2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/compat.h"
47 #include "hw/loader.h"
48 #include "exec/address-spaces.h"
49 #include "qemu/bitops.h"
50 #include "qemu/error-report.h"
51 #include "hw/pci-host/gpex.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 #include "hw/arm/smmuv3.h"
63 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
80 static void machvirt_machine_##major##_##minor##_init(void) \
82 type_register_static(&machvirt_##major##_##minor##_info); \
84 type_init(machvirt_machine_##major##_##minor##_init);
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
92 /* Number of external interrupt lines to configure the GIC with */
95 #define PLATFORM_BUS_NUM_IRQS 64
97 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
99 * address space unallocated and free for future use between 256G and 512G.
100 * If we need to provide more RAM to VMs in the future then we need to:
101 * * allocate a second bank of RAM starting at 2TB and working up
102 * * fix the DT and ACPI table generation code in QEMU to correctly
103 * report two split lumps of RAM to the guest
104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
105 * (We don't want to fill all the way up to 512GB with RAM because
106 * we might want it for non-RAM purposes later. Conversely it seems
107 * reasonable to assume that anybody configuring a VM with a quarter
108 * of a terabyte of RAM will be doing it on a host with more than a
109 * terabyte of physical address space.)
111 #define RAMLIMIT_GB 255
112 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
114 /* Addresses and sizes of our components.
115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116 * 128MB..256MB is used for miscellaneous device I/O.
117 * 256MB..1GB is reserved for possible future PCI support (ie where the
118 * PCI memory window will go if we add a PCI host controller).
119 * 1GB and up is RAM (which may happily spill over into the
120 * high memory region beyond 4GB).
121 * This represents a compromise between how much RAM can be given to
122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
123 * Note that devices should generally be placed at multiples of 0x10000,
124 * to accommodate guests using 64K pages.
126 static const MemMapEntry a15memmap
[] = {
127 /* Space up to 0x8000000 is reserved for a boot ROM */
128 [VIRT_FLASH
] = { 0, 0x08000000 },
129 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
131 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
132 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
133 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
134 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
135 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
138 /* This redistributor space allows up to 2*64kB*123 CPUs */
139 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
140 [VIRT_UART
] = { 0x09000000, 0x00001000 },
141 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
142 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
143 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
144 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
145 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
146 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
148 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
149 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
150 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
153 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
154 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
155 [VIRT_GIC_REDIST2
] = { 0x4000000000ULL
, 0x4000000 },
156 [VIRT_PCIE_ECAM_HIGH
] = { 0x4010000000ULL
, 0x10000000 },
157 /* Second PCIe window, 512GB wide at the 512GB boundary */
158 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
161 static const int a15irqmap
[] = {
164 [VIRT_PCIE
] = 3, /* ... to 6 */
166 [VIRT_SECURE_UART
] = 8,
167 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
168 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
169 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
170 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
173 static const char *valid_cpus
[] = {
174 ARM_CPU_TYPE_NAME("cortex-a15"),
175 ARM_CPU_TYPE_NAME("cortex-a53"),
176 ARM_CPU_TYPE_NAME("cortex-a57"),
177 ARM_CPU_TYPE_NAME("host"),
178 ARM_CPU_TYPE_NAME("max"),
181 static bool cpu_type_valid(const char *cpu
)
185 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
186 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
193 static void create_fdt(VirtMachineState
*vms
)
195 void *fdt
= create_device_tree(&vms
->fdt_size
);
198 error_report("create_device_tree() failed");
205 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
206 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
207 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
209 /* /chosen must exist for load_dtb to fill in necessary properties later */
210 qemu_fdt_add_subnode(fdt
, "/chosen");
212 /* Clock node, for the benefit of the UART. The kernel device tree
213 * binding documentation claims the PL011 node clock properties are
214 * optional but in practice if you omit them the kernel refuses to
215 * probe for the device.
217 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
218 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
219 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
221 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
222 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
224 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
226 if (have_numa_distance
) {
227 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
228 uint32_t *matrix
= g_malloc0(size
);
231 for (i
= 0; i
< nb_numa_nodes
; i
++) {
232 for (j
= 0; j
< nb_numa_nodes
; j
++) {
233 idx
= (i
* nb_numa_nodes
+ j
) * 3;
234 matrix
[idx
+ 0] = cpu_to_be32(i
);
235 matrix
[idx
+ 1] = cpu_to_be32(j
);
236 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
240 qemu_fdt_add_subnode(fdt
, "/distance-map");
241 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
242 "numa-distance-map-v1");
243 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
249 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
251 /* On real hardware these interrupts are level-triggered.
252 * On KVM they were edge-triggered before host kernel version 4.4,
253 * and level-triggered afterwards.
254 * On emulated QEMU they are level-triggered.
256 * Getting the DTB info about them wrong is awkward for some
258 * pre-4.8 ignore the DT and leave the interrupt configured
259 * with whatever the GIC reset value (or the bootloader) left it at
260 * 4.8 before rc6 honour the incorrect data by programming it back
261 * into the GIC, causing problems
262 * 4.8rc6 and later ignore the DT and always write "level triggered"
265 * For backwards-compatibility, virt-2.8 and earlier will continue
266 * to say these are edge-triggered, but later machines will report
267 * the correct information.
270 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
271 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
273 if (vmc
->claim_edge_triggered_timers
) {
274 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
277 if (vms
->gic_version
== 2) {
278 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
279 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
280 (1 << vms
->smp_cpus
) - 1);
283 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
285 armcpu
= ARM_CPU(qemu_get_cpu(0));
286 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
287 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
288 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
289 compat
, sizeof(compat
));
291 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
294 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
295 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
296 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
297 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
298 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
299 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
302 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
306 const MachineState
*ms
= MACHINE(vms
);
309 * From Documentation/devicetree/bindings/arm/cpus.txt
310 * On ARM v8 64-bit systems value should be set to 2,
311 * that corresponds to the MPIDR_EL1 register size.
312 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
313 * in the system, #address-cells can be set to 1, since
314 * MPIDR_EL1[63:32] bits are not used for CPUs
317 * Here we actually don't know whether our system is 32- or 64-bit one.
318 * The simplest way to go is to examine affinity IDs of all our CPUs. If
319 * at least one of them has Aff3 populated, we set #address-cells to 2.
321 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
322 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
324 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
330 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
331 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
332 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
334 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
335 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
336 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
337 CPUState
*cs
= CPU(armcpu
);
339 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
340 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
341 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
342 armcpu
->dtb_compatible
);
344 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
345 && vms
->smp_cpus
> 1) {
346 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
347 "enable-method", "psci");
350 if (addr_cells
== 2) {
351 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
352 armcpu
->mp_affinity
);
354 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
355 armcpu
->mp_affinity
);
358 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
359 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
360 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
367 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
371 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
372 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
373 vms
->memmap
[VIRT_GIC_ITS
].base
);
374 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
375 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
377 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
378 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
379 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
380 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
381 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
385 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
389 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
390 vms
->memmap
[VIRT_GIC_V2M
].base
);
391 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
392 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
393 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
394 "arm,gic-v2m-frame");
395 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
396 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
397 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
398 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
399 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
403 static void fdt_add_gic_node(VirtMachineState
*vms
)
407 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
408 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
410 nodename
= g_strdup_printf("/intc@%" PRIx64
,
411 vms
->memmap
[VIRT_GIC_DIST
].base
);
412 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
413 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
414 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
415 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
416 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
417 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
418 if (vms
->gic_version
== 3) {
419 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
421 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
424 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
425 "#redistributor-regions", nb_redist_regions
);
427 if (nb_redist_regions
== 1) {
428 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
429 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
430 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
431 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
432 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
434 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
435 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
436 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
437 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
438 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
439 2, vms
->memmap
[VIRT_GIC_REDIST2
].base
,
440 2, vms
->memmap
[VIRT_GIC_REDIST2
].size
);
444 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
445 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
446 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
449 /* 'cortex-a15-gic' means 'GIC v2' */
450 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
451 "arm,cortex-a15-gic");
453 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
454 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
455 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
456 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
457 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
459 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
460 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
461 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
462 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
463 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
464 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
465 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
466 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
467 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
468 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
469 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
470 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
474 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
478 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
482 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
485 armcpu
= ARM_CPU(cpu
);
486 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
490 if (kvm_irqchip_in_kernel()) {
491 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
493 kvm_arm_pmu_init(cpu
);
497 if (vms
->gic_version
== 2) {
498 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
499 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
500 (1 << vms
->smp_cpus
) - 1);
503 armcpu
= ARM_CPU(qemu_get_cpu(0));
504 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
505 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
506 const char compat
[] = "arm,armv8-pmuv3";
507 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
508 compat
, sizeof(compat
));
509 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
510 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
514 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
516 const char *itsclass
= its_class_name();
520 /* Do nothing if not supported */
524 dev
= qdev_create(NULL
, itsclass
);
526 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
528 qdev_init_nofail(dev
);
529 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
531 fdt_add_its_gic_node(vms
);
534 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
537 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
540 dev
= qdev_create(NULL
, "arm-gicv2m");
541 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
542 qdev_prop_set_uint32(dev
, "base-spi", irq
);
543 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
544 qdev_init_nofail(dev
);
546 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
547 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
550 fdt_add_v2m_gic_node(vms
);
553 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
555 /* We create a standalone GIC */
557 SysBusDevice
*gicbusdev
;
559 int type
= vms
->gic_version
, i
;
560 uint32_t nb_redist_regions
= 0;
562 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
564 gicdev
= qdev_create(NULL
, gictype
);
565 qdev_prop_set_uint32(gicdev
, "revision", type
);
566 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
567 /* Note that the num-irq property counts both internal and external
568 * interrupts; there are always 32 of the former (mandated by GIC spec).
570 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
571 if (!kvm_irqchip_in_kernel()) {
572 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
576 uint32_t redist0_capacity
=
577 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
578 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
580 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
582 qdev_prop_set_uint32(gicdev
, "len-redist-region-count",
584 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
586 if (nb_redist_regions
== 2) {
587 uint32_t redist1_capacity
=
588 vms
->memmap
[VIRT_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
590 qdev_prop_set_uint32(gicdev
, "redist-region-count[1]",
591 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
594 if (!kvm_irqchip_in_kernel()) {
595 qdev_prop_set_bit(gicdev
, "has-virtualization-extensions",
599 qdev_init_nofail(gicdev
);
600 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
601 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
603 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
604 if (nb_redist_regions
== 2) {
605 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_REDIST2
].base
);
608 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
610 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
611 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
615 /* Wire the outputs from each CPU's generic timer and the GICv3
616 * maintenance interrupt signal to the appropriate GIC PPI inputs,
617 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
619 for (i
= 0; i
< smp_cpus
; i
++) {
620 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
621 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
623 /* Mapping from the output timer irq lines from the CPU to the
624 * GIC PPI inputs we use for the virt board.
626 const int timer_irq
[] = {
627 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
628 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
629 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
630 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
633 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
634 qdev_connect_gpio_out(cpudev
, irq
,
635 qdev_get_gpio_in(gicdev
,
636 ppibase
+ timer_irq
[irq
]));
640 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
641 ppibase
+ ARCH_GIC_MAINT_IRQ
);
642 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
644 } else if (vms
->virt
) {
645 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
646 ppibase
+ ARCH_GIC_MAINT_IRQ
);
647 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
650 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
651 qdev_get_gpio_in(gicdev
, ppibase
654 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
655 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
656 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
657 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
658 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
659 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
660 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
663 for (i
= 0; i
< NUM_IRQS
; i
++) {
664 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
667 fdt_add_gic_node(vms
);
669 if (type
== 3 && vms
->its
) {
670 create_its(vms
, gicdev
);
671 } else if (type
== 2) {
672 create_v2m(vms
, pic
);
676 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
677 MemoryRegion
*mem
, Chardev
*chr
)
680 hwaddr base
= vms
->memmap
[uart
].base
;
681 hwaddr size
= vms
->memmap
[uart
].size
;
682 int irq
= vms
->irqmap
[uart
];
683 const char compat
[] = "arm,pl011\0arm,primecell";
684 const char clocknames
[] = "uartclk\0apb_pclk";
685 DeviceState
*dev
= qdev_create(NULL
, "pl011");
686 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
688 qdev_prop_set_chr(dev
, "chardev", chr
);
689 qdev_init_nofail(dev
);
690 memory_region_add_subregion(mem
, base
,
691 sysbus_mmio_get_region(s
, 0));
692 sysbus_connect_irq(s
, 0, pic
[irq
]);
694 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
695 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
696 /* Note that we can't use setprop_string because of the embedded NUL */
697 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
698 compat
, sizeof(compat
));
699 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
701 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
702 GIC_FDT_IRQ_TYPE_SPI
, irq
,
703 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
704 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
705 vms
->clock_phandle
, vms
->clock_phandle
);
706 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
707 clocknames
, sizeof(clocknames
));
709 if (uart
== VIRT_UART
) {
710 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
712 /* Mark as not usable by the normal world */
713 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
714 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
716 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
717 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
724 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
727 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
728 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
729 int irq
= vms
->irqmap
[VIRT_RTC
];
730 const char compat
[] = "arm,pl031\0arm,primecell";
732 sysbus_create_simple("pl031", base
, pic
[irq
]);
734 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
735 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
736 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
737 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
739 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
740 GIC_FDT_IRQ_TYPE_SPI
, irq
,
741 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
742 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
743 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
747 static DeviceState
*gpio_key_dev
;
748 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
750 /* use gpio Pin 3 for power button event */
751 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
754 static Notifier virt_system_powerdown_notifier
= {
755 .notify
= virt_powerdown_req
758 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
761 DeviceState
*pl061_dev
;
762 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
763 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
764 int irq
= vms
->irqmap
[VIRT_GPIO
];
765 const char compat
[] = "arm,pl061\0arm,primecell";
767 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
769 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
770 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
771 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
772 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
774 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
775 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
776 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
777 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
778 GIC_FDT_IRQ_TYPE_SPI
, irq
,
779 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
780 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
781 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
782 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
784 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
785 qdev_get_gpio_in(pl061_dev
, 3));
786 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
787 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
788 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
789 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
791 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
792 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
793 "label", "GPIO Key Poweroff");
794 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
796 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
797 "gpios", phandle
, 3, 0);
799 /* connect powerdown request */
800 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
805 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
808 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
810 /* We create the transports in forwards order. Since qbus_realize()
811 * prepends (not appends) new child buses, the incrementing loop below will
812 * create a list of virtio-mmio buses with decreasing base addresses.
814 * When a -device option is processed from the command line,
815 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
816 * order. The upshot is that -device options in increasing command line
817 * order are mapped to virtio-mmio buses with decreasing base addresses.
819 * When this code was originally written, that arrangement ensured that the
820 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
821 * the first -device on the command line. (The end-to-end order is a
822 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
823 * guest kernel's name-to-address assignment strategy.)
825 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
826 * the message, if not necessarily the code, of commit 70161ff336.
827 * Therefore the loop now establishes the inverse of the original intent.
829 * Unfortunately, we can't counteract the kernel change by reversing the
830 * loop; it would break existing command lines.
832 * In any case, the kernel makes no guarantee about the stability of
833 * enumeration order of virtio devices (as demonstrated by it changing
834 * between kernel versions). For reliable and stable identification
835 * of disks users must use UUIDs or similar mechanisms.
837 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
838 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
839 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
841 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
844 /* We add dtb nodes in reverse order so that they appear in the finished
845 * device tree lowest address first.
847 * Note that this mapping is independent of the loop above. The previous
848 * loop influences virtio device to virtio transport assignment, whereas
849 * this loop controls how virtio transports are laid out in the dtb.
851 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
853 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
854 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
856 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
857 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
858 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
859 "compatible", "virtio,mmio");
860 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
862 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
863 GIC_FDT_IRQ_TYPE_SPI
, irq
,
864 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
865 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
870 static void create_one_flash(const char *name
, hwaddr flashbase
,
871 hwaddr flashsize
, const char *file
,
872 MemoryRegion
*sysmem
)
874 /* Create and map a single flash device. We use the same
875 * parameters as the flash devices on the Versatile Express board.
877 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
878 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
879 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
880 const uint64_t sectorlength
= 256 * 1024;
883 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
887 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
888 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
889 qdev_prop_set_uint8(dev
, "width", 4);
890 qdev_prop_set_uint8(dev
, "device-width", 2);
891 qdev_prop_set_bit(dev
, "big-endian", false);
892 qdev_prop_set_uint16(dev
, "id0", 0x89);
893 qdev_prop_set_uint16(dev
, "id1", 0x18);
894 qdev_prop_set_uint16(dev
, "id2", 0x00);
895 qdev_prop_set_uint16(dev
, "id3", 0x00);
896 qdev_prop_set_string(dev
, "name", name
);
897 qdev_init_nofail(dev
);
899 memory_region_add_subregion(sysmem
, flashbase
,
900 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
906 if (drive_get(IF_PFLASH
, 0, 0)) {
907 error_report("The contents of the first flash device may be "
908 "specified with -bios or with -drive if=pflash... "
909 "but you cannot use both options at once");
912 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
914 error_report("Could not find ROM image '%s'", file
);
917 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
919 if (image_size
< 0) {
920 error_report("Could not load ROM image '%s'", file
);
926 static void create_flash(const VirtMachineState
*vms
,
927 MemoryRegion
*sysmem
,
928 MemoryRegion
*secure_sysmem
)
930 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
931 * Any file passed via -bios goes in the first of these.
932 * sysmem is the system memory space. secure_sysmem is the secure view
933 * of the system, and the first flash device should be made visible only
934 * there. The second flash device is visible to both secure and nonsecure.
935 * If sysmem == secure_sysmem this means there is no separate Secure
936 * address space and both flash devices are generally visible.
938 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
939 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
942 create_one_flash("virt.flash0", flashbase
, flashsize
,
943 bios_name
, secure_sysmem
);
944 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
947 if (sysmem
== secure_sysmem
) {
948 /* Report both flash devices as a single node in the DT */
949 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
950 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
951 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
952 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
953 2, flashbase
, 2, flashsize
,
954 2, flashbase
+ flashsize
, 2, flashsize
);
955 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
958 /* Report the devices as separate nodes so we can mark one as
959 * only visible to the secure world.
961 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
962 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
963 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
964 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
965 2, flashbase
, 2, flashsize
);
966 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
967 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
968 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
971 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
972 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
973 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
974 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
975 2, flashbase
+ flashsize
, 2, flashsize
);
976 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
981 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
983 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
984 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
988 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
989 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
991 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
992 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
993 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
994 "compatible", "qemu,fw-cfg-mmio");
995 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
997 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1002 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1003 uint32_t gic_phandle
,
1004 int first_irq
, const char *nodename
)
1007 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1008 uint32_t *irq_map
= full_irq_map
;
1010 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1011 for (pin
= 0; pin
< 4; pin
++) {
1012 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1013 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1014 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1018 devfn
<< 8, 0, 0, /* devfn */
1019 pin
+ 1, /* PCI pin */
1020 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1022 /* Convert map to big endian */
1023 for (i
= 0; i
< 10; i
++) {
1024 irq_map
[i
] = cpu_to_be32(map
[i
]);
1030 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1031 full_irq_map
, sizeof(full_irq_map
));
1033 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1034 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1038 static void create_smmu(const VirtMachineState
*vms
, qemu_irq
*pic
,
1042 const char compat
[] = "arm,smmu-v3";
1043 int irq
= vms
->irqmap
[VIRT_SMMU
];
1045 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1046 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1047 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1050 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1054 dev
= qdev_create(NULL
, "arm-smmuv3");
1056 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1058 qdev_init_nofail(dev
);
1059 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1060 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1061 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1064 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1065 qemu_fdt_add_subnode(vms
->fdt
, node
);
1066 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1067 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1069 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1070 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1071 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1072 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1073 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1075 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1078 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1079 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1080 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1082 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1084 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1088 static void create_pcie(VirtMachineState
*vms
, qemu_irq
*pic
)
1090 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1091 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1092 hwaddr base_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
1093 hwaddr size_mmio_high
= vms
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
1094 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1095 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1096 hwaddr base_ecam
, size_ecam
;
1097 hwaddr base
= base_mmio
;
1099 int irq
= vms
->irqmap
[VIRT_PCIE
];
1100 MemoryRegion
*mmio_alias
;
1101 MemoryRegion
*mmio_reg
;
1102 MemoryRegion
*ecam_alias
;
1103 MemoryRegion
*ecam_reg
;
1109 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1110 qdev_init_nofail(dev
);
1112 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1113 base_ecam
= vms
->memmap
[ecam_id
].base
;
1114 size_ecam
= vms
->memmap
[ecam_id
].size
;
1115 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1116 /* Map only the first size_ecam bytes of ECAM space */
1117 ecam_alias
= g_new0(MemoryRegion
, 1);
1118 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1119 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1120 ecam_reg
, 0, size_ecam
);
1121 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1123 /* Map the MMIO window into system address space so as to expose
1124 * the section of PCI MMIO space which starts at the same base address
1125 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1128 mmio_alias
= g_new0(MemoryRegion
, 1);
1129 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1130 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1131 mmio_reg
, base_mmio
, size_mmio
);
1132 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1135 /* Map high MMIO space */
1136 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1138 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1139 mmio_reg
, base_mmio_high
, size_mmio_high
);
1140 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1144 /* Map IO port space */
1145 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1147 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1148 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1149 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1152 pci
= PCI_HOST_BRIDGE(dev
);
1154 for (i
= 0; i
< nb_nics
; i
++) {
1155 NICInfo
*nd
= &nd_table
[i
];
1158 nd
->model
= g_strdup("virtio");
1161 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1165 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1166 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1167 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1168 "compatible", "pci-host-ecam-generic");
1169 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1170 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1171 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1172 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1173 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1175 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1177 if (vms
->msi_phandle
) {
1178 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1182 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1183 2, base_ecam
, 2, size_ecam
);
1186 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1187 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1188 2, base_pio
, 2, size_pio
,
1189 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1190 2, base_mmio
, 2, size_mmio
,
1191 1, FDT_PCI_RANGE_MMIO_64BIT
,
1193 2, base_mmio_high
, 2, size_mmio_high
);
1195 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1196 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1197 2, base_pio
, 2, size_pio
,
1198 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1199 2, base_mmio
, 2, size_mmio
);
1202 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1203 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1206 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1208 create_smmu(vms
, pic
, pci
->bus
);
1210 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1211 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1217 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1222 MemoryRegion
*sysmem
= get_system_memory();
1224 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1225 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1226 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1227 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1228 qdev_init_nofail(dev
);
1229 vms
->platform_bus_dev
= dev
;
1231 s
= SYS_BUS_DEVICE(dev
);
1232 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1233 int irqn
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1234 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1237 memory_region_add_subregion(sysmem
,
1238 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1239 sysbus_mmio_get_region(s
, 0));
1242 static void create_secure_ram(VirtMachineState
*vms
,
1243 MemoryRegion
*secure_sysmem
)
1245 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1247 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1248 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1250 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1252 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1254 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1255 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1256 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1257 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1258 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1259 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1264 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1266 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1269 *fdt_size
= board
->fdt_size
;
1273 static void virt_build_smbios(VirtMachineState
*vms
)
1275 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1276 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1277 uint8_t *smbios_tables
, *smbios_anchor
;
1278 size_t smbios_tables_len
, smbios_anchor_len
;
1279 const char *product
= "QEMU Virtual Machine";
1285 if (kvm_enabled()) {
1286 product
= "KVM Virtual Machine";
1289 smbios_set_defaults("QEMU", product
,
1290 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1291 true, SMBIOS_ENTRY_POINT_30
);
1293 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1294 &smbios_anchor
, &smbios_anchor_len
);
1296 if (smbios_anchor
) {
1297 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1298 smbios_tables
, smbios_tables_len
);
1299 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1300 smbios_anchor
, smbios_anchor_len
);
1305 void virt_machine_done(Notifier
*notifier
, void *data
)
1307 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1309 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1310 struct arm_boot_info
*info
= &vms
->bootinfo
;
1311 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1314 * If the user provided a dtb, we assume the dynamic sysbus nodes
1315 * already are integrated there. This corresponds to a use case where
1316 * the dynamic sysbus nodes are complex and their generation is not yet
1317 * supported. In that case the user can take charge of the guest dt
1318 * while qemu takes charge of the qom stuff.
1320 if (info
->dtb_filename
== NULL
) {
1321 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1322 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1323 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1324 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1326 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1330 virt_acpi_setup(vms
);
1331 virt_build_smbios(vms
);
1334 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1336 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1337 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1339 if (!vmc
->disallow_affinity_adjustment
) {
1340 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1341 * GIC's target-list limitations. 32-bit KVM hosts currently
1342 * always create clusters of 4 CPUs, but that is expected to
1343 * change when they gain support for gicv3. When KVM is enabled
1344 * it will override the changes we make here, therefore our
1345 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1346 * and to improve SGI efficiency.
1348 if (vms
->gic_version
== 3) {
1349 clustersz
= GICV3_TARGETLIST_BITS
;
1351 clustersz
= GIC_TARGETLIST_BITS
;
1354 return arm_cpu_mp_affinity(idx
, clustersz
);
1357 static void machvirt_init(MachineState
*machine
)
1359 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1360 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1361 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1362 const CPUArchIdList
*possible_cpus
;
1363 qemu_irq pic
[NUM_IRQS
];
1364 MemoryRegion
*sysmem
= get_system_memory();
1365 MemoryRegion
*secure_sysmem
= NULL
;
1366 int n
, virt_max_cpus
;
1367 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1368 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1369 bool aarch64
= true;
1371 /* We can probe only here because during property set
1372 * KVM is not available yet
1374 if (vms
->gic_version
<= 0) {
1375 /* "host" or "max" */
1376 if (!kvm_enabled()) {
1377 if (vms
->gic_version
== 0) {
1378 error_report("gic-version=host requires KVM");
1381 /* "max": currently means 3 for TCG */
1382 vms
->gic_version
= 3;
1385 vms
->gic_version
= kvm_arm_vgic_probe();
1386 if (!vms
->gic_version
) {
1388 "Unable to determine GIC version supported by host");
1394 if (!cpu_type_valid(machine
->cpu_type
)) {
1395 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1399 /* If we have an EL3 boot ROM then the assumption is that it will
1400 * implement PSCI itself, so disable QEMU's internal implementation
1401 * so it doesn't get in the way. Instead of starting secondary
1402 * CPUs in PSCI powerdown state we will start them all running and
1403 * let the boot ROM sort them out.
1404 * The usual case is that we do use QEMU's PSCI implementation;
1405 * if the guest has EL2 then we will use SMC as the conduit,
1406 * and otherwise we will use HVC (for backwards compatibility and
1407 * because if we're using KVM then we must use HVC).
1409 if (vms
->secure
&& firmware_loaded
) {
1410 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1411 } else if (vms
->virt
) {
1412 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1414 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1417 /* The maximum number of CPUs depends on the GIC version, or on how
1418 * many redistributors we can fit into the memory map.
1420 if (vms
->gic_version
== 3) {
1421 virt_max_cpus
= vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1422 virt_max_cpus
+= vms
->memmap
[VIRT_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1424 virt_max_cpus
= GIC_NCPU
;
1427 if (max_cpus
> virt_max_cpus
) {
1428 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1429 "supported by machine 'mach-virt' (%d)",
1430 max_cpus
, virt_max_cpus
);
1434 vms
->smp_cpus
= smp_cpus
;
1436 if (machine
->ram_size
> vms
->memmap
[VIRT_MEM
].size
) {
1437 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1441 if (vms
->virt
&& kvm_enabled()) {
1442 error_report("mach-virt: KVM does not support providing "
1443 "Virtualization extensions to the guest CPU");
1448 if (kvm_enabled()) {
1449 error_report("mach-virt: KVM does not support Security extensions");
1453 /* The Secure view of the world is the same as the NonSecure,
1454 * but with a few extra devices. Create it as a container region
1455 * containing the system memory at low priority; any secure-only
1456 * devices go in at higher priority and take precedence.
1458 secure_sysmem
= g_new(MemoryRegion
, 1);
1459 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1461 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1466 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1467 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1471 if (n
>= smp_cpus
) {
1475 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1476 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1477 "mp-affinity", NULL
);
1482 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1485 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1488 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1491 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1492 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1495 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1496 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1497 "psci-conduit", NULL
);
1499 /* Secondary CPUs start in PSCI powered-down state */
1501 object_property_set_bool(cpuobj
, true,
1502 "start-powered-off", NULL
);
1506 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1507 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1510 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1511 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1512 "reset-cbar", &error_abort
);
1515 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1518 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1519 "secure-memory", &error_abort
);
1522 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1523 object_unref(cpuobj
);
1525 fdt_add_timer_nodes(vms
);
1526 fdt_add_cpu_nodes(vms
);
1528 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1530 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1532 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1534 create_gic(vms
, pic
);
1536 fdt_add_pmu_nodes(vms
);
1538 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hd(0));
1541 create_secure_ram(vms
, secure_sysmem
);
1542 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1545 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1547 create_rtc(vms
, pic
);
1549 create_pcie(vms
, pic
);
1551 create_gpio(vms
, pic
);
1553 /* Create mmio transports, so the user can create virtio backends
1554 * (which will be automatically plugged in to the transports). If
1555 * no backend is created the transport will just sit harmlessly idle.
1557 create_virtio_devices(vms
, pic
);
1559 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1560 rom_set_fw(vms
->fw_cfg
);
1562 create_platform_bus(vms
, pic
);
1564 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1565 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1566 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1567 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1568 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1569 vms
->bootinfo
.board_id
= -1;
1570 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1571 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1572 vms
->bootinfo
.skip_dtb_autoload
= true;
1573 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1574 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1576 vms
->machine_done
.notify
= virt_machine_done
;
1577 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1580 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1582 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1587 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1589 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1591 vms
->secure
= value
;
1594 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1596 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1601 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1603 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1608 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1610 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1612 return vms
->highmem
;
1615 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1617 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1619 vms
->highmem
= value
;
1622 static bool virt_get_its(Object
*obj
, Error
**errp
)
1624 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1629 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1631 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1636 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1638 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1639 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1641 return g_strdup(val
);
1644 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1646 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1648 if (!strcmp(value
, "3")) {
1649 vms
->gic_version
= 3;
1650 } else if (!strcmp(value
, "2")) {
1651 vms
->gic_version
= 2;
1652 } else if (!strcmp(value
, "host")) {
1653 vms
->gic_version
= 0; /* Will probe later */
1654 } else if (!strcmp(value
, "max")) {
1655 vms
->gic_version
= -1; /* Will probe later */
1657 error_setg(errp
, "Invalid gic-version value");
1658 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1662 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1664 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1666 switch (vms
->iommu
) {
1667 case VIRT_IOMMU_NONE
:
1668 return g_strdup("none");
1669 case VIRT_IOMMU_SMMUV3
:
1670 return g_strdup("smmuv3");
1672 g_assert_not_reached();
1676 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1678 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1680 if (!strcmp(value
, "smmuv3")) {
1681 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1682 } else if (!strcmp(value
, "none")) {
1683 vms
->iommu
= VIRT_IOMMU_NONE
;
1685 error_setg(errp
, "Invalid iommu value");
1686 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1690 static CpuInstanceProperties
1691 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1693 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1694 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1696 assert(cpu_index
< possible_cpus
->len
);
1697 return possible_cpus
->cpus
[cpu_index
].props
;
1700 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1702 return idx
% nb_numa_nodes
;
1705 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1708 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1710 if (ms
->possible_cpus
) {
1711 assert(ms
->possible_cpus
->len
== max_cpus
);
1712 return ms
->possible_cpus
;
1715 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1716 sizeof(CPUArchId
) * max_cpus
);
1717 ms
->possible_cpus
->len
= max_cpus
;
1718 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1719 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1720 ms
->possible_cpus
->cpus
[n
].arch_id
=
1721 virt_cpu_mp_affinity(vms
, n
);
1722 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1723 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1725 return ms
->possible_cpus
;
1728 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1729 DeviceState
*dev
, Error
**errp
)
1731 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1733 if (vms
->platform_bus_dev
) {
1734 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1735 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1736 SYS_BUS_DEVICE(dev
));
1741 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1744 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1745 return HOTPLUG_HANDLER(machine
);
1751 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1753 MachineClass
*mc
= MACHINE_CLASS(oc
);
1754 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1756 mc
->init
= machvirt_init
;
1757 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1758 * The value may be reduced later when we have more information about the
1759 * configuration of the particular instance.
1762 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1763 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1764 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
1765 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
1766 mc
->block_default_type
= IF_VIRTIO
;
1768 mc
->pci_allow_0_address
= true;
1769 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1770 mc
->minimum_page_bits
= 12;
1771 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1772 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1773 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1774 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1775 assert(!mc
->get_hotplug_handler
);
1776 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
1777 hc
->plug
= virt_machine_device_plug_cb
;
1780 static const TypeInfo virt_machine_info
= {
1781 .name
= TYPE_VIRT_MACHINE
,
1782 .parent
= TYPE_MACHINE
,
1784 .instance_size
= sizeof(VirtMachineState
),
1785 .class_size
= sizeof(VirtMachineClass
),
1786 .class_init
= virt_machine_class_init
,
1787 .interfaces
= (InterfaceInfo
[]) {
1788 { TYPE_HOTPLUG_HANDLER
},
1793 static void machvirt_machine_init(void)
1795 type_register_static(&virt_machine_info
);
1797 type_init(machvirt_machine_init
);
1799 static void virt_3_1_instance_init(Object
*obj
)
1801 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1802 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1804 /* EL3 is disabled by default on virt: this makes us consistent
1805 * between KVM and TCG for this board, and it also allows us to
1806 * boot UEFI blobs which assume no TrustZone support.
1808 vms
->secure
= false;
1809 object_property_add_bool(obj
, "secure", virt_get_secure
,
1810 virt_set_secure
, NULL
);
1811 object_property_set_description(obj
, "secure",
1812 "Set on/off to enable/disable the ARM "
1813 "Security Extensions (TrustZone)",
1816 /* EL2 is also disabled by default, for similar reasons */
1818 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1819 virt_set_virt
, NULL
);
1820 object_property_set_description(obj
, "virtualization",
1821 "Set on/off to enable/disable emulating a "
1822 "guest CPU which implements the ARM "
1823 "Virtualization Extensions",
1826 /* High memory is enabled by default */
1827 vms
->highmem
= true;
1828 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1829 virt_set_highmem
, NULL
);
1830 object_property_set_description(obj
, "highmem",
1831 "Set on/off to enable/disable using "
1832 "physical address space above 32 bits",
1834 /* Default GIC type is v2 */
1835 vms
->gic_version
= 2;
1836 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1837 virt_set_gic_version
, NULL
);
1838 object_property_set_description(obj
, "gic-version",
1840 "Valid values are 2, 3 and host", NULL
);
1842 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
1847 /* Default allows ITS instantiation */
1849 object_property_add_bool(obj
, "its", virt_get_its
,
1850 virt_set_its
, NULL
);
1851 object_property_set_description(obj
, "its",
1852 "Set on/off to enable/disable "
1853 "ITS instantiation",
1857 /* Default disallows iommu instantiation */
1858 vms
->iommu
= VIRT_IOMMU_NONE
;
1859 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
1860 object_property_set_description(obj
, "iommu",
1861 "Set the IOMMU type. "
1862 "Valid values are none and smmuv3",
1865 vms
->memmap
= a15memmap
;
1866 vms
->irqmap
= a15irqmap
;
1869 static void virt_machine_3_1_options(MachineClass
*mc
)
1872 DEFINE_VIRT_MACHINE_AS_LATEST(3, 1)
1874 static void virt_3_0_instance_init(Object
*obj
)
1876 virt_3_1_instance_init(obj
);
1879 static void virt_machine_3_0_options(MachineClass
*mc
)
1881 virt_machine_3_1_options(mc
);
1883 DEFINE_VIRT_MACHINE(3, 0)
1885 #define VIRT_COMPAT_2_12 \
1888 static void virt_2_12_instance_init(Object
*obj
)
1890 virt_3_0_instance_init(obj
);
1893 static void virt_machine_2_12_options(MachineClass
*mc
)
1895 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1897 virt_machine_3_0_options(mc
);
1898 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_12
);
1899 vmc
->no_highmem_ecam
= true;
1902 DEFINE_VIRT_MACHINE(2, 12)
1904 #define VIRT_COMPAT_2_11 \
1907 static void virt_2_11_instance_init(Object
*obj
)
1909 virt_2_12_instance_init(obj
);
1912 static void virt_machine_2_11_options(MachineClass
*mc
)
1914 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1916 virt_machine_2_12_options(mc
);
1917 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_11
);
1918 vmc
->smbios_old_sys_ver
= true;
1920 DEFINE_VIRT_MACHINE(2, 11)
1922 #define VIRT_COMPAT_2_10 \
1925 static void virt_2_10_instance_init(Object
*obj
)
1927 virt_2_11_instance_init(obj
);
1930 static void virt_machine_2_10_options(MachineClass
*mc
)
1932 virt_machine_2_11_options(mc
);
1933 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_10
);
1934 /* before 2.11 we never faulted accesses to bad addresses */
1935 mc
->ignore_memory_transaction_failures
= true;
1937 DEFINE_VIRT_MACHINE(2, 10)
1939 #define VIRT_COMPAT_2_9 \
1942 static void virt_2_9_instance_init(Object
*obj
)
1944 virt_2_10_instance_init(obj
);
1947 static void virt_machine_2_9_options(MachineClass
*mc
)
1949 virt_machine_2_10_options(mc
);
1950 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_9
);
1952 DEFINE_VIRT_MACHINE(2, 9)
1954 #define VIRT_COMPAT_2_8 \
1957 static void virt_2_8_instance_init(Object
*obj
)
1959 virt_2_9_instance_init(obj
);
1962 static void virt_machine_2_8_options(MachineClass
*mc
)
1964 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1966 virt_machine_2_9_options(mc
);
1967 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_8
);
1968 /* For 2.8 and earlier we falsely claimed in the DT that
1969 * our timers were edge-triggered, not level-triggered.
1971 vmc
->claim_edge_triggered_timers
= true;
1973 DEFINE_VIRT_MACHINE(2, 8)
1975 #define VIRT_COMPAT_2_7 \
1978 static void virt_2_7_instance_init(Object
*obj
)
1980 virt_2_8_instance_init(obj
);
1983 static void virt_machine_2_7_options(MachineClass
*mc
)
1985 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
1987 virt_machine_2_8_options(mc
);
1988 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_7
);
1989 /* ITS was introduced with 2.8 */
1991 /* Stick with 1K pages for migration compatibility */
1992 mc
->minimum_page_bits
= 0;
1994 DEFINE_VIRT_MACHINE(2, 7)
1996 #define VIRT_COMPAT_2_6 \
1999 static void virt_2_6_instance_init(Object
*obj
)
2001 virt_2_7_instance_init(obj
);
2004 static void virt_machine_2_6_options(MachineClass
*mc
)
2006 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2008 virt_machine_2_7_options(mc
);
2009 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
2010 vmc
->disallow_affinity_adjustment
= true;
2011 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2014 DEFINE_VIRT_MACHINE(2, 6)