2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GNU GPL v2.
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
21 #define NFS (&env->vfp.standard_fp_status)
23 #define NEON_TYPE1(name, type) \
28 #ifdef HOST_WORDS_BIGENDIAN
29 #define NEON_TYPE2(name, type) \
35 #define NEON_TYPE4(name, type) \
44 #define NEON_TYPE2(name, type) \
50 #define NEON_TYPE4(name, type) \
60 NEON_TYPE4(s8
, int8_t)
61 NEON_TYPE4(u8
, uint8_t)
62 NEON_TYPE2(s16
, int16_t)
63 NEON_TYPE2(u16
, uint16_t)
64 NEON_TYPE1(s32
, int32_t)
65 NEON_TYPE1(u32
, uint32_t)
70 /* Copy from a uint32_t to a vector structure type. */
71 #define NEON_UNPACK(vtype, dest, val) do { \
80 /* Copy from a vector structure type to a uint32_t. */
81 #define NEON_PACK(vtype, dest, val) do { \
91 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
96 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
97 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
98 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
99 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
101 #define NEON_VOP_BODY(vtype, n) \
107 NEON_UNPACK(vtype, vsrc1, arg1); \
108 NEON_UNPACK(vtype, vsrc2, arg2); \
110 NEON_PACK(vtype, res, vdest); \
114 #define NEON_VOP(name, vtype, n) \
115 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
116 NEON_VOP_BODY(vtype, n)
118 /* Pairwise operations. */
119 /* For 32-bit elements each segment only contains a single element, so
120 the elementwise and pairwise operations are the same. */
122 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
123 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
125 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
126 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
127 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
128 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
130 #define NEON_POP(name, vtype, n) \
131 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
137 NEON_UNPACK(vtype, vsrc1, arg1); \
138 NEON_UNPACK(vtype, vsrc2, arg2); \
140 NEON_PACK(vtype, res, vdest); \
144 /* Unary operators. */
145 #define NEON_VOP1(name, vtype, n) \
146 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
150 NEON_UNPACK(vtype, vsrc1, arg); \
152 NEON_PACK(vtype, arg, vdest); \
157 #define NEON_USAT(dest, src1, src2, type) do { \
158 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
159 if (tmp != (type)tmp) { \
165 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
166 NEON_VOP(qadd_u8
, neon_u8
, 4)
168 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
169 NEON_VOP(qadd_u16
, neon_u16
, 2)
173 uint32_t HELPER(neon_qadd_u32
)(uint32_t a
, uint32_t b
)
175 uint32_t res
= a
+ b
;
183 uint64_t HELPER(neon_qadd_u64
)(uint64_t src1
, uint64_t src2
)
195 #define NEON_SSAT(dest, src1, src2, type) do { \
196 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
197 if (tmp != (type)tmp) { \
200 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
202 tmp = 1 << (sizeof(type) * 8 - 1); \
207 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
208 NEON_VOP(qadd_s8
, neon_s8
, 4)
210 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
211 NEON_VOP(qadd_s16
, neon_s16
, 2)
215 uint32_t HELPER(neon_qadd_s32
)(uint32_t a
, uint32_t b
)
217 uint32_t res
= a
+ b
;
218 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
220 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
225 uint64_t HELPER(neon_qadd_s64
)(uint64_t src1
, uint64_t src2
)
230 if (((res
^ src1
) & SIGNBIT64
) && !((src1
^ src2
) & SIGNBIT64
)) {
232 res
= ((int64_t)src1
>> 63) ^ ~SIGNBIT64
;
237 #define NEON_USAT(dest, src1, src2, type) do { \
238 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
239 if (tmp != (type)tmp) { \
245 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
246 NEON_VOP(qsub_u8
, neon_u8
, 4)
248 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
249 NEON_VOP(qsub_u16
, neon_u16
, 2)
253 uint32_t HELPER(neon_qsub_u32
)(uint32_t a
, uint32_t b
)
255 uint32_t res
= a
- b
;
263 uint64_t HELPER(neon_qsub_u64
)(uint64_t src1
, uint64_t src2
)
276 #define NEON_SSAT(dest, src1, src2, type) do { \
277 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
278 if (tmp != (type)tmp) { \
281 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
283 tmp = 1 << (sizeof(type) * 8 - 1); \
288 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
289 NEON_VOP(qsub_s8
, neon_s8
, 4)
291 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
292 NEON_VOP(qsub_s16
, neon_s16
, 2)
296 uint32_t HELPER(neon_qsub_s32
)(uint32_t a
, uint32_t b
)
298 uint32_t res
= a
- b
;
299 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
301 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
306 uint64_t HELPER(neon_qsub_s64
)(uint64_t src1
, uint64_t src2
)
311 if (((res
^ src1
) & SIGNBIT64
) && ((src1
^ src2
) & SIGNBIT64
)) {
313 res
= ((int64_t)src1
>> 63) ^ ~SIGNBIT64
;
318 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
319 NEON_VOP(hadd_s8
, neon_s8
, 4)
320 NEON_VOP(hadd_u8
, neon_u8
, 4)
321 NEON_VOP(hadd_s16
, neon_s16
, 2)
322 NEON_VOP(hadd_u16
, neon_u16
, 2)
325 int32_t HELPER(neon_hadd_s32
)(int32_t src1
, int32_t src2
)
329 dest
= (src1
>> 1) + (src2
>> 1);
335 uint32_t HELPER(neon_hadd_u32
)(uint32_t src1
, uint32_t src2
)
339 dest
= (src1
>> 1) + (src2
>> 1);
345 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
346 NEON_VOP(rhadd_s8
, neon_s8
, 4)
347 NEON_VOP(rhadd_u8
, neon_u8
, 4)
348 NEON_VOP(rhadd_s16
, neon_s16
, 2)
349 NEON_VOP(rhadd_u16
, neon_u16
, 2)
352 int32_t HELPER(neon_rhadd_s32
)(int32_t src1
, int32_t src2
)
356 dest
= (src1
>> 1) + (src2
>> 1);
357 if ((src1
| src2
) & 1)
362 uint32_t HELPER(neon_rhadd_u32
)(uint32_t src1
, uint32_t src2
)
366 dest
= (src1
>> 1) + (src2
>> 1);
367 if ((src1
| src2
) & 1)
372 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
373 NEON_VOP(hsub_s8
, neon_s8
, 4)
374 NEON_VOP(hsub_u8
, neon_u8
, 4)
375 NEON_VOP(hsub_s16
, neon_s16
, 2)
376 NEON_VOP(hsub_u16
, neon_u16
, 2)
379 int32_t HELPER(neon_hsub_s32
)(int32_t src1
, int32_t src2
)
383 dest
= (src1
>> 1) - (src2
>> 1);
384 if ((~src1
) & src2
& 1)
389 uint32_t HELPER(neon_hsub_u32
)(uint32_t src1
, uint32_t src2
)
393 dest
= (src1
>> 1) - (src2
>> 1);
394 if ((~src1
) & src2
& 1)
399 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
400 NEON_VOP(cgt_s8
, neon_s8
, 4)
401 NEON_VOP(cgt_u8
, neon_u8
, 4)
402 NEON_VOP(cgt_s16
, neon_s16
, 2)
403 NEON_VOP(cgt_u16
, neon_u16
, 2)
404 NEON_VOP(cgt_s32
, neon_s32
, 1)
405 NEON_VOP(cgt_u32
, neon_u32
, 1)
408 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
409 NEON_VOP(cge_s8
, neon_s8
, 4)
410 NEON_VOP(cge_u8
, neon_u8
, 4)
411 NEON_VOP(cge_s16
, neon_s16
, 2)
412 NEON_VOP(cge_u16
, neon_u16
, 2)
413 NEON_VOP(cge_s32
, neon_s32
, 1)
414 NEON_VOP(cge_u32
, neon_u32
, 1)
417 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
418 NEON_VOP(min_s8
, neon_s8
, 4)
419 NEON_VOP(min_u8
, neon_u8
, 4)
420 NEON_VOP(min_s16
, neon_s16
, 2)
421 NEON_VOP(min_u16
, neon_u16
, 2)
422 NEON_VOP(min_s32
, neon_s32
, 1)
423 NEON_VOP(min_u32
, neon_u32
, 1)
424 NEON_POP(pmin_s8
, neon_s8
, 4)
425 NEON_POP(pmin_u8
, neon_u8
, 4)
426 NEON_POP(pmin_s16
, neon_s16
, 2)
427 NEON_POP(pmin_u16
, neon_u16
, 2)
430 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
431 NEON_VOP(max_s8
, neon_s8
, 4)
432 NEON_VOP(max_u8
, neon_u8
, 4)
433 NEON_VOP(max_s16
, neon_s16
, 2)
434 NEON_VOP(max_u16
, neon_u16
, 2)
435 NEON_VOP(max_s32
, neon_s32
, 1)
436 NEON_VOP(max_u32
, neon_u32
, 1)
437 NEON_POP(pmax_s8
, neon_s8
, 4)
438 NEON_POP(pmax_u8
, neon_u8
, 4)
439 NEON_POP(pmax_s16
, neon_s16
, 2)
440 NEON_POP(pmax_u16
, neon_u16
, 2)
443 #define NEON_FN(dest, src1, src2) \
444 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
445 NEON_VOP(abd_s8
, neon_s8
, 4)
446 NEON_VOP(abd_u8
, neon_u8
, 4)
447 NEON_VOP(abd_s16
, neon_s16
, 2)
448 NEON_VOP(abd_u16
, neon_u16
, 2)
449 NEON_VOP(abd_s32
, neon_s32
, 1)
450 NEON_VOP(abd_u32
, neon_u32
, 1)
453 #define NEON_FN(dest, src1, src2) do { \
455 tmp = (int8_t)src2; \
456 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
457 tmp <= -(ssize_t)sizeof(src1) * 8) { \
459 } else if (tmp < 0) { \
460 dest = src1 >> -tmp; \
462 dest = src1 << tmp; \
464 NEON_VOP(shl_u8
, neon_u8
, 4)
465 NEON_VOP(shl_u16
, neon_u16
, 2)
466 NEON_VOP(shl_u32
, neon_u32
, 1)
469 uint64_t HELPER(neon_shl_u64
)(uint64_t val
, uint64_t shiftop
)
471 int8_t shift
= (int8_t)shiftop
;
472 if (shift
>= 64 || shift
<= -64) {
474 } else if (shift
< 0) {
482 #define NEON_FN(dest, src1, src2) do { \
484 tmp = (int8_t)src2; \
485 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
487 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
488 dest = src1 >> (sizeof(src1) * 8 - 1); \
489 } else if (tmp < 0) { \
490 dest = src1 >> -tmp; \
492 dest = src1 << tmp; \
494 NEON_VOP(shl_s8
, neon_s8
, 4)
495 NEON_VOP(shl_s16
, neon_s16
, 2)
496 NEON_VOP(shl_s32
, neon_s32
, 1)
499 uint64_t HELPER(neon_shl_s64
)(uint64_t valop
, uint64_t shiftop
)
501 int8_t shift
= (int8_t)shiftop
;
505 } else if (shift
<= -64) {
507 } else if (shift
< 0) {
515 #define NEON_FN(dest, src1, src2) do { \
517 tmp = (int8_t)src2; \
518 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
519 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
521 } else if (tmp < 0) { \
522 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
524 dest = src1 << tmp; \
526 NEON_VOP(rshl_s8
, neon_s8
, 4)
527 NEON_VOP(rshl_s16
, neon_s16
, 2)
530 /* The addition of the rounding constant may overflow, so we use an
531 * intermediate 64 bits accumulator. */
532 uint32_t HELPER(neon_rshl_s32
)(uint32_t valop
, uint32_t shiftop
)
535 int32_t val
= (int32_t)valop
;
536 int8_t shift
= (int8_t)shiftop
;
537 if ((shift
>= 32) || (shift
<= -32)) {
539 } else if (shift
< 0) {
540 int64_t big_dest
= ((int64_t)val
+ (1 << (-1 - shift
)));
541 dest
= big_dest
>> -shift
;
548 /* Handling addition overflow with 64 bits inputs values is more
549 * tricky than with 32 bits values. */
550 uint64_t HELPER(neon_rshl_s64
)(uint64_t valop
, uint64_t shiftop
)
552 int8_t shift
= (int8_t)shiftop
;
554 if ((shift
>= 64) || (shift
<= -64)) {
556 } else if (shift
< 0) {
557 val
>>= (-shift
- 1);
558 if (val
== INT64_MAX
) {
559 /* In this case, it means that the rounding constant is 1,
560 * and the addition would overflow. Return the actual
561 * result directly. */
562 val
= 0x4000000000000000LL
;
573 #define NEON_FN(dest, src1, src2) do { \
575 tmp = (int8_t)src2; \
576 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
577 tmp < -(ssize_t)sizeof(src1) * 8) { \
579 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
580 dest = src1 >> (-tmp - 1); \
581 } else if (tmp < 0) { \
582 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
584 dest = src1 << tmp; \
586 NEON_VOP(rshl_u8
, neon_u8
, 4)
587 NEON_VOP(rshl_u16
, neon_u16
, 2)
590 /* The addition of the rounding constant may overflow, so we use an
591 * intermediate 64 bits accumulator. */
592 uint32_t HELPER(neon_rshl_u32
)(uint32_t val
, uint32_t shiftop
)
595 int8_t shift
= (int8_t)shiftop
;
596 if (shift
>= 32 || shift
< -32) {
598 } else if (shift
== -32) {
600 } else if (shift
< 0) {
601 uint64_t big_dest
= ((uint64_t)val
+ (1 << (-1 - shift
)));
602 dest
= big_dest
>> -shift
;
609 /* Handling addition overflow with 64 bits inputs values is more
610 * tricky than with 32 bits values. */
611 uint64_t HELPER(neon_rshl_u64
)(uint64_t val
, uint64_t shiftop
)
613 int8_t shift
= (uint8_t)shiftop
;
614 if (shift
>= 64 || shift
< -64) {
616 } else if (shift
== -64) {
617 /* Rounding a 1-bit result just preserves that bit. */
619 } else if (shift
< 0) {
620 val
>>= (-shift
- 1);
621 if (val
== UINT64_MAX
) {
622 /* In this case, it means that the rounding constant is 1,
623 * and the addition would overflow. Return the actual
624 * result directly. */
625 val
= 0x8000000000000000ULL
;
636 #define NEON_FN(dest, src1, src2) do { \
638 tmp = (int8_t)src2; \
639 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
646 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
648 } else if (tmp < 0) { \
649 dest = src1 >> -tmp; \
651 dest = src1 << tmp; \
652 if ((dest >> tmp) != src1) { \
657 NEON_VOP(qshl_u8
, neon_u8
, 4)
658 NEON_VOP(qshl_u16
, neon_u16
, 2)
659 NEON_VOP(qshl_u32
, neon_u32
, 1)
662 uint64_t HELPER(neon_qshl_u64
)(uint64_t val
, uint64_t shiftop
)
664 int8_t shift
= (int8_t)shiftop
;
670 } else if (shift
<= -64) {
672 } else if (shift
< 0) {
677 if ((val
>> shift
) != tmp
) {
685 #define NEON_FN(dest, src1, src2) do { \
687 tmp = (int8_t)src2; \
688 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
691 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
698 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
700 } else if (tmp < 0) { \
701 dest = src1 >> -tmp; \
703 dest = src1 << tmp; \
704 if ((dest >> tmp) != src1) { \
706 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
712 NEON_VOP(qshl_s8
, neon_s8
, 4)
713 NEON_VOP(qshl_s16
, neon_s16
, 2)
714 NEON_VOP(qshl_s32
, neon_s32
, 1)
717 uint64_t HELPER(neon_qshl_s64
)(uint64_t valop
, uint64_t shiftop
)
719 int8_t shift
= (uint8_t)shiftop
;
724 val
= (val
>> 63) ^ ~SIGNBIT64
;
726 } else if (shift
<= -64) {
728 } else if (shift
< 0) {
733 if ((val
>> shift
) != tmp
) {
735 val
= (tmp
>> 63) ^ ~SIGNBIT64
;
741 #define NEON_FN(dest, src1, src2) do { \
742 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
747 tmp = (int8_t)src2; \
748 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
755 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
757 } else if (tmp < 0) { \
758 dest = src1 >> -tmp; \
760 dest = src1 << tmp; \
761 if ((dest >> tmp) != src1) { \
767 NEON_VOP(qshlu_s8
, neon_u8
, 4)
768 NEON_VOP(qshlu_s16
, neon_u16
, 2)
771 uint32_t HELPER(neon_qshlu_s32
)(uint32_t valop
, uint32_t shiftop
)
773 if ((int32_t)valop
< 0) {
777 return helper_neon_qshl_u32(valop
, shiftop
);
780 uint64_t HELPER(neon_qshlu_s64
)(uint64_t valop
, uint64_t shiftop
)
782 if ((int64_t)valop
< 0) {
786 return helper_neon_qshl_u64(valop
, shiftop
);
789 /* FIXME: This is wrong. */
790 #define NEON_FN(dest, src1, src2) do { \
792 tmp = (int8_t)src2; \
793 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
800 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
802 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
803 dest = src1 >> (sizeof(src1) * 8 - 1); \
804 } else if (tmp < 0) { \
805 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
807 dest = src1 << tmp; \
808 if ((dest >> tmp) != src1) { \
813 NEON_VOP(qrshl_u8
, neon_u8
, 4)
814 NEON_VOP(qrshl_u16
, neon_u16
, 2)
817 /* The addition of the rounding constant may overflow, so we use an
818 * intermediate 64 bits accumulator. */
819 uint32_t HELPER(neon_qrshl_u32
)(uint32_t val
, uint32_t shiftop
)
822 int8_t shift
= (int8_t)shiftop
;
830 } else if (shift
< -32) {
832 } else if (shift
== -32) {
834 } else if (shift
< 0) {
835 uint64_t big_dest
= ((uint64_t)val
+ (1 << (-1 - shift
)));
836 dest
= big_dest
>> -shift
;
839 if ((dest
>> shift
) != val
) {
847 /* Handling addition overflow with 64 bits inputs values is more
848 * tricky than with 32 bits values. */
849 uint64_t HELPER(neon_qrshl_u64
)(uint64_t val
, uint64_t shiftop
)
851 int8_t shift
= (int8_t)shiftop
;
857 } else if (shift
< -64) {
859 } else if (shift
== -64) {
861 } else if (shift
< 0) {
862 val
>>= (-shift
- 1);
863 if (val
== UINT64_MAX
) {
864 /* In this case, it means that the rounding constant is 1,
865 * and the addition would overflow. Return the actual
866 * result directly. */
867 val
= 0x8000000000000000ULL
;
875 if ((val
>> shift
) != tmp
) {
883 #define NEON_FN(dest, src1, src2) do { \
885 tmp = (int8_t)src2; \
886 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
889 dest = (1 << (sizeof(src1) * 8 - 1)); \
896 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
898 } else if (tmp < 0) { \
899 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
901 dest = src1 << tmp; \
902 if ((dest >> tmp) != src1) { \
904 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
910 NEON_VOP(qrshl_s8
, neon_s8
, 4)
911 NEON_VOP(qrshl_s16
, neon_s16
, 2)
914 /* The addition of the rounding constant may overflow, so we use an
915 * intermediate 64 bits accumulator. */
916 uint32_t HELPER(neon_qrshl_s32
)(uint32_t valop
, uint32_t shiftop
)
919 int32_t val
= (int32_t)valop
;
920 int8_t shift
= (int8_t)shiftop
;
924 dest
= (val
>> 31) ^ ~SIGNBIT
;
928 } else if (shift
<= -32) {
930 } else if (shift
< 0) {
931 int64_t big_dest
= ((int64_t)val
+ (1 << (-1 - shift
)));
932 dest
= big_dest
>> -shift
;
935 if ((dest
>> shift
) != val
) {
937 dest
= (val
>> 31) ^ ~SIGNBIT
;
943 /* Handling addition overflow with 64 bits inputs values is more
944 * tricky than with 32 bits values. */
945 uint64_t HELPER(neon_qrshl_s64
)(uint64_t valop
, uint64_t shiftop
)
947 int8_t shift
= (uint8_t)shiftop
;
953 val
= (val
>> 63) ^ ~SIGNBIT64
;
955 } else if (shift
<= -64) {
957 } else if (shift
< 0) {
958 val
>>= (-shift
- 1);
959 if (val
== INT64_MAX
) {
960 /* In this case, it means that the rounding constant is 1,
961 * and the addition would overflow. Return the actual
962 * result directly. */
963 val
= 0x4000000000000000ULL
;
971 if ((val
>> shift
) != tmp
) {
973 val
= (tmp
>> 63) ^ ~SIGNBIT64
;
979 uint32_t HELPER(neon_add_u8
)(uint32_t a
, uint32_t b
)
982 mask
= (a
^ b
) & 0x80808080u
;
985 return (a
+ b
) ^ mask
;
988 uint32_t HELPER(neon_add_u16
)(uint32_t a
, uint32_t b
)
991 mask
= (a
^ b
) & 0x80008000u
;
994 return (a
+ b
) ^ mask
;
997 #define NEON_FN(dest, src1, src2) dest = src1 + src2
998 NEON_POP(padd_u8
, neon_u8
, 4)
999 NEON_POP(padd_u16
, neon_u16
, 2)
1002 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1003 NEON_VOP(sub_u8
, neon_u8
, 4)
1004 NEON_VOP(sub_u16
, neon_u16
, 2)
1007 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1008 NEON_VOP(mul_u8
, neon_u8
, 4)
1009 NEON_VOP(mul_u16
, neon_u16
, 2)
1012 /* Polynomial multiplication is like integer multiplication except the
1013 partial products are XORed, not added. */
1014 uint32_t HELPER(neon_mul_p8
)(uint32_t op1
, uint32_t op2
)
1024 mask
|= (0xff << 8);
1025 if (op1
& (1 << 16))
1026 mask
|= (0xff << 16);
1027 if (op1
& (1 << 24))
1028 mask
|= (0xff << 24);
1029 result
^= op2
& mask
;
1030 op1
= (op1
>> 1) & 0x7f7f7f7f;
1031 op2
= (op2
<< 1) & 0xfefefefe;
1036 uint64_t HELPER(neon_mull_p8
)(uint32_t op1
, uint32_t op2
)
1038 uint64_t result
= 0;
1040 uint64_t op2ex
= op2
;
1041 op2ex
= (op2ex
& 0xff) |
1042 ((op2ex
& 0xff00) << 8) |
1043 ((op2ex
& 0xff0000) << 16) |
1044 ((op2ex
& 0xff000000) << 24);
1050 if (op1
& (1 << 8)) {
1051 mask
|= (0xffffU
<< 16);
1053 if (op1
& (1 << 16)) {
1054 mask
|= (0xffffULL
<< 32);
1056 if (op1
& (1 << 24)) {
1057 mask
|= (0xffffULL
<< 48);
1059 result
^= op2ex
& mask
;
1060 op1
= (op1
>> 1) & 0x7f7f7f7f;
1066 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1067 NEON_VOP(tst_u8
, neon_u8
, 4)
1068 NEON_VOP(tst_u16
, neon_u16
, 2)
1069 NEON_VOP(tst_u32
, neon_u32
, 1)
1072 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1073 NEON_VOP(ceq_u8
, neon_u8
, 4)
1074 NEON_VOP(ceq_u16
, neon_u16
, 2)
1075 NEON_VOP(ceq_u32
, neon_u32
, 1)
1078 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1079 NEON_VOP1(abs_s8
, neon_s8
, 4)
1080 NEON_VOP1(abs_s16
, neon_s16
, 2)
1083 /* Count Leading Sign/Zero Bits. */
1084 static inline int do_clz8(uint8_t x
)
1092 static inline int do_clz16(uint16_t x
)
1095 for (n
= 16; x
; n
--)
1100 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1101 NEON_VOP1(clz_u8
, neon_u8
, 4)
1104 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1105 NEON_VOP1(clz_u16
, neon_u16
, 2)
1108 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1109 NEON_VOP1(cls_s8
, neon_s8
, 4)
1112 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1113 NEON_VOP1(cls_s16
, neon_s16
, 2)
1116 uint32_t HELPER(neon_cls_s32
)(uint32_t x
)
1121 for (count
= 32; x
; count
--)
1127 uint32_t HELPER(neon_cnt_u8
)(uint32_t x
)
1129 x
= (x
& 0x55555555) + ((x
>> 1) & 0x55555555);
1130 x
= (x
& 0x33333333) + ((x
>> 2) & 0x33333333);
1131 x
= (x
& 0x0f0f0f0f) + ((x
>> 4) & 0x0f0f0f0f);
1135 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1136 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1137 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1139 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1144 int32_t old = tmp; \
1146 if ((int32_t)tmp < old) { \
1148 tmp = SIGNBIT - 1; \
1153 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1154 NEON_VOP(qdmulh_s16
, neon_s16
, 2)
1156 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1157 NEON_VOP(qrdmulh_s16
, neon_s16
, 2)
1159 #undef NEON_QDMULH16
1161 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1162 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1163 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1165 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1170 int64_t old = tmp; \
1171 tmp += (int64_t)1 << 31; \
1172 if ((int64_t)tmp < old) { \
1174 tmp = SIGNBIT64 - 1; \
1179 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1180 NEON_VOP(qdmulh_s32
, neon_s32
, 1)
1182 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1183 NEON_VOP(qrdmulh_s32
, neon_s32
, 1)
1185 #undef NEON_QDMULH32
1187 uint32_t HELPER(neon_narrow_u8
)(uint64_t x
)
1189 return (x
& 0xffu
) | ((x
>> 8) & 0xff00u
) | ((x
>> 16) & 0xff0000u
)
1190 | ((x
>> 24) & 0xff000000u
);
1193 uint32_t HELPER(neon_narrow_u16
)(uint64_t x
)
1195 return (x
& 0xffffu
) | ((x
>> 16) & 0xffff0000u
);
1198 uint32_t HELPER(neon_narrow_high_u8
)(uint64_t x
)
1200 return ((x
>> 8) & 0xff) | ((x
>> 16) & 0xff00)
1201 | ((x
>> 24) & 0xff0000) | ((x
>> 32) & 0xff000000);
1204 uint32_t HELPER(neon_narrow_high_u16
)(uint64_t x
)
1206 return ((x
>> 16) & 0xffff) | ((x
>> 32) & 0xffff0000);
1209 uint32_t HELPER(neon_narrow_round_high_u8
)(uint64_t x
)
1211 x
&= 0xff80ff80ff80ff80ull
;
1212 x
+= 0x0080008000800080ull
;
1213 return ((x
>> 8) & 0xff) | ((x
>> 16) & 0xff00)
1214 | ((x
>> 24) & 0xff0000) | ((x
>> 32) & 0xff000000);
1217 uint32_t HELPER(neon_narrow_round_high_u16
)(uint64_t x
)
1219 x
&= 0xffff8000ffff8000ull
;
1220 x
+= 0x0000800000008000ull
;
1221 return ((x
>> 16) & 0xffff) | ((x
>> 32) & 0xffff0000);
1224 uint32_t HELPER(neon_unarrow_sat8
)(uint64_t x
)
1240 res |= (uint32_t)d << (n / 2); \
1251 uint32_t HELPER(neon_narrow_sat_u8
)(uint64_t x
)
1264 res |= (uint32_t)d << (n / 2);
1274 uint32_t HELPER(neon_narrow_sat_s8
)(uint64_t x
)
1281 if (s != (int8_t)s) { \
1282 d = (s >> 15) ^ 0x7f; \
1287 res |= (uint32_t)d << (n / 2);
1297 uint32_t HELPER(neon_unarrow_sat16
)(uint64_t x
)
1302 if (low
& 0x80000000) {
1305 } else if (low
> 0xffff) {
1310 if (high
& 0x80000000) {
1313 } else if (high
> 0xffff) {
1317 return low
| (high
<< 16);
1320 uint32_t HELPER(neon_narrow_sat_u16
)(uint64_t x
)
1330 if (high
> 0xffff) {
1334 return low
| (high
<< 16);
1337 uint32_t HELPER(neon_narrow_sat_s16
)(uint64_t x
)
1342 if (low
!= (int16_t)low
) {
1343 low
= (low
>> 31) ^ 0x7fff;
1347 if (high
!= (int16_t)high
) {
1348 high
= (high
>> 31) ^ 0x7fff;
1351 return (uint16_t)low
| (high
<< 16);
1354 uint32_t HELPER(neon_unarrow_sat32
)(uint64_t x
)
1356 if (x
& 0x8000000000000000ull
) {
1360 if (x
> 0xffffffffu
) {
1367 uint32_t HELPER(neon_narrow_sat_u32
)(uint64_t x
)
1369 if (x
> 0xffffffffu
) {
1376 uint32_t HELPER(neon_narrow_sat_s32
)(uint64_t x
)
1378 if ((int64_t)x
!= (int32_t)x
) {
1380 return ((int64_t)x
>> 63) ^ 0x7fffffff;
1385 uint64_t HELPER(neon_widen_u8
)(uint32_t x
)
1390 tmp
= (uint8_t)(x
>> 8);
1392 tmp
= (uint8_t)(x
>> 16);
1394 tmp
= (uint8_t)(x
>> 24);
1399 uint64_t HELPER(neon_widen_s8
)(uint32_t x
)
1403 ret
= (uint16_t)(int8_t)x
;
1404 tmp
= (uint16_t)(int8_t)(x
>> 8);
1406 tmp
= (uint16_t)(int8_t)(x
>> 16);
1408 tmp
= (uint16_t)(int8_t)(x
>> 24);
1413 uint64_t HELPER(neon_widen_u16
)(uint32_t x
)
1415 uint64_t high
= (uint16_t)(x
>> 16);
1416 return ((uint16_t)x
) | (high
<< 32);
1419 uint64_t HELPER(neon_widen_s16
)(uint32_t x
)
1421 uint64_t high
= (int16_t)(x
>> 16);
1422 return ((uint32_t)(int16_t)x
) | (high
<< 32);
1425 uint64_t HELPER(neon_addl_u16
)(uint64_t a
, uint64_t b
)
1428 mask
= (a
^ b
) & 0x8000800080008000ull
;
1429 a
&= ~0x8000800080008000ull
;
1430 b
&= ~0x8000800080008000ull
;
1431 return (a
+ b
) ^ mask
;
1434 uint64_t HELPER(neon_addl_u32
)(uint64_t a
, uint64_t b
)
1437 mask
= (a
^ b
) & 0x8000000080000000ull
;
1438 a
&= ~0x8000000080000000ull
;
1439 b
&= ~0x8000000080000000ull
;
1440 return (a
+ b
) ^ mask
;
1443 uint64_t HELPER(neon_paddl_u16
)(uint64_t a
, uint64_t b
)
1448 tmp
= a
& 0x0000ffff0000ffffull
;
1449 tmp
+= (a
>> 16) & 0x0000ffff0000ffffull
;
1450 tmp2
= b
& 0xffff0000ffff0000ull
;
1451 tmp2
+= (b
<< 16) & 0xffff0000ffff0000ull
;
1452 return ( tmp
& 0xffff)
1453 | ((tmp
>> 16) & 0xffff0000ull
)
1454 | ((tmp2
<< 16) & 0xffff00000000ull
)
1455 | ( tmp2
& 0xffff000000000000ull
);
1458 uint64_t HELPER(neon_paddl_u32
)(uint64_t a
, uint64_t b
)
1460 uint32_t low
= a
+ (a
>> 32);
1461 uint32_t high
= b
+ (b
>> 32);
1462 return low
+ ((uint64_t)high
<< 32);
1465 uint64_t HELPER(neon_subl_u16
)(uint64_t a
, uint64_t b
)
1468 mask
= (a
^ ~b
) & 0x8000800080008000ull
;
1469 a
|= 0x8000800080008000ull
;
1470 b
&= ~0x8000800080008000ull
;
1471 return (a
- b
) ^ mask
;
1474 uint64_t HELPER(neon_subl_u32
)(uint64_t a
, uint64_t b
)
1477 mask
= (a
^ ~b
) & 0x8000000080000000ull
;
1478 a
|= 0x8000000080000000ull
;
1479 b
&= ~0x8000000080000000ull
;
1480 return (a
- b
) ^ mask
;
1483 uint64_t HELPER(neon_addl_saturate_s32
)(uint64_t a
, uint64_t b
)
1491 if (((low
^ x
) & SIGNBIT
) && !((x
^ y
) & SIGNBIT
)) {
1493 low
= ((int32_t)x
>> 31) ^ ~SIGNBIT
;
1498 if (((high
^ x
) & SIGNBIT
) && !((x
^ y
) & SIGNBIT
)) {
1500 high
= ((int32_t)x
>> 31) ^ ~SIGNBIT
;
1502 return low
| ((uint64_t)high
<< 32);
1505 uint64_t HELPER(neon_addl_saturate_s64
)(uint64_t a
, uint64_t b
)
1510 if (((result
^ a
) & SIGNBIT64
) && !((a
^ b
) & SIGNBIT64
)) {
1512 result
= ((int64_t)a
>> 63) ^ ~SIGNBIT64
;
1517 /* We have to do the arithmetic in a larger type than
1518 * the input type, because for example with a signed 32 bit
1519 * op the absolute difference can overflow a signed 32 bit value.
1521 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1522 arithtype tmp_x = (intype)(x); \
1523 arithtype tmp_y = (intype)(y); \
1524 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1527 uint64_t HELPER(neon_abdl_u16
)(uint32_t a
, uint32_t b
)
1531 DO_ABD(result
, a
, b
, uint8_t, uint32_t);
1532 DO_ABD(tmp
, a
>> 8, b
>> 8, uint8_t, uint32_t);
1533 result
|= tmp
<< 16;
1534 DO_ABD(tmp
, a
>> 16, b
>> 16, uint8_t, uint32_t);
1535 result
|= tmp
<< 32;
1536 DO_ABD(tmp
, a
>> 24, b
>> 24, uint8_t, uint32_t);
1537 result
|= tmp
<< 48;
1541 uint64_t HELPER(neon_abdl_s16
)(uint32_t a
, uint32_t b
)
1545 DO_ABD(result
, a
, b
, int8_t, int32_t);
1546 DO_ABD(tmp
, a
>> 8, b
>> 8, int8_t, int32_t);
1547 result
|= tmp
<< 16;
1548 DO_ABD(tmp
, a
>> 16, b
>> 16, int8_t, int32_t);
1549 result
|= tmp
<< 32;
1550 DO_ABD(tmp
, a
>> 24, b
>> 24, int8_t, int32_t);
1551 result
|= tmp
<< 48;
1555 uint64_t HELPER(neon_abdl_u32
)(uint32_t a
, uint32_t b
)
1559 DO_ABD(result
, a
, b
, uint16_t, uint32_t);
1560 DO_ABD(tmp
, a
>> 16, b
>> 16, uint16_t, uint32_t);
1561 return result
| (tmp
<< 32);
1564 uint64_t HELPER(neon_abdl_s32
)(uint32_t a
, uint32_t b
)
1568 DO_ABD(result
, a
, b
, int16_t, int32_t);
1569 DO_ABD(tmp
, a
>> 16, b
>> 16, int16_t, int32_t);
1570 return result
| (tmp
<< 32);
1573 uint64_t HELPER(neon_abdl_u64
)(uint32_t a
, uint32_t b
)
1576 DO_ABD(result
, a
, b
, uint32_t, uint64_t);
1580 uint64_t HELPER(neon_abdl_s64
)(uint32_t a
, uint32_t b
)
1583 DO_ABD(result
, a
, b
, int32_t, int64_t);
1588 /* Widening multiply. Named type is the source type. */
1589 #define DO_MULL(dest, x, y, type1, type2) do { \
1592 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1595 uint64_t HELPER(neon_mull_u8
)(uint32_t a
, uint32_t b
)
1600 DO_MULL(result
, a
, b
, uint8_t, uint16_t);
1601 DO_MULL(tmp
, a
>> 8, b
>> 8, uint8_t, uint16_t);
1602 result
|= tmp
<< 16;
1603 DO_MULL(tmp
, a
>> 16, b
>> 16, uint8_t, uint16_t);
1604 result
|= tmp
<< 32;
1605 DO_MULL(tmp
, a
>> 24, b
>> 24, uint8_t, uint16_t);
1606 result
|= tmp
<< 48;
1610 uint64_t HELPER(neon_mull_s8
)(uint32_t a
, uint32_t b
)
1615 DO_MULL(result
, a
, b
, int8_t, uint16_t);
1616 DO_MULL(tmp
, a
>> 8, b
>> 8, int8_t, uint16_t);
1617 result
|= tmp
<< 16;
1618 DO_MULL(tmp
, a
>> 16, b
>> 16, int8_t, uint16_t);
1619 result
|= tmp
<< 32;
1620 DO_MULL(tmp
, a
>> 24, b
>> 24, int8_t, uint16_t);
1621 result
|= tmp
<< 48;
1625 uint64_t HELPER(neon_mull_u16
)(uint32_t a
, uint32_t b
)
1630 DO_MULL(result
, a
, b
, uint16_t, uint32_t);
1631 DO_MULL(tmp
, a
>> 16, b
>> 16, uint16_t, uint32_t);
1632 return result
| (tmp
<< 32);
1635 uint64_t HELPER(neon_mull_s16
)(uint32_t a
, uint32_t b
)
1640 DO_MULL(result
, a
, b
, int16_t, uint32_t);
1641 DO_MULL(tmp
, a
>> 16, b
>> 16, int16_t, uint32_t);
1642 return result
| (tmp
<< 32);
1645 uint64_t HELPER(neon_negl_u16
)(uint64_t x
)
1649 result
= (uint16_t)-x
;
1651 result
|= (uint64_t)tmp
<< 16;
1653 result
|= (uint64_t)tmp
<< 32;
1655 result
|= (uint64_t)tmp
<< 48;
1659 uint64_t HELPER(neon_negl_u32
)(uint64_t x
)
1662 uint32_t high
= -(x
>> 32);
1663 return low
| ((uint64_t)high
<< 32);
1666 /* FIXME: There should be a native op for this. */
1667 uint64_t HELPER(neon_negl_u64
)(uint64_t x
)
1672 /* Saturnating sign manuipulation. */
1673 /* ??? Make these use NEON_VOP1 */
1674 #define DO_QABS8(x) do { \
1675 if (x == (int8_t)0x80) { \
1678 } else if (x < 0) { \
1681 uint32_t HELPER(neon_qabs_s8
)(uint32_t x
)
1684 NEON_UNPACK(neon_s8
, vec
, x
);
1689 NEON_PACK(neon_s8
, x
, vec
);
1694 #define DO_QNEG8(x) do { \
1695 if (x == (int8_t)0x80) { \
1701 uint32_t HELPER(neon_qneg_s8
)(uint32_t x
)
1704 NEON_UNPACK(neon_s8
, vec
, x
);
1709 NEON_PACK(neon_s8
, x
, vec
);
1714 #define DO_QABS16(x) do { \
1715 if (x == (int16_t)0x8000) { \
1718 } else if (x < 0) { \
1721 uint32_t HELPER(neon_qabs_s16
)(uint32_t x
)
1724 NEON_UNPACK(neon_s16
, vec
, x
);
1727 NEON_PACK(neon_s16
, x
, vec
);
1732 #define DO_QNEG16(x) do { \
1733 if (x == (int16_t)0x8000) { \
1739 uint32_t HELPER(neon_qneg_s16
)(uint32_t x
)
1742 NEON_UNPACK(neon_s16
, vec
, x
);
1745 NEON_PACK(neon_s16
, x
, vec
);
1750 uint32_t HELPER(neon_qabs_s32
)(uint32_t x
)
1755 } else if ((int32_t)x
< 0) {
1761 uint32_t HELPER(neon_qneg_s32
)(uint32_t x
)
1772 /* NEON Float helpers. */
1773 uint32_t HELPER(neon_min_f32
)(uint32_t a
, uint32_t b
)
1775 return float32_val(float32_min(make_float32(a
), make_float32(b
), NFS
));
1778 uint32_t HELPER(neon_max_f32
)(uint32_t a
, uint32_t b
)
1780 return float32_val(float32_max(make_float32(a
), make_float32(b
), NFS
));
1783 uint32_t HELPER(neon_abd_f32
)(uint32_t a
, uint32_t b
)
1785 float32 f0
= make_float32(a
);
1786 float32 f1
= make_float32(b
);
1787 return float32_val(float32_abs(float32_sub(f0
, f1
, NFS
)));
1790 uint32_t HELPER(neon_add_f32
)(uint32_t a
, uint32_t b
)
1792 return float32_val(float32_add(make_float32(a
), make_float32(b
), NFS
));
1795 uint32_t HELPER(neon_sub_f32
)(uint32_t a
, uint32_t b
)
1797 return float32_val(float32_sub(make_float32(a
), make_float32(b
), NFS
));
1800 uint32_t HELPER(neon_mul_f32
)(uint32_t a
, uint32_t b
)
1802 return float32_val(float32_mul(make_float32(a
), make_float32(b
), NFS
));
1805 /* Floating point comparisons produce an integer result. */
1806 #define NEON_VOP_FCMP(name, ok) \
1807 uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1809 switch (float32_compare_quiet(make_float32(a), make_float32(b), NFS)) { \
1811 default: return 0; \
1815 NEON_VOP_FCMP(ceq_f32
, case float_relation_equal
:)
1816 NEON_VOP_FCMP(cge_f32
, case float_relation_equal
: case float_relation_greater
:)
1817 NEON_VOP_FCMP(cgt_f32
, case float_relation_greater
:)
1819 uint32_t HELPER(neon_acge_f32
)(uint32_t a
, uint32_t b
)
1821 float32 f0
= float32_abs(make_float32(a
));
1822 float32 f1
= float32_abs(make_float32(b
));
1823 switch (float32_compare_quiet(f0
, f1
, NFS
)) {
1824 case float_relation_equal
:
1825 case float_relation_greater
:
1832 uint32_t HELPER(neon_acgt_f32
)(uint32_t a
, uint32_t b
)
1834 float32 f0
= float32_abs(make_float32(a
));
1835 float32 f1
= float32_abs(make_float32(b
));
1836 if (float32_compare_quiet(f0
, f1
, NFS
) == float_relation_greater
) {
1842 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1844 void HELPER(neon_qunzip8
)(uint32_t rd
, uint32_t rm
)
1846 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1847 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1848 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1849 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1850 uint64_t d0
= ELEM(zd0
, 0, 8) | (ELEM(zd0
, 2, 8) << 8)
1851 | (ELEM(zd0
, 4, 8) << 16) | (ELEM(zd0
, 6, 8) << 24)
1852 | (ELEM(zd1
, 0, 8) << 32) | (ELEM(zd1
, 2, 8) << 40)
1853 | (ELEM(zd1
, 4, 8) << 48) | (ELEM(zd1
, 6, 8) << 56);
1854 uint64_t d1
= ELEM(zm0
, 0, 8) | (ELEM(zm0
, 2, 8) << 8)
1855 | (ELEM(zm0
, 4, 8) << 16) | (ELEM(zm0
, 6, 8) << 24)
1856 | (ELEM(zm1
, 0, 8) << 32) | (ELEM(zm1
, 2, 8) << 40)
1857 | (ELEM(zm1
, 4, 8) << 48) | (ELEM(zm1
, 6, 8) << 56);
1858 uint64_t m0
= ELEM(zd0
, 1, 8) | (ELEM(zd0
, 3, 8) << 8)
1859 | (ELEM(zd0
, 5, 8) << 16) | (ELEM(zd0
, 7, 8) << 24)
1860 | (ELEM(zd1
, 1, 8) << 32) | (ELEM(zd1
, 3, 8) << 40)
1861 | (ELEM(zd1
, 5, 8) << 48) | (ELEM(zd1
, 7, 8) << 56);
1862 uint64_t m1
= ELEM(zm0
, 1, 8) | (ELEM(zm0
, 3, 8) << 8)
1863 | (ELEM(zm0
, 5, 8) << 16) | (ELEM(zm0
, 7, 8) << 24)
1864 | (ELEM(zm1
, 1, 8) << 32) | (ELEM(zm1
, 3, 8) << 40)
1865 | (ELEM(zm1
, 5, 8) << 48) | (ELEM(zm1
, 7, 8) << 56);
1866 env
->vfp
.regs
[rm
] = make_float64(m0
);
1867 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1868 env
->vfp
.regs
[rd
] = make_float64(d0
);
1869 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
1872 void HELPER(neon_qunzip16
)(uint32_t rd
, uint32_t rm
)
1874 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1875 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1876 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1877 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1878 uint64_t d0
= ELEM(zd0
, 0, 16) | (ELEM(zd0
, 2, 16) << 16)
1879 | (ELEM(zd1
, 0, 16) << 32) | (ELEM(zd1
, 2, 16) << 48);
1880 uint64_t d1
= ELEM(zm0
, 0, 16) | (ELEM(zm0
, 2, 16) << 16)
1881 | (ELEM(zm1
, 0, 16) << 32) | (ELEM(zm1
, 2, 16) << 48);
1882 uint64_t m0
= ELEM(zd0
, 1, 16) | (ELEM(zd0
, 3, 16) << 16)
1883 | (ELEM(zd1
, 1, 16) << 32) | (ELEM(zd1
, 3, 16) << 48);
1884 uint64_t m1
= ELEM(zm0
, 1, 16) | (ELEM(zm0
, 3, 16) << 16)
1885 | (ELEM(zm1
, 1, 16) << 32) | (ELEM(zm1
, 3, 16) << 48);
1886 env
->vfp
.regs
[rm
] = make_float64(m0
);
1887 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1888 env
->vfp
.regs
[rd
] = make_float64(d0
);
1889 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
1892 void HELPER(neon_qunzip32
)(uint32_t rd
, uint32_t rm
)
1894 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1895 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1896 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1897 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1898 uint64_t d0
= ELEM(zd0
, 0, 32) | (ELEM(zd1
, 0, 32) << 32);
1899 uint64_t d1
= ELEM(zm0
, 0, 32) | (ELEM(zm1
, 0, 32) << 32);
1900 uint64_t m0
= ELEM(zd0
, 1, 32) | (ELEM(zd1
, 1, 32) << 32);
1901 uint64_t m1
= ELEM(zm0
, 1, 32) | (ELEM(zm1
, 1, 32) << 32);
1902 env
->vfp
.regs
[rm
] = make_float64(m0
);
1903 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1904 env
->vfp
.regs
[rd
] = make_float64(d0
);
1905 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
1908 void HELPER(neon_unzip8
)(uint32_t rd
, uint32_t rm
)
1910 uint64_t zm
= float64_val(env
->vfp
.regs
[rm
]);
1911 uint64_t zd
= float64_val(env
->vfp
.regs
[rd
]);
1912 uint64_t d0
= ELEM(zd
, 0, 8) | (ELEM(zd
, 2, 8) << 8)
1913 | (ELEM(zd
, 4, 8) << 16) | (ELEM(zd
, 6, 8) << 24)
1914 | (ELEM(zm
, 0, 8) << 32) | (ELEM(zm
, 2, 8) << 40)
1915 | (ELEM(zm
, 4, 8) << 48) | (ELEM(zm
, 6, 8) << 56);
1916 uint64_t m0
= ELEM(zd
, 1, 8) | (ELEM(zd
, 3, 8) << 8)
1917 | (ELEM(zd
, 5, 8) << 16) | (ELEM(zd
, 7, 8) << 24)
1918 | (ELEM(zm
, 1, 8) << 32) | (ELEM(zm
, 3, 8) << 40)
1919 | (ELEM(zm
, 5, 8) << 48) | (ELEM(zm
, 7, 8) << 56);
1920 env
->vfp
.regs
[rm
] = make_float64(m0
);
1921 env
->vfp
.regs
[rd
] = make_float64(d0
);
1924 void HELPER(neon_unzip16
)(uint32_t rd
, uint32_t rm
)
1926 uint64_t zm
= float64_val(env
->vfp
.regs
[rm
]);
1927 uint64_t zd
= float64_val(env
->vfp
.regs
[rd
]);
1928 uint64_t d0
= ELEM(zd
, 0, 16) | (ELEM(zd
, 2, 16) << 16)
1929 | (ELEM(zm
, 0, 16) << 32) | (ELEM(zm
, 2, 16) << 48);
1930 uint64_t m0
= ELEM(zd
, 1, 16) | (ELEM(zd
, 3, 16) << 16)
1931 | (ELEM(zm
, 1, 16) << 32) | (ELEM(zm
, 3, 16) << 48);
1932 env
->vfp
.regs
[rm
] = make_float64(m0
);
1933 env
->vfp
.regs
[rd
] = make_float64(d0
);
1936 void HELPER(neon_qzip8
)(uint32_t rd
, uint32_t rm
)
1938 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1939 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1940 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1941 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1942 uint64_t d0
= ELEM(zd0
, 0, 8) | (ELEM(zm0
, 0, 8) << 8)
1943 | (ELEM(zd0
, 1, 8) << 16) | (ELEM(zm0
, 1, 8) << 24)
1944 | (ELEM(zd0
, 2, 8) << 32) | (ELEM(zm0
, 2, 8) << 40)
1945 | (ELEM(zd0
, 3, 8) << 48) | (ELEM(zm0
, 3, 8) << 56);
1946 uint64_t d1
= ELEM(zd0
, 4, 8) | (ELEM(zm0
, 4, 8) << 8)
1947 | (ELEM(zd0
, 5, 8) << 16) | (ELEM(zm0
, 5, 8) << 24)
1948 | (ELEM(zd0
, 6, 8) << 32) | (ELEM(zm0
, 6, 8) << 40)
1949 | (ELEM(zd0
, 7, 8) << 48) | (ELEM(zm0
, 7, 8) << 56);
1950 uint64_t m0
= ELEM(zd1
, 0, 8) | (ELEM(zm1
, 0, 8) << 8)
1951 | (ELEM(zd1
, 1, 8) << 16) | (ELEM(zm1
, 1, 8) << 24)
1952 | (ELEM(zd1
, 2, 8) << 32) | (ELEM(zm1
, 2, 8) << 40)
1953 | (ELEM(zd1
, 3, 8) << 48) | (ELEM(zm1
, 3, 8) << 56);
1954 uint64_t m1
= ELEM(zd1
, 4, 8) | (ELEM(zm1
, 4, 8) << 8)
1955 | (ELEM(zd1
, 5, 8) << 16) | (ELEM(zm1
, 5, 8) << 24)
1956 | (ELEM(zd1
, 6, 8) << 32) | (ELEM(zm1
, 6, 8) << 40)
1957 | (ELEM(zd1
, 7, 8) << 48) | (ELEM(zm1
, 7, 8) << 56);
1958 env
->vfp
.regs
[rm
] = make_float64(m0
);
1959 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1960 env
->vfp
.regs
[rd
] = make_float64(d0
);
1961 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
1964 void HELPER(neon_qzip16
)(uint32_t rd
, uint32_t rm
)
1966 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1967 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1968 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1969 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1970 uint64_t d0
= ELEM(zd0
, 0, 16) | (ELEM(zm0
, 0, 16) << 16)
1971 | (ELEM(zd0
, 1, 16) << 32) | (ELEM(zm0
, 1, 16) << 48);
1972 uint64_t d1
= ELEM(zd0
, 2, 16) | (ELEM(zm0
, 2, 16) << 16)
1973 | (ELEM(zd0
, 3, 16) << 32) | (ELEM(zm0
, 3, 16) << 48);
1974 uint64_t m0
= ELEM(zd1
, 0, 16) | (ELEM(zm1
, 0, 16) << 16)
1975 | (ELEM(zd1
, 1, 16) << 32) | (ELEM(zm1
, 1, 16) << 48);
1976 uint64_t m1
= ELEM(zd1
, 2, 16) | (ELEM(zm1
, 2, 16) << 16)
1977 | (ELEM(zd1
, 3, 16) << 32) | (ELEM(zm1
, 3, 16) << 48);
1978 env
->vfp
.regs
[rm
] = make_float64(m0
);
1979 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1980 env
->vfp
.regs
[rd
] = make_float64(d0
);
1981 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
1984 void HELPER(neon_qzip32
)(uint32_t rd
, uint32_t rm
)
1986 uint64_t zm0
= float64_val(env
->vfp
.regs
[rm
]);
1987 uint64_t zm1
= float64_val(env
->vfp
.regs
[rm
+ 1]);
1988 uint64_t zd0
= float64_val(env
->vfp
.regs
[rd
]);
1989 uint64_t zd1
= float64_val(env
->vfp
.regs
[rd
+ 1]);
1990 uint64_t d0
= ELEM(zd0
, 0, 32) | (ELEM(zm0
, 0, 32) << 32);
1991 uint64_t d1
= ELEM(zd0
, 1, 32) | (ELEM(zm0
, 1, 32) << 32);
1992 uint64_t m0
= ELEM(zd1
, 0, 32) | (ELEM(zm1
, 0, 32) << 32);
1993 uint64_t m1
= ELEM(zd1
, 1, 32) | (ELEM(zm1
, 1, 32) << 32);
1994 env
->vfp
.regs
[rm
] = make_float64(m0
);
1995 env
->vfp
.regs
[rm
+ 1] = make_float64(m1
);
1996 env
->vfp
.regs
[rd
] = make_float64(d0
);
1997 env
->vfp
.regs
[rd
+ 1] = make_float64(d1
);
2000 void HELPER(neon_zip8
)(uint32_t rd
, uint32_t rm
)
2002 uint64_t zm
= float64_val(env
->vfp
.regs
[rm
]);
2003 uint64_t zd
= float64_val(env
->vfp
.regs
[rd
]);
2004 uint64_t d0
= ELEM(zd
, 0, 8) | (ELEM(zm
, 0, 8) << 8)
2005 | (ELEM(zd
, 1, 8) << 16) | (ELEM(zm
, 1, 8) << 24)
2006 | (ELEM(zd
, 2, 8) << 32) | (ELEM(zm
, 2, 8) << 40)
2007 | (ELEM(zd
, 3, 8) << 48) | (ELEM(zm
, 3, 8) << 56);
2008 uint64_t m0
= ELEM(zd
, 4, 8) | (ELEM(zm
, 4, 8) << 8)
2009 | (ELEM(zd
, 5, 8) << 16) | (ELEM(zm
, 5, 8) << 24)
2010 | (ELEM(zd
, 6, 8) << 32) | (ELEM(zm
, 6, 8) << 40)
2011 | (ELEM(zd
, 7, 8) << 48) | (ELEM(zm
, 7, 8) << 56);
2012 env
->vfp
.regs
[rm
] = make_float64(m0
);
2013 env
->vfp
.regs
[rd
] = make_float64(d0
);
2016 void HELPER(neon_zip16
)(uint32_t rd
, uint32_t rm
)
2018 uint64_t zm
= float64_val(env
->vfp
.regs
[rm
]);
2019 uint64_t zd
= float64_val(env
->vfp
.regs
[rd
]);
2020 uint64_t d0
= ELEM(zd
, 0, 16) | (ELEM(zm
, 0, 16) << 16)
2021 | (ELEM(zd
, 1, 16) << 32) | (ELEM(zm
, 1, 16) << 48);
2022 uint64_t m0
= ELEM(zd
, 2, 16) | (ELEM(zm
, 2, 16) << 16)
2023 | (ELEM(zd
, 3, 16) << 32) | (ELEM(zm
, 3, 16) << 48);
2024 env
->vfp
.regs
[rm
] = make_float64(m0
);
2025 env
->vfp
.regs
[rd
] = make_float64(d0
);