9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1
[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2
[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1
[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2
[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1
[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2
[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name
);
31 static inline void set_feature(CPUARMState
*env
, int feature
)
33 env
->features
|= 1u << feature
;
36 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
38 env
->cp15
.c0_cpuid
= id
;
40 case ARM_CPUID_ARM926
:
41 set_feature(env
, ARM_FEATURE_VFP
);
42 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
43 env
->cp15
.c0_cachetype
= 0x1dd20d2;
44 env
->cp15
.c1_sys
= 0x00090078;
46 case ARM_CPUID_ARM946
:
47 set_feature(env
, ARM_FEATURE_MPU
);
48 env
->cp15
.c0_cachetype
= 0x0f004006;
49 env
->cp15
.c1_sys
= 0x00000078;
51 case ARM_CPUID_ARM1026
:
52 set_feature(env
, ARM_FEATURE_VFP
);
53 set_feature(env
, ARM_FEATURE_AUXCR
);
54 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
55 env
->cp15
.c0_cachetype
= 0x1dd20d2;
56 env
->cp15
.c1_sys
= 0x00090078;
58 case ARM_CPUID_ARM1136_R2
:
59 case ARM_CPUID_ARM1136
:
60 set_feature(env
, ARM_FEATURE_V6
);
61 set_feature(env
, ARM_FEATURE_VFP
);
62 set_feature(env
, ARM_FEATURE_AUXCR
);
63 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
64 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
65 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
66 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
67 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
68 env
->cp15
.c0_cachetype
= 0x1dd20d2;
70 case ARM_CPUID_ARM11MPCORE
:
71 set_feature(env
, ARM_FEATURE_V6
);
72 set_feature(env
, ARM_FEATURE_V6K
);
73 set_feature(env
, ARM_FEATURE_VFP
);
74 set_feature(env
, ARM_FEATURE_AUXCR
);
75 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
76 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
77 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
78 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
79 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
80 env
->cp15
.c0_cachetype
= 0x1dd20d2;
82 case ARM_CPUID_CORTEXA8
:
83 set_feature(env
, ARM_FEATURE_V6
);
84 set_feature(env
, ARM_FEATURE_V6K
);
85 set_feature(env
, ARM_FEATURE_V7
);
86 set_feature(env
, ARM_FEATURE_AUXCR
);
87 set_feature(env
, ARM_FEATURE_THUMB2
);
88 set_feature(env
, ARM_FEATURE_VFP
);
89 set_feature(env
, ARM_FEATURE_VFP3
);
90 set_feature(env
, ARM_FEATURE_NEON
);
91 set_feature(env
, ARM_FEATURE_THUMB2EE
);
92 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
93 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
94 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
95 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
96 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
97 env
->cp15
.c0_cachetype
= 0x82048004;
98 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
99 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
101 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
103 case ARM_CPUID_CORTEXM3
:
104 set_feature(env
, ARM_FEATURE_V6
);
105 set_feature(env
, ARM_FEATURE_THUMB2
);
106 set_feature(env
, ARM_FEATURE_V7
);
107 set_feature(env
, ARM_FEATURE_M
);
108 set_feature(env
, ARM_FEATURE_DIV
);
110 case ARM_CPUID_ANY
: /* For userspace emulation. */
111 set_feature(env
, ARM_FEATURE_V6
);
112 set_feature(env
, ARM_FEATURE_V6K
);
113 set_feature(env
, ARM_FEATURE_V7
);
114 set_feature(env
, ARM_FEATURE_THUMB2
);
115 set_feature(env
, ARM_FEATURE_VFP
);
116 set_feature(env
, ARM_FEATURE_VFP3
);
117 set_feature(env
, ARM_FEATURE_NEON
);
118 set_feature(env
, ARM_FEATURE_THUMB2EE
);
119 set_feature(env
, ARM_FEATURE_DIV
);
121 case ARM_CPUID_TI915T
:
122 case ARM_CPUID_TI925T
:
123 set_feature(env
, ARM_FEATURE_OMAPCP
);
124 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
125 env
->cp15
.c0_cachetype
= 0x5109149;
126 env
->cp15
.c1_sys
= 0x00000070;
127 env
->cp15
.c15_i_max
= 0x000;
128 env
->cp15
.c15_i_min
= 0xff0;
130 case ARM_CPUID_PXA250
:
131 case ARM_CPUID_PXA255
:
132 case ARM_CPUID_PXA260
:
133 case ARM_CPUID_PXA261
:
134 case ARM_CPUID_PXA262
:
135 set_feature(env
, ARM_FEATURE_XSCALE
);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env
->cp15
.c0_cachetype
= 0xd172172;
138 env
->cp15
.c1_sys
= 0x00000078;
140 case ARM_CPUID_PXA270_A0
:
141 case ARM_CPUID_PXA270_A1
:
142 case ARM_CPUID_PXA270_B0
:
143 case ARM_CPUID_PXA270_B1
:
144 case ARM_CPUID_PXA270_C0
:
145 case ARM_CPUID_PXA270_C5
:
146 set_feature(env
, ARM_FEATURE_XSCALE
);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env
, ARM_FEATURE_IWMMXT
);
149 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
150 env
->cp15
.c0_cachetype
= 0xd172172;
151 env
->cp15
.c1_sys
= 0x00000078;
154 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
159 void cpu_reset(CPUARMState
*env
)
163 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
164 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
165 log_cpu_state(env
, 0);
168 id
= env
->cp15
.c0_cpuid
;
169 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
171 cpu_reset_model_id(env
, id
);
172 #if defined (CONFIG_USER_ONLY)
173 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
174 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
176 /* SVC mode with interrupts disabled. */
177 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
178 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
181 env
->uncached_cpsr
&= ~CPSR_I
;
182 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
183 env
->cp15
.c2_base_mask
= 0xffffc000u
;
189 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
193 /* VFP data registers are always little-endian. */
194 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
196 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
199 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
200 /* Aliases for Q regs. */
203 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
204 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
208 switch (reg
- nregs
) {
209 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
210 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
211 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
216 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
220 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
222 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
225 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
228 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
229 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
233 switch (reg
- nregs
) {
234 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
235 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
236 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
); return 4;
241 CPUARMState
*cpu_arm_init(const char *cpu_model
)
245 static int inited
= 0;
247 id
= cpu_arm_find_by_name(cpu_model
);
250 env
= qemu_mallocz(sizeof(CPUARMState
));
254 arm_translate_init();
257 env
->cpu_model_str
= cpu_model
;
258 env
->cp15
.c0_cpuid
= id
;
260 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
261 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
262 51, "arm-neon.xml", 0);
263 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
264 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
265 35, "arm-vfp3.xml", 0);
266 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
267 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
268 19, "arm-vfp.xml", 0);
279 static const struct arm_cpu_t arm_cpu_names
[] = {
280 { ARM_CPUID_ARM926
, "arm926"},
281 { ARM_CPUID_ARM946
, "arm946"},
282 { ARM_CPUID_ARM1026
, "arm1026"},
283 { ARM_CPUID_ARM1136
, "arm1136"},
284 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
285 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
286 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
287 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
288 { ARM_CPUID_TI925T
, "ti925t" },
289 { ARM_CPUID_PXA250
, "pxa250" },
290 { ARM_CPUID_PXA255
, "pxa255" },
291 { ARM_CPUID_PXA260
, "pxa260" },
292 { ARM_CPUID_PXA261
, "pxa261" },
293 { ARM_CPUID_PXA262
, "pxa262" },
294 { ARM_CPUID_PXA270
, "pxa270" },
295 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
296 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
297 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
298 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
299 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
300 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
301 { ARM_CPUID_ANY
, "any"},
305 void arm_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
309 (*cpu_fprintf
)(f
, "Available CPUs:\n");
310 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
311 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
315 /* return 0 if not found */
316 static uint32_t cpu_arm_find_by_name(const char *name
)
322 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
323 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
324 id
= arm_cpu_names
[i
].id
;
331 void cpu_arm_close(CPUARMState
*env
)
336 uint32_t cpsr_read(CPUARMState
*env
)
340 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
341 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
342 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
343 | ((env
->condexec_bits
& 0xfc) << 8)
347 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
349 if (mask
& CPSR_NZCV
) {
350 env
->ZF
= (~val
) & CPSR_Z
;
352 env
->CF
= (val
>> 29) & 1;
353 env
->VF
= (val
<< 3) & 0x80000000;
356 env
->QF
= ((val
& CPSR_Q
) != 0);
358 env
->thumb
= ((val
& CPSR_T
) != 0);
359 if (mask
& CPSR_IT_0_1
) {
360 env
->condexec_bits
&= ~3;
361 env
->condexec_bits
|= (val
>> 25) & 3;
363 if (mask
& CPSR_IT_2_7
) {
364 env
->condexec_bits
&= 3;
365 env
->condexec_bits
|= (val
>> 8) & 0xfc;
367 if (mask
& CPSR_GE
) {
368 env
->GE
= (val
>> 16) & 0xf;
371 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
372 switch_mode(env
, val
& CPSR_M
);
374 mask
&= ~CACHED_CPSR_BITS
;
375 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
378 /* Sign/zero extend */
379 uint32_t HELPER(sxtb16
)(uint32_t x
)
382 res
= (uint16_t)(int8_t)x
;
383 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
387 uint32_t HELPER(uxtb16
)(uint32_t x
)
390 res
= (uint16_t)(uint8_t)x
;
391 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
395 uint32_t HELPER(clz
)(uint32_t x
)
398 for (count
= 32; x
; count
--)
403 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
410 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
417 uint32_t HELPER(rbit
)(uint32_t x
)
419 x
= ((x
& 0xff000000) >> 24)
420 | ((x
& 0x00ff0000) >> 8)
421 | ((x
& 0x0000ff00) << 8)
422 | ((x
& 0x000000ff) << 24);
423 x
= ((x
& 0xf0f0f0f0) >> 4)
424 | ((x
& 0x0f0f0f0f) << 4);
425 x
= ((x
& 0x88888888) >> 3)
426 | ((x
& 0x44444444) >> 1)
427 | ((x
& 0x22222222) << 1)
428 | ((x
& 0x11111111) << 3);
432 uint32_t HELPER(abs
)(uint32_t x
)
434 return ((int32_t)x
< 0) ? -x
: x
;
437 #if defined(CONFIG_USER_ONLY)
439 void do_interrupt (CPUState
*env
)
441 env
->exception_index
= -1;
444 /* Structure used to record exclusive memory locations. */
445 typedef struct mmon_state
{
446 struct mmon_state
*next
;
447 CPUARMState
*cpu_env
;
451 /* Chain of current locks. */
452 static mmon_state
* mmon_head
= NULL
;
454 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
455 int mmu_idx
, int is_softmmu
)
458 env
->exception_index
= EXCP_PREFETCH_ABORT
;
459 env
->cp15
.c6_insn
= address
;
461 env
->exception_index
= EXCP_DATA_ABORT
;
462 env
->cp15
.c6_data
= address
;
467 static void allocate_mmon_state(CPUState
*env
)
469 env
->mmon_entry
= malloc(sizeof (mmon_state
));
470 memset (env
->mmon_entry
, 0, sizeof (mmon_state
));
471 env
->mmon_entry
->cpu_env
= env
;
472 mmon_head
= env
->mmon_entry
;
475 /* Flush any monitor locks for the specified address. */
476 static void flush_mmon(uint32_t addr
)
480 for (mon
= mmon_head
; mon
; mon
= mon
->next
)
482 if (mon
->addr
!= addr
)
490 /* Mark an address for exclusive access. */
491 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
493 if (!env
->mmon_entry
)
494 allocate_mmon_state(env
);
495 /* Clear any previous locks. */
497 env
->mmon_entry
->addr
= addr
;
500 /* Test if an exclusive address is still exclusive. Returns zero
501 if the address is still exclusive. */
502 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
506 if (!env
->mmon_entry
)
508 if (env
->mmon_entry
->addr
== addr
)
516 void HELPER(clrex
)(CPUState
*env
)
518 if (!(env
->mmon_entry
&& env
->mmon_entry
->addr
))
520 flush_mmon(env
->mmon_entry
->addr
);
523 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
528 /* These should probably raise undefined insn exceptions. */
529 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
531 int op1
= (insn
>> 8) & 0xf;
532 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
536 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
538 int op1
= (insn
>> 8) & 0xf;
539 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
543 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
545 cpu_abort(env
, "cp15 insn %08x\n", insn
);
548 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
550 cpu_abort(env
, "cp15 insn %08x\n", insn
);
554 /* These should probably raise undefined insn exceptions. */
555 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
557 cpu_abort(env
, "v7m_mrs %d\n", reg
);
560 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
562 cpu_abort(env
, "v7m_mrs %d\n", reg
);
566 void switch_mode(CPUState
*env
, int mode
)
568 if (mode
!= ARM_CPU_MODE_USR
)
569 cpu_abort(env
, "Tried to switch out of user mode\n");
572 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
574 cpu_abort(env
, "banked r13 write\n");
577 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
579 cpu_abort(env
, "banked r13 read\n");
585 extern int semihosting_enabled
;
587 /* Map CPU modes onto saved register banks. */
588 static inline int bank_number (int mode
)
591 case ARM_CPU_MODE_USR
:
592 case ARM_CPU_MODE_SYS
:
594 case ARM_CPU_MODE_SVC
:
596 case ARM_CPU_MODE_ABT
:
598 case ARM_CPU_MODE_UND
:
600 case ARM_CPU_MODE_IRQ
:
602 case ARM_CPU_MODE_FIQ
:
605 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
609 void switch_mode(CPUState
*env
, int mode
)
614 old_mode
= env
->uncached_cpsr
& CPSR_M
;
615 if (mode
== old_mode
)
618 if (old_mode
== ARM_CPU_MODE_FIQ
) {
619 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
620 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
621 } else if (mode
== ARM_CPU_MODE_FIQ
) {
622 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
623 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
626 i
= bank_number(old_mode
);
627 env
->banked_r13
[i
] = env
->regs
[13];
628 env
->banked_r14
[i
] = env
->regs
[14];
629 env
->banked_spsr
[i
] = env
->spsr
;
631 i
= bank_number(mode
);
632 env
->regs
[13] = env
->banked_r13
[i
];
633 env
->regs
[14] = env
->banked_r14
[i
];
634 env
->spsr
= env
->banked_spsr
[i
];
637 static void v7m_push(CPUARMState
*env
, uint32_t val
)
640 stl_phys(env
->regs
[13], val
);
643 static uint32_t v7m_pop(CPUARMState
*env
)
646 val
= ldl_phys(env
->regs
[13]);
651 /* Switch to V7M main or process stack pointer. */
652 static void switch_v7m_sp(CPUARMState
*env
, int process
)
655 if (env
->v7m
.current_sp
!= process
) {
656 tmp
= env
->v7m
.other_sp
;
657 env
->v7m
.other_sp
= env
->regs
[13];
659 env
->v7m
.current_sp
= process
;
663 static void do_v7m_exception_exit(CPUARMState
*env
)
668 type
= env
->regs
[15];
669 if (env
->v7m
.exception
!= 0)
670 armv7m_nvic_complete_irq(env
->v7m
.nvic
, env
->v7m
.exception
);
672 /* Switch to the target stack. */
673 switch_v7m_sp(env
, (type
& 4) != 0);
675 env
->regs
[0] = v7m_pop(env
);
676 env
->regs
[1] = v7m_pop(env
);
677 env
->regs
[2] = v7m_pop(env
);
678 env
->regs
[3] = v7m_pop(env
);
679 env
->regs
[12] = v7m_pop(env
);
680 env
->regs
[14] = v7m_pop(env
);
681 env
->regs
[15] = v7m_pop(env
);
683 xpsr_write(env
, xpsr
, 0xfffffdff);
684 /* Undo stack alignment. */
687 /* ??? The exception return type specifies Thread/Handler mode. However
688 this is also implied by the xPSR value. Not sure what to do
689 if there is a mismatch. */
690 /* ??? Likewise for mismatches between the CONTROL register and the stack
694 static void do_interrupt_v7m(CPUARMState
*env
)
696 uint32_t xpsr
= xpsr_read(env
);
701 if (env
->v7m
.current_sp
)
703 if (env
->v7m
.exception
== 0)
706 /* For exceptions we just mark as pending on the NVIC, and let that
708 /* TODO: Need to escalate if the current priority is higher than the
709 one we're raising. */
710 switch (env
->exception_index
) {
712 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_USAGE
);
716 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_SVC
);
718 case EXCP_PREFETCH_ABORT
:
719 case EXCP_DATA_ABORT
:
720 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_MEM
);
723 if (semihosting_enabled
) {
725 nr
= lduw_code(env
->regs
[15]) & 0xff;
728 env
->regs
[0] = do_arm_semihosting(env
);
732 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_DEBUG
);
735 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->v7m
.nvic
);
737 case EXCP_EXCEPTION_EXIT
:
738 do_v7m_exception_exit(env
);
741 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
742 return; /* Never happens. Keep compiler happy. */
745 /* Align stack pointer. */
746 /* ??? Should only do this if Configuration Control Register
747 STACKALIGN bit is set. */
748 if (env
->regs
[13] & 4) {
752 /* Switch to the handler mode. */
754 v7m_push(env
, env
->regs
[15]);
755 v7m_push(env
, env
->regs
[14]);
756 v7m_push(env
, env
->regs
[12]);
757 v7m_push(env
, env
->regs
[3]);
758 v7m_push(env
, env
->regs
[2]);
759 v7m_push(env
, env
->regs
[1]);
760 v7m_push(env
, env
->regs
[0]);
761 switch_v7m_sp(env
, 0);
762 env
->uncached_cpsr
&= ~CPSR_IT
;
764 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
765 env
->regs
[15] = addr
& 0xfffffffe;
766 env
->thumb
= addr
& 1;
769 /* Handle a CPU exception. */
770 void do_interrupt(CPUARMState
*env
)
778 do_interrupt_v7m(env
);
781 /* TODO: Vectored interrupt controller. */
782 switch (env
->exception_index
) {
784 new_mode
= ARM_CPU_MODE_UND
;
793 if (semihosting_enabled
) {
794 /* Check for semihosting interrupt. */
796 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
798 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
800 /* Only intercept calls from privileged modes, to provide some
801 semblance of security. */
802 if (((mask
== 0x123456 && !env
->thumb
)
803 || (mask
== 0xab && env
->thumb
))
804 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
805 env
->regs
[0] = do_arm_semihosting(env
);
809 new_mode
= ARM_CPU_MODE_SVC
;
812 /* The PC already points to the next instruction. */
816 /* See if this is a semihosting syscall. */
817 if (env
->thumb
&& semihosting_enabled
) {
818 mask
= lduw_code(env
->regs
[15]) & 0xff;
820 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
822 env
->regs
[0] = do_arm_semihosting(env
);
826 /* Fall through to prefetch abort. */
827 case EXCP_PREFETCH_ABORT
:
828 new_mode
= ARM_CPU_MODE_ABT
;
830 mask
= CPSR_A
| CPSR_I
;
833 case EXCP_DATA_ABORT
:
834 new_mode
= ARM_CPU_MODE_ABT
;
836 mask
= CPSR_A
| CPSR_I
;
840 new_mode
= ARM_CPU_MODE_IRQ
;
842 /* Disable IRQ and imprecise data aborts. */
843 mask
= CPSR_A
| CPSR_I
;
847 new_mode
= ARM_CPU_MODE_FIQ
;
849 /* Disable FIQ, IRQ and imprecise data aborts. */
850 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
854 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
855 return; /* Never happens. Keep compiler happy. */
858 if (env
->cp15
.c1_sys
& (1 << 13)) {
861 switch_mode (env
, new_mode
);
862 env
->spsr
= cpsr_read(env
);
864 env
->condexec_bits
= 0;
865 /* Switch to the new mode, and switch to Arm mode. */
866 /* ??? Thumb interrupt handlers not implemented. */
867 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
868 env
->uncached_cpsr
|= mask
;
870 env
->regs
[14] = env
->regs
[15] + offset
;
871 env
->regs
[15] = addr
;
872 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
875 /* Check section/page access permissions.
876 Returns the page protection flags, or zero if the access is not
878 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
884 return PAGE_READ
| PAGE_WRITE
;
886 if (access_type
== 1)
893 if (access_type
== 1)
895 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
897 return is_user
? 0 : PAGE_READ
;
904 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
909 return PAGE_READ
| PAGE_WRITE
;
911 return PAGE_READ
| PAGE_WRITE
;
912 case 4: /* Reserved. */
915 return is_user
? 0 : prot_ro
;
919 if (!arm_feature (env
, ARM_FEATURE_V7
))
927 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
931 if (address
& env
->cp15
.c2_mask
)
932 table
= env
->cp15
.c2_base1
& 0xffffc000;
934 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
936 table
|= (address
>> 18) & 0x3ffc;
940 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
941 int is_user
, uint32_t *phys_ptr
, int *prot
)
951 /* Pagetable walk. */
952 /* Lookup l1 descriptor. */
953 table
= get_level1_table_address(env
, address
);
954 desc
= ldl_phys(table
);
956 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
958 /* Section translation fault. */
962 if (domain
== 0 || domain
== 2) {
964 code
= 9; /* Section domain fault. */
966 code
= 11; /* Page domain fault. */
971 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
972 ap
= (desc
>> 10) & 3;
975 /* Lookup l2 entry. */
977 /* Coarse pagetable. */
978 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
980 /* Fine pagetable. */
981 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
983 desc
= ldl_phys(table
);
985 case 0: /* Page translation fault. */
988 case 1: /* 64k page. */
989 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
990 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
992 case 2: /* 4k page. */
993 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
994 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
996 case 3: /* 1k page. */
998 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
999 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1001 /* Page translation fault. */
1006 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1008 ap
= (desc
>> 4) & 3;
1011 /* Never happens, but compiler isn't smart enough to tell. */
1016 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1018 /* Access permission fault. */
1021 *phys_ptr
= phys_addr
;
1024 return code
| (domain
<< 4);
1027 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1028 int is_user
, uint32_t *phys_ptr
, int *prot
)
1039 /* Pagetable walk. */
1040 /* Lookup l1 descriptor. */
1041 table
= get_level1_table_address(env
, address
);
1042 desc
= ldl_phys(table
);
1045 /* Section translation fault. */
1049 } else if (type
== 2 && (desc
& (1 << 18))) {
1053 /* Section or page. */
1054 domain
= (desc
>> 4) & 0x1e;
1056 domain
= (env
->cp15
.c3
>> domain
) & 3;
1057 if (domain
== 0 || domain
== 2) {
1059 code
= 9; /* Section domain fault. */
1061 code
= 11; /* Page domain fault. */
1065 if (desc
& (1 << 18)) {
1067 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1070 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1072 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1073 xn
= desc
& (1 << 4);
1076 /* Lookup l2 entry. */
1077 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1078 desc
= ldl_phys(table
);
1079 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1081 case 0: /* Page translation fault. */
1084 case 1: /* 64k page. */
1085 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1086 xn
= desc
& (1 << 15);
1088 case 2: case 3: /* 4k page. */
1089 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1093 /* Never happens, but compiler isn't smart enough to tell. */
1098 if (xn
&& access_type
== 2)
1101 /* The simplified model uses AP[0] as an access control bit. */
1102 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1103 /* Access flag fault. */
1104 code
= (code
== 15) ? 6 : 3;
1107 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1109 /* Access permission fault. */
1112 *phys_ptr
= phys_addr
;
1115 return code
| (domain
<< 4);
1118 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1119 int is_user
, uint32_t *phys_ptr
, int *prot
)
1125 *phys_ptr
= address
;
1126 for (n
= 7; n
>= 0; n
--) {
1127 base
= env
->cp15
.c6_region
[n
];
1128 if ((base
& 1) == 0)
1130 mask
= 1 << ((base
>> 1) & 0x1f);
1131 /* Keep this shift separate from the above to avoid an
1132 (undefined) << 32. */
1133 mask
= (mask
<< 1) - 1;
1134 if (((base
^ address
) & ~mask
) == 0)
1140 if (access_type
== 2) {
1141 mask
= env
->cp15
.c5_insn
;
1143 mask
= env
->cp15
.c5_data
;
1145 mask
= (mask
>> (n
* 4)) & 0xf;
1152 *prot
= PAGE_READ
| PAGE_WRITE
;
1157 *prot
|= PAGE_WRITE
;
1160 *prot
= PAGE_READ
| PAGE_WRITE
;
1171 /* Bad permission. */
1177 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1178 int access_type
, int is_user
,
1179 uint32_t *phys_ptr
, int *prot
)
1181 /* Fast Context Switch Extension. */
1182 if (address
< 0x02000000)
1183 address
+= env
->cp15
.c13_fcse
;
1185 if ((env
->cp15
.c1_sys
& 1) == 0) {
1186 /* MMU/MPU disabled. */
1187 *phys_ptr
= address
;
1188 *prot
= PAGE_READ
| PAGE_WRITE
;
1190 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1191 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1193 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1194 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1197 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1202 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1203 int access_type
, int mmu_idx
, int is_softmmu
)
1209 is_user
= mmu_idx
== MMU_USER_IDX
;
1210 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
);
1212 /* Map a single [sub]page. */
1213 phys_addr
&= ~(uint32_t)0x3ff;
1214 address
&= ~(uint32_t)0x3ff;
1215 return tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
,
1219 if (access_type
== 2) {
1220 env
->cp15
.c5_insn
= ret
;
1221 env
->cp15
.c6_insn
= address
;
1222 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1224 env
->cp15
.c5_data
= ret
;
1225 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1226 env
->cp15
.c5_data
|= (1 << 11);
1227 env
->cp15
.c6_data
= address
;
1228 env
->exception_index
= EXCP_DATA_ABORT
;
1233 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1239 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
);
1247 /* Not really implemented. Need to figure out a sane way of doing this.
1248 Maybe add generic watchpoint support and use that. */
1250 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
1252 env
->mmon_addr
= addr
;
1255 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
1257 return (env
->mmon_addr
!= addr
);
1260 void HELPER(clrex
)(CPUState
*env
)
1262 env
->mmon_addr
= -1;
1265 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1267 int cp_num
= (insn
>> 8) & 0xf;
1268 int cp_info
= (insn
>> 5) & 7;
1269 int src
= (insn
>> 16) & 0xf;
1270 int operand
= insn
& 0xf;
1272 if (env
->cp
[cp_num
].cp_write
)
1273 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1274 cp_info
, src
, operand
, val
);
1277 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1279 int cp_num
= (insn
>> 8) & 0xf;
1280 int cp_info
= (insn
>> 5) & 7;
1281 int dest
= (insn
>> 16) & 0xf;
1282 int operand
= insn
& 0xf;
1284 if (env
->cp
[cp_num
].cp_read
)
1285 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1286 cp_info
, dest
, operand
);
1290 /* Return basic MPU access permission bits. */
1291 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1298 for (i
= 0; i
< 16; i
+= 2) {
1299 ret
|= (val
>> i
) & mask
;
1305 /* Pad basic MPU access permission bits to extended format. */
1306 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1313 for (i
= 0; i
< 16; i
+= 2) {
1314 ret
|= (val
& mask
) << i
;
1320 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1326 op1
= (insn
>> 21) & 7;
1327 op2
= (insn
>> 5) & 7;
1329 switch ((insn
>> 16) & 0xf) {
1332 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1334 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1336 if (arm_feature(env
, ARM_FEATURE_V7
)
1337 && op1
== 2 && crm
== 0 && op2
== 0) {
1338 env
->cp15
.c0_cssel
= val
& 0xf;
1342 case 1: /* System configuration. */
1343 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1347 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1348 env
->cp15
.c1_sys
= val
;
1349 /* ??? Lots of these bits are not implemented. */
1350 /* This may enable/disable the MMU, so do a TLB flush. */
1353 case 1: /* Auxiliary cotrol register. */
1354 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1355 env
->cp15
.c1_xscaleauxcr
= val
;
1358 /* Not implemented. */
1361 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1363 if (env
->cp15
.c1_coproc
!= val
) {
1364 env
->cp15
.c1_coproc
= val
;
1365 /* ??? Is this safe when called from within a TB? */
1373 case 2: /* MMU Page table control / MPU cache control. */
1374 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1377 env
->cp15
.c2_data
= val
;
1380 env
->cp15
.c2_insn
= val
;
1388 env
->cp15
.c2_base0
= val
;
1391 env
->cp15
.c2_base1
= val
;
1395 env
->cp15
.c2_control
= val
;
1396 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1397 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1404 case 3: /* MMU Domain access control / MPU write buffer control. */
1406 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1408 case 4: /* Reserved. */
1410 case 5: /* MMU Fault status / MPU access permission. */
1411 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1415 if (arm_feature(env
, ARM_FEATURE_MPU
))
1416 val
= extended_mpu_ap_bits(val
);
1417 env
->cp15
.c5_data
= val
;
1420 if (arm_feature(env
, ARM_FEATURE_MPU
))
1421 val
= extended_mpu_ap_bits(val
);
1422 env
->cp15
.c5_insn
= val
;
1425 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1427 env
->cp15
.c5_data
= val
;
1430 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1432 env
->cp15
.c5_insn
= val
;
1438 case 6: /* MMU Fault address / MPU base/size. */
1439 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1442 env
->cp15
.c6_region
[crm
] = val
;
1444 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1448 env
->cp15
.c6_data
= val
;
1450 case 1: /* ??? This is WFAR on armv6 */
1452 env
->cp15
.c6_insn
= val
;
1459 case 7: /* Cache control. */
1460 env
->cp15
.c15_i_max
= 0x000;
1461 env
->cp15
.c15_i_min
= 0xff0;
1462 /* No cache, so nothing to do. */
1463 /* ??? MPCore has VA to PA translation functions. */
1465 case 8: /* MMU TLB control. */
1467 case 0: /* Invalidate all. */
1470 case 1: /* Invalidate single TLB entry. */
1472 /* ??? This is wrong for large pages and sections. */
1473 /* As an ugly hack to make linux work we always flush a 4K
1476 tlb_flush_page(env
, val
);
1477 tlb_flush_page(env
, val
+ 0x400);
1478 tlb_flush_page(env
, val
+ 0x800);
1479 tlb_flush_page(env
, val
+ 0xc00);
1484 case 2: /* Invalidate on ASID. */
1485 tlb_flush(env
, val
== 0);
1487 case 3: /* Invalidate single entry on MVA. */
1488 /* ??? This is like case 1, but ignores ASID. */
1496 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1499 case 0: /* Cache lockdown. */
1501 case 0: /* L1 cache. */
1504 env
->cp15
.c9_data
= val
;
1507 env
->cp15
.c9_insn
= val
;
1513 case 1: /* L2 cache. */
1514 /* Ignore writes to L2 lockdown/auxiliary registers. */
1520 case 1: /* TCM memory region registers. */
1521 /* Not implemented. */
1527 case 10: /* MMU TLB lockdown. */
1528 /* ??? TLB lockdown not implemented. */
1530 case 12: /* Reserved. */
1532 case 13: /* Process ID. */
1535 /* Unlike real hardware the qemu TLB uses virtual addresses,
1536 not modified virtual addresses, so this causes a TLB flush.
1538 if (env
->cp15
.c13_fcse
!= val
)
1540 env
->cp15
.c13_fcse
= val
;
1543 /* This changes the ASID, so do a TLB flush. */
1544 if (env
->cp15
.c13_context
!= val
1545 && !arm_feature(env
, ARM_FEATURE_MPU
))
1547 env
->cp15
.c13_context
= val
;
1550 env
->cp15
.c13_tls1
= val
;
1553 env
->cp15
.c13_tls2
= val
;
1556 env
->cp15
.c13_tls3
= val
;
1562 case 14: /* Reserved. */
1564 case 15: /* Implementation specific. */
1565 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1566 if (op2
== 0 && crm
== 1) {
1567 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1568 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1570 env
->cp15
.c15_cpar
= val
& 0x3fff;
1576 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1580 case 1: /* Set TI925T configuration. */
1581 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1582 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1583 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1585 case 2: /* Set I_max. */
1586 env
->cp15
.c15_i_max
= val
;
1588 case 3: /* Set I_min. */
1589 env
->cp15
.c15_i_min
= val
;
1591 case 4: /* Set thread-ID. */
1592 env
->cp15
.c15_threadid
= val
& 0xffff;
1594 case 8: /* Wait-for-interrupt (deprecated). */
1595 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1605 /* ??? For debugging only. Should raise illegal instruction exception. */
1606 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1607 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1610 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1616 op1
= (insn
>> 21) & 7;
1617 op2
= (insn
>> 5) & 7;
1619 switch ((insn
>> 16) & 0xf) {
1620 case 0: /* ID codes. */
1626 case 0: /* Device ID. */
1627 return env
->cp15
.c0_cpuid
;
1628 case 1: /* Cache Type. */
1629 return env
->cp15
.c0_cachetype
;
1630 case 2: /* TCM status. */
1632 case 3: /* TLB type register. */
1633 return 0; /* No lockable TLB entries. */
1634 case 5: /* CPU ID */
1635 return env
->cpu_index
;
1640 if (!arm_feature(env
, ARM_FEATURE_V6
))
1642 return env
->cp15
.c0_c1
[op2
];
1644 if (!arm_feature(env
, ARM_FEATURE_V6
))
1646 return env
->cp15
.c0_c2
[op2
];
1647 case 3: case 4: case 5: case 6: case 7:
1653 /* These registers aren't documented on arm11 cores. However
1654 Linux looks at them anyway. */
1655 if (!arm_feature(env
, ARM_FEATURE_V6
))
1659 if (!arm_feature(env
, ARM_FEATURE_V7
))
1664 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1666 return env
->cp15
.c0_clid
;
1672 if (op2
!= 0 || crm
!= 0)
1674 return env
->cp15
.c0_cssel
;
1678 case 1: /* System configuration. */
1679 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1682 case 0: /* Control register. */
1683 return env
->cp15
.c1_sys
;
1684 case 1: /* Auxiliary control register. */
1685 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1686 return env
->cp15
.c1_xscaleauxcr
;
1687 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1689 switch (ARM_CPUID(env
)) {
1690 case ARM_CPUID_ARM1026
:
1692 case ARM_CPUID_ARM1136
:
1693 case ARM_CPUID_ARM1136_R2
:
1695 case ARM_CPUID_ARM11MPCORE
:
1697 case ARM_CPUID_CORTEXA8
:
1702 case 2: /* Coprocessor access register. */
1703 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1705 return env
->cp15
.c1_coproc
;
1709 case 2: /* MMU Page table control / MPU cache control. */
1710 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1713 return env
->cp15
.c2_data
;
1716 return env
->cp15
.c2_insn
;
1724 return env
->cp15
.c2_base0
;
1726 return env
->cp15
.c2_base1
;
1728 return env
->cp15
.c2_control
;
1733 case 3: /* MMU Domain access control / MPU write buffer control. */
1734 return env
->cp15
.c3
;
1735 case 4: /* Reserved. */
1737 case 5: /* MMU Fault status / MPU access permission. */
1738 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1742 if (arm_feature(env
, ARM_FEATURE_MPU
))
1743 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1744 return env
->cp15
.c5_data
;
1746 if (arm_feature(env
, ARM_FEATURE_MPU
))
1747 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1748 return env
->cp15
.c5_insn
;
1750 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1752 return env
->cp15
.c5_data
;
1754 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1756 return env
->cp15
.c5_insn
;
1760 case 6: /* MMU Fault address. */
1761 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1764 return env
->cp15
.c6_region
[crm
];
1766 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1770 return env
->cp15
.c6_data
;
1772 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1773 /* Watchpoint Fault Adrress. */
1774 return 0; /* Not implemented. */
1776 /* Instruction Fault Adrress. */
1777 /* Arm9 doesn't have an IFAR, but implementing it anyway
1778 shouldn't do any harm. */
1779 return env
->cp15
.c6_insn
;
1782 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1783 /* Instruction Fault Adrress. */
1784 return env
->cp15
.c6_insn
;
1792 case 7: /* Cache control. */
1793 /* FIXME: Should only clear Z flag if destination is r15. */
1796 case 8: /* MMU TLB control. */
1798 case 9: /* Cache lockdown. */
1800 case 0: /* L1 cache. */
1801 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1805 return env
->cp15
.c9_data
;
1807 return env
->cp15
.c9_insn
;
1811 case 1: /* L2 cache */
1814 /* L2 Lockdown and Auxiliary control. */
1819 case 10: /* MMU TLB lockdown. */
1820 /* ??? TLB lockdown not implemented. */
1822 case 11: /* TCM DMA control. */
1823 case 12: /* Reserved. */
1825 case 13: /* Process ID. */
1828 return env
->cp15
.c13_fcse
;
1830 return env
->cp15
.c13_context
;
1832 return env
->cp15
.c13_tls1
;
1834 return env
->cp15
.c13_tls2
;
1836 return env
->cp15
.c13_tls3
;
1840 case 14: /* Reserved. */
1842 case 15: /* Implementation specific. */
1843 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1844 if (op2
== 0 && crm
== 1)
1845 return env
->cp15
.c15_cpar
;
1849 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1853 case 1: /* Read TI925T configuration. */
1854 return env
->cp15
.c15_ticonfig
;
1855 case 2: /* Read I_max. */
1856 return env
->cp15
.c15_i_max
;
1857 case 3: /* Read I_min. */
1858 return env
->cp15
.c15_i_min
;
1859 case 4: /* Read thread-ID. */
1860 return env
->cp15
.c15_threadid
;
1861 case 8: /* TI925T_status */
1864 /* TODO: Peripheral port remap register:
1865 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1866 * controller base address at $rn & ~0xfff and map size of
1867 * 0x200 << ($rn & 0xfff), when MMU is off. */
1873 /* ??? For debugging only. Should raise illegal instruction exception. */
1874 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1875 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1879 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
1881 env
->banked_r13
[bank_number(mode
)] = val
;
1884 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
1886 return env
->banked_r13
[bank_number(mode
)];
1889 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
1893 return xpsr_read(env
) & 0xf8000000;
1895 return xpsr_read(env
) & 0xf80001ff;
1897 return xpsr_read(env
) & 0xff00fc00;
1899 return xpsr_read(env
) & 0xff00fdff;
1901 return xpsr_read(env
) & 0x000001ff;
1903 return xpsr_read(env
) & 0x0700fc00;
1905 return xpsr_read(env
) & 0x0700edff;
1907 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
1909 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
1910 case 16: /* PRIMASK */
1911 return (env
->uncached_cpsr
& CPSR_I
) != 0;
1912 case 17: /* FAULTMASK */
1913 return (env
->uncached_cpsr
& CPSR_F
) != 0;
1914 case 18: /* BASEPRI */
1915 case 19: /* BASEPRI_MAX */
1916 return env
->v7m
.basepri
;
1917 case 20: /* CONTROL */
1918 return env
->v7m
.control
;
1920 /* ??? For debugging only. */
1921 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
1926 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
1930 xpsr_write(env
, val
, 0xf8000000);
1933 xpsr_write(env
, val
, 0xf8000000);
1936 xpsr_write(env
, val
, 0xfe00fc00);
1939 xpsr_write(env
, val
, 0xfe00fc00);
1942 /* IPSR bits are readonly. */
1945 xpsr_write(env
, val
, 0x0600fc00);
1948 xpsr_write(env
, val
, 0x0600fc00);
1951 if (env
->v7m
.current_sp
)
1952 env
->v7m
.other_sp
= val
;
1954 env
->regs
[13] = val
;
1957 if (env
->v7m
.current_sp
)
1958 env
->regs
[13] = val
;
1960 env
->v7m
.other_sp
= val
;
1962 case 16: /* PRIMASK */
1964 env
->uncached_cpsr
|= CPSR_I
;
1966 env
->uncached_cpsr
&= ~CPSR_I
;
1968 case 17: /* FAULTMASK */
1970 env
->uncached_cpsr
|= CPSR_F
;
1972 env
->uncached_cpsr
&= ~CPSR_F
;
1974 case 18: /* BASEPRI */
1975 env
->v7m
.basepri
= val
& 0xff;
1977 case 19: /* BASEPRI_MAX */
1979 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
1980 env
->v7m
.basepri
= val
;
1982 case 20: /* CONTROL */
1983 env
->v7m
.control
= val
& 3;
1984 switch_v7m_sp(env
, (val
& 2) != 0);
1987 /* ??? For debugging only. */
1988 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
1993 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
1994 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
1997 if (cpnum
< 0 || cpnum
> 14) {
1998 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2002 env
->cp
[cpnum
].cp_read
= cp_read
;
2003 env
->cp
[cpnum
].cp_write
= cp_write
;
2004 env
->cp
[cpnum
].opaque
= opaque
;
2009 /* Note that signed overflow is undefined in C. The following routines are
2010 careful to use unsigned types where modulo arithmetic is required.
2011 Failure to do so _will_ break on newer gcc. */
2013 /* Signed saturating arithmetic. */
2015 /* Perform 16-bit signed saturating addition. */
2016 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2021 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2030 /* Perform 8-bit signed saturating addition. */
2031 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2036 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2045 /* Perform 16-bit signed saturating subtraction. */
2046 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2051 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2060 /* Perform 8-bit signed saturating subtraction. */
2061 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2066 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2075 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2076 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2077 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2078 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2081 #include "op_addsub.h"
2083 /* Unsigned saturating arithmetic. */
2084 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2093 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2101 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2110 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2118 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2119 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2120 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2121 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2124 #include "op_addsub.h"
2126 /* Signed modulo arithmetic. */
2127 #define SARITH16(a, b, n, op) do { \
2129 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2130 RESULT(sum, n, 16); \
2132 ge |= 3 << (n * 2); \
2135 #define SARITH8(a, b, n, op) do { \
2137 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2138 RESULT(sum, n, 8); \
2144 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2145 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2146 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2147 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2151 #include "op_addsub.h"
2153 /* Unsigned modulo arithmetic. */
2154 #define ADD16(a, b, n) do { \
2156 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2157 RESULT(sum, n, 16); \
2158 if ((sum >> 16) == 1) \
2159 ge |= 3 << (n * 2); \
2162 #define ADD8(a, b, n) do { \
2164 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2165 RESULT(sum, n, 8); \
2166 if ((sum >> 8) == 1) \
2170 #define SUB16(a, b, n) do { \
2172 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2173 RESULT(sum, n, 16); \
2174 if ((sum >> 16) == 0) \
2175 ge |= 3 << (n * 2); \
2178 #define SUB8(a, b, n) do { \
2180 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2181 RESULT(sum, n, 8); \
2182 if ((sum >> 8) == 0) \
2189 #include "op_addsub.h"
2191 /* Halved signed arithmetic. */
2192 #define ADD16(a, b, n) \
2193 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2194 #define SUB16(a, b, n) \
2195 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2196 #define ADD8(a, b, n) \
2197 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2198 #define SUB8(a, b, n) \
2199 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2202 #include "op_addsub.h"
2204 /* Halved unsigned arithmetic. */
2205 #define ADD16(a, b, n) \
2206 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2207 #define SUB16(a, b, n) \
2208 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2209 #define ADD8(a, b, n) \
2210 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2211 #define SUB8(a, b, n) \
2212 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2215 #include "op_addsub.h"
2217 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2225 /* Unsigned sum of absolute byte differences. */
2226 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2229 sum
= do_usad(a
, b
);
2230 sum
+= do_usad(a
>> 8, b
>> 8);
2231 sum
+= do_usad(a
>> 16, b
>>16);
2232 sum
+= do_usad(a
>> 24, b
>> 24);
2236 /* For ARMv6 SEL instruction. */
2237 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2250 return (a
& mask
) | (b
& ~mask
);
2253 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2255 return (val
>> 32) | (val
!= 0);
2258 /* VFP support. We follow the convention used for VFP instrunctions:
2259 Single precition routines have a "s" suffix, double precision a
2262 /* Convert host exception flags to vfp form. */
2263 static inline int vfp_exceptbits_from_host(int host_bits
)
2265 int target_bits
= 0;
2267 if (host_bits
& float_flag_invalid
)
2269 if (host_bits
& float_flag_divbyzero
)
2271 if (host_bits
& float_flag_overflow
)
2273 if (host_bits
& float_flag_underflow
)
2275 if (host_bits
& float_flag_inexact
)
2276 target_bits
|= 0x10;
2280 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2285 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2286 | (env
->vfp
.vec_len
<< 16)
2287 | (env
->vfp
.vec_stride
<< 20);
2288 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2289 fpscr
|= vfp_exceptbits_from_host(i
);
2293 /* Convert vfp exception flags to target form. */
2294 static inline int vfp_exceptbits_to_host(int target_bits
)
2298 if (target_bits
& 1)
2299 host_bits
|= float_flag_invalid
;
2300 if (target_bits
& 2)
2301 host_bits
|= float_flag_divbyzero
;
2302 if (target_bits
& 4)
2303 host_bits
|= float_flag_overflow
;
2304 if (target_bits
& 8)
2305 host_bits
|= float_flag_underflow
;
2306 if (target_bits
& 0x10)
2307 host_bits
|= float_flag_inexact
;
2311 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2316 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2317 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2318 env
->vfp
.vec_len
= (val
>> 16) & 7;
2319 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2322 if (changed
& (3 << 22)) {
2323 i
= (val
>> 22) & 3;
2326 i
= float_round_nearest_even
;
2332 i
= float_round_down
;
2335 i
= float_round_to_zero
;
2338 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2340 if (changed
& (1 << 24))
2341 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2342 if (changed
& (1 << 25))
2343 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2345 i
= vfp_exceptbits_to_host((val
>> 8) & 0x1f);
2346 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2349 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2351 #define VFP_BINOP(name) \
2352 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2354 return float32_ ## name (a, b, &env->vfp.fp_status); \
2356 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2358 return float64_ ## name (a, b, &env->vfp.fp_status); \
2366 float32
VFP_HELPER(neg
, s
)(float32 a
)
2368 return float32_chs(a
);
2371 float64
VFP_HELPER(neg
, d
)(float64 a
)
2373 return float64_chs(a
);
2376 float32
VFP_HELPER(abs
, s
)(float32 a
)
2378 return float32_abs(a
);
2381 float64
VFP_HELPER(abs
, d
)(float64 a
)
2383 return float64_abs(a
);
2386 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2388 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2391 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2393 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2396 /* XXX: check quiet/signaling case */
2397 #define DO_VFP_cmp(p, type) \
2398 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2401 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2402 case 0: flags = 0x6; break; \
2403 case -1: flags = 0x8; break; \
2404 case 1: flags = 0x2; break; \
2405 default: case 2: flags = 0x3; break; \
2407 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2408 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2410 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2413 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2414 case 0: flags = 0x6; break; \
2415 case -1: flags = 0x8; break; \
2416 case 1: flags = 0x2; break; \
2417 default: case 2: flags = 0x3; break; \
2419 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2420 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2422 DO_VFP_cmp(s
, float32
)
2423 DO_VFP_cmp(d
, float64
)
2426 /* Helper routines to perform bitwise copies between float and int. */
2427 static inline float32
vfp_itos(uint32_t i
)
2438 static inline uint32_t vfp_stoi(float32 s
)
2449 static inline float64
vfp_itod(uint64_t i
)
2460 static inline uint64_t vfp_dtoi(float64 d
)
2471 /* Integer to float conversion. */
2472 float32
VFP_HELPER(uito
, s
)(float32 x
, CPUState
*env
)
2474 return uint32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2477 float64
VFP_HELPER(uito
, d
)(float32 x
, CPUState
*env
)
2479 return uint32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2482 float32
VFP_HELPER(sito
, s
)(float32 x
, CPUState
*env
)
2484 return int32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2487 float64
VFP_HELPER(sito
, d
)(float32 x
, CPUState
*env
)
2489 return int32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2492 /* Float to integer conversion. */
2493 float32
VFP_HELPER(toui
, s
)(float32 x
, CPUState
*env
)
2495 return vfp_itos(float32_to_uint32(x
, &env
->vfp
.fp_status
));
2498 float32
VFP_HELPER(toui
, d
)(float64 x
, CPUState
*env
)
2500 return vfp_itos(float64_to_uint32(x
, &env
->vfp
.fp_status
));
2503 float32
VFP_HELPER(tosi
, s
)(float32 x
, CPUState
*env
)
2505 return vfp_itos(float32_to_int32(x
, &env
->vfp
.fp_status
));
2508 float32
VFP_HELPER(tosi
, d
)(float64 x
, CPUState
*env
)
2510 return vfp_itos(float64_to_int32(x
, &env
->vfp
.fp_status
));
2513 float32
VFP_HELPER(touiz
, s
)(float32 x
, CPUState
*env
)
2515 return vfp_itos(float32_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2518 float32
VFP_HELPER(touiz
, d
)(float64 x
, CPUState
*env
)
2520 return vfp_itos(float64_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2523 float32
VFP_HELPER(tosiz
, s
)(float32 x
, CPUState
*env
)
2525 return vfp_itos(float32_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2528 float32
VFP_HELPER(tosiz
, d
)(float64 x
, CPUState
*env
)
2530 return vfp_itos(float64_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2533 /* floating point conversion */
2534 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2536 return float32_to_float64(x
, &env
->vfp
.fp_status
);
2539 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2541 return float64_to_float32(x
, &env
->vfp
.fp_status
);
2544 /* VFP3 fixed point conversion. */
2545 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2546 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2549 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2550 &env->vfp.fp_status); \
2551 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2553 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2556 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2557 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2558 &env->vfp.fp_status)); \
2561 VFP_CONV_FIX(sh
, d
, float64
, int16
, )
2562 VFP_CONV_FIX(sl
, d
, float64
, int32
, )
2563 VFP_CONV_FIX(uh
, d
, float64
, uint16
, u
)
2564 VFP_CONV_FIX(ul
, d
, float64
, uint32
, u
)
2565 VFP_CONV_FIX(sh
, s
, float32
, int16
, )
2566 VFP_CONV_FIX(sl
, s
, float32
, int32
, )
2567 VFP_CONV_FIX(uh
, s
, float32
, uint16
, u
)
2568 VFP_CONV_FIX(ul
, s
, float32
, uint32
, u
)
2571 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2573 float_status
*s
= &env
->vfp
.fp_status
;
2574 float32 two
= int32_to_float32(2, s
);
2575 return float32_sub(two
, float32_mul(a
, b
, s
), s
);
2578 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2580 float_status
*s
= &env
->vfp
.fp_status
;
2581 float32 three
= int32_to_float32(3, s
);
2582 return float32_sub(three
, float32_mul(a
, b
, s
), s
);
2587 /* TODO: The architecture specifies the value that the estimate functions
2588 should return. We return the exact reciprocal/root instead. */
2589 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2591 float_status
*s
= &env
->vfp
.fp_status
;
2592 float32 one
= int32_to_float32(1, s
);
2593 return float32_div(one
, a
, s
);
2596 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2598 float_status
*s
= &env
->vfp
.fp_status
;
2599 float32 one
= int32_to_float32(1, s
);
2600 return float32_div(one
, float32_sqrt(a
, s
), s
);
2603 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
2605 float_status
*s
= &env
->vfp
.fp_status
;
2607 tmp
= int32_to_float32(a
, s
);
2608 tmp
= float32_scalbn(tmp
, -32, s
);
2609 tmp
= helper_recpe_f32(tmp
, env
);
2610 tmp
= float32_scalbn(tmp
, 31, s
);
2611 return float32_to_int32(tmp
, s
);
2614 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
2616 float_status
*s
= &env
->vfp
.fp_status
;
2618 tmp
= int32_to_float32(a
, s
);
2619 tmp
= float32_scalbn(tmp
, -32, s
);
2620 tmp
= helper_rsqrte_f32(tmp
, env
);
2621 tmp
= float32_scalbn(tmp
, 31, s
);
2622 return float32_to_int32(tmp
, s
);
2625 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
2628 if (env
->teecr
!= val
) {