvm_coalesced_mmio_zone zone;
488 zone.addr = start;
489 zone.size = size;
490 zone.pad = 0;
492 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
496 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
497 MemoryRegionSection *secion,
498 hwaddr start, hwaddr size)
500 KVMState *s = kvm_state;
502 if (s->coalesced_mmio) {
503 struct kvm_coalesced_mmio_zone zone;
505 zone.addr = start;
506 zone.size = size;
507 zone.pad = 0;
509 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
513 int kvm_check_extension(KVMState *s, unsigned int extension)
515 int ret;
517 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
518 if (ret < 0) {
519 ret = 0;
522 return ret;
525 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
526 bool assign, uint32_t size, bool datamatch)
528 int ret;
529 struct kvm_ioeventfd iofd;
531 iofd.datamatch = datamatch ? val : 0;
532 iofd.addr = addr;
533 iofd.len = size;
534 iofd.flags = 0;
535 iofd.fd = fd;
537 if (!kvm_enabled()) {
538 return -ENOSYS;
541 if (datamatch) {
542 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
544 if (!assign) {
545 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
548 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
550 if (ret < 0) {
551 return -errno;
554 return 0;
557 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
558 bool assign, uint32_t size, bool datamatch)
560 struct kvm_ioeventfd kick = {
561 .datamatch = datamatch ? val : 0,
562 .addr = addr,
563 .flags = KVM_IOEVENTFD_FLAG_PIO,
564 .len = size,
565 .fd = fd,
567 int r;
568 if (!kvm_enabled()) {
569 return -ENOSYS;
571 if (datamatch) {
572 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
574 if (!assign) {
575 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
577 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
578 if (r < 0) {
579 return r;
581 return 0;
585 static int kvm_check_many_ioeventfds(void)
587 /* Userspace can use ioeventfd for io notification. This requires a host
588 * that supports eventfd(2) and an I/O thread; since eventfd does not
589 * support SIGIO it cannot interrupt the vcpu.
591 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
592 * can avoid creating too many ioeventfds.
594 #if defined(CONFIG_EVENTFD)
595 int ioeventfds[7];
596 int i, ret = 0;
597 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
598 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
599 if (ioeventfds[i] < 0) {
600 break;
602 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
603 if (ret < 0) {
604 close(ioeventfds[i]);
605 break;
609 /* Decide whether many devices are supported or not */
610 ret = i == ARRAY_SIZE(ioeventfds);
612 while (i-- > 0) {
613 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
614 close(ioeventfds[i]);
616 return ret;
617 #else
618 return 0;
619 #endif
622 static const KVMCapabilityInfo *
623 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
625 while (list->name) {
626 if (!kvm_check_extension(s, list->value)) {
627 return list;
629 list++;
631 return NULL;
634 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
636 KVMState *s = kvm_state;
637 KVMSlot *mem, old;
638 int err;
639 MemoryRegion *mr = section->mr;
640 bool log_dirty = memory_region_is_logging(mr);
641 bool writeable = !mr->readonly && !mr->rom_device;
642 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
643 hwaddr start_addr = section->offset_within_address_space;
644 ram_addr_t size = int128_get64(section->size);
645 void *ram = NULL;
646 unsigned delta;
648 /* kvm works in page size chunks, but the function may be called
649 with sub-page size and unaligned start address. */
650 delta = TARGET_PAGE_ALIGN(size) - size;
651 if (delta > size) {
652 return;
654 start_addr += delta;
655 size -= delta;
656 size &= TARGET_PAGE_MASK;
657 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
658 return;
661 if (!memory_region_is_ram(mr)) {
662 if (writeable || !kvm_readonly_mem_allowed) {
663 return;
664 } else if (!mr->romd_mode) {
665 /* If the memory device is not in romd_mode, then we actually want
666 * to remove the kvm memory slot so all accesses will trap. */
667 add = false;
671 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
673 while (1) {
674 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
675 if (!mem) {
676 break;
679 if (add && start_addr >= mem->start_addr &&
680 (start_addr + size <= mem->start_addr + mem->memory_size) &&
681 (ram - start_addr == mem->ram - mem->start_addr)) {
682 /* The new slot fits into the existing one and comes with
683 * identical parameters - update flags and done. */
684 kvm_slot_dirty_pages_log_change(mem, log_dirty);
685 return;
688 old = *mem;
690 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
691 kvm_physical_sync_dirty_bitmap(section);
694 /* unregister the overlapping slot */
695 mem->memory_size = 0;
696 err = kvm_set_user_memory_region(s, mem);
697 if (err) {
698 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
699 __func__, strerror(-err));
700 abort();
703 /* Workaround for older KVM versions: we can't join slots, even not by
704 * unregistering the previous ones and then registering the larger
705 * slot. We have to maintain the existing fragmentation. Sigh.
707 * This workaround assumes that the new slot starts at the same
708 * address as the first existing one. If not or if some overlapping
709 * slot comes around later, we will fail (not seen in practice so far)
710 * - and actually require a recent KVM version. */
711 if (s->broken_set_mem_region &&
712 old.start_addr == start_addr && old.memory_size < size && add) {
713 mem = kvm_alloc_slot(s);
714 mem->memory_size = old.memory_size;
715 mem->start_addr = old.start_addr;
716 mem->ram = old.ram;
717 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
719 err = kvm_set_user_memory_region(s, mem);
720 if (err) {
721 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
722 strerror(-err));
723 abort();
726 start_addr += old.memory_size;
727 ram += old.memory_size;
728 size -= old.memory_size;
729 continue;
732 /* register prefix slot */
733 if (old.start_addr < start_addr) {
734 mem = kvm_alloc_slot(s);
735 mem->memory_size = start_addr - old.start_addr;
736 mem->start_addr = old.start_addr;
737 mem->ram = old.ram;
738 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
740 err = kvm_set_user_memory_region(s, mem);
741 if (err) {
742 fprintf(stderr, "%s: error registering prefix slot: %s\n",
743 __func__, strerror(-err));
744 #ifdef TARGET_PPC
745 fprintf(stderr, "%s: This is probably because your kernel's " \
746 "PAGE_SIZE is too big. Please try to use 4k " \
747 "PAGE_SIZE!\n", __func__);
748 #endif
749 abort();
753 /* register suffix slot */
754 if (old.start_addr + old.memory_size > start_addr + size) {
755 ram_addr_t size_delta;
757 mem = kvm_alloc_slot(s);
758 mem->start_addr = start_addr + size;
759 size_delta = mem->start_addr - old.start_addr;
760 mem->memory_size = old.memory_size - size_delta;
761 mem->ram = old.ram + size_delta;
762 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
764 err = kvm_set_user_memory_region(s, mem);
765 if (err) {
766 fprintf(stderr, "%s: error registering suffix slot: %s\n",
767 __func__, strerror(-err));
768 abort();
773 /* in case the KVM bug workaround already "consumed" the new slot */
774 if (!size) {
775 return;
777 if (!add) {
778 return;
780 mem = kvm_alloc_slot(s);
781 mem->memory_size = size;
782 mem->start_addr = start_addr;
783 mem->ram = ram;
784 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
786 err = kvm_set_user_memory_region(s, mem);
787 if (err) {
788 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
789 strerror(-err));
790 abort();
794 static void kvm_region_add(MemoryListener *listener,
795 MemoryRegionSection *section)
797 memory_region_ref(section->mr);
798 kvm_set_phys_mem(section, true);
801 static void kvm_region_del(MemoryListener *listener,
802 MemoryRegionSection *section)
804 kvm_set_phys_mem(section, false);
805 memory_region_unref(section->mr);
808 static void kvm_log_sync(MemoryListener *listener,
809 MemoryRegionSection *section)
811 int r;
813 r = kvm_physical_sync_dirty_bitmap(section);
814 if (r < 0) {
815 abort();
819 static void kvm_log_global_start(struct MemoryListener *listener)
821 int r;
823 r = kvm_set_migration_log(1);
824 assert(r >= 0);
827 static void kvm_log_global_stop(struct MemoryListener *listener)
829 int r;
831 r = kvm_set_migration_log(0);
832 assert(r >= 0);
835 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
836 MemoryRegionSection *section,
837 bool match_data, uint64_t data,
838 EventNotifier *e)
840 int fd = event_notifier_get_fd(e);
841 int r;
843 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
844 data, true, int128_get64(section->size),
845 match_data);
846 if (r < 0) {
847 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
848 __func__, strerror(-r));
849 abort();
853 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
854 MemoryRegionSection *section,
855 bool match_data, uint64_t data,
856 EventNotifier *e)
858 int fd = event_notifier_get_fd(e);
859 int r;
861 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
862 data, false, int128_get64(section->size),
863 match_data);
864 if (r < 0) {
865 abort();
869 static void kvm_io_ioeventfd_add(MemoryListener *listener,
870 MemoryRegionSection *section,
871 bool match_data, uint64_t data,
872 EventNotifier *e)
874 int fd = event_notifier_get_fd(e);
875 int r;
877 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
878 data, true, int128_get64(section->size),
879 match_data);
880 if (r < 0) {
881 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
882 __func__, strerror(-r));
883 abort();
887 static void kvm_io_ioeventfd_del(MemoryListener *listener,
888 MemoryRegionSection *section,
889 bool match_data, uint64_t data,
890 EventNotifier *e)
893 int fd = event_notifier_get_fd(e);
894 int r;
896 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
897 data, false, int128_get64(section->size),
898 match_data);
899 if (r < 0) {
900 abort();
904 static MemoryListener kvm_memory_listener = {
905 .region_add = kvm_region_add,
906 .region_del = kvm_region_del,
907 .log_start = kvm_log_start,
908 .log_stop = kvm_log_stop,
909 .log_sync = kvm_log_sync,
910 .log_global_start = kvm_log_global_start,
911 .log_global_stop = kvm_log_global_stop,
912 .eventfd_add = kvm_mem_ioeventfd_add,
913 .eventfd_del = kvm_mem_ioeventfd_del,
914 .coalesced_mmio_add = kvm_coalesce_mmio_region,
915 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
916 .priority = 10,
919 static MemoryListener kvm_io_listener = {
920 .eventfd_add = kvm_io_ioeventfd_add,
921 .eventfd_del = kvm_io_ioeventfd_del,
922 .priority = 10,
925 static void kvm_handle_interrupt(CPUState *cpu, int mask)
927 cpu->interrupt_request |= mask;
929 if (!qemu_cpu_is_self(cpu)) {
930 qemu_cpu_kick(cpu);
934 int kvm_set_irq(KVMState *s, int irq, int level)
936 struct kvm_irq_level event;
937 int ret;
939 assert(kvm_async_interrupts_enabled());
941 event.level = level;
942 event.irq = irq;
943 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
944 if (ret < 0) {
945 perror("kvm_set_irq");
946 abort();
949 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
952 #ifdef KVM_CAP_IRQ_ROUTING
953 typedef struct KVMMSIRoute {
954 struct kvm_irq_routing_entry kroute;
955 QTAILQ_ENTRY(KVMMSIRoute) entry;
956 } KVMMSIRoute;
958 static void set_gsi(KVMState *s, unsigned int gsi)
960 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
963 static void clear_gsi(KVMState *s, unsigned int gsi)
965 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
968 void kvm_init_irq_routing(KVMState *s)
970 int gsi_count, i;
972 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
973 if (gsi_count > 0) {
974 unsigned int gsi_bits, i;
976 /* Round up so we can search ints using ffs */
977 gsi_bits = ALIGN(gsi_count, 32);
978 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
979 s->gsi_count = gsi_count;
981 /* Mark any over-allocated bits as already in use */
982 for (i = gsi_count; i < gsi_bits; i++) {
983 set_gsi(s, i);
987 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
988 s->nr_allocated_irq_routes = 0;
990 if (!s->direct_msi) {
991 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
992 QTAILQ_INIT(&s->msi_hashtab[i]);
996 kvm_arch_init_irq_routing(s);
999 void kvm_irqchip_commit_routes(KVMState *s)
1001 int ret;
1003 s->irq_routes->flags = 0;
1004 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1005 assert(ret == 0);
1008 static void kvm_add_routing_entry(KVMState *s,
1009 struct kvm_irq_routing_entry *entry)
1011 struct kvm_irq_routing_entry *new;
1012 int n, size;
1014 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1015 n = s->nr_allocated_irq_routes * 2;
1016 if (n < 64) {
1017 n = 64;
1019 size = sizeof(struct kvm_irq_routing);
1020 size += n * sizeof(*new);
1021 s->irq_routes = g_realloc(s->irq_routes, size);
1022 s->nr_allocated_irq_routes = n;
1024 n = s->irq_routes->nr++;
1025 new = &s->irq_routes->entries[n];
1027 *new = *entry;
1029 set_gsi(s, entry->gsi);
1032 static int kvm_update_routing_entry(KVMState *s,
1033 struct kvm_irq_routing_entry *new_entry)
1035 struct kvm_irq_routing_entry *entry;
1036 int n;
1038 for (n = 0; n < s->irq_routes->nr; n++) {
1039 entry = &s->irq_routes->entries[n];
1040 if (entry->gsi != new_entry->gsi) {
1041 continue;
1044 if(!memcmp(entry, new_entry, sizeof *entry)) {
1045 return 0;
1048 *entry = *new_entry;
1050 kvm_irqchip_commit_routes(s);
1052 return 0;
1055 return -ESRCH;
1058 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1060 struct kvm_irq_routing_entry e = {};
1062 assert(pin < s->gsi_count);
1064 e.gsi = irq;
1065 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1066 e.flags = 0;
1067 e.u.irqchip.irqchip = irqchip;
1068 e.u.irqchip.pin = pin;
1069 kvm_add_routing_entry(s, &e);
1072 void kvm_irqchip_release_virq(KVMState *s, int virq)
1074 struct kvm_irq_routing_entry *e;
1075 int i;
1077 if (kvm_gsi_direct_mapping()) {
1078 return;
1081 for (i = 0; i < s->irq_routes->nr; i++) {
1082 e = &s->irq_routes->entries[i];
1083 if (e->gsi == virq) {
1084 s->irq_routes->nr--;
1085 *e = s->irq_routes->entries[s->irq_routes->nr];
1088 clear_gsi(s, virq);
1091 static unsigned int kvm_hash_msi(uint32_t data)
1093 /* This is optimized for IA32 MSI layout. However, no other arch shall
1094 * repeat the mistake of not providing a direct MSI injection API. */
1095 return data & 0xff;
1098 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1100 KVMMSIRoute *route, *next;
1101 unsigned int hash;
1103 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1104 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1105 kvm_irqchip_release_virq(s, route->kroute.gsi);
1106 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1107 g_free(route);
1112 static int kvm_irqchip_get_virq(KVMState *s)
1114 uint32_t *word = s->used_gsi_bitmap;
1115 int max_words = ALIGN(s->gsi_count, 32) / 32;
1116 int i, bit;
1117 bool retry = true;
1119 again:
1120 /* Return the lowest unused GSI in the bitmap */
1121 for (i = 0; i < max_words; i++) {
1122 bit = ffs(~word[i]);
1123 if (!bit) {
1124 continue;
1127 return bit - 1 + i * 32;
1129 if (!s->direct_msi && retry) {
1130 retry = false;
1131 kvm_flush_dynamic_msi_routes(s);
1132 goto again;
1134 return -ENOSPC;
1138 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1140 unsigned int hash = kvm_hash_msi(msg.data);
1141 KVMMSIRoute *route;
1143 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1144 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1145 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1146 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1147 return route;
1150 return NULL;
1153 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1155 struct kvm_msi msi;
1156 KVMMSIRoute *route;
1158 if (s->direct_msi) {
1159 msi.address_lo = (uint32_t)msg.address;
1160 msi.address_hi = msg.address >> 32;
1161 msi.data = le32_to_cpu(msg.data);
1162 msi.flags = 0;
1163 memset(msi.pad, 0, sizeof(msi.pad));
1165 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1168 route = kvm_lookup_msi_route(s, msg);
1169 if (!route) {
1170 int virq;
1172 virq = kvm_irqchip_get_virq(s);
1173 if (virq < 0) {
1174 return virq;
1177 route = g_malloc0(sizeof(KVMMSIRoute));
1178 route->kroute.gsi = virq;
1179 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1180 route->kroute.flags = 0;
1181 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1182 route->kroute.u.msi.address_hi = msg.address >> 32;
1183 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1185 kvm_add_routing_entry(s, &route->kroute);
1186 kvm_irqchip_commit_routes(s);
1188 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1189 entry);
1192 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1194 return kvm_set_irq(s, route->kroute.gsi, 1);
1197 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1199 struct kvm_irq_routing_entry kroute = {};
1200 int virq;
1202 if (kvm_gsi_direct_mapping()) {
1203 return msg.data & 0xffff;
1206 if (!kvm_gsi_routing_enabled()) {
1207 return -ENOSYS;
1210 virq = kvm_irqchip_get_virq(s);
1211 if (virq < 0) {
1212 return virq;
1215 kroute.gsi = virq;
1216 kroute.type = KVM_IRQ_ROUTING_MSI;
1217 kroute.flags = 0;
1218 kroute.u.msi.address_lo = (uint32_t)msg.address;
1219 kroute.u.msi.address_hi = msg.address >> 32;
1220 kroute.u.msi.data = le32_to_cpu(msg.data);
1222 kvm_add_routing_entry(s, &kroute);
1223 kvm_irqchip_commit_routes(s);
1225 return virq;
1228 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1230 struct kvm_irq_routing_entry kroute = {};
1232 if (kvm_gsi_direct_mapping()) {
1233 return 0;
1236 if (!kvm_irqchip_in_kernel()) {
1237 return -ENOSYS;
1240 kroute.gsi = virq;
1241 kroute.type = KVM_IRQ_ROUTING_MSI;
1242 kroute.flags = 0;
1243 kroute.u.msi.address_lo = (uint32_t)msg.address;
1244 kroute.u.msi.address_hi = msg.address >> 32;
1245 kroute.u.msi.data = le32_to_cpu(msg.data);
1247 return kvm_update_routing_entry(s, &kroute);
1250 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1251 bool assign)
1253 struct kvm_irqfd irqfd = {
1254 .fd = fd,
1255 .gsi = virq,
1256 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1259 if (rfd != -1) {
1260 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1261 irqfd.resamplefd = rfd;
1264 if (!kvm_irqfds_enabled()) {
1265 return -ENOSYS;
1268 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1271 #else /* !KVM_CAP_IRQ_ROUTING */
1273 void kvm_init_irq_routing(KVMState *s)
1277 void kvm_irqchip_release_virq(KVMState *s, int virq)
1281 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1283 abort();
1286 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1288 return -ENOSYS;
1291 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1293 abort();
1296 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1298 return -ENOSYS;
1300 #endif /* !KVM_CAP_IRQ_ROUTING */
1302 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1303 EventNotifier *rn, int virq)
1305 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1306 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1309 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1311 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1312 false);
1315 static int kvm_irqchip_create(KVMState *s)
1317 int ret;
1319 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1320 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1321 return 0;
1324 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1325 if (ret < 0) {
1326 fprintf(stderr, "Create kernel irqchip failed\n");
1327 return ret;
1330 kvm_kernel_irqchip = true;
1331 /* If we have an in-kernel IRQ chip then we must have asynchronous
1332 * interrupt delivery (though the reverse is not necessarily true)
1334 kvm_async_interrupts_allowed = true;
1335 kvm_halt_in_kernel_allowed = true;
1337 kvm_init_irq_routing(s);
1339 return 0;
1342 /* Find number of supported CPUs using the recommended
1343 * procedure from the kernel API documentation to cope with
1344 * older kernels that may be missing capabilities.
1346 static int kvm_recommended_vcpus(KVMState *s)
1348 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1349 return (ret) ? ret : 4;
1352 static int kvm_max_vcpus(KVMState *s)
1354 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1355 return (ret) ? ret : kvm_recommended_vcpus(s);
1358 int kvm_init(void)
1360 static const char upgrade_note[] =
1361 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1362 "(see http://sourceforge.net/projects/kvm).\n";
1363 struct {
1364 const char *name;
1365 int num;
1366 } num_cpus[] = {
1367 { "SMP", smp_cpus },
1368 { "hotpluggable", max_cpus },
1369 { NULL, }
1370 }, *nc = num_cpus;
1371 int soft_vcpus_limit, hard_vcpus_limit;
1372 KVMState *s;
1373 const KVMCapabilityInfo *missing_cap;
1374 int ret;
1375 int i;
1377 s = g_malloc0(sizeof(KVMState));
1380 * On systems where the kernel can support different base page
1381 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1382 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1383 * page size for the system though.
1385 assert(TARGET_PAGE_SIZE <= getpagesize());
1387 #ifdef KVM_CAP_SET_GUEST_DEBUG
1388 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1389 #endif
1390 s->vmfd = -1;
1391 s->fd = qemu_open("/dev/kvm", O_RDWR);
1392 if (s->fd == -1) {
1393 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1394 ret = -errno;
1395 goto err;
1398 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1399 if (ret < KVM_API_VERSION) {
1400 if (ret > 0) {
1401 ret = -EINVAL;
1403 fprintf(stderr, "kvm version too old\n");
1404 goto err;
1407 if (ret > KVM_API_VERSION) {
1408 ret = -EINVAL;
1409 fprintf(stderr, "kvm version not supported\n");
1410 goto err;
1413 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1415 /* If unspecified, use the default value */
1416 if (!s->nr_slots) {
1417 s->nr_slots = 32;
1420 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1422 for (i = 0; i < s->nr_slots; i++) {
1423 s->slots[i].slot = i;
1426 /* check the vcpu limits */
1427 soft_vcpus_limit = kvm_recommended_vcpus(s);
1428 hard_vcpus_limit = kvm_max_vcpus(s);
1430 while (nc->name) {
1431 if (nc->num > soft_vcpus_limit) {
1432 fprintf(stderr,
1433 "Warning: Number of %s cpus requested (%d) exceeds "
1434 "the recommended cpus supported by KVM (%d)\n",
1435 nc->name, nc->num, soft_vcpus_limit);
1437 if (nc->num > hard_vcpus_limit) {
1438 ret = -EINVAL;
1439 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1440 "the maximum cpus supported by KVM (%d)\n",
1441 nc->name, nc->num, hard_vcpus_limit);
1442 goto err;
1445 nc++;
1448 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1449 if (s->vmfd < 0) {
1450 #ifdef TARGET_S390X
1451 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1452 "your host kernel command line\n");
1453 #endif
1454 ret = s->vmfd;
1455 goto err;
1458 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1459 if (!missing_cap) {
1460 missing_cap =
1461 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1463 if (missing_cap) {
1464 ret = -EINVAL;
1465 fprintf(stderr, "kvm does not support %s\n%s",
1466 missing_cap->name, upgrade_note);
1467 goto err;
1470 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1472 s->broken_set_mem_region = 1;
1473 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1474 if (ret > 0) {
1475 s->broken_set_mem_region = 0;
1478 #ifdef KVM_CAP_VCPU_EVENTS
1479 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1480 #endif
1482 s->robust_singlestep =
1483 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1485 #ifdef KVM_CAP_DEBUGREGS
1486 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1487 #endif
1489 #ifdef KVM_CAP_XSAVE
1490 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1491 #endif
1493 #ifdef KVM_CAP_XCRS
1494 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1495 #endif
1497 #ifdef KVM_CAP_PIT_STATE2
1498 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1499 #endif
1501 #ifdef KVM_CAP_IRQ_ROUTING
1502 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1503 #endif
1505 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1507 s->irq_set_ioctl = KVM_IRQ_LINE;
1508 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1509 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1512 #ifdef KVM_CAP_READONLY_MEM
1513 kvm_readonly_mem_allowed =
1514 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1515 #endif
1517 ret = kvm_arch_init(s);
1518 if (ret < 0) {
1519 goto err;
1522 ret = kvm_irqchip_create(s);
1523 if (ret < 0) {
1524 goto err;
1527 kvm_state = s;
1528 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1529 memory_listener_register(&kvm_io_listener, &address_space_io);
1531 s->many_ioeventfds = kvm_check_many_ioeventfds();
1533 cpu_interrupt_handler = kvm_handle_interrupt;
1535 return 0;
1537 err:
1538 if (s->vmfd >= 0) {
1539 close(s->vmfd);
1541 if (s->fd != -1) {
1542 close(s->fd);
1544 g_free(s->slots);
1545 g_free(s);
1547 return ret;
1550 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1551 uint32_t count)
1553 int i;
1554 uint8_t *ptr = data;
1556 for (i = 0; i < count; i++) {
1557 address_space_rw(&address_space_io, port, ptr, size,
1558 direction == KVM_EXIT_IO_OUT);
1559 ptr += size;
1563 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1565 fprintf(stderr, "KVM internal error.");
1566 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1567 int i;
1569 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1570 for (i = 0; i < run->internal.ndata; ++i) {
1571 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1572 i, (uint64_t)run->internal.data[i]);
1574 } else {
1575 fprintf(stderr, "\n");
1577 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1578 fprintf(stderr, "emulation failure\n");
1579 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1580 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1581 return EXCP_INTERRUPT;
1584 /* FIXME: Should trigger a qmp message to let management know
1585 * something went wrong.
1587 return -1;
1590 void kvm_flush_coalesced_mmio_buffer(void)
1592 KVMState *s = kvm_state;
1594 if (s->coalesced_flush_in_progress) {
1595 return;
1598 s->coalesced_flush_in_progress = true;
1600 if (s->coalesced_mmio_ring) {
1601 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1602 while (ring->first != ring->last) {
1603 struct kvm_coalesced_mmio *ent;
1605 ent = &ring->coalesced_mmio[ring->first];
1607 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1608 smp_wmb();
1609 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1613 s->coalesced_flush_in_progress = false;
1616 static void do_kvm_cpu_synchronize_state(void *arg)
1618 CPUState *cpu = arg;
1620 if (!cpu->kvm_vcpu_dirty) {
1621 kvm_arch_get_registers(cpu);
1622 cpu->kvm_vcpu_dirty = true;
1626 void kvm_cpu_synchronize_state(CPUState *cpu)
1628 if (!cpu->kvm_vcpu_dirty) {
1629 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1633 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1635 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1636 cpu->kvm_vcpu_dirty = false;
1639 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1641 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1642 cpu->kvm_vcpu_dirty = false;
1645 int kvm_cpu_exec(CPUState *cpu)
1647 struct kvm_run *run = cpu->kvm_run;
1648 int ret, run_ret;
1650 DPRINTF("kvm_cpu_exec()\n");
1652 if (kvm_arch_process_async_events(cpu)) {
1653 cpu->exit_request = 0;
1654 return EXCP_HLT;
1657 do {
1658 if (cpu->kvm_vcpu_dirty) {
1659 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1660 cpu->kvm_vcpu_dirty = false;
1663 kvm_arch_pre_run(cpu, run);
1664 if (cpu->exit_request) {
1665 DPRINTF("interrupt exit requested\n");
1667 * KVM requires us to reenter the kernel after IO exits to complete
1668 * instruction emulation. This self-signal will ensure that we
1669 * leave ASAP again.
1671 qemu_cpu_kick_self();
1673 qemu_mutex_unlock_iothread();
1675 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1677 qemu_mutex_lock_iothread();
1678 kvm_arch_post_run(cpu, run);
1680 if (run_ret < 0) {
1681 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1682 DPRINTF("io window exit\n");
1683 ret = EXCP_INTERRUPT;
1684 break;
1686 fprintf(stderr, "error: kvm run failed %s\n",
1687 strerror(-run_ret));
1688 abort();
1691 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1692 switch (run->exit_reason) {
1693 case KVM_EXIT_IO:
1694 DPRINTF("handle_io\n");
1695 kvm_handle_io(run->io.port,
1696 (uint8_t *)run + run->io.data_offset,
1697 run->io.direction,
1698 run->io.size,
1699 run->io.count);
1700 ret = 0;
1701 break;
1702 case KVM_EXIT_MMIO:
1703 DPRINTF("handle_mmio\n");
1704 cpu_physical_memory_rw(run->mmio.phys_addr,
1705 run->mmio.data,
1706 run->mmio.len,
1707 run->mmio.is_write);
1708 ret = 0;
1709 break;
1710 case KVM_EXIT_IRQ_WINDOW_OPEN:
1711 DPRINTF("irq_window_open\n");
1712 ret = EXCP_INTERRUPT;
1713 break;
1714 case KVM_EXIT_SHUTDOWN:
1715 DPRINTF("shutdown\n");
1716 qemu_system_reset_request();
1717 ret = EXCP_INTERRUPT;
1718 break;
1719 case KVM_EXIT_UNKNOWN:
1720 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1721 (uint64_t)run->hw.hardware_exit_reason);
1722 ret = -1;
1723 break;
1724 case KVM_EXIT_INTERNAL_ERROR:
1725 ret = kvm_handle_internal_error(cpu, run);
1726 break;
1727 default:
1728 DPRINTF("kvm_arch_handle_exit\n");
1729 ret = kvm_arch_handle_exit(cpu, run);
1730 break;
1732 } while (ret == 0);
1734 if (ret < 0) {
1735 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1736 vm_stop(RUN_STATE_INTERNAL_ERROR);
1739 cpu->exit_request = 0;
1740 return ret;
1743 int kvm_ioctl(KVMState *s, int type, ...)
1745 int ret;
1746 void *arg;
1747 va_list ap;
1749 va_start(ap, type);
1750 arg = va_arg(ap, void *);
1751 va_end(ap);
1753 trace_kvm_ioctl(type, arg);
1754 ret = ioctl(s->fd, type, arg);
1755 if (ret == -1) {
1756 ret = -errno;
1758 return ret;
1761 int kvm_vm_ioctl(KVMState *s, int type, ...)
1763 int ret;
1764 void *arg;
1765 va_list ap;
1767 va_start(ap, type);
1768 arg = va_arg(ap, void *);
1769 va_end(ap);
1771 trace_kvm_vm_ioctl(type, arg);
1772 ret = ioctl(s->vmfd, type, arg);
1773 if (ret == -1) {
1774 ret = -errno;
1776 return ret;
1779 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1781 int ret;
1782 void *arg;
1783 va_list ap;
1785 va_start(ap, type);
1786 arg = va_arg(ap, void *);
1787 va_end(ap);
1789 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1790 ret = ioctl(cpu->kvm_fd, type, arg);
1791 if (ret == -1) {
1792 ret = -errno;
1794 return ret;
1797 int kvm_has_sync_mmu(void)
1799 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1802 int kvm_has_vcpu_events(void)
1804 return kvm_state->vcpu_events;
1807 int kvm_has_robust_singlestep(void)
1809 return kvm_state->robust_singlestep;
1812 int kvm_has_debugregs(void)
1814 return kvm_state->debugregs;
1817 int kvm_has_xsave(void)
1819 return kvm_state->xsave;
1822 int kvm_has_xcrs(void)
1824 return kvm_state->xcrs;
1827 int kvm_has_pit_state2(void)
1829 return kvm_state->pit_state2;
1832 int kvm_has_many_ioeventfds(void)
1834 if (!kvm_enabled()) {
1835 return 0;
1837 return kvm_state->many_ioeventfds;
1840 int kvm_has_gsi_routing(void)
1842 #ifdef KVM_CAP_IRQ_ROUTING
1843 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1844 #else
1845 return false;
1846 #endif
1849 int kvm_has_intx_set_mask(void)
1851 return kvm_state->intx_set_mask;
1854 void kvm_setup_guest_memory(void *start, size_t size)
1856 #ifdef CONFIG_VALGRIND_H
1857 VALGRIND_MAKE_MEM_DEFINED(start, size);
1858 #endif
1859 if (!kvm_has_sync_mmu()) {
1860 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1862 if (ret) {
1863 perror("qemu_madvise");
1864 fprintf(stderr,
1865 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1866 exit(1);
1871 #ifdef KVM_CAP_SET_GUEST_DEBUG
1872 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1873 target_ulong pc)
1875 struct kvm_sw_breakpoint *bp;
1877 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1878 if (bp->pc == pc) {
1879 return bp;
1882 return NULL;
1885 int kvm_sw_breakpoints_active(CPUState *cpu)
1887 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1890 struct kvm_set_guest_debug_data {
1891 struct kvm_guest_debug dbg;
1892 CPUState *cpu;
1893 int err;
1896 static void kvm_invoke_set_guest_debug(void *data)
1898 struct kvm_set_guest_debug_data *dbg_data = data;
1900 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1901 &dbg_data->dbg);
1904 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
1906 struct kvm_set_guest_debug_data data;
1908 data.dbg.control = reinject_trap;
1910 if (cpu->singlestep_enabled) {
1911 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1913 kvm_arch_update_guest_debug(cpu, &data.dbg);
1914 data.cpu = cpu;
1916 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1917 return data.err;
1920 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
1921 target_ulong len, int type)
1923 struct kvm_sw_breakpoint *bp;
1924 int err;
1926 if (type == GDB_BREAKPOINT_SW) {
1927 bp = kvm_find_sw_breakpoint(cpu, addr);
1928 if (bp) {
1929 bp->use_count++;
1930 return 0;
1933 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1934 if (!bp) {
1935 return -ENOMEM;
1938 bp->pc = addr;
1939 bp->use_count = 1;
1940 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
1941 if (err) {
1942 g_free(bp);
1943 return err;
1946 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1947 } else {
1948 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1949 if (err) {
1950 return err;
1954 CPU_FOREACH(cpu) {
1955 err = kvm_update_guest_debug(cpu, 0);
1956 if (err) {
1957 return err;
1960 return 0;
1963 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
1964 target_ulong len, int type)
1966 struct kvm_sw_breakpoint *bp;
1967 int err;
1969 if (type == GDB_BREAKPOINT_SW) {
1970 bp = kvm_find_sw_breakpoint(cpu, addr);
1971 if (!bp) {
1972 return -ENOENT;
1975 if (bp->use_count > 1) {
1976 bp->use_count--;
1977 return 0;
1980 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
1981 if (err) {
1982 return err;
1985 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1986 g_free(bp);
1987 } else {
1988 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1989 if (err) {
1990 return err;
1994 CPU_FOREACH(cpu) {
1995 err = kvm_update_guest_debug(cpu, 0);
1996 if (err) {
1997 return err;
2000 return 0;
2003 void kvm_remove_all_breakpoints(CPUState *cpu)
2005 struct kvm_sw_breakpoint *bp, *next;
2006 KVMState *s = cpu->kvm_state;
2008 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2009 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2010 /* Try harder to find a CPU that currently sees the breakpoint. */
2011 CPU_FOREACH(cpu) {
2012 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2013 break;
2017 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2018 g_free(bp);
2020 kvm_arch_remove_all_hw_breakpoints();
2022 CPU_FOREACH(cpu) {
2023 kvm_update_guest_debug(cpu, 0);
2027 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2029 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2031 return -EINVAL;
2034 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2035 target_ulong len, int type)
2037 return -EINVAL;
2040 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2041 target_ulong len, int type)
2043 return -EINVAL;
2046 void kvm_remove_all_breakpoints(CPUState *cpu)
2049 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2051 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2053 struct kvm_signal_mask *sigmask;
2054 int r;
2056 if (!sigset) {
2057 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2060 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2062 sigmask->len = 8;
2063 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2064 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2065 g_free(sigmask);
2067 return r;
2069 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2071 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2074 int kvm_on_sigbus(int code, void *addr)
2076 return kvm_arch_on_sigbus(code, addr);