Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-6.2-pull-request...
[qemu.git] / target / i386 / hvf / hvf.c
blob79ba4ed93ab7507a26e13df88d35172d13ed8436
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
7 * QEMU Hypervisor.framework support
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
53 #include "sysemu/hvf.h"
54 #include "sysemu/hvf_int.h"
55 #include "sysemu/runstate.h"
56 #include "hvf-i386.h"
57 #include "vmcs.h"
58 #include "vmx.h"
59 #include "x86.h"
60 #include "x86_descr.h"
61 #include "x86_mmu.h"
62 #include "x86_decode.h"
63 #include "x86_emu.h"
64 #include "x86_task.h"
65 #include "x86hvf.h"
67 #include <Hypervisor/hv.h>
68 #include <Hypervisor/hv_vmx.h>
69 #include <sys/sysctl.h>
71 #include "hw/i386/apic_internal.h"
72 #include "qemu/main-loop.h"
73 #include "qemu/accel.h"
74 #include "target/i386/cpu.h"
76 void vmx_update_tpr(CPUState *cpu)
78 /* TODO: need integrate APIC handling */
79 X86CPU *x86_cpu = X86_CPU(cpu);
80 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
81 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
83 wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
84 if (irr == -1) {
85 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
86 } else {
87 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
88 irr >> 4);
92 static void update_apic_tpr(CPUState *cpu)
94 X86CPU *x86_cpu = X86_CPU(cpu);
95 int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
96 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
99 #define VECTORING_INFO_VECTOR_MASK 0xff
101 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
102 int direction, int size, int count)
104 int i;
105 uint8_t *ptr = buffer;
107 for (i = 0; i < count; i++) {
108 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
109 ptr, size,
110 direction);
111 ptr += size;
115 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
117 int read, write;
119 /* EPT fault on an instruction fetch doesn't make sense here */
120 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
121 return false;
124 /* EPT fault must be a read fault or a write fault */
125 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
126 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
127 if ((read | write) == 0) {
128 return false;
131 if (write && slot) {
132 if (slot->flags & HVF_SLOT_LOG) {
133 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
134 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
135 HV_MEMORY_READ | HV_MEMORY_WRITE);
140 * The EPT violation must have been caused by accessing a
141 * guest-physical address that is a translation of a guest-linear
142 * address.
144 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
145 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
146 return false;
149 if (!slot) {
150 return true;
152 if (!memory_region_is_ram(slot->region) &&
153 !(read && memory_region_is_romd(slot->region))) {
154 return true;
156 return false;
159 void hvf_arch_vcpu_destroy(CPUState *cpu)
161 X86CPU *x86_cpu = X86_CPU(cpu);
162 CPUX86State *env = &x86_cpu->env;
164 g_free(env->hvf_mmio_buf);
167 static void init_tsc_freq(CPUX86State *env)
169 size_t length;
170 uint64_t tsc_freq;
172 if (env->tsc_khz != 0) {
173 return;
176 length = sizeof(uint64_t);
177 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
178 return;
180 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
183 static void init_apic_bus_freq(CPUX86State *env)
185 size_t length;
186 uint64_t bus_freq;
188 if (env->apic_bus_freq != 0) {
189 return;
192 length = sizeof(uint64_t);
193 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
194 return;
196 env->apic_bus_freq = bus_freq;
199 static inline bool tsc_is_known(CPUX86State *env)
201 return env->tsc_khz != 0;
204 static inline bool apic_bus_freq_is_known(CPUX86State *env)
206 return env->apic_bus_freq != 0;
209 int hvf_arch_init_vcpu(CPUState *cpu)
211 X86CPU *x86cpu = X86_CPU(cpu);
212 CPUX86State *env = &x86cpu->env;
214 init_emu();
215 init_decoder();
217 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
218 env->hvf_mmio_buf = g_new(char, 4096);
220 if (x86cpu->vmware_cpuid_freq) {
221 init_tsc_freq(env);
222 init_apic_bus_freq(env);
224 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
225 error_report("vmware-cpuid-freq: feature couldn't be enabled");
229 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
230 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
231 abort();
233 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
234 &hvf_state->hvf_caps->vmx_cap_procbased)) {
235 abort();
237 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
238 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
239 abort();
241 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
242 &hvf_state->hvf_caps->vmx_cap_entry)) {
243 abort();
246 /* set VMCS control fields */
247 wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
248 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
249 VMCS_PIN_BASED_CTLS_EXTINT |
250 VMCS_PIN_BASED_CTLS_NMI |
251 VMCS_PIN_BASED_CTLS_VNMI));
252 wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
253 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
254 VMCS_PRI_PROC_BASED_CTLS_HLT |
255 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
256 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
257 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
258 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
259 wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
260 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
261 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
263 wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
264 0));
265 wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
267 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
269 x86cpu = X86_CPU(cpu);
270 x86cpu->env.xsave_buf_len = 4096;
271 x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
274 * The allocated storage must be large enough for all of the
275 * possible XSAVE state components.
277 assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
279 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
280 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
281 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
282 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
283 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
284 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
285 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
286 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
287 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
288 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
289 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
290 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);
292 return 0;
295 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
297 X86CPU *x86_cpu = X86_CPU(cpu);
298 CPUX86State *env = &x86_cpu->env;
300 env->exception_nr = -1;
301 env->exception_pending = 0;
302 env->exception_injected = 0;
303 env->interrupt_injected = -1;
304 env->nmi_injected = false;
305 env->ins_len = 0;
306 env->has_error_code = false;
307 if (idtvec_info & VMCS_IDT_VEC_VALID) {
308 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
309 case VMCS_IDT_VEC_HWINTR:
310 case VMCS_IDT_VEC_SWINTR:
311 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
312 break;
313 case VMCS_IDT_VEC_NMI:
314 env->nmi_injected = true;
315 break;
316 case VMCS_IDT_VEC_HWEXCEPTION:
317 case VMCS_IDT_VEC_SWEXCEPTION:
318 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
319 env->exception_injected = 1;
320 break;
321 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
322 default:
323 abort();
325 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
326 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
327 env->ins_len = ins_len;
329 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
330 env->has_error_code = true;
331 env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
334 if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
335 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
336 env->hflags2 |= HF2_NMI_MASK;
337 } else {
338 env->hflags2 &= ~HF2_NMI_MASK;
340 if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
341 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
342 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
343 env->hflags |= HF_INHIBIT_IRQ_MASK;
344 } else {
345 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
349 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
350 uint32_t *eax, uint32_t *ebx,
351 uint32_t *ecx, uint32_t *edx)
354 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
355 * leafs 0x40000001-0x4000000F are filled with zeros
356 * Provides vmware-cpuid-freq support to hvf
358 * Note: leaf 0x40000000 not exposes HVF,
359 * leaving hypervisor signature empty
362 if (index < 0x40000000 || index > 0x40000010 ||
363 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
365 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
366 return;
369 switch (index) {
370 case 0x40000000:
371 *eax = 0x40000010; /* Max available cpuid leaf */
372 *ebx = 0; /* Leave signature empty */
373 *ecx = 0;
374 *edx = 0;
375 break;
376 case 0x40000010:
377 *eax = env->tsc_khz;
378 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
379 *ecx = 0;
380 *edx = 0;
381 break;
382 default:
383 *eax = 0;
384 *ebx = 0;
385 *ecx = 0;
386 *edx = 0;
387 break;
391 int hvf_vcpu_exec(CPUState *cpu)
393 X86CPU *x86_cpu = X86_CPU(cpu);
394 CPUX86State *env = &x86_cpu->env;
395 int ret = 0;
396 uint64_t rip = 0;
398 if (hvf_process_events(cpu)) {
399 return EXCP_HLT;
402 do {
403 if (cpu->vcpu_dirty) {
404 hvf_put_registers(cpu);
405 cpu->vcpu_dirty = false;
408 if (hvf_inject_interrupts(cpu)) {
409 return EXCP_INTERRUPT;
411 vmx_update_tpr(cpu);
413 qemu_mutex_unlock_iothread();
414 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
415 qemu_mutex_lock_iothread();
416 return EXCP_HLT;
419 hv_return_t r = hv_vcpu_run(cpu->hvf->fd);
420 assert_hvf_ok(r);
422 /* handle VMEXIT */
423 uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
424 uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
425 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
426 VMCS_EXIT_INSTRUCTION_LENGTH);
428 uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
430 hvf_store_events(cpu, ins_len, idtvec_info);
431 rip = rreg(cpu->hvf->fd, HV_X86_RIP);
432 env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);
434 qemu_mutex_lock_iothread();
436 update_apic_tpr(cpu);
437 current_cpu = cpu;
439 ret = 0;
440 switch (exit_reason) {
441 case EXIT_REASON_HLT: {
442 macvm_set_rip(cpu, rip + ins_len);
443 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
444 (env->eflags & IF_MASK))
445 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
446 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
447 cpu->halted = 1;
448 ret = EXCP_HLT;
449 break;
451 ret = EXCP_INTERRUPT;
452 break;
454 case EXIT_REASON_MWAIT: {
455 ret = EXCP_INTERRUPT;
456 break;
458 /* Need to check if MMIO or unmapped fault */
459 case EXIT_REASON_EPT_FAULT:
461 hvf_slot *slot;
462 uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
464 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
465 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
466 vmx_set_nmi_blocking(cpu);
469 slot = hvf_find_overlap_slot(gpa, 1);
470 /* mmio */
471 if (ept_emulation_fault(slot, gpa, exit_qual)) {
472 struct x86_decode decode;
474 load_regs(cpu);
475 decode_instruction(env, &decode);
476 exec_instruction(env, &decode);
477 store_regs(cpu);
478 break;
480 break;
482 case EXIT_REASON_INOUT:
484 uint32_t in = (exit_qual & 8) != 0;
485 uint32_t size = (exit_qual & 7) + 1;
486 uint32_t string = (exit_qual & 16) != 0;
487 uint32_t port = exit_qual >> 16;
488 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
490 if (!string && in) {
491 uint64_t val = 0;
492 load_regs(cpu);
493 hvf_handle_io(env, port, &val, 0, size, 1);
494 if (size == 1) {
495 AL(env) = val;
496 } else if (size == 2) {
497 AX(env) = val;
498 } else if (size == 4) {
499 RAX(env) = (uint32_t)val;
500 } else {
501 RAX(env) = (uint64_t)val;
503 env->eip += ins_len;
504 store_regs(cpu);
505 break;
506 } else if (!string && !in) {
507 RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
508 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
509 macvm_set_rip(cpu, rip + ins_len);
510 break;
512 struct x86_decode decode;
514 load_regs(cpu);
515 decode_instruction(env, &decode);
516 assert(ins_len == decode.len);
517 exec_instruction(env, &decode);
518 store_regs(cpu);
520 break;
522 case EXIT_REASON_CPUID: {
523 uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
524 uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
525 uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
526 uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
528 if (rax == 1) {
529 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
530 env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
532 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
534 wreg(cpu->hvf->fd, HV_X86_RAX, rax);
535 wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
536 wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
537 wreg(cpu->hvf->fd, HV_X86_RDX, rdx);
539 macvm_set_rip(cpu, rip + ins_len);
540 break;
542 case EXIT_REASON_XSETBV: {
543 X86CPU *x86_cpu = X86_CPU(cpu);
544 CPUX86State *env = &x86_cpu->env;
545 uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
546 uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
547 uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
549 if (ecx) {
550 macvm_set_rip(cpu, rip + ins_len);
551 break;
553 env->xcr0 = ((uint64_t)edx << 32) | eax;
554 wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
555 macvm_set_rip(cpu, rip + ins_len);
556 break;
558 case EXIT_REASON_INTR_WINDOW:
559 vmx_clear_int_window_exiting(cpu);
560 ret = EXCP_INTERRUPT;
561 break;
562 case EXIT_REASON_NMI_WINDOW:
563 vmx_clear_nmi_window_exiting(cpu);
564 ret = EXCP_INTERRUPT;
565 break;
566 case EXIT_REASON_EXT_INTR:
567 /* force exit and allow io handling */
568 ret = EXCP_INTERRUPT;
569 break;
570 case EXIT_REASON_RDMSR:
571 case EXIT_REASON_WRMSR:
573 load_regs(cpu);
574 if (exit_reason == EXIT_REASON_RDMSR) {
575 simulate_rdmsr(cpu);
576 } else {
577 simulate_wrmsr(cpu);
579 env->eip += ins_len;
580 store_regs(cpu);
581 break;
583 case EXIT_REASON_CR_ACCESS: {
584 int cr;
585 int reg;
587 load_regs(cpu);
588 cr = exit_qual & 15;
589 reg = (exit_qual >> 8) & 15;
591 switch (cr) {
592 case 0x0: {
593 macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
594 break;
596 case 4: {
597 macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
598 break;
600 case 8: {
601 X86CPU *x86_cpu = X86_CPU(cpu);
602 if (exit_qual & 0x10) {
603 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
604 } else {
605 int tpr = RRX(env, reg);
606 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
607 ret = EXCP_INTERRUPT;
609 break;
611 default:
612 error_report("Unrecognized CR %d", cr);
613 abort();
615 env->eip += ins_len;
616 store_regs(cpu);
617 break;
619 case EXIT_REASON_APIC_ACCESS: { /* TODO */
620 struct x86_decode decode;
622 load_regs(cpu);
623 decode_instruction(env, &decode);
624 exec_instruction(env, &decode);
625 store_regs(cpu);
626 break;
628 case EXIT_REASON_TPR: {
629 ret = 1;
630 break;
632 case EXIT_REASON_TASK_SWITCH: {
633 uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
634 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
635 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
636 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
637 & VMCS_INTR_T_MASK);
638 break;
640 case EXIT_REASON_TRIPLE_FAULT: {
641 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
642 ret = EXCP_INTERRUPT;
643 break;
645 case EXIT_REASON_RDPMC:
646 wreg(cpu->hvf->fd, HV_X86_RAX, 0);
647 wreg(cpu->hvf->fd, HV_X86_RDX, 0);
648 macvm_set_rip(cpu, rip + ins_len);
649 break;
650 case VMX_REASON_VMCALL:
651 env->exception_nr = EXCP0D_GPF;
652 env->exception_injected = 1;
653 env->has_error_code = true;
654 env->error_code = 0;
655 break;
656 default:
657 error_report("%llx: unhandled exit %llx", rip, exit_reason);
659 } while (ret == 0);
661 return ret;