pseries: Abolish envs array
[qemu.git] / cpu-all.h
blobdc0f2f02abedd604d00a1002bf622a4099acf3fd
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "cpu-common.h"
25 /* some important defines:
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 #include "softfloat.h"
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
44 #ifdef BSWAP_NEEDED
46 static inline uint16_t tswap16(uint16_t s)
48 return bswap16(s);
51 static inline uint32_t tswap32(uint32_t s)
53 return bswap32(s);
56 static inline uint64_t tswap64(uint64_t s)
58 return bswap64(s);
61 static inline void tswap16s(uint16_t *s)
63 *s = bswap16(*s);
66 static inline void tswap32s(uint32_t *s)
68 *s = bswap32(*s);
71 static inline void tswap64s(uint64_t *s)
73 *s = bswap64(*s);
76 #else
78 static inline uint16_t tswap16(uint16_t s)
80 return s;
83 static inline uint32_t tswap32(uint32_t s)
85 return s;
88 static inline uint64_t tswap64(uint64_t s)
90 return s;
93 static inline void tswap16s(uint16_t *s)
97 static inline void tswap32s(uint32_t *s)
101 static inline void tswap64s(uint64_t *s)
105 #endif
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
117 typedef union {
118 float32 f;
119 uint32_t l;
120 } CPU_FloatU;
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124 typedef union {
125 float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN) \
127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128 struct {
129 uint32_t upper;
130 uint32_t lower;
131 } l;
132 #else
133 struct {
134 uint32_t lower;
135 uint32_t upper;
136 } l;
137 #endif
138 uint64_t ll;
139 } CPU_DoubleU;
141 #if defined(CONFIG_SOFTFLOAT)
142 typedef union {
143 float128 q;
144 #if defined(HOST_WORDS_BIGENDIAN)
145 struct {
146 uint32_t upmost;
147 uint32_t upper;
148 uint32_t lower;
149 uint32_t lowest;
150 } l;
151 struct {
152 uint64_t upper;
153 uint64_t lower;
154 } ll;
155 #else
156 struct {
157 uint32_t lowest;
158 uint32_t lower;
159 uint32_t upper;
160 uint32_t upmost;
161 } l;
162 struct {
163 uint64_t lower;
164 uint64_t upper;
165 } ll;
166 #endif
167 } CPU_QuadU;
168 #endif
170 /* CPU memory access without any memory or io remapping */
173 * the generic syntax for the memory accesses is:
175 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
177 * store: st{type}{size}{endian}_{access_type}(ptr, val)
179 * type is:
180 * (empty): integer access
181 * f : float access
183 * sign is:
184 * (empty): for floats or 32 bit size
185 * u : unsigned
186 * s : signed
188 * size is:
189 * b: 8 bits
190 * w: 16 bits
191 * l: 32 bits
192 * q: 64 bits
194 * endian is:
195 * (empty): target cpu endianness or 8 bit access
196 * r : reversed target cpu endianness (not implemented yet)
197 * be : big endian (not implemented yet)
198 * le : little endian (not implemented yet)
200 * access_type is:
201 * raw : host memory access
202 * user : user mode access using soft MMU
203 * kernel : kernel mode access using soft MMU
205 static inline int ldub_p(const void *ptr)
207 return *(uint8_t *)ptr;
210 static inline int ldsb_p(const void *ptr)
212 return *(int8_t *)ptr;
215 static inline void stb_p(void *ptr, int v)
217 *(uint8_t *)ptr = v;
220 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
221 kernel handles unaligned load/stores may give better results, but
222 it is a system wide setting : bad */
223 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
225 /* conservative code for little endian unaligned accesses */
226 static inline int lduw_le_p(const void *ptr)
228 #ifdef _ARCH_PPC
229 int val;
230 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
231 return val;
232 #else
233 const uint8_t *p = ptr;
234 return p[0] | (p[1] << 8);
235 #endif
238 static inline int ldsw_le_p(const void *ptr)
240 #ifdef _ARCH_PPC
241 int val;
242 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
243 return (int16_t)val;
244 #else
245 const uint8_t *p = ptr;
246 return (int16_t)(p[0] | (p[1] << 8));
247 #endif
250 static inline int ldl_le_p(const void *ptr)
252 #ifdef _ARCH_PPC
253 int val;
254 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
255 return val;
256 #else
257 const uint8_t *p = ptr;
258 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
259 #endif
262 static inline uint64_t ldq_le_p(const void *ptr)
264 const uint8_t *p = ptr;
265 uint32_t v1, v2;
266 v1 = ldl_le_p(p);
267 v2 = ldl_le_p(p + 4);
268 return v1 | ((uint64_t)v2 << 32);
271 static inline void stw_le_p(void *ptr, int v)
273 #ifdef _ARCH_PPC
274 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
275 #else
276 uint8_t *p = ptr;
277 p[0] = v;
278 p[1] = v >> 8;
279 #endif
282 static inline void stl_le_p(void *ptr, int v)
284 #ifdef _ARCH_PPC
285 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
286 #else
287 uint8_t *p = ptr;
288 p[0] = v;
289 p[1] = v >> 8;
290 p[2] = v >> 16;
291 p[3] = v >> 24;
292 #endif
295 static inline void stq_le_p(void *ptr, uint64_t v)
297 uint8_t *p = ptr;
298 stl_le_p(p, (uint32_t)v);
299 stl_le_p(p + 4, v >> 32);
302 /* float access */
304 static inline float32 ldfl_le_p(const void *ptr)
306 union {
307 float32 f;
308 uint32_t i;
309 } u;
310 u.i = ldl_le_p(ptr);
311 return u.f;
314 static inline void stfl_le_p(void *ptr, float32 v)
316 union {
317 float32 f;
318 uint32_t i;
319 } u;
320 u.f = v;
321 stl_le_p(ptr, u.i);
324 static inline float64 ldfq_le_p(const void *ptr)
326 CPU_DoubleU u;
327 u.l.lower = ldl_le_p(ptr);
328 u.l.upper = ldl_le_p(ptr + 4);
329 return u.d;
332 static inline void stfq_le_p(void *ptr, float64 v)
334 CPU_DoubleU u;
335 u.d = v;
336 stl_le_p(ptr, u.l.lower);
337 stl_le_p(ptr + 4, u.l.upper);
340 #else
342 static inline int lduw_le_p(const void *ptr)
344 return *(uint16_t *)ptr;
347 static inline int ldsw_le_p(const void *ptr)
349 return *(int16_t *)ptr;
352 static inline int ldl_le_p(const void *ptr)
354 return *(uint32_t *)ptr;
357 static inline uint64_t ldq_le_p(const void *ptr)
359 return *(uint64_t *)ptr;
362 static inline void stw_le_p(void *ptr, int v)
364 *(uint16_t *)ptr = v;
367 static inline void stl_le_p(void *ptr, int v)
369 *(uint32_t *)ptr = v;
372 static inline void stq_le_p(void *ptr, uint64_t v)
374 *(uint64_t *)ptr = v;
377 /* float access */
379 static inline float32 ldfl_le_p(const void *ptr)
381 return *(float32 *)ptr;
384 static inline float64 ldfq_le_p(const void *ptr)
386 return *(float64 *)ptr;
389 static inline void stfl_le_p(void *ptr, float32 v)
391 *(float32 *)ptr = v;
394 static inline void stfq_le_p(void *ptr, float64 v)
396 *(float64 *)ptr = v;
398 #endif
400 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
402 static inline int lduw_be_p(const void *ptr)
404 #if defined(__i386__)
405 int val;
406 asm volatile ("movzwl %1, %0\n"
407 "xchgb %b0, %h0\n"
408 : "=q" (val)
409 : "m" (*(uint16_t *)ptr));
410 return val;
411 #else
412 const uint8_t *b = ptr;
413 return ((b[0] << 8) | b[1]);
414 #endif
417 static inline int ldsw_be_p(const void *ptr)
419 #if defined(__i386__)
420 int val;
421 asm volatile ("movzwl %1, %0\n"
422 "xchgb %b0, %h0\n"
423 : "=q" (val)
424 : "m" (*(uint16_t *)ptr));
425 return (int16_t)val;
426 #else
427 const uint8_t *b = ptr;
428 return (int16_t)((b[0] << 8) | b[1]);
429 #endif
432 static inline int ldl_be_p(const void *ptr)
434 #if defined(__i386__) || defined(__x86_64__)
435 int val;
436 asm volatile ("movl %1, %0\n"
437 "bswap %0\n"
438 : "=r" (val)
439 : "m" (*(uint32_t *)ptr));
440 return val;
441 #else
442 const uint8_t *b = ptr;
443 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
444 #endif
447 static inline uint64_t ldq_be_p(const void *ptr)
449 uint32_t a,b;
450 a = ldl_be_p(ptr);
451 b = ldl_be_p((uint8_t *)ptr + 4);
452 return (((uint64_t)a<<32)|b);
455 static inline void stw_be_p(void *ptr, int v)
457 #if defined(__i386__)
458 asm volatile ("xchgb %b0, %h0\n"
459 "movw %w0, %1\n"
460 : "=q" (v)
461 : "m" (*(uint16_t *)ptr), "0" (v));
462 #else
463 uint8_t *d = (uint8_t *) ptr;
464 d[0] = v >> 8;
465 d[1] = v;
466 #endif
469 static inline void stl_be_p(void *ptr, int v)
471 #if defined(__i386__) || defined(__x86_64__)
472 asm volatile ("bswap %0\n"
473 "movl %0, %1\n"
474 : "=r" (v)
475 : "m" (*(uint32_t *)ptr), "0" (v));
476 #else
477 uint8_t *d = (uint8_t *) ptr;
478 d[0] = v >> 24;
479 d[1] = v >> 16;
480 d[2] = v >> 8;
481 d[3] = v;
482 #endif
485 static inline void stq_be_p(void *ptr, uint64_t v)
487 stl_be_p(ptr, v >> 32);
488 stl_be_p((uint8_t *)ptr + 4, v);
491 /* float access */
493 static inline float32 ldfl_be_p(const void *ptr)
495 union {
496 float32 f;
497 uint32_t i;
498 } u;
499 u.i = ldl_be_p(ptr);
500 return u.f;
503 static inline void stfl_be_p(void *ptr, float32 v)
505 union {
506 float32 f;
507 uint32_t i;
508 } u;
509 u.f = v;
510 stl_be_p(ptr, u.i);
513 static inline float64 ldfq_be_p(const void *ptr)
515 CPU_DoubleU u;
516 u.l.upper = ldl_be_p(ptr);
517 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
518 return u.d;
521 static inline void stfq_be_p(void *ptr, float64 v)
523 CPU_DoubleU u;
524 u.d = v;
525 stl_be_p(ptr, u.l.upper);
526 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
529 #else
531 static inline int lduw_be_p(const void *ptr)
533 return *(uint16_t *)ptr;
536 static inline int ldsw_be_p(const void *ptr)
538 return *(int16_t *)ptr;
541 static inline int ldl_be_p(const void *ptr)
543 return *(uint32_t *)ptr;
546 static inline uint64_t ldq_be_p(const void *ptr)
548 return *(uint64_t *)ptr;
551 static inline void stw_be_p(void *ptr, int v)
553 *(uint16_t *)ptr = v;
556 static inline void stl_be_p(void *ptr, int v)
558 *(uint32_t *)ptr = v;
561 static inline void stq_be_p(void *ptr, uint64_t v)
563 *(uint64_t *)ptr = v;
566 /* float access */
568 static inline float32 ldfl_be_p(const void *ptr)
570 return *(float32 *)ptr;
573 static inline float64 ldfq_be_p(const void *ptr)
575 return *(float64 *)ptr;
578 static inline void stfl_be_p(void *ptr, float32 v)
580 *(float32 *)ptr = v;
583 static inline void stfq_be_p(void *ptr, float64 v)
585 *(float64 *)ptr = v;
588 #endif
590 /* target CPU memory access functions */
591 #if defined(TARGET_WORDS_BIGENDIAN)
592 #define lduw_p(p) lduw_be_p(p)
593 #define ldsw_p(p) ldsw_be_p(p)
594 #define ldl_p(p) ldl_be_p(p)
595 #define ldq_p(p) ldq_be_p(p)
596 #define ldfl_p(p) ldfl_be_p(p)
597 #define ldfq_p(p) ldfq_be_p(p)
598 #define stw_p(p, v) stw_be_p(p, v)
599 #define stl_p(p, v) stl_be_p(p, v)
600 #define stq_p(p, v) stq_be_p(p, v)
601 #define stfl_p(p, v) stfl_be_p(p, v)
602 #define stfq_p(p, v) stfq_be_p(p, v)
603 #else
604 #define lduw_p(p) lduw_le_p(p)
605 #define ldsw_p(p) ldsw_le_p(p)
606 #define ldl_p(p) ldl_le_p(p)
607 #define ldq_p(p) ldq_le_p(p)
608 #define ldfl_p(p) ldfl_le_p(p)
609 #define ldfq_p(p) ldfq_le_p(p)
610 #define stw_p(p, v) stw_le_p(p, v)
611 #define stl_p(p, v) stl_le_p(p, v)
612 #define stq_p(p, v) stq_le_p(p, v)
613 #define stfl_p(p, v) stfl_le_p(p, v)
614 #define stfq_p(p, v) stfq_le_p(p, v)
615 #endif
617 /* MMU memory access macros */
619 #if defined(CONFIG_USER_ONLY)
620 #include <assert.h>
621 #include "qemu-types.h"
623 /* On some host systems the guest address space is reserved on the host.
624 * This allows the guest address space to be offset to a convenient location.
626 #if defined(CONFIG_USE_GUEST_BASE)
627 extern unsigned long guest_base;
628 extern int have_guest_base;
629 extern unsigned long reserved_va;
630 #define GUEST_BASE guest_base
631 #define RESERVED_VA reserved_va
632 #else
633 #define GUEST_BASE 0ul
634 #define RESERVED_VA 0ul
635 #endif
637 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
638 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
640 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
641 #define h2g_valid(x) 1
642 #else
643 #define h2g_valid(x) ({ \
644 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
645 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
647 #endif
649 #define h2g(x) ({ \
650 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
651 /* Check if given address fits target address space */ \
652 assert(h2g_valid(x)); \
653 (abi_ulong)__ret; \
656 #define saddr(x) g2h(x)
657 #define laddr(x) g2h(x)
659 #else /* !CONFIG_USER_ONLY */
660 /* NOTE: we use double casts if pointers and target_ulong have
661 different sizes */
662 #define saddr(x) (uint8_t *)(long)(x)
663 #define laddr(x) (uint8_t *)(long)(x)
664 #endif
666 #define ldub_raw(p) ldub_p(laddr((p)))
667 #define ldsb_raw(p) ldsb_p(laddr((p)))
668 #define lduw_raw(p) lduw_p(laddr((p)))
669 #define ldsw_raw(p) ldsw_p(laddr((p)))
670 #define ldl_raw(p) ldl_p(laddr((p)))
671 #define ldq_raw(p) ldq_p(laddr((p)))
672 #define ldfl_raw(p) ldfl_p(laddr((p)))
673 #define ldfq_raw(p) ldfq_p(laddr((p)))
674 #define stb_raw(p, v) stb_p(saddr((p)), v)
675 #define stw_raw(p, v) stw_p(saddr((p)), v)
676 #define stl_raw(p, v) stl_p(saddr((p)), v)
677 #define stq_raw(p, v) stq_p(saddr((p)), v)
678 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
679 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
682 #if defined(CONFIG_USER_ONLY)
684 /* if user mode, no other memory access functions */
685 #define ldub(p) ldub_raw(p)
686 #define ldsb(p) ldsb_raw(p)
687 #define lduw(p) lduw_raw(p)
688 #define ldsw(p) ldsw_raw(p)
689 #define ldl(p) ldl_raw(p)
690 #define ldq(p) ldq_raw(p)
691 #define ldfl(p) ldfl_raw(p)
692 #define ldfq(p) ldfq_raw(p)
693 #define stb(p, v) stb_raw(p, v)
694 #define stw(p, v) stw_raw(p, v)
695 #define stl(p, v) stl_raw(p, v)
696 #define stq(p, v) stq_raw(p, v)
697 #define stfl(p, v) stfl_raw(p, v)
698 #define stfq(p, v) stfq_raw(p, v)
700 #define ldub_code(p) ldub_raw(p)
701 #define ldsb_code(p) ldsb_raw(p)
702 #define lduw_code(p) lduw_raw(p)
703 #define ldsw_code(p) ldsw_raw(p)
704 #define ldl_code(p) ldl_raw(p)
705 #define ldq_code(p) ldq_raw(p)
707 #define ldub_kernel(p) ldub_raw(p)
708 #define ldsb_kernel(p) ldsb_raw(p)
709 #define lduw_kernel(p) lduw_raw(p)
710 #define ldsw_kernel(p) ldsw_raw(p)
711 #define ldl_kernel(p) ldl_raw(p)
712 #define ldq_kernel(p) ldq_raw(p)
713 #define ldfl_kernel(p) ldfl_raw(p)
714 #define ldfq_kernel(p) ldfq_raw(p)
715 #define stb_kernel(p, v) stb_raw(p, v)
716 #define stw_kernel(p, v) stw_raw(p, v)
717 #define stl_kernel(p, v) stl_raw(p, v)
718 #define stq_kernel(p, v) stq_raw(p, v)
719 #define stfl_kernel(p, v) stfl_raw(p, v)
720 #define stfq_kernel(p, vt) stfq_raw(p, v)
722 #endif /* defined(CONFIG_USER_ONLY) */
724 /* page related stuff */
726 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
727 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
728 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
730 /* ??? These should be the larger of unsigned long and target_ulong. */
731 extern unsigned long qemu_real_host_page_size;
732 extern unsigned long qemu_host_page_bits;
733 extern unsigned long qemu_host_page_size;
734 extern unsigned long qemu_host_page_mask;
736 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
738 /* same as PROT_xxx */
739 #define PAGE_READ 0x0001
740 #define PAGE_WRITE 0x0002
741 #define PAGE_EXEC 0x0004
742 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
743 #define PAGE_VALID 0x0008
744 /* original state of the write flag (used when tracking self-modifying
745 code */
746 #define PAGE_WRITE_ORG 0x0010
747 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
748 /* FIXME: Code that sets/uses this is broken and needs to go away. */
749 #define PAGE_RESERVED 0x0020
750 #endif
752 #if defined(CONFIG_USER_ONLY)
753 void page_dump(FILE *f);
755 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
756 abi_ulong, unsigned long);
757 int walk_memory_regions(void *, walk_memory_regions_fn);
759 int page_get_flags(target_ulong address);
760 void page_set_flags(target_ulong start, target_ulong end, int flags);
761 int page_check_range(target_ulong start, target_ulong len, int flags);
762 #endif
764 CPUState *cpu_copy(CPUState *env);
765 CPUState *qemu_get_cpu(int cpu);
767 #define CPU_DUMP_CODE 0x00010000
769 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
770 int flags);
771 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
772 int flags);
774 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
775 GCC_FMT_ATTR(2, 3);
776 extern CPUState *first_cpu;
777 extern CPUState *cpu_single_env;
779 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
780 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
781 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
782 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
783 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
784 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
785 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
786 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
787 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
788 #define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
789 #define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
790 #define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
792 void cpu_interrupt(CPUState *s, int mask);
793 void cpu_reset_interrupt(CPUState *env, int mask);
795 void cpu_exit(CPUState *s);
797 int qemu_cpu_has_work(CPUState *env);
799 /* Breakpoint/watchpoint flags */
800 #define BP_MEM_READ 0x01
801 #define BP_MEM_WRITE 0x02
802 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
803 #define BP_STOP_BEFORE_ACCESS 0x04
804 #define BP_WATCHPOINT_HIT 0x08
805 #define BP_GDB 0x10
806 #define BP_CPU 0x20
808 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
809 CPUBreakpoint **breakpoint);
810 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
811 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
812 void cpu_breakpoint_remove_all(CPUState *env, int mask);
813 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
814 int flags, CPUWatchpoint **watchpoint);
815 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
816 target_ulong len, int flags);
817 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
818 void cpu_watchpoint_remove_all(CPUState *env, int mask);
820 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
821 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
822 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
824 void cpu_single_step(CPUState *env, int enabled);
825 void cpu_reset(CPUState *s);
826 int cpu_is_stopped(CPUState *env);
827 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
829 #define CPU_LOG_TB_OUT_ASM (1 << 0)
830 #define CPU_LOG_TB_IN_ASM (1 << 1)
831 #define CPU_LOG_TB_OP (1 << 2)
832 #define CPU_LOG_TB_OP_OPT (1 << 3)
833 #define CPU_LOG_INT (1 << 4)
834 #define CPU_LOG_EXEC (1 << 5)
835 #define CPU_LOG_PCALL (1 << 6)
836 #define CPU_LOG_IOPORT (1 << 7)
837 #define CPU_LOG_TB_CPU (1 << 8)
838 #define CPU_LOG_RESET (1 << 9)
840 /* define log items */
841 typedef struct CPULogItem {
842 int mask;
843 const char *name;
844 const char *help;
845 } CPULogItem;
847 extern const CPULogItem cpu_log_items[];
849 void cpu_set_log(int log_flags);
850 void cpu_set_log_filename(const char *filename);
851 int cpu_str_to_log_mask(const char *str);
853 #if !defined(CONFIG_USER_ONLY)
855 /* Return the physical page corresponding to a virtual one. Use it
856 only for debugging because no protection checks are done. Return -1
857 if no page found. */
858 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
860 /* memory API */
862 extern int phys_ram_fd;
863 extern ram_addr_t ram_size;
865 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
866 #define RAM_PREALLOC_MASK (1 << 0)
868 typedef struct RAMBlock {
869 uint8_t *host;
870 ram_addr_t offset;
871 ram_addr_t length;
872 uint32_t flags;
873 char idstr[256];
874 QLIST_ENTRY(RAMBlock) next;
875 #if defined(__linux__) && !defined(TARGET_S390X)
876 int fd;
877 #endif
878 } RAMBlock;
880 typedef struct RAMList {
881 uint8_t *phys_dirty;
882 QLIST_HEAD(ram, RAMBlock) blocks;
883 } RAMList;
884 extern RAMList ram_list;
886 extern const char *mem_path;
887 extern int mem_prealloc;
889 /* physical memory access */
891 /* MMIO pages are identified by a combination of an IO device index and
892 3 flags. The ROMD code stores the page ram offset in iotlb entry,
893 so only a limited number of ids are avaiable. */
895 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
897 /* Flags stored in the low bits of the TLB virtual address. These are
898 defined so that fast path ram access is all zeros. */
899 /* Zero if TLB entry is valid. */
900 #define TLB_INVALID_MASK (1 << 3)
901 /* Set if TLB entry references a clean RAM page. The iotlb entry will
902 contain the page physical address. */
903 #define TLB_NOTDIRTY (1 << 4)
904 /* Set if TLB entry is an IO callback. */
905 #define TLB_MMIO (1 << 5)
907 #define VGA_DIRTY_FLAG 0x01
908 #define CODE_DIRTY_FLAG 0x02
909 #define MIGRATION_DIRTY_FLAG 0x08
911 /* read dirty bit (return 0 or 1) */
912 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
914 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
917 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
919 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
922 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
923 int dirty_flags)
925 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
928 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
930 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
933 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
934 int dirty_flags)
936 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
939 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
940 int length,
941 int dirty_flags)
943 int i, mask, len;
944 uint8_t *p;
946 len = length >> TARGET_PAGE_BITS;
947 mask = ~dirty_flags;
948 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
949 for (i = 0; i < len; i++) {
950 p[i] &= mask;
954 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
955 int dirty_flags);
956 void cpu_tlb_update_dirty(CPUState *env);
958 int cpu_physical_memory_set_dirty_tracking(int enable);
960 int cpu_physical_memory_get_dirty_tracking(void);
962 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
963 target_phys_addr_t end_addr);
965 int cpu_physical_log_start(target_phys_addr_t start_addr,
966 ram_addr_t size);
968 int cpu_physical_log_stop(target_phys_addr_t start_addr,
969 ram_addr_t size);
971 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
972 #endif /* !CONFIG_USER_ONLY */
974 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
975 uint8_t *buf, int len, int is_write);
977 #endif /* CPU_ALL_H */