target/ppc: Return default CPU for max CPU
[qemu.git] / target / arm / gdbstub.c
blob2f806512d0ad6ec10ab2257dd18f7e7b07ce8753
1 /*
2 * ARM gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "internals.h"
24 #include "cpregs.h"
26 typedef struct RegisterSysregXmlParam {
27 CPUState *cs;
28 GString *s;
29 int n;
30 } RegisterSysregXmlParam;
32 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
33 whatever the target description contains. Due to a historical mishap
34 the FPA registers appear in between core integer regs and the CPSR.
35 We hack round this by giving the FPA regs zero size when talking to a
36 newer gdb. */
38 int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
40 ARMCPU *cpu = ARM_CPU(cs);
41 CPUARMState *env = &cpu->env;
43 if (n < 16) {
44 /* Core integer register. */
45 return gdb_get_reg32(mem_buf, env->regs[n]);
47 if (n < 24) {
48 /* FPA registers. */
49 if (gdb_has_xml) {
50 return 0;
52 return gdb_get_zeroes(mem_buf, 12);
54 switch (n) {
55 case 24:
56 /* FPA status register. */
57 if (gdb_has_xml) {
58 return 0;
60 return gdb_get_reg32(mem_buf, 0);
61 case 25:
62 /* CPSR, or XPSR for M-profile */
63 if (arm_feature(env, ARM_FEATURE_M)) {
64 return gdb_get_reg32(mem_buf, xpsr_read(env));
65 } else {
66 return gdb_get_reg32(mem_buf, cpsr_read(env));
69 /* Unknown register. */
70 return 0;
73 int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
75 ARMCPU *cpu = ARM_CPU(cs);
76 CPUARMState *env = &cpu->env;
77 uint32_t tmp;
79 tmp = ldl_p(mem_buf);
82 * Mask out low bits of PC to workaround gdb bugs.
83 * This avoids an assert in thumb_tr_translate_insn, because it is
84 * architecturally impossible to misalign the pc.
85 * This will probably cause problems if we ever implement the
86 * Jazelle DBX extensions.
88 if (n == 15) {
89 tmp &= ~1;
92 if (n < 16) {
93 /* Core integer register. */
94 if (n == 13 && arm_feature(env, ARM_FEATURE_M)) {
95 /* M profile SP low bits are always 0 */
96 tmp &= ~3;
98 env->regs[n] = tmp;
99 return 4;
101 if (n < 24) { /* 16-23 */
102 /* FPA registers (ignored). */
103 if (gdb_has_xml) {
104 return 0;
106 return 12;
108 switch (n) {
109 case 24:
110 /* FPA status register (ignored). */
111 if (gdb_has_xml) {
112 return 0;
114 return 4;
115 case 25:
116 /* CPSR, or XPSR for M-profile */
117 if (arm_feature(env, ARM_FEATURE_M)) {
119 * Don't allow writing to XPSR.Exception as it can cause
120 * a transition into or out of handler mode (it's not
121 * writable via the MSR insn so this is a reasonable
122 * restriction). Other fields are safe to update.
124 xpsr_write(env, tmp, ~XPSR_EXCP);
125 } else {
126 cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub);
128 return 4;
130 /* Unknown register. */
131 return 0;
134 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
136 ARMCPU *cpu = env_archcpu(env);
137 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
139 /* VFP data registers are always little-endian. */
140 if (reg < nregs) {
141 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
143 if (arm_feature(env, ARM_FEATURE_NEON)) {
144 /* Aliases for Q regs. */
145 nregs += 16;
146 if (reg < nregs) {
147 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
148 return gdb_get_reg128(buf, q[0], q[1]);
151 switch (reg - nregs) {
152 case 0:
153 return gdb_get_reg32(buf, vfp_get_fpscr(env));
155 return 0;
158 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
160 ARMCPU *cpu = env_archcpu(env);
161 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
163 if (reg < nregs) {
164 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
165 return 8;
167 if (arm_feature(env, ARM_FEATURE_NEON)) {
168 nregs += 16;
169 if (reg < nregs) {
170 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
171 q[0] = ldq_le_p(buf);
172 q[1] = ldq_le_p(buf + 8);
173 return 16;
176 switch (reg - nregs) {
177 case 0:
178 vfp_set_fpscr(env, ldl_p(buf));
179 return 4;
181 return 0;
184 static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
186 switch (reg) {
187 case 0:
188 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]);
189 case 1:
190 return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]);
192 return 0;
195 static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
197 switch (reg) {
198 case 0:
199 env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf);
200 return 4;
201 case 1:
202 env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30);
203 return 4;
205 return 0;
208 static int mve_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
210 switch (reg) {
211 case 0:
212 return gdb_get_reg32(buf, env->v7m.vpr);
213 default:
214 return 0;
218 static int mve_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
220 switch (reg) {
221 case 0:
222 env->v7m.vpr = ldl_p(buf);
223 return 4;
224 default:
225 return 0;
230 * arm_get/set_gdb_*: get/set a gdb register
231 * @env: the CPU state
232 * @buf: a buffer to copy to/from
233 * @reg: register number (offset from start of group)
235 * We return the number of bytes copied
238 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
240 ARMCPU *cpu = env_archcpu(env);
241 const ARMCPRegInfo *ri;
242 uint32_t key;
244 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
245 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
246 if (ri) {
247 if (cpreg_field_is_64bit(ri)) {
248 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
249 } else {
250 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
253 return 0;
256 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
258 return 0;
261 static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml,
262 ARMCPRegInfo *ri, uint32_t ri_key,
263 int bitsize, int regnum)
265 g_string_append_printf(s, "<reg name=\"%s\"", ri->name);
266 g_string_append_printf(s, " bitsize=\"%d\"", bitsize);
267 g_string_append_printf(s, " regnum=\"%d\"", regnum);
268 g_string_append_printf(s, " group=\"cp_regs\"/>");
269 dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key;
270 dyn_xml->num++;
273 static void arm_register_sysreg_for_xml(gpointer key, gpointer value,
274 gpointer p)
276 uint32_t ri_key = (uintptr_t)key;
277 ARMCPRegInfo *ri = value;
278 RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p;
279 GString *s = param->s;
280 ARMCPU *cpu = ARM_CPU(param->cs);
281 CPUARMState *env = &cpu->env;
282 DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml;
284 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) {
285 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
286 if (ri->state == ARM_CP_STATE_AA64) {
287 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
288 param->n++);
290 } else {
291 if (ri->state == ARM_CP_STATE_AA32) {
292 if (!arm_feature(env, ARM_FEATURE_EL3) &&
293 (ri->secure & ARM_CP_SECSTATE_S)) {
294 return;
296 if (ri->type & ARM_CP_64BIT) {
297 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
298 param->n++);
299 } else {
300 arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32,
301 param->n++);
308 int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg)
310 ARMCPU *cpu = ARM_CPU(cs);
311 GString *s = g_string_new(NULL);
312 RegisterSysregXmlParam param = {cs, s, base_reg};
314 cpu->dyn_sysreg_xml.num = 0;
315 cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs));
316 g_string_printf(s, "<?xml version=\"1.0\"?>");
317 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
318 g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">");
319 g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, &param);
320 g_string_append_printf(s, "</feature>");
321 cpu->dyn_sysreg_xml.desc = g_string_free(s, false);
322 return cpu->dyn_sysreg_xml.num;
325 struct TypeSize {
326 const char *gdb_type;
327 int size;
328 const char sz, suffix;
331 static const struct TypeSize vec_lanes[] = {
332 /* quads */
333 { "uint128", 128, 'q', 'u' },
334 { "int128", 128, 'q', 's' },
335 /* 64 bit */
336 { "ieee_double", 64, 'd', 'f' },
337 { "uint64", 64, 'd', 'u' },
338 { "int64", 64, 'd', 's' },
339 /* 32 bit */
340 { "ieee_single", 32, 's', 'f' },
341 { "uint32", 32, 's', 'u' },
342 { "int32", 32, 's', 's' },
343 /* 16 bit */
344 { "ieee_half", 16, 'h', 'f' },
345 { "uint16", 16, 'h', 'u' },
346 { "int16", 16, 'h', 's' },
347 /* bytes */
348 { "uint8", 8, 'b', 'u' },
349 { "int8", 8, 'b', 's' },
353 int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg)
355 ARMCPU *cpu = ARM_CPU(cs);
356 GString *s = g_string_new(NULL);
357 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
358 g_autoptr(GString) ts = g_string_new("");
359 int i, j, bits, reg_width = (cpu->sve_max_vq * 128);
360 info->num = 0;
361 g_string_printf(s, "<?xml version=\"1.0\"?>");
362 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
363 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
365 /* First define types and totals in a whole VL */
366 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
367 int count = reg_width / vec_lanes[i].size;
368 g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix);
369 g_string_append_printf(s,
370 "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
371 ts->str, vec_lanes[i].gdb_type, count);
374 * Now define a union for each size group containing unsigned and
375 * signed and potentially float versions of each size from 128 to
376 * 8 bits.
378 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
379 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
380 g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]);
381 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
382 if (vec_lanes[j].size == bits) {
383 g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>",
384 vec_lanes[j].suffix,
385 vec_lanes[j].sz, vec_lanes[j].suffix);
388 g_string_append(s, "</union>");
390 /* And now the final union of unions */
391 g_string_append(s, "<union id=\"svev\">");
392 for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
393 const char suf[] = { 'q', 'd', 's', 'h', 'b' };
394 g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>",
395 suf[i], suf[i]);
397 g_string_append(s, "</union>");
399 /* Finally the sve prefix type */
400 g_string_append_printf(s,
401 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
402 reg_width / 8);
404 /* Then define each register in parts for each vq */
405 for (i = 0; i < 32; i++) {
406 g_string_append_printf(s,
407 "<reg name=\"z%d\" bitsize=\"%d\""
408 " regnum=\"%d\" type=\"svev\"/>",
409 i, reg_width, base_reg++);
410 info->num++;
412 /* fpscr & status registers */
413 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
414 " regnum=\"%d\" group=\"float\""
415 " type=\"int\"/>", base_reg++);
416 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
417 " regnum=\"%d\" group=\"float\""
418 " type=\"int\"/>", base_reg++);
419 info->num += 2;
421 for (i = 0; i < 16; i++) {
422 g_string_append_printf(s,
423 "<reg name=\"p%d\" bitsize=\"%d\""
424 " regnum=\"%d\" type=\"svep\"/>",
425 i, cpu->sve_max_vq * 16, base_reg++);
426 info->num++;
428 g_string_append_printf(s,
429 "<reg name=\"ffr\" bitsize=\"%d\""
430 " regnum=\"%d\" group=\"vector\""
431 " type=\"svep\"/>",
432 cpu->sve_max_vq * 16, base_reg++);
433 g_string_append_printf(s,
434 "<reg name=\"vg\" bitsize=\"64\""
435 " regnum=\"%d\" type=\"int\"/>",
436 base_reg++);
437 info->num += 2;
438 g_string_append_printf(s, "</feature>");
439 cpu->dyn_svereg_xml.desc = g_string_free(s, false);
441 return cpu->dyn_svereg_xml.num;
445 const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname)
447 ARMCPU *cpu = ARM_CPU(cs);
449 if (strcmp(xmlname, "system-registers.xml") == 0) {
450 return cpu->dyn_sysreg_xml.desc;
451 } else if (strcmp(xmlname, "sve-registers.xml") == 0) {
452 return cpu->dyn_svereg_xml.desc;
454 return NULL;
457 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
459 CPUState *cs = CPU(cpu);
460 CPUARMState *env = &cpu->env;
462 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464 * The lower part of each SVE register aliases to the FPU
465 * registers so we don't need to include both.
467 #ifdef TARGET_AARCH64
468 if (isar_feature_aa64_sve(&cpu->isar)) {
469 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
470 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
471 "sve-registers.xml", 0);
472 } else {
473 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
474 aarch64_fpu_gdb_set_reg,
475 34, "aarch64-fpu.xml", 0);
477 #endif
478 } else {
479 if (arm_feature(env, ARM_FEATURE_NEON)) {
480 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
481 49, "arm-neon.xml", 0);
482 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
483 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
484 33, "arm-vfp3.xml", 0);
485 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
486 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
487 17, "arm-vfp.xml", 0);
489 if (!arm_feature(env, ARM_FEATURE_M)) {
491 * A and R profile have FP sysregs FPEXC and FPSID that we
492 * expose to gdb.
494 gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg,
495 2, "arm-vfp-sysregs.xml", 0);
498 if (cpu_isar_feature(aa32_mve, cpu)) {
499 gdb_register_coprocessor(cs, mve_gdb_get_reg, mve_gdb_set_reg,
500 1, "arm-m-profile-mve.xml", 0);
502 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
503 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
504 "system-registers.xml", 0);