Merge remote-tracking branch 'aneesh/for-upstream-4' into staging
[qemu.git] / cpu-all.h
blobf5c82cdebd86797c8e358abe13f735a03667a538
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "cpu-common.h"
25 /* some important defines:
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
39 #define BSWAP_NEEDED
40 #endif
42 #ifdef BSWAP_NEEDED
44 static inline uint16_t tswap16(uint16_t s)
46 return bswap16(s);
49 static inline uint32_t tswap32(uint32_t s)
51 return bswap32(s);
54 static inline uint64_t tswap64(uint64_t s)
56 return bswap64(s);
59 static inline void tswap16s(uint16_t *s)
61 *s = bswap16(*s);
64 static inline void tswap32s(uint32_t *s)
66 *s = bswap32(*s);
69 static inline void tswap64s(uint64_t *s)
71 *s = bswap64(*s);
74 #else
76 static inline uint16_t tswap16(uint16_t s)
78 return s;
81 static inline uint32_t tswap32(uint32_t s)
83 return s;
86 static inline uint64_t tswap64(uint64_t s)
88 return s;
91 static inline void tswap16s(uint16_t *s)
95 static inline void tswap32s(uint32_t *s)
99 static inline void tswap64s(uint64_t *s)
103 #endif
105 #if TARGET_LONG_SIZE == 4
106 #define tswapl(s) tswap32(s)
107 #define tswapls(s) tswap32s((uint32_t *)(s))
108 #define bswaptls(s) bswap32s(s)
109 #else
110 #define tswapl(s) tswap64(s)
111 #define tswapls(s) tswap64s((uint64_t *)(s))
112 #define bswaptls(s) bswap64s(s)
113 #endif
115 /* CPU memory access without any memory or io remapping */
118 * the generic syntax for the memory accesses is:
120 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122 * store: st{type}{size}{endian}_{access_type}(ptr, val)
124 * type is:
125 * (empty): integer access
126 * f : float access
128 * sign is:
129 * (empty): for floats or 32 bit size
130 * u : unsigned
131 * s : signed
133 * size is:
134 * b: 8 bits
135 * w: 16 bits
136 * l: 32 bits
137 * q: 64 bits
139 * endian is:
140 * (empty): target cpu endianness or 8 bit access
141 * r : reversed target cpu endianness (not implemented yet)
142 * be : big endian (not implemented yet)
143 * le : little endian (not implemented yet)
145 * access_type is:
146 * raw : host memory access
147 * user : user mode access using soft MMU
148 * kernel : kernel mode access using soft MMU
151 /* target-endianness CPU memory access functions */
152 #if defined(TARGET_WORDS_BIGENDIAN)
153 #define lduw_p(p) lduw_be_p(p)
154 #define ldsw_p(p) ldsw_be_p(p)
155 #define ldl_p(p) ldl_be_p(p)
156 #define ldq_p(p) ldq_be_p(p)
157 #define ldfl_p(p) ldfl_be_p(p)
158 #define ldfq_p(p) ldfq_be_p(p)
159 #define stw_p(p, v) stw_be_p(p, v)
160 #define stl_p(p, v) stl_be_p(p, v)
161 #define stq_p(p, v) stq_be_p(p, v)
162 #define stfl_p(p, v) stfl_be_p(p, v)
163 #define stfq_p(p, v) stfq_be_p(p, v)
164 #else
165 #define lduw_p(p) lduw_le_p(p)
166 #define ldsw_p(p) ldsw_le_p(p)
167 #define ldl_p(p) ldl_le_p(p)
168 #define ldq_p(p) ldq_le_p(p)
169 #define ldfl_p(p) ldfl_le_p(p)
170 #define ldfq_p(p) ldfq_le_p(p)
171 #define stw_p(p, v) stw_le_p(p, v)
172 #define stl_p(p, v) stl_le_p(p, v)
173 #define stq_p(p, v) stq_le_p(p, v)
174 #define stfl_p(p, v) stfl_le_p(p, v)
175 #define stfq_p(p, v) stfq_le_p(p, v)
176 #endif
178 /* MMU memory access macros */
180 #if defined(CONFIG_USER_ONLY)
181 #include <assert.h>
182 #include "qemu-types.h"
184 /* On some host systems the guest address space is reserved on the host.
185 * This allows the guest address space to be offset to a convenient location.
187 #if defined(CONFIG_USE_GUEST_BASE)
188 extern unsigned long guest_base;
189 extern int have_guest_base;
190 extern unsigned long reserved_va;
191 #define GUEST_BASE guest_base
192 #define RESERVED_VA reserved_va
193 #else
194 #define GUEST_BASE 0ul
195 #define RESERVED_VA 0ul
196 #endif
198 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
199 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
201 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
202 #define h2g_valid(x) 1
203 #else
204 #define h2g_valid(x) ({ \
205 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
206 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
208 #endif
210 #define h2g(x) ({ \
211 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
212 /* Check if given address fits target address space */ \
213 assert(h2g_valid(x)); \
214 (abi_ulong)__ret; \
217 #define saddr(x) g2h(x)
218 #define laddr(x) g2h(x)
220 #else /* !CONFIG_USER_ONLY */
221 /* NOTE: we use double casts if pointers and target_ulong have
222 different sizes */
223 #define saddr(x) (uint8_t *)(long)(x)
224 #define laddr(x) (uint8_t *)(long)(x)
225 #endif
227 #define ldub_raw(p) ldub_p(laddr((p)))
228 #define ldsb_raw(p) ldsb_p(laddr((p)))
229 #define lduw_raw(p) lduw_p(laddr((p)))
230 #define ldsw_raw(p) ldsw_p(laddr((p)))
231 #define ldl_raw(p) ldl_p(laddr((p)))
232 #define ldq_raw(p) ldq_p(laddr((p)))
233 #define ldfl_raw(p) ldfl_p(laddr((p)))
234 #define ldfq_raw(p) ldfq_p(laddr((p)))
235 #define stb_raw(p, v) stb_p(saddr((p)), v)
236 #define stw_raw(p, v) stw_p(saddr((p)), v)
237 #define stl_raw(p, v) stl_p(saddr((p)), v)
238 #define stq_raw(p, v) stq_p(saddr((p)), v)
239 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
240 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
243 #if defined(CONFIG_USER_ONLY)
245 /* if user mode, no other memory access functions */
246 #define ldub(p) ldub_raw(p)
247 #define ldsb(p) ldsb_raw(p)
248 #define lduw(p) lduw_raw(p)
249 #define ldsw(p) ldsw_raw(p)
250 #define ldl(p) ldl_raw(p)
251 #define ldq(p) ldq_raw(p)
252 #define ldfl(p) ldfl_raw(p)
253 #define ldfq(p) ldfq_raw(p)
254 #define stb(p, v) stb_raw(p, v)
255 #define stw(p, v) stw_raw(p, v)
256 #define stl(p, v) stl_raw(p, v)
257 #define stq(p, v) stq_raw(p, v)
258 #define stfl(p, v) stfl_raw(p, v)
259 #define stfq(p, v) stfq_raw(p, v)
261 #define ldub_code(p) ldub_raw(p)
262 #define ldsb_code(p) ldsb_raw(p)
263 #define lduw_code(p) lduw_raw(p)
264 #define ldsw_code(p) ldsw_raw(p)
265 #define ldl_code(p) ldl_raw(p)
266 #define ldq_code(p) ldq_raw(p)
268 #define ldub_kernel(p) ldub_raw(p)
269 #define ldsb_kernel(p) ldsb_raw(p)
270 #define lduw_kernel(p) lduw_raw(p)
271 #define ldsw_kernel(p) ldsw_raw(p)
272 #define ldl_kernel(p) ldl_raw(p)
273 #define ldq_kernel(p) ldq_raw(p)
274 #define ldfl_kernel(p) ldfl_raw(p)
275 #define ldfq_kernel(p) ldfq_raw(p)
276 #define stb_kernel(p, v) stb_raw(p, v)
277 #define stw_kernel(p, v) stw_raw(p, v)
278 #define stl_kernel(p, v) stl_raw(p, v)
279 #define stq_kernel(p, v) stq_raw(p, v)
280 #define stfl_kernel(p, v) stfl_raw(p, v)
281 #define stfq_kernel(p, vt) stfq_raw(p, v)
283 #endif /* defined(CONFIG_USER_ONLY) */
285 /* page related stuff */
287 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
288 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
289 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
291 /* ??? These should be the larger of unsigned long and target_ulong. */
292 extern unsigned long qemu_real_host_page_size;
293 extern unsigned long qemu_host_page_bits;
294 extern unsigned long qemu_host_page_size;
295 extern unsigned long qemu_host_page_mask;
297 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
299 /* same as PROT_xxx */
300 #define PAGE_READ 0x0001
301 #define PAGE_WRITE 0x0002
302 #define PAGE_EXEC 0x0004
303 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
304 #define PAGE_VALID 0x0008
305 /* original state of the write flag (used when tracking self-modifying
306 code */
307 #define PAGE_WRITE_ORG 0x0010
308 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
309 /* FIXME: Code that sets/uses this is broken and needs to go away. */
310 #define PAGE_RESERVED 0x0020
311 #endif
313 #if defined(CONFIG_USER_ONLY)
314 void page_dump(FILE *f);
316 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
317 abi_ulong, unsigned long);
318 int walk_memory_regions(void *, walk_memory_regions_fn);
320 int page_get_flags(target_ulong address);
321 void page_set_flags(target_ulong start, target_ulong end, int flags);
322 int page_check_range(target_ulong start, target_ulong len, int flags);
323 #endif
325 CPUState *cpu_copy(CPUState *env);
326 CPUState *qemu_get_cpu(int cpu);
328 #define CPU_DUMP_CODE 0x00010000
330 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
331 int flags);
332 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
333 int flags);
335 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
336 GCC_FMT_ATTR(2, 3);
337 extern CPUState *first_cpu;
338 extern CPUState *cpu_single_env;
340 /* Flags for use in ENV->INTERRUPT_PENDING.
342 The numbers assigned here are non-sequential in order to preserve
343 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
344 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
345 the vmstate dump. */
347 /* External hardware interrupt pending. This is typically used for
348 interrupts from devices. */
349 #define CPU_INTERRUPT_HARD 0x0002
351 /* Exit the current TB. This is typically used when some system-level device
352 makes some change to the memory mapping. E.g. the a20 line change. */
353 #define CPU_INTERRUPT_EXITTB 0x0004
355 /* Halt the CPU. */
356 #define CPU_INTERRUPT_HALT 0x0020
358 /* Debug event pending. */
359 #define CPU_INTERRUPT_DEBUG 0x0080
361 /* Several target-specific external hardware interrupts. Each target/cpu.h
362 should define proper names based on these defines. */
363 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
364 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
365 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
366 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
367 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
369 /* Several target-specific internal interrupts. These differ from the
370 preceeding target-specific interrupts in that they are intended to
371 originate from within the cpu itself, typically in response to some
372 instruction being executed. These, therefore, are not masked while
373 single-stepping within the debugger. */
374 #define CPU_INTERRUPT_TGT_INT_0 0x0100
375 #define CPU_INTERRUPT_TGT_INT_1 0x0400
376 #define CPU_INTERRUPT_TGT_INT_2 0x0800
378 /* First unused bit: 0x2000. */
380 /* The set of all bits that should be masked when single-stepping. */
381 #define CPU_INTERRUPT_SSTEP_MASK \
382 (CPU_INTERRUPT_HARD \
383 | CPU_INTERRUPT_TGT_EXT_0 \
384 | CPU_INTERRUPT_TGT_EXT_1 \
385 | CPU_INTERRUPT_TGT_EXT_2 \
386 | CPU_INTERRUPT_TGT_EXT_3 \
387 | CPU_INTERRUPT_TGT_EXT_4)
389 #ifndef CONFIG_USER_ONLY
390 typedef void (*CPUInterruptHandler)(CPUState *, int);
392 extern CPUInterruptHandler cpu_interrupt_handler;
394 static inline void cpu_interrupt(CPUState *s, int mask)
396 cpu_interrupt_handler(s, mask);
398 #else /* USER_ONLY */
399 void cpu_interrupt(CPUState *env, int mask);
400 #endif /* USER_ONLY */
402 void cpu_reset_interrupt(CPUState *env, int mask);
404 void cpu_exit(CPUState *s);
406 bool qemu_cpu_has_work(CPUState *env);
408 /* Breakpoint/watchpoint flags */
409 #define BP_MEM_READ 0x01
410 #define BP_MEM_WRITE 0x02
411 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
412 #define BP_STOP_BEFORE_ACCESS 0x04
413 #define BP_WATCHPOINT_HIT 0x08
414 #define BP_GDB 0x10
415 #define BP_CPU 0x20
417 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
418 CPUBreakpoint **breakpoint);
419 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
420 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
421 void cpu_breakpoint_remove_all(CPUState *env, int mask);
422 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
423 int flags, CPUWatchpoint **watchpoint);
424 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
425 target_ulong len, int flags);
426 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
427 void cpu_watchpoint_remove_all(CPUState *env, int mask);
429 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
430 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
431 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
433 void cpu_single_step(CPUState *env, int enabled);
434 void cpu_reset(CPUState *s);
435 int cpu_is_stopped(CPUState *env);
436 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
438 #define CPU_LOG_TB_OUT_ASM (1 << 0)
439 #define CPU_LOG_TB_IN_ASM (1 << 1)
440 #define CPU_LOG_TB_OP (1 << 2)
441 #define CPU_LOG_TB_OP_OPT (1 << 3)
442 #define CPU_LOG_INT (1 << 4)
443 #define CPU_LOG_EXEC (1 << 5)
444 #define CPU_LOG_PCALL (1 << 6)
445 #define CPU_LOG_IOPORT (1 << 7)
446 #define CPU_LOG_TB_CPU (1 << 8)
447 #define CPU_LOG_RESET (1 << 9)
449 /* define log items */
450 typedef struct CPULogItem {
451 int mask;
452 const char *name;
453 const char *help;
454 } CPULogItem;
456 extern const CPULogItem cpu_log_items[];
458 void cpu_set_log(int log_flags);
459 void cpu_set_log_filename(const char *filename);
460 int cpu_str_to_log_mask(const char *str);
462 #if !defined(CONFIG_USER_ONLY)
464 /* Return the physical page corresponding to a virtual one. Use it
465 only for debugging because no protection checks are done. Return -1
466 if no page found. */
467 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
469 /* memory API */
471 extern int phys_ram_fd;
472 extern ram_addr_t ram_size;
474 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
475 #define RAM_PREALLOC_MASK (1 << 0)
477 typedef struct RAMBlock {
478 uint8_t *host;
479 ram_addr_t offset;
480 ram_addr_t length;
481 uint32_t flags;
482 char idstr[256];
483 QLIST_ENTRY(RAMBlock) next;
484 #if defined(__linux__) && !defined(TARGET_S390X)
485 int fd;
486 #endif
487 } RAMBlock;
489 typedef struct RAMList {
490 uint8_t *phys_dirty;
491 QLIST_HEAD(, RAMBlock) blocks;
492 } RAMList;
493 extern RAMList ram_list;
495 extern const char *mem_path;
496 extern int mem_prealloc;
498 /* physical memory access */
500 /* MMIO pages are identified by a combination of an IO device index and
501 3 flags. The ROMD code stores the page ram offset in iotlb entry,
502 so only a limited number of ids are avaiable. */
504 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
506 /* Flags stored in the low bits of the TLB virtual address. These are
507 defined so that fast path ram access is all zeros. */
508 /* Zero if TLB entry is valid. */
509 #define TLB_INVALID_MASK (1 << 3)
510 /* Set if TLB entry references a clean RAM page. The iotlb entry will
511 contain the page physical address. */
512 #define TLB_NOTDIRTY (1 << 4)
513 /* Set if TLB entry is an IO callback. */
514 #define TLB_MMIO (1 << 5)
516 #define VGA_DIRTY_FLAG 0x01
517 #define CODE_DIRTY_FLAG 0x02
518 #define MIGRATION_DIRTY_FLAG 0x08
520 /* read dirty bit (return 0 or 1) */
521 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
523 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
526 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
528 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
531 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
532 int dirty_flags)
534 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
537 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
539 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
542 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
543 int dirty_flags)
545 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
548 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
549 int length,
550 int dirty_flags)
552 int i, mask, len;
553 uint8_t *p;
555 len = length >> TARGET_PAGE_BITS;
556 mask = ~dirty_flags;
557 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
558 for (i = 0; i < len; i++) {
559 p[i] &= mask;
563 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
564 int dirty_flags);
565 void cpu_tlb_update_dirty(CPUState *env);
567 int cpu_physical_memory_set_dirty_tracking(int enable);
569 int cpu_physical_memory_get_dirty_tracking(void);
571 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
572 target_phys_addr_t end_addr);
574 int cpu_physical_log_start(target_phys_addr_t start_addr,
575 ram_addr_t size);
577 int cpu_physical_log_stop(target_phys_addr_t start_addr,
578 ram_addr_t size);
580 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
581 #endif /* !CONFIG_USER_ONLY */
583 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
584 uint8_t *buf, int len, int is_write);
586 #endif /* CPU_ALL_H */