Merge remote-tracking branch 'remotes/agraf/tags/signed-ppc-for-upstream' into staging
[qemu.git] / hw / arm / virt.c
blob78f618d3bb3fe045de651be31d98a23efd91a2ae
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/block-backend.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/kvm.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "exec/address-spaces.h"
43 #include "qemu/bitops.h"
44 #include "qemu/error-report.h"
46 #define NUM_VIRTIO_TRANSPORTS 32
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
62 enum {
63 VIRT_FLASH,
64 VIRT_MEM,
65 VIRT_CPUPERIPHS,
66 VIRT_GIC_DIST,
67 VIRT_GIC_CPU,
68 VIRT_UART,
69 VIRT_MMIO,
70 VIRT_RTC,
73 typedef struct MemMapEntry {
74 hwaddr base;
75 hwaddr size;
76 } MemMapEntry;
78 typedef struct VirtBoardInfo {
79 struct arm_boot_info bootinfo;
80 const char *cpu_model;
81 const MemMapEntry *memmap;
82 const int *irqmap;
83 int smp_cpus;
84 void *fdt;
85 int fdt_size;
86 uint32_t clock_phandle;
87 } VirtBoardInfo;
89 /* Addresses and sizes of our components.
90 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
91 * 128MB..256MB is used for miscellaneous device I/O.
92 * 256MB..1GB is reserved for possible future PCI support (ie where the
93 * PCI memory window will go if we add a PCI host controller).
94 * 1GB and up is RAM (which may happily spill over into the
95 * high memory region beyond 4GB).
96 * This represents a compromise between how much RAM can be given to
97 * a 32 bit VM and leaving space for expansion and in particular for PCI.
98 * Note that devices should generally be placed at multiples of 0x10000,
99 * to accommodate guests using 64K pages.
101 static const MemMapEntry a15memmap[] = {
102 /* Space up to 0x8000000 is reserved for a boot ROM */
103 [VIRT_FLASH] = { 0, 0x08000000 },
104 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
105 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
106 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
107 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
108 [VIRT_UART] = { 0x09000000, 0x00001000 },
109 [VIRT_RTC] = { 0x09010000, 0x00001000 },
110 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
111 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
112 /* 0x10000000 .. 0x40000000 reserved for PCI */
113 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
116 static const int a15irqmap[] = {
117 [VIRT_UART] = 1,
118 [VIRT_RTC] = 2,
119 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
122 static VirtBoardInfo machines[] = {
124 .cpu_model = "cortex-a15",
125 .memmap = a15memmap,
126 .irqmap = a15irqmap,
129 .cpu_model = "cortex-a57",
130 .memmap = a15memmap,
131 .irqmap = a15irqmap,
134 .cpu_model = "host",
135 .memmap = a15memmap,
136 .irqmap = a15irqmap,
140 static VirtBoardInfo *find_machine_info(const char *cpu)
142 int i;
144 for (i = 0; i < ARRAY_SIZE(machines); i++) {
145 if (strcmp(cpu, machines[i].cpu_model) == 0) {
146 return &machines[i];
149 return NULL;
152 static void create_fdt(VirtBoardInfo *vbi)
154 void *fdt = create_device_tree(&vbi->fdt_size);
156 if (!fdt) {
157 error_report("create_device_tree() failed");
158 exit(1);
161 vbi->fdt = fdt;
163 /* Header */
164 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
165 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
166 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
169 * /chosen and /memory nodes must exist for load_dtb
170 * to fill in necessary properties later
172 qemu_fdt_add_subnode(fdt, "/chosen");
173 qemu_fdt_add_subnode(fdt, "/memory");
174 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
176 /* Clock node, for the benefit of the UART. The kernel device tree
177 * binding documentation claims the PL011 node clock properties are
178 * optional but in practice if you omit them the kernel refuses to
179 * probe for the device.
181 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
182 qemu_fdt_add_subnode(fdt, "/apb-pclk");
183 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
184 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
185 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
186 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
187 "clk24mhz");
188 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
192 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
194 uint32_t cpu_suspend_fn;
195 uint32_t cpu_off_fn;
196 uint32_t cpu_on_fn;
197 uint32_t migrate_fn;
198 void *fdt = vbi->fdt;
199 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
201 qemu_fdt_add_subnode(fdt, "/psci");
202 if (armcpu->psci_version == 2) {
203 const char comp[] = "arm,psci-0.2\0arm,psci";
204 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
206 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
207 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
208 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
209 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
210 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
211 } else {
212 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
213 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
214 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
216 } else {
217 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
219 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
220 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
221 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
222 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
225 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
226 * to the instruction that should be used to invoke PSCI functions.
227 * However, the device tree binding uses 'method' instead, so that is
228 * what we should use here.
230 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
232 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
233 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
234 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
235 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
238 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
240 /* Note that on A15 h/w these interrupts are level-triggered,
241 * but for the GIC implementation provided by both QEMU and KVM
242 * they are edge-triggered.
244 ARMCPU *armcpu;
245 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
247 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
248 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
250 qemu_fdt_add_subnode(vbi->fdt, "/timer");
252 armcpu = ARM_CPU(qemu_get_cpu(0));
253 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
254 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
255 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
256 compat, sizeof(compat));
257 } else {
258 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
259 "arm,armv7-timer");
261 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
262 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
263 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
264 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
265 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
268 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
270 int cpu;
272 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
273 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
274 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
276 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
277 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
278 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
280 qemu_fdt_add_subnode(vbi->fdt, nodename);
281 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
282 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
283 armcpu->dtb_compatible);
285 if (vbi->smp_cpus > 1) {
286 qemu_fdt_setprop_string(vbi->fdt, nodename,
287 "enable-method", "psci");
290 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
291 g_free(nodename);
295 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
297 uint32_t gic_phandle;
299 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
300 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
302 qemu_fdt_add_subnode(vbi->fdt, "/intc");
303 /* 'cortex-a15-gic' means 'GIC v2' */
304 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
305 "arm,cortex-a15-gic");
306 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
307 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
308 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
309 2, vbi->memmap[VIRT_GIC_DIST].base,
310 2, vbi->memmap[VIRT_GIC_DIST].size,
311 2, vbi->memmap[VIRT_GIC_CPU].base,
312 2, vbi->memmap[VIRT_GIC_CPU].size);
313 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
316 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
318 /* We create a standalone GIC v2 */
319 DeviceState *gicdev;
320 SysBusDevice *gicbusdev;
321 const char *gictype = "arm_gic";
322 int i;
324 if (kvm_irqchip_in_kernel()) {
325 gictype = "kvm-arm-gic";
328 gicdev = qdev_create(NULL, gictype);
329 qdev_prop_set_uint32(gicdev, "revision", 2);
330 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
331 /* Note that the num-irq property counts both internal and external
332 * interrupts; there are always 32 of the former (mandated by GIC spec).
334 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
335 qdev_init_nofail(gicdev);
336 gicbusdev = SYS_BUS_DEVICE(gicdev);
337 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
338 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
340 /* Wire the outputs from each CPU's generic timer to the
341 * appropriate GIC PPI inputs, and the GIC's IRQ output to
342 * the CPU's IRQ input.
344 for (i = 0; i < smp_cpus; i++) {
345 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
346 int ppibase = NUM_IRQS + i * 32;
347 /* physical timer; we wire it up to the non-secure timer's ID,
348 * since a real A15 always has TrustZone but QEMU doesn't.
350 qdev_connect_gpio_out(cpudev, 0,
351 qdev_get_gpio_in(gicdev, ppibase + 30));
352 /* virtual timer */
353 qdev_connect_gpio_out(cpudev, 1,
354 qdev_get_gpio_in(gicdev, ppibase + 27));
356 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
359 for (i = 0; i < NUM_IRQS; i++) {
360 pic[i] = qdev_get_gpio_in(gicdev, i);
363 fdt_add_gic_node(vbi);
366 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
368 char *nodename;
369 hwaddr base = vbi->memmap[VIRT_UART].base;
370 hwaddr size = vbi->memmap[VIRT_UART].size;
371 int irq = vbi->irqmap[VIRT_UART];
372 const char compat[] = "arm,pl011\0arm,primecell";
373 const char clocknames[] = "uartclk\0apb_pclk";
375 sysbus_create_simple("pl011", base, pic[irq]);
377 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
378 qemu_fdt_add_subnode(vbi->fdt, nodename);
379 /* Note that we can't use setprop_string because of the embedded NUL */
380 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
381 compat, sizeof(compat));
382 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
383 2, base, 2, size);
384 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
385 GIC_FDT_IRQ_TYPE_SPI, irq,
386 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
387 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
388 vbi->clock_phandle, vbi->clock_phandle);
389 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
390 clocknames, sizeof(clocknames));
392 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
393 g_free(nodename);
396 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
398 char *nodename;
399 hwaddr base = vbi->memmap[VIRT_RTC].base;
400 hwaddr size = vbi->memmap[VIRT_RTC].size;
401 int irq = vbi->irqmap[VIRT_RTC];
402 const char compat[] = "arm,pl031\0arm,primecell";
404 sysbus_create_simple("pl031", base, pic[irq]);
406 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
407 qemu_fdt_add_subnode(vbi->fdt, nodename);
408 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
409 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
410 2, base, 2, size);
411 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
412 GIC_FDT_IRQ_TYPE_SPI, irq,
413 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
414 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
415 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
416 g_free(nodename);
419 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
421 int i;
422 hwaddr size = vbi->memmap[VIRT_MMIO].size;
424 /* Note that we have to create the transports in forwards order
425 * so that command line devices are inserted lowest address first,
426 * and then add dtb nodes in reverse order so that they appear in
427 * the finished device tree lowest address first.
429 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
430 int irq = vbi->irqmap[VIRT_MMIO] + i;
431 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
433 sysbus_create_simple("virtio-mmio", base, pic[irq]);
436 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
437 char *nodename;
438 int irq = vbi->irqmap[VIRT_MMIO] + i;
439 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
441 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
442 qemu_fdt_add_subnode(vbi->fdt, nodename);
443 qemu_fdt_setprop_string(vbi->fdt, nodename,
444 "compatible", "virtio,mmio");
445 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
446 2, base, 2, size);
447 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
448 GIC_FDT_IRQ_TYPE_SPI, irq,
449 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
450 g_free(nodename);
454 static void create_one_flash(const char *name, hwaddr flashbase,
455 hwaddr flashsize)
457 /* Create and map a single flash device. We use the same
458 * parameters as the flash devices on the Versatile Express board.
460 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
461 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
462 const uint64_t sectorlength = 256 * 1024;
464 if (dinfo && qdev_prop_set_drive(dev, "drive",
465 blk_by_legacy_dinfo(dinfo))) {
466 abort();
469 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
470 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
471 qdev_prop_set_uint8(dev, "width", 4);
472 qdev_prop_set_uint8(dev, "device-width", 2);
473 qdev_prop_set_uint8(dev, "big-endian", 0);
474 qdev_prop_set_uint16(dev, "id0", 0x89);
475 qdev_prop_set_uint16(dev, "id1", 0x18);
476 qdev_prop_set_uint16(dev, "id2", 0x00);
477 qdev_prop_set_uint16(dev, "id3", 0x00);
478 qdev_prop_set_string(dev, "name", name);
479 qdev_init_nofail(dev);
481 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
484 static void create_flash(const VirtBoardInfo *vbi)
486 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
487 * Any file passed via -bios goes in the first of these.
489 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
490 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
491 char *nodename;
493 if (bios_name) {
494 const char *fn;
496 if (drive_get(IF_PFLASH, 0, 0)) {
497 error_report("The contents of the first flash device may be "
498 "specified with -bios or with -drive if=pflash... "
499 "but you cannot use both options at once");
500 exit(1);
502 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
503 if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
504 error_report("Could not load ROM image '%s'", bios_name);
505 exit(1);
509 create_one_flash("virt.flash0", flashbase, flashsize);
510 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
512 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
513 qemu_fdt_add_subnode(vbi->fdt, nodename);
514 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
515 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
516 2, flashbase, 2, flashsize,
517 2, flashbase + flashsize, 2, flashsize);
518 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
519 g_free(nodename);
522 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
524 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
526 *fdt_size = board->fdt_size;
527 return board->fdt;
530 static void machvirt_init(MachineState *machine)
532 qemu_irq pic[NUM_IRQS];
533 MemoryRegion *sysmem = get_system_memory();
534 int n;
535 MemoryRegion *ram = g_new(MemoryRegion, 1);
536 const char *cpu_model = machine->cpu_model;
537 VirtBoardInfo *vbi;
539 if (!cpu_model) {
540 cpu_model = "cortex-a15";
543 vbi = find_machine_info(cpu_model);
545 if (!vbi) {
546 error_report("mach-virt: CPU %s not supported", cpu_model);
547 exit(1);
550 vbi->smp_cpus = smp_cpus;
552 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
553 error_report("mach-virt: cannot model more than 30GB RAM");
554 exit(1);
557 create_fdt(vbi);
559 for (n = 0; n < smp_cpus; n++) {
560 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
561 Object *cpuobj;
563 if (!oc) {
564 fprintf(stderr, "Unable to find CPU definition\n");
565 exit(1);
567 cpuobj = object_new(object_class_get_name(oc));
569 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
570 NULL);
572 /* Secondary CPUs start in PSCI powered-down state */
573 if (n > 0) {
574 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
577 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
578 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
579 "reset-cbar", &error_abort);
582 object_property_set_bool(cpuobj, true, "realized", NULL);
584 fdt_add_timer_nodes(vbi);
585 fdt_add_cpu_nodes(vbi);
586 fdt_add_psci_node(vbi);
588 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
589 &error_abort);
590 vmstate_register_ram_global(ram);
591 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
593 create_flash(vbi);
595 create_gic(vbi, pic);
597 create_uart(vbi, pic);
599 create_rtc(vbi, pic);
601 /* Create mmio transports, so the user can create virtio backends
602 * (which will be automatically plugged in to the transports). If
603 * no backend is created the transport will just sit harmlessly idle.
605 create_virtio_devices(vbi, pic);
607 vbi->bootinfo.ram_size = machine->ram_size;
608 vbi->bootinfo.kernel_filename = machine->kernel_filename;
609 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
610 vbi->bootinfo.initrd_filename = machine->initrd_filename;
611 vbi->bootinfo.nb_cpus = smp_cpus;
612 vbi->bootinfo.board_id = -1;
613 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
614 vbi->bootinfo.get_dtb = machvirt_dtb;
615 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
618 static QEMUMachine machvirt_a15_machine = {
619 .name = "virt",
620 .desc = "ARM Virtual Machine",
621 .init = machvirt_init,
622 .max_cpus = 8,
625 static void machvirt_machine_init(void)
627 qemu_register_machine(&machvirt_a15_machine);
630 machine_init(machvirt_machine_init);