target/riscv/cpu: set cpu->cfg in register_cpu_props()
[qemu.git] / hw / nvme / ctrl.c
blobf25cc2c235e9fa062489dc41a0ef855af04899e9
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,detached=<true|false[optional]>
48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54 * For example:
55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
58 * The PMR will use BAR 4/5 exclusively.
60 * To place controller(s) and namespace(s) to a subsystem, then provide
61 * nvme-subsys device as above.
63 * nvme subsystem device parameters
64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 * - `nqn`
66 * This parameter provides the `<nqn_id>` part of the string
67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68 * of subsystem controllers. Note that `<nqn_id>` should be unique per
69 * subsystem, but this is not enforced by QEMU. If not specified, it will
70 * default to the value of the `id` parameter (`<subsys_id>`).
72 * nvme device parameters
73 * ~~~~~~~~~~~~~~~~~~~~~~
74 * - `subsys`
75 * Specifying this parameter attaches the controller to the subsystem and
76 * the SUBNQN field in the controller will report the NQN of the subsystem
77 * device. This also enables multi controller capability represented in
78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
79 * Namespace Sharing Capabilities).
81 * - `aerl`
82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83 * of concurrently outstanding Asynchronous Event Request commands support
84 * by the controller. This is a 0's based value.
86 * - `aer_max_queued`
87 * This is the maximum number of events that the device will enqueue for
88 * completion when there are no outstanding AERs. When the maximum number of
89 * enqueued events are reached, subsequent events will be dropped.
91 * - `mdts`
92 * Indicates the maximum data transfer size for a command that transfers data
93 * between host-accessible memory and the controller. The value is specified
94 * as a power of two (2^n) and is in units of the minimum memory page size
95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
97 * - `vsl`
98 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
99 * this value is specified as a power of two (2^n) and is in units of the
100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101 * KiB).
103 * - `zoned.zasl`
104 * Indicates the maximum data transfer size for the Zone Append command. Like
105 * `mdts`, the value is specified as a power of two (2^n) and is in units of
106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107 * defaulting to the value of `mdts`).
109 * - `zoned.auto_transition`
110 * Indicates if zones in zone state implicitly opened can be automatically
111 * transitioned to zone state closed for resource management purposes.
112 * Defaults to 'on'.
114 * - `sriov_max_vfs`
115 * Indicates the maximum number of PCIe virtual functions supported
116 * by the controller. The default value is 0. Specifying a non-zero value
117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118 * Virtual function controllers will not report SR-IOV capability.
120 * NOTE: Single Root I/O Virtualization support is experimental.
121 * All the related parameters may be subject to change.
123 * - `sriov_vq_flexible`
124 * Indicates the total number of flexible queue resources assignable to all
125 * the secondary controllers. Implicitly sets the number of primary
126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
128 * - `sriov_vi_flexible`
129 * Indicates the total number of flexible interrupt resources assignable to
130 * all the secondary controllers. Implicitly sets the number of primary
131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
133 * - `sriov_max_vi_per_vf`
134 * Indicates the maximum number of virtual interrupt resources assignable
135 * to a secondary controller. The default 0 resolves to
136 * `(sriov_vi_flexible / sriov_max_vfs)`.
138 * - `sriov_max_vq_per_vf`
139 * Indicates the maximum number of virtual queue resources assignable to
140 * a secondary controller. The default 0 resolves to
141 * `(sriov_vq_flexible / sriov_max_vfs)`.
143 * nvme namespace device parameters
144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145 * - `shared`
146 * When the parent nvme device (as defined explicitly by the 'bus' parameter
147 * or implicitly by the most recently defined NvmeBus) is linked to an
148 * nvme-subsys device, the namespace will be attached to all controllers in
149 * the subsystem. If set to 'off' (the default), the namespace will remain a
150 * private namespace and may only be attached to a single controller at a
151 * time.
153 * - `detached`
154 * This parameter is only valid together with the `subsys` parameter. If left
155 * at the default value (`false/off`), the namespace will be attached to all
156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157 * namespace will be available in the subsystem but not attached to any
158 * controllers.
160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
161 * In this case, the following namespace properties are available to configure
162 * zoned operation:
163 * zoned.zone_size=<zone size in bytes, default: 128MiB>
164 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167 * The value 0 (default) forces zone capacity to be the same as zone
168 * size. The value of this property may not exceed zone size.
170 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
171 * This value needs to be specified in 64B units. If it is zero,
172 * namespace(s) will not support zone descriptor extensions.
174 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
175 * The default value means there is no limit to the number of
176 * concurrently active zones.
178 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
179 * The default value means there is no limit to the number of
180 * concurrently open zones.
182 * zoned.cross_read=<enable RAZB, default: false>
183 * Setting this property to true enables Read Across Zone Boundaries.
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE 4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221 do { \
222 (trace_##trace)(__VA_ARGS__); \
223 qemu_log_mask(LOG_GUEST_ERROR, #trace \
224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225 } while (0)
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228 [NVME_ARBITRATION] = true,
229 [NVME_POWER_MANAGEMENT] = true,
230 [NVME_TEMPERATURE_THRESHOLD] = true,
231 [NVME_ERROR_RECOVERY] = true,
232 [NVME_VOLATILE_WRITE_CACHE] = true,
233 [NVME_NUMBER_OF_QUEUES] = true,
234 [NVME_INTERRUPT_COALESCING] = true,
235 [NVME_INTERRUPT_VECTOR_CONF] = true,
236 [NVME_WRITE_ATOMICITY] = true,
237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
238 [NVME_TIMESTAMP] = true,
239 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
240 [NVME_COMMAND_SET_PROFILE] = true,
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
245 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
247 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
248 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
249 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
250 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
251 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
254 static const uint32_t nvme_cse_acs[256] = {
255 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
256 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
257 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
258 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
259 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
260 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
261 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
262 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
263 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
264 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
265 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
271 static const uint32_t nvme_cse_iocs_none[256];
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
278 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
280 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
289 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
301 static uint16_t nvme_sqid(NvmeRequest *req)
303 return le16_to_cpu(req->sq->sqid);
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307 NvmeZoneState state)
309 if (QTAILQ_IN_USE(zone, entry)) {
310 switch (nvme_get_zone_state(zone)) {
311 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313 break;
314 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316 break;
317 case NVME_ZONE_STATE_CLOSED:
318 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319 break;
320 case NVME_ZONE_STATE_FULL:
321 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322 default:
327 nvme_set_zone_state(zone, state);
329 switch (state) {
330 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332 break;
333 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335 break;
336 case NVME_ZONE_STATE_CLOSED:
337 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338 break;
339 case NVME_ZONE_STATE_FULL:
340 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341 case NVME_ZONE_STATE_READ_ONLY:
342 break;
343 default:
344 zone->d.za = 0;
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349 uint32_t opn, uint32_t zrwa)
351 if (ns->params.max_active_zones != 0 &&
352 ns->nr_active_zones + act > ns->params.max_active_zones) {
353 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
357 if (ns->params.max_open_zones != 0 &&
358 ns->nr_open_zones + opn > ns->params.max_open_zones) {
359 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
363 if (zrwa > ns->zns.numzrwa) {
364 return NVME_NOZRWA | NVME_DNR;
367 return NVME_SUCCESS;
371 * Check if we can open a zone without exceeding open/active limits.
372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
376 return nvme_zns_check_resources(ns, act, opn, 0);
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
381 hwaddr hi, lo;
383 if (!n->cmb.cmse) {
384 return false;
387 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388 hi = lo + int128_get64(n->cmb.mem.size);
390 return addr >= lo && addr < hi;
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
395 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396 return &n->cmb.buf[addr - base];
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
401 hwaddr hi;
403 if (!n->pmr.cmse) {
404 return false;
407 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
409 return addr >= n->pmr.cba && addr < hi;
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
414 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
419 hwaddr hi, lo;
422 * The purpose of this check is to guard against invalid "local" access to
423 * the iomem (i.e. controller registers). Thus, we check against the range
424 * covered by the 'bar0' MemoryRegion since that is currently composed of
425 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426 * that if the device model is ever changed to allow the CMB to be located
427 * in BAR0 as well, then this must be changed.
429 lo = n->bar0.addr;
430 hi = lo + int128_get64(n->bar0.size);
432 return addr >= lo && addr < hi;
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
437 hwaddr hi = addr + size - 1;
438 if (hi < addr) {
439 return 1;
442 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444 return 0;
447 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449 return 0;
452 return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
457 hwaddr hi = addr + size - 1;
458 if (hi < addr) {
459 return 1;
462 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464 return 0;
467 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469 return 0;
472 return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
477 return nsid &&
478 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
483 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
488 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
493 cq->tail++;
494 if (cq->tail >= cq->size) {
495 cq->tail = 0;
496 cq->phase = !cq->phase;
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
502 sq->head = (sq->head + 1) % sq->size;
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
507 return (cq->tail + 1) % cq->size == cq->head;
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
512 return sq->head == sq->tail;
515 static void nvme_irq_check(NvmeCtrl *n)
517 PCIDevice *pci = PCI_DEVICE(n);
518 uint32_t intms = ldl_le_p(&n->bar.intms);
520 if (msix_enabled(pci)) {
521 return;
523 if (~intms & n->irq_status) {
524 pci_irq_assert(pci);
525 } else {
526 pci_irq_deassert(pci);
530 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
532 PCIDevice *pci = PCI_DEVICE(n);
534 if (cq->irq_enabled) {
535 if (msix_enabled(pci)) {
536 trace_pci_nvme_irq_msix(cq->vector);
537 msix_notify(pci, cq->vector);
538 } else {
539 trace_pci_nvme_irq_pin();
540 assert(cq->vector < 32);
541 n->irq_status |= 1 << cq->vector;
542 nvme_irq_check(n);
544 } else {
545 trace_pci_nvme_irq_masked();
549 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
551 if (cq->irq_enabled) {
552 if (msix_enabled(PCI_DEVICE(n))) {
553 return;
554 } else {
555 assert(cq->vector < 32);
556 if (!n->cq_pending) {
557 n->irq_status &= ~(1 << cq->vector);
559 nvme_irq_check(n);
564 static void nvme_req_clear(NvmeRequest *req)
566 req->ns = NULL;
567 req->opaque = NULL;
568 req->aiocb = NULL;
569 memset(&req->cqe, 0x0, sizeof(req->cqe));
570 req->status = NVME_SUCCESS;
573 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
575 if (dma) {
576 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
577 sg->flags = NVME_SG_DMA;
578 } else {
579 qemu_iovec_init(&sg->iov, 0);
582 sg->flags |= NVME_SG_ALLOC;
585 static inline void nvme_sg_unmap(NvmeSg *sg)
587 if (!(sg->flags & NVME_SG_ALLOC)) {
588 return;
591 if (sg->flags & NVME_SG_DMA) {
592 qemu_sglist_destroy(&sg->qsg);
593 } else {
594 qemu_iovec_destroy(&sg->iov);
597 memset(sg, 0x0, sizeof(*sg));
601 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
602 * holds both data and metadata. This function splits the data and metadata
603 * into two separate QSG/IOVs.
605 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
606 NvmeSg *mdata)
608 NvmeSg *dst = data;
609 uint32_t trans_len, count = ns->lbasz;
610 uint64_t offset = 0;
611 bool dma = sg->flags & NVME_SG_DMA;
612 size_t sge_len;
613 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
614 int sg_idx = 0;
616 assert(sg->flags & NVME_SG_ALLOC);
618 while (sg_len) {
619 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
621 trans_len = MIN(sg_len, count);
622 trans_len = MIN(trans_len, sge_len - offset);
624 if (dst) {
625 if (dma) {
626 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
627 trans_len);
628 } else {
629 qemu_iovec_add(&dst->iov,
630 sg->iov.iov[sg_idx].iov_base + offset,
631 trans_len);
635 sg_len -= trans_len;
636 count -= trans_len;
637 offset += trans_len;
639 if (count == 0) {
640 dst = (dst == data) ? mdata : data;
641 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
644 if (sge_len == offset) {
645 offset = 0;
646 sg_idx++;
651 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
652 size_t len)
654 if (!len) {
655 return NVME_SUCCESS;
658 trace_pci_nvme_map_addr_cmb(addr, len);
660 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
661 return NVME_DATA_TRAS_ERROR;
664 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
666 return NVME_SUCCESS;
669 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
670 size_t len)
672 if (!len) {
673 return NVME_SUCCESS;
676 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
677 return NVME_DATA_TRAS_ERROR;
680 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
682 return NVME_SUCCESS;
685 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
687 bool cmb = false, pmr = false;
689 if (!len) {
690 return NVME_SUCCESS;
693 trace_pci_nvme_map_addr(addr, len);
695 if (nvme_addr_is_iomem(n, addr)) {
696 return NVME_DATA_TRAS_ERROR;
699 if (nvme_addr_is_cmb(n, addr)) {
700 cmb = true;
701 } else if (nvme_addr_is_pmr(n, addr)) {
702 pmr = true;
705 if (cmb || pmr) {
706 if (sg->flags & NVME_SG_DMA) {
707 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
710 if (sg->iov.niov + 1 > IOV_MAX) {
711 goto max_mappings_exceeded;
714 if (cmb) {
715 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
716 } else {
717 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
721 if (!(sg->flags & NVME_SG_DMA)) {
722 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
725 if (sg->qsg.nsg + 1 > IOV_MAX) {
726 goto max_mappings_exceeded;
729 qemu_sglist_add(&sg->qsg, addr, len);
731 return NVME_SUCCESS;
733 max_mappings_exceeded:
734 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
735 "number of mappings exceed 1024");
736 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
739 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
741 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
744 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
745 uint64_t prp2, uint32_t len)
747 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
748 trans_len = MIN(len, trans_len);
749 int num_prps = (len >> n->page_bits) + 1;
750 uint16_t status;
751 int ret;
753 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
755 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
757 status = nvme_map_addr(n, sg, prp1, trans_len);
758 if (status) {
759 goto unmap;
762 len -= trans_len;
763 if (len) {
764 if (len > n->page_size) {
765 uint64_t prp_list[n->max_prp_ents];
766 uint32_t nents, prp_trans;
767 int i = 0;
770 * The first PRP list entry, pointed to by PRP2 may contain offset.
771 * Hence, we need to calculate the number of entries in based on
772 * that offset.
774 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
775 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
776 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
777 if (ret) {
778 trace_pci_nvme_err_addr_read(prp2);
779 status = NVME_DATA_TRAS_ERROR;
780 goto unmap;
782 while (len != 0) {
783 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
785 if (i == nents - 1 && len > n->page_size) {
786 if (unlikely(prp_ent & (n->page_size - 1))) {
787 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
788 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
789 goto unmap;
792 i = 0;
793 nents = (len + n->page_size - 1) >> n->page_bits;
794 nents = MIN(nents, n->max_prp_ents);
795 prp_trans = nents * sizeof(uint64_t);
796 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
797 prp_trans);
798 if (ret) {
799 trace_pci_nvme_err_addr_read(prp_ent);
800 status = NVME_DATA_TRAS_ERROR;
801 goto unmap;
803 prp_ent = le64_to_cpu(prp_list[i]);
806 if (unlikely(prp_ent & (n->page_size - 1))) {
807 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
808 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
809 goto unmap;
812 trans_len = MIN(len, n->page_size);
813 status = nvme_map_addr(n, sg, prp_ent, trans_len);
814 if (status) {
815 goto unmap;
818 len -= trans_len;
819 i++;
821 } else {
822 if (unlikely(prp2 & (n->page_size - 1))) {
823 trace_pci_nvme_err_invalid_prp2_align(prp2);
824 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
825 goto unmap;
827 status = nvme_map_addr(n, sg, prp2, len);
828 if (status) {
829 goto unmap;
834 return NVME_SUCCESS;
836 unmap:
837 nvme_sg_unmap(sg);
838 return status;
842 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
843 * number of bytes mapped in len.
845 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
846 NvmeSglDescriptor *segment, uint64_t nsgld,
847 size_t *len, NvmeCmd *cmd)
849 dma_addr_t addr, trans_len;
850 uint32_t dlen;
851 uint16_t status;
853 for (int i = 0; i < nsgld; i++) {
854 uint8_t type = NVME_SGL_TYPE(segment[i].type);
856 switch (type) {
857 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
858 break;
859 case NVME_SGL_DESCR_TYPE_SEGMENT:
860 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
861 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
862 default:
863 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
866 dlen = le32_to_cpu(segment[i].len);
868 if (!dlen) {
869 continue;
872 if (*len == 0) {
874 * All data has been mapped, but the SGL contains additional
875 * segments and/or descriptors. The controller might accept
876 * ignoring the rest of the SGL.
878 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
879 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
880 break;
883 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
884 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
887 trans_len = MIN(*len, dlen);
889 addr = le64_to_cpu(segment[i].addr);
891 if (UINT64_MAX - addr < dlen) {
892 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
895 status = nvme_map_addr(n, sg, addr, trans_len);
896 if (status) {
897 return status;
900 *len -= trans_len;
903 return NVME_SUCCESS;
906 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
907 size_t len, NvmeCmd *cmd)
910 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
911 * dynamically allocating a potentially huge SGL. The spec allows the SGL
912 * to be larger (as in number of bytes required to describe the SGL
913 * descriptors and segment chain) than the command transfer size, so it is
914 * not bounded by MDTS.
916 const int SEG_CHUNK_SIZE = 256;
918 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
919 uint64_t nsgld;
920 uint32_t seg_len;
921 uint16_t status;
922 hwaddr addr;
923 int ret;
925 sgld = &sgl;
926 addr = le64_to_cpu(sgl.addr);
928 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
930 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
933 * If the entire transfer can be described with a single data block it can
934 * be mapped directly.
936 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
937 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
938 if (status) {
939 goto unmap;
942 goto out;
945 for (;;) {
946 switch (NVME_SGL_TYPE(sgld->type)) {
947 case NVME_SGL_DESCR_TYPE_SEGMENT:
948 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
949 break;
950 default:
951 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
954 seg_len = le32_to_cpu(sgld->len);
956 /* check the length of the (Last) Segment descriptor */
957 if (!seg_len || seg_len & 0xf) {
958 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
961 if (UINT64_MAX - addr < seg_len) {
962 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
965 nsgld = seg_len / sizeof(NvmeSglDescriptor);
967 while (nsgld > SEG_CHUNK_SIZE) {
968 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
969 trace_pci_nvme_err_addr_read(addr);
970 status = NVME_DATA_TRAS_ERROR;
971 goto unmap;
974 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
975 &len, cmd);
976 if (status) {
977 goto unmap;
980 nsgld -= SEG_CHUNK_SIZE;
981 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
984 ret = nvme_addr_read(n, addr, segment, nsgld *
985 sizeof(NvmeSglDescriptor));
986 if (ret) {
987 trace_pci_nvme_err_addr_read(addr);
988 status = NVME_DATA_TRAS_ERROR;
989 goto unmap;
992 last_sgld = &segment[nsgld - 1];
995 * If the segment ends with a Data Block, then we are done.
997 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
998 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
999 if (status) {
1000 goto unmap;
1003 goto out;
1007 * If the last descriptor was not a Data Block, then the current
1008 * segment must not be a Last Segment.
1010 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1011 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1012 goto unmap;
1015 sgld = last_sgld;
1016 addr = le64_to_cpu(sgld->addr);
1019 * Do not map the last descriptor; it will be a Segment or Last Segment
1020 * descriptor and is handled by the next iteration.
1022 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1023 if (status) {
1024 goto unmap;
1028 out:
1029 /* if there is any residual left in len, the SGL was too short */
1030 if (len) {
1031 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1032 goto unmap;
1035 return NVME_SUCCESS;
1037 unmap:
1038 nvme_sg_unmap(sg);
1039 return status;
1042 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1043 NvmeCmd *cmd)
1045 uint64_t prp1, prp2;
1047 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1048 case NVME_PSDT_PRP:
1049 prp1 = le64_to_cpu(cmd->dptr.prp1);
1050 prp2 = le64_to_cpu(cmd->dptr.prp2);
1052 return nvme_map_prp(n, sg, prp1, prp2, len);
1053 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1054 case NVME_PSDT_SGL_MPTR_SGL:
1055 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1056 default:
1057 return NVME_INVALID_FIELD;
1061 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1062 NvmeCmd *cmd)
1064 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1065 hwaddr mptr = le64_to_cpu(cmd->mptr);
1066 uint16_t status;
1068 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1069 NvmeSglDescriptor sgl;
1071 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1072 return NVME_DATA_TRAS_ERROR;
1075 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1076 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1077 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1080 return status;
1083 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1084 status = nvme_map_addr(n, sg, mptr, len);
1085 if (status) {
1086 nvme_sg_unmap(sg);
1089 return status;
1092 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1094 NvmeNamespace *ns = req->ns;
1095 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1096 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1097 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1098 size_t len = nvme_l2b(ns, nlb);
1099 uint16_t status;
1101 if (nvme_ns_ext(ns) &&
1102 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1103 NvmeSg sg;
1105 len += nvme_m2b(ns, nlb);
1107 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1108 if (status) {
1109 return status;
1112 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1113 nvme_sg_split(&sg, ns, &req->sg, NULL);
1114 nvme_sg_unmap(&sg);
1116 return NVME_SUCCESS;
1119 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1122 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1124 NvmeNamespace *ns = req->ns;
1125 size_t len = nvme_m2b(ns, nlb);
1126 uint16_t status;
1128 if (nvme_ns_ext(ns)) {
1129 NvmeSg sg;
1131 len += nvme_l2b(ns, nlb);
1133 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1134 if (status) {
1135 return status;
1138 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1139 nvme_sg_split(&sg, ns, NULL, &req->sg);
1140 nvme_sg_unmap(&sg);
1142 return NVME_SUCCESS;
1145 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1148 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1149 uint32_t len, uint32_t bytes,
1150 int32_t skip_bytes, int64_t offset,
1151 NvmeTxDirection dir)
1153 hwaddr addr;
1154 uint32_t trans_len, count = bytes;
1155 bool dma = sg->flags & NVME_SG_DMA;
1156 int64_t sge_len;
1157 int sg_idx = 0;
1158 int ret;
1160 assert(sg->flags & NVME_SG_ALLOC);
1162 while (len) {
1163 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1165 if (sge_len - offset < 0) {
1166 offset -= sge_len;
1167 sg_idx++;
1168 continue;
1171 if (sge_len == offset) {
1172 offset = 0;
1173 sg_idx++;
1174 continue;
1177 trans_len = MIN(len, count);
1178 trans_len = MIN(trans_len, sge_len - offset);
1180 if (dma) {
1181 addr = sg->qsg.sg[sg_idx].base + offset;
1182 } else {
1183 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1186 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1187 ret = nvme_addr_read(n, addr, ptr, trans_len);
1188 } else {
1189 ret = nvme_addr_write(n, addr, ptr, trans_len);
1192 if (ret) {
1193 return NVME_DATA_TRAS_ERROR;
1196 ptr += trans_len;
1197 len -= trans_len;
1198 count -= trans_len;
1199 offset += trans_len;
1201 if (count == 0) {
1202 count = bytes;
1203 offset += skip_bytes;
1207 return NVME_SUCCESS;
1210 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1211 NvmeTxDirection dir)
1213 assert(sg->flags & NVME_SG_ALLOC);
1215 if (sg->flags & NVME_SG_DMA) {
1216 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1217 dma_addr_t residual;
1219 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1220 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1221 } else {
1222 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1225 if (unlikely(residual)) {
1226 trace_pci_nvme_err_invalid_dma();
1227 return NVME_INVALID_FIELD | NVME_DNR;
1229 } else {
1230 size_t bytes;
1232 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1233 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1234 } else {
1235 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1238 if (unlikely(bytes != len)) {
1239 trace_pci_nvme_err_invalid_dma();
1240 return NVME_INVALID_FIELD | NVME_DNR;
1244 return NVME_SUCCESS;
1247 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1248 NvmeRequest *req)
1250 uint16_t status;
1252 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1253 if (status) {
1254 return status;
1257 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1260 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1261 NvmeRequest *req)
1263 uint16_t status;
1265 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1266 if (status) {
1267 return status;
1270 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1273 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1274 NvmeTxDirection dir, NvmeRequest *req)
1276 NvmeNamespace *ns = req->ns;
1277 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1278 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1279 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1281 if (nvme_ns_ext(ns) &&
1282 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1283 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1284 ns->lbaf.ms, 0, dir);
1287 return nvme_tx(n, &req->sg, ptr, len, dir);
1290 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1291 NvmeTxDirection dir, NvmeRequest *req)
1293 NvmeNamespace *ns = req->ns;
1294 uint16_t status;
1296 if (nvme_ns_ext(ns)) {
1297 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1298 ns->lbasz, ns->lbasz, dir);
1301 nvme_sg_unmap(&req->sg);
1303 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1304 if (status) {
1305 return status;
1308 return nvme_tx(n, &req->sg, ptr, len, dir);
1311 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1312 BlockCompletionFunc *cb, NvmeRequest *req)
1314 assert(req->sg.flags & NVME_SG_ALLOC);
1316 if (req->sg.flags & NVME_SG_DMA) {
1317 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1318 cb, req);
1319 } else {
1320 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1324 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1325 BlockCompletionFunc *cb, NvmeRequest *req)
1327 assert(req->sg.flags & NVME_SG_ALLOC);
1329 if (req->sg.flags & NVME_SG_DMA) {
1330 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1331 cb, req);
1332 } else {
1333 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1337 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1339 uint32_t v = cpu_to_le32(cq->head);
1341 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1343 pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v));
1346 static void nvme_update_cq_head(NvmeCQueue *cq)
1348 uint32_t v;
1350 pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v));
1352 cq->head = le32_to_cpu(v);
1354 trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1357 static void nvme_post_cqes(void *opaque)
1359 NvmeCQueue *cq = opaque;
1360 NvmeCtrl *n = cq->ctrl;
1361 NvmeRequest *req, *next;
1362 bool pending = cq->head != cq->tail;
1363 int ret;
1365 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1366 NvmeSQueue *sq;
1367 hwaddr addr;
1369 if (n->dbbuf_enabled) {
1370 nvme_update_cq_eventidx(cq);
1371 nvme_update_cq_head(cq);
1374 if (nvme_cq_full(cq)) {
1375 break;
1378 sq = req->sq;
1379 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1380 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1381 req->cqe.sq_head = cpu_to_le16(sq->head);
1382 addr = cq->dma_addr + cq->tail * n->cqe_size;
1383 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1384 sizeof(req->cqe));
1385 if (ret) {
1386 trace_pci_nvme_err_addr_write(addr);
1387 trace_pci_nvme_err_cfs();
1388 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1389 break;
1391 QTAILQ_REMOVE(&cq->req_list, req, entry);
1392 nvme_inc_cq_tail(cq);
1393 nvme_sg_unmap(&req->sg);
1394 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1396 if (cq->tail != cq->head) {
1397 if (cq->irq_enabled && !pending) {
1398 n->cq_pending++;
1401 nvme_irq_assert(n, cq);
1405 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1407 assert(cq->cqid == req->sq->cqid);
1408 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1409 le32_to_cpu(req->cqe.result),
1410 le32_to_cpu(req->cqe.dw1),
1411 req->status);
1413 if (req->status) {
1414 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1415 req->status, req->cmd.opcode);
1418 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1419 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1421 qemu_bh_schedule(cq->bh);
1424 static void nvme_process_aers(void *opaque)
1426 NvmeCtrl *n = opaque;
1427 NvmeAsyncEvent *event, *next;
1429 trace_pci_nvme_process_aers(n->aer_queued);
1431 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1432 NvmeRequest *req;
1433 NvmeAerResult *result;
1435 /* can't post cqe if there is nothing to complete */
1436 if (!n->outstanding_aers) {
1437 trace_pci_nvme_no_outstanding_aers();
1438 break;
1441 /* ignore if masked (cqe posted, but event not cleared) */
1442 if (n->aer_mask & (1 << event->result.event_type)) {
1443 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1444 continue;
1447 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1448 n->aer_queued--;
1450 n->aer_mask |= 1 << event->result.event_type;
1451 n->outstanding_aers--;
1453 req = n->aer_reqs[n->outstanding_aers];
1455 result = (NvmeAerResult *) &req->cqe.result;
1456 result->event_type = event->result.event_type;
1457 result->event_info = event->result.event_info;
1458 result->log_page = event->result.log_page;
1459 g_free(event);
1461 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1462 result->log_page);
1464 nvme_enqueue_req_completion(&n->admin_cq, req);
1468 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1469 uint8_t event_info, uint8_t log_page)
1471 NvmeAsyncEvent *event;
1473 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1475 if (n->aer_queued == n->params.aer_max_queued) {
1476 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1477 return;
1480 event = g_new(NvmeAsyncEvent, 1);
1481 event->result = (NvmeAerResult) {
1482 .event_type = event_type,
1483 .event_info = event_info,
1484 .log_page = log_page,
1487 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1488 n->aer_queued++;
1490 nvme_process_aers(n);
1493 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1495 uint8_t aer_info;
1497 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1498 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1499 return;
1502 switch (event) {
1503 case NVME_SMART_SPARE:
1504 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1505 break;
1506 case NVME_SMART_TEMPERATURE:
1507 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1508 break;
1509 case NVME_SMART_RELIABILITY:
1510 case NVME_SMART_MEDIA_READ_ONLY:
1511 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1512 case NVME_SMART_PMR_UNRELIABLE:
1513 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1514 break;
1515 default:
1516 return;
1519 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1522 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1524 n->aer_mask &= ~(1 << event_type);
1525 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1526 nvme_process_aers(n);
1530 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1532 uint8_t mdts = n->params.mdts;
1534 if (mdts && len > n->page_size << mdts) {
1535 trace_pci_nvme_err_mdts(len);
1536 return NVME_INVALID_FIELD | NVME_DNR;
1539 return NVME_SUCCESS;
1542 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1543 uint32_t nlb)
1545 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1547 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1548 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1549 return NVME_LBA_RANGE | NVME_DNR;
1552 return NVME_SUCCESS;
1555 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1556 uint32_t nlb, int flags)
1558 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1560 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1561 int64_t offset = nvme_l2b(ns, slba);
1562 int ret;
1565 * `pnum` holds the number of bytes after offset that shares the same
1566 * allocation status as the byte at offset. If `pnum` is different from
1567 * `bytes`, we should check the allocation status of the next range and
1568 * continue this until all bytes have been checked.
1570 do {
1571 bytes -= pnum;
1573 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1574 if (ret < 0) {
1575 return ret;
1579 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1580 !!(ret & BDRV_BLOCK_ZERO));
1582 if (!(ret & flags)) {
1583 return 1;
1586 offset += pnum;
1587 } while (pnum != bytes);
1589 return 0;
1592 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1593 uint32_t nlb)
1595 int ret;
1596 Error *err = NULL;
1598 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1599 if (ret) {
1600 if (ret < 0) {
1601 error_setg_errno(&err, -ret, "unable to get block status");
1602 error_report_err(err);
1604 return NVME_INTERNAL_DEV_ERROR;
1607 return NVME_DULB;
1610 return NVME_SUCCESS;
1613 static void nvme_aio_err(NvmeRequest *req, int ret)
1615 uint16_t status = NVME_SUCCESS;
1616 Error *local_err = NULL;
1618 switch (req->cmd.opcode) {
1619 case NVME_CMD_READ:
1620 status = NVME_UNRECOVERED_READ;
1621 break;
1622 case NVME_CMD_FLUSH:
1623 case NVME_CMD_WRITE:
1624 case NVME_CMD_WRITE_ZEROES:
1625 case NVME_CMD_ZONE_APPEND:
1626 status = NVME_WRITE_FAULT;
1627 break;
1628 default:
1629 status = NVME_INTERNAL_DEV_ERROR;
1630 break;
1633 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1635 error_setg_errno(&local_err, -ret, "aio failed");
1636 error_report_err(local_err);
1639 * Set the command status code to the first encountered error but allow a
1640 * subsequent Internal Device Error to trump it.
1642 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1643 return;
1646 req->status = status;
1649 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1651 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1652 slba / ns->zone_size;
1655 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1657 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1659 if (zone_idx >= ns->num_zones) {
1660 return NULL;
1663 return &ns->zone_array[zone_idx];
1666 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1668 uint64_t zslba = zone->d.zslba;
1670 switch (nvme_get_zone_state(zone)) {
1671 case NVME_ZONE_STATE_EMPTY:
1672 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1673 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1674 case NVME_ZONE_STATE_CLOSED:
1675 return NVME_SUCCESS;
1676 case NVME_ZONE_STATE_FULL:
1677 trace_pci_nvme_err_zone_is_full(zslba);
1678 return NVME_ZONE_FULL;
1679 case NVME_ZONE_STATE_OFFLINE:
1680 trace_pci_nvme_err_zone_is_offline(zslba);
1681 return NVME_ZONE_OFFLINE;
1682 case NVME_ZONE_STATE_READ_ONLY:
1683 trace_pci_nvme_err_zone_is_read_only(zslba);
1684 return NVME_ZONE_READ_ONLY;
1685 default:
1686 assert(false);
1689 return NVME_INTERNAL_DEV_ERROR;
1692 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1693 uint64_t slba, uint32_t nlb)
1695 uint64_t zcap = nvme_zone_wr_boundary(zone);
1696 uint16_t status;
1698 status = nvme_check_zone_state_for_write(zone);
1699 if (status) {
1700 return status;
1703 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1704 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1706 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1707 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1708 return NVME_ZONE_INVALID_WRITE;
1710 } else {
1711 if (unlikely(slba != zone->w_ptr)) {
1712 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1713 zone->w_ptr);
1714 return NVME_ZONE_INVALID_WRITE;
1718 if (unlikely((slba + nlb) > zcap)) {
1719 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1720 return NVME_ZONE_BOUNDARY_ERROR;
1723 return NVME_SUCCESS;
1726 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1728 switch (nvme_get_zone_state(zone)) {
1729 case NVME_ZONE_STATE_EMPTY:
1730 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1731 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1732 case NVME_ZONE_STATE_FULL:
1733 case NVME_ZONE_STATE_CLOSED:
1734 case NVME_ZONE_STATE_READ_ONLY:
1735 return NVME_SUCCESS;
1736 case NVME_ZONE_STATE_OFFLINE:
1737 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1738 return NVME_ZONE_OFFLINE;
1739 default:
1740 assert(false);
1743 return NVME_INTERNAL_DEV_ERROR;
1746 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1747 uint32_t nlb)
1749 NvmeZone *zone;
1750 uint64_t bndry, end;
1751 uint16_t status;
1753 zone = nvme_get_zone_by_slba(ns, slba);
1754 assert(zone);
1756 bndry = nvme_zone_rd_boundary(ns, zone);
1757 end = slba + nlb;
1759 status = nvme_check_zone_state_for_read(zone);
1760 if (status) {
1762 } else if (unlikely(end > bndry)) {
1763 if (!ns->params.cross_zone_read) {
1764 status = NVME_ZONE_BOUNDARY_ERROR;
1765 } else {
1767 * Read across zone boundary - check that all subsequent
1768 * zones that are being read have an appropriate state.
1770 do {
1771 zone++;
1772 status = nvme_check_zone_state_for_read(zone);
1773 if (status) {
1774 break;
1776 } while (end > nvme_zone_rd_boundary(ns, zone));
1780 return status;
1783 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1785 switch (nvme_get_zone_state(zone)) {
1786 case NVME_ZONE_STATE_FULL:
1787 return NVME_SUCCESS;
1789 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1790 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1791 nvme_aor_dec_open(ns);
1792 /* fallthrough */
1793 case NVME_ZONE_STATE_CLOSED:
1794 nvme_aor_dec_active(ns);
1796 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1797 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1798 if (ns->params.numzrwa) {
1799 ns->zns.numzrwa++;
1803 /* fallthrough */
1804 case NVME_ZONE_STATE_EMPTY:
1805 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1806 return NVME_SUCCESS;
1808 default:
1809 return NVME_ZONE_INVAL_TRANSITION;
1813 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1815 switch (nvme_get_zone_state(zone)) {
1816 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1817 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1818 nvme_aor_dec_open(ns);
1819 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1820 /* fall through */
1821 case NVME_ZONE_STATE_CLOSED:
1822 return NVME_SUCCESS;
1824 default:
1825 return NVME_ZONE_INVAL_TRANSITION;
1829 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1831 switch (nvme_get_zone_state(zone)) {
1832 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1833 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1834 nvme_aor_dec_open(ns);
1835 /* fallthrough */
1836 case NVME_ZONE_STATE_CLOSED:
1837 nvme_aor_dec_active(ns);
1839 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1840 if (ns->params.numzrwa) {
1841 ns->zns.numzrwa++;
1845 /* fallthrough */
1846 case NVME_ZONE_STATE_FULL:
1847 zone->w_ptr = zone->d.zslba;
1848 zone->d.wp = zone->w_ptr;
1849 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1850 /* fallthrough */
1851 case NVME_ZONE_STATE_EMPTY:
1852 return NVME_SUCCESS;
1854 default:
1855 return NVME_ZONE_INVAL_TRANSITION;
1859 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1861 NvmeZone *zone;
1863 if (ns->params.max_open_zones &&
1864 ns->nr_open_zones == ns->params.max_open_zones) {
1865 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1866 if (zone) {
1868 * Automatically close this implicitly open zone.
1870 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1871 nvme_zrm_close(ns, zone);
1876 enum {
1877 NVME_ZRM_AUTO = 1 << 0,
1878 NVME_ZRM_ZRWA = 1 << 1,
1881 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1882 NvmeZone *zone, int flags)
1884 int act = 0;
1885 uint16_t status;
1887 switch (nvme_get_zone_state(zone)) {
1888 case NVME_ZONE_STATE_EMPTY:
1889 act = 1;
1891 /* fallthrough */
1893 case NVME_ZONE_STATE_CLOSED:
1894 if (n->params.auto_transition_zones) {
1895 nvme_zrm_auto_transition_zone(ns);
1897 status = nvme_zns_check_resources(ns, act, 1,
1898 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1899 if (status) {
1900 return status;
1903 if (act) {
1904 nvme_aor_inc_active(ns);
1907 nvme_aor_inc_open(ns);
1909 if (flags & NVME_ZRM_AUTO) {
1910 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1911 return NVME_SUCCESS;
1914 /* fallthrough */
1916 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1917 if (flags & NVME_ZRM_AUTO) {
1918 return NVME_SUCCESS;
1921 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1923 /* fallthrough */
1925 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1926 if (flags & NVME_ZRM_ZRWA) {
1927 ns->zns.numzrwa--;
1929 zone->d.za |= NVME_ZA_ZRWA_VALID;
1932 return NVME_SUCCESS;
1934 default:
1935 return NVME_ZONE_INVAL_TRANSITION;
1939 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1940 NvmeZone *zone)
1942 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1945 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1946 uint32_t nlb)
1948 zone->d.wp += nlb;
1950 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1951 nvme_zrm_finish(ns, zone);
1955 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1956 uint32_t nlbc)
1958 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1960 nlbc = nzrwafgs * ns->zns.zrwafg;
1962 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1964 zone->w_ptr += nlbc;
1966 nvme_advance_zone_wp(ns, zone, nlbc);
1969 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1971 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1972 NvmeZone *zone;
1973 uint64_t slba;
1974 uint32_t nlb;
1976 slba = le64_to_cpu(rw->slba);
1977 nlb = le16_to_cpu(rw->nlb) + 1;
1978 zone = nvme_get_zone_by_slba(ns, slba);
1979 assert(zone);
1981 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1982 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1983 uint64_t elba = slba + nlb - 1;
1985 if (elba > ezrwa) {
1986 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1989 return;
1992 nvme_advance_zone_wp(ns, zone, nlb);
1995 static inline bool nvme_is_write(NvmeRequest *req)
1997 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1999 return rw->opcode == NVME_CMD_WRITE ||
2000 rw->opcode == NVME_CMD_ZONE_APPEND ||
2001 rw->opcode == NVME_CMD_WRITE_ZEROES;
2004 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2006 return qemu_get_aio_context();
2009 static void nvme_misc_cb(void *opaque, int ret)
2011 NvmeRequest *req = opaque;
2013 trace_pci_nvme_misc_cb(nvme_cid(req));
2015 if (ret) {
2016 nvme_aio_err(req, ret);
2019 nvme_enqueue_req_completion(nvme_cq(req), req);
2022 void nvme_rw_complete_cb(void *opaque, int ret)
2024 NvmeRequest *req = opaque;
2025 NvmeNamespace *ns = req->ns;
2026 BlockBackend *blk = ns->blkconf.blk;
2027 BlockAcctCookie *acct = &req->acct;
2028 BlockAcctStats *stats = blk_get_stats(blk);
2030 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2032 if (ret) {
2033 block_acct_failed(stats, acct);
2034 nvme_aio_err(req, ret);
2035 } else {
2036 block_acct_done(stats, acct);
2039 if (ns->params.zoned && nvme_is_write(req)) {
2040 nvme_finalize_zoned_write(ns, req);
2043 nvme_enqueue_req_completion(nvme_cq(req), req);
2046 static void nvme_rw_cb(void *opaque, int ret)
2048 NvmeRequest *req = opaque;
2049 NvmeNamespace *ns = req->ns;
2051 BlockBackend *blk = ns->blkconf.blk;
2053 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2055 if (ret) {
2056 goto out;
2059 if (ns->lbaf.ms) {
2060 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2061 uint64_t slba = le64_to_cpu(rw->slba);
2062 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2063 uint64_t offset = nvme_moff(ns, slba);
2065 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2066 size_t mlen = nvme_m2b(ns, nlb);
2068 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2069 BDRV_REQ_MAY_UNMAP,
2070 nvme_rw_complete_cb, req);
2071 return;
2074 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2075 uint16_t status;
2077 nvme_sg_unmap(&req->sg);
2078 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2079 if (status) {
2080 ret = -EFAULT;
2081 goto out;
2084 if (req->cmd.opcode == NVME_CMD_READ) {
2085 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2088 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2092 out:
2093 nvme_rw_complete_cb(req, ret);
2096 static void nvme_verify_cb(void *opaque, int ret)
2098 NvmeBounceContext *ctx = opaque;
2099 NvmeRequest *req = ctx->req;
2100 NvmeNamespace *ns = req->ns;
2101 BlockBackend *blk = ns->blkconf.blk;
2102 BlockAcctCookie *acct = &req->acct;
2103 BlockAcctStats *stats = blk_get_stats(blk);
2104 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2105 uint64_t slba = le64_to_cpu(rw->slba);
2106 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2107 uint16_t apptag = le16_to_cpu(rw->apptag);
2108 uint16_t appmask = le16_to_cpu(rw->appmask);
2109 uint64_t reftag = le32_to_cpu(rw->reftag);
2110 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2111 uint16_t status;
2113 reftag |= cdw3 << 32;
2115 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2117 if (ret) {
2118 block_acct_failed(stats, acct);
2119 nvme_aio_err(req, ret);
2120 goto out;
2123 block_acct_done(stats, acct);
2125 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2126 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2127 ctx->mdata.iov.size, slba);
2128 if (status) {
2129 req->status = status;
2130 goto out;
2133 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2134 ctx->mdata.bounce, ctx->mdata.iov.size,
2135 prinfo, slba, apptag, appmask, &reftag);
2138 out:
2139 qemu_iovec_destroy(&ctx->data.iov);
2140 g_free(ctx->data.bounce);
2142 qemu_iovec_destroy(&ctx->mdata.iov);
2143 g_free(ctx->mdata.bounce);
2145 g_free(ctx);
2147 nvme_enqueue_req_completion(nvme_cq(req), req);
2151 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2153 NvmeBounceContext *ctx = opaque;
2154 NvmeRequest *req = ctx->req;
2155 NvmeNamespace *ns = req->ns;
2156 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2157 uint64_t slba = le64_to_cpu(rw->slba);
2158 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2159 size_t mlen = nvme_m2b(ns, nlb);
2160 uint64_t offset = nvme_moff(ns, slba);
2161 BlockBackend *blk = ns->blkconf.blk;
2163 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2165 if (ret) {
2166 goto out;
2169 ctx->mdata.bounce = g_malloc(mlen);
2171 qemu_iovec_reset(&ctx->mdata.iov);
2172 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2174 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2175 nvme_verify_cb, ctx);
2176 return;
2178 out:
2179 nvme_verify_cb(ctx, ret);
2182 struct nvme_compare_ctx {
2183 struct {
2184 QEMUIOVector iov;
2185 uint8_t *bounce;
2186 } data;
2188 struct {
2189 QEMUIOVector iov;
2190 uint8_t *bounce;
2191 } mdata;
2194 static void nvme_compare_mdata_cb(void *opaque, int ret)
2196 NvmeRequest *req = opaque;
2197 NvmeNamespace *ns = req->ns;
2198 NvmeCtrl *n = nvme_ctrl(req);
2199 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2200 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2201 uint16_t apptag = le16_to_cpu(rw->apptag);
2202 uint16_t appmask = le16_to_cpu(rw->appmask);
2203 uint64_t reftag = le32_to_cpu(rw->reftag);
2204 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2205 struct nvme_compare_ctx *ctx = req->opaque;
2206 g_autofree uint8_t *buf = NULL;
2207 BlockBackend *blk = ns->blkconf.blk;
2208 BlockAcctCookie *acct = &req->acct;
2209 BlockAcctStats *stats = blk_get_stats(blk);
2210 uint16_t status = NVME_SUCCESS;
2212 reftag |= cdw3 << 32;
2214 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2216 if (ret) {
2217 block_acct_failed(stats, acct);
2218 nvme_aio_err(req, ret);
2219 goto out;
2222 buf = g_malloc(ctx->mdata.iov.size);
2224 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2225 NVME_TX_DIRECTION_TO_DEVICE, req);
2226 if (status) {
2227 req->status = status;
2228 goto out;
2231 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2232 uint64_t slba = le64_to_cpu(rw->slba);
2233 uint8_t *bufp;
2234 uint8_t *mbufp = ctx->mdata.bounce;
2235 uint8_t *end = mbufp + ctx->mdata.iov.size;
2236 int16_t pil = 0;
2238 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2239 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2240 slba, apptag, appmask, &reftag);
2241 if (status) {
2242 req->status = status;
2243 goto out;
2247 * When formatted with protection information, do not compare the DIF
2248 * tuple.
2250 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2251 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2254 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2255 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2256 req->status = NVME_CMP_FAILURE;
2257 goto out;
2261 goto out;
2264 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2265 req->status = NVME_CMP_FAILURE;
2266 goto out;
2269 block_acct_done(stats, acct);
2271 out:
2272 qemu_iovec_destroy(&ctx->data.iov);
2273 g_free(ctx->data.bounce);
2275 qemu_iovec_destroy(&ctx->mdata.iov);
2276 g_free(ctx->mdata.bounce);
2278 g_free(ctx);
2280 nvme_enqueue_req_completion(nvme_cq(req), req);
2283 static void nvme_compare_data_cb(void *opaque, int ret)
2285 NvmeRequest *req = opaque;
2286 NvmeCtrl *n = nvme_ctrl(req);
2287 NvmeNamespace *ns = req->ns;
2288 BlockBackend *blk = ns->blkconf.blk;
2289 BlockAcctCookie *acct = &req->acct;
2290 BlockAcctStats *stats = blk_get_stats(blk);
2292 struct nvme_compare_ctx *ctx = req->opaque;
2293 g_autofree uint8_t *buf = NULL;
2294 uint16_t status;
2296 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2298 if (ret) {
2299 block_acct_failed(stats, acct);
2300 nvme_aio_err(req, ret);
2301 goto out;
2304 buf = g_malloc(ctx->data.iov.size);
2306 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2307 NVME_TX_DIRECTION_TO_DEVICE, req);
2308 if (status) {
2309 req->status = status;
2310 goto out;
2313 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2314 req->status = NVME_CMP_FAILURE;
2315 goto out;
2318 if (ns->lbaf.ms) {
2319 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2320 uint64_t slba = le64_to_cpu(rw->slba);
2321 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2322 size_t mlen = nvme_m2b(ns, nlb);
2323 uint64_t offset = nvme_moff(ns, slba);
2325 ctx->mdata.bounce = g_malloc(mlen);
2327 qemu_iovec_init(&ctx->mdata.iov, 1);
2328 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2330 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2331 nvme_compare_mdata_cb, req);
2332 return;
2335 block_acct_done(stats, acct);
2337 out:
2338 qemu_iovec_destroy(&ctx->data.iov);
2339 g_free(ctx->data.bounce);
2340 g_free(ctx);
2342 nvme_enqueue_req_completion(nvme_cq(req), req);
2345 typedef struct NvmeDSMAIOCB {
2346 BlockAIOCB common;
2347 BlockAIOCB *aiocb;
2348 NvmeRequest *req;
2349 int ret;
2351 NvmeDsmRange *range;
2352 unsigned int nr;
2353 unsigned int idx;
2354 } NvmeDSMAIOCB;
2356 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2358 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2360 /* break nvme_dsm_cb loop */
2361 iocb->idx = iocb->nr;
2362 iocb->ret = -ECANCELED;
2364 if (iocb->aiocb) {
2365 blk_aio_cancel_async(iocb->aiocb);
2366 iocb->aiocb = NULL;
2367 } else {
2369 * We only reach this if nvme_dsm_cancel() has already been called or
2370 * the command ran to completion.
2372 assert(iocb->idx == iocb->nr);
2376 static const AIOCBInfo nvme_dsm_aiocb_info = {
2377 .aiocb_size = sizeof(NvmeDSMAIOCB),
2378 .cancel_async = nvme_dsm_cancel,
2381 static void nvme_dsm_cb(void *opaque, int ret);
2383 static void nvme_dsm_md_cb(void *opaque, int ret)
2385 NvmeDSMAIOCB *iocb = opaque;
2386 NvmeRequest *req = iocb->req;
2387 NvmeNamespace *ns = req->ns;
2388 NvmeDsmRange *range;
2389 uint64_t slba;
2390 uint32_t nlb;
2392 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2393 goto done;
2396 range = &iocb->range[iocb->idx - 1];
2397 slba = le64_to_cpu(range->slba);
2398 nlb = le32_to_cpu(range->nlb);
2401 * Check that all block were discarded (zeroed); otherwise we do not zero
2402 * the metadata.
2405 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2406 if (ret) {
2407 if (ret < 0) {
2408 goto done;
2411 nvme_dsm_cb(iocb, 0);
2412 return;
2415 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2416 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2417 nvme_dsm_cb, iocb);
2418 return;
2420 done:
2421 nvme_dsm_cb(iocb, ret);
2424 static void nvme_dsm_cb(void *opaque, int ret)
2426 NvmeDSMAIOCB *iocb = opaque;
2427 NvmeRequest *req = iocb->req;
2428 NvmeCtrl *n = nvme_ctrl(req);
2429 NvmeNamespace *ns = req->ns;
2430 NvmeDsmRange *range;
2431 uint64_t slba;
2432 uint32_t nlb;
2434 if (iocb->ret < 0) {
2435 goto done;
2436 } else if (ret < 0) {
2437 iocb->ret = ret;
2438 goto done;
2441 next:
2442 if (iocb->idx == iocb->nr) {
2443 goto done;
2446 range = &iocb->range[iocb->idx++];
2447 slba = le64_to_cpu(range->slba);
2448 nlb = le32_to_cpu(range->nlb);
2450 trace_pci_nvme_dsm_deallocate(slba, nlb);
2452 if (nlb > n->dmrsl) {
2453 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2454 goto next;
2457 if (nvme_check_bounds(ns, slba, nlb)) {
2458 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2459 ns->id_ns.nsze);
2460 goto next;
2463 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2464 nvme_l2b(ns, nlb),
2465 nvme_dsm_md_cb, iocb);
2466 return;
2468 done:
2469 iocb->aiocb = NULL;
2470 iocb->common.cb(iocb->common.opaque, iocb->ret);
2471 qemu_aio_unref(iocb);
2474 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2476 NvmeNamespace *ns = req->ns;
2477 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2478 uint32_t attr = le32_to_cpu(dsm->attributes);
2479 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2480 uint16_t status = NVME_SUCCESS;
2482 trace_pci_nvme_dsm(nr, attr);
2484 if (attr & NVME_DSMGMT_AD) {
2485 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2486 nvme_misc_cb, req);
2488 iocb->req = req;
2489 iocb->ret = 0;
2490 iocb->range = g_new(NvmeDsmRange, nr);
2491 iocb->nr = nr;
2492 iocb->idx = 0;
2494 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2495 req);
2496 if (status) {
2497 return status;
2500 req->aiocb = &iocb->common;
2501 nvme_dsm_cb(iocb, 0);
2503 return NVME_NO_COMPLETE;
2506 return status;
2509 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2511 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2512 NvmeNamespace *ns = req->ns;
2513 BlockBackend *blk = ns->blkconf.blk;
2514 uint64_t slba = le64_to_cpu(rw->slba);
2515 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2516 size_t len = nvme_l2b(ns, nlb);
2517 int64_t offset = nvme_l2b(ns, slba);
2518 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2519 uint32_t reftag = le32_to_cpu(rw->reftag);
2520 NvmeBounceContext *ctx = NULL;
2521 uint16_t status;
2523 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2525 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2526 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2527 if (status) {
2528 return status;
2531 if (prinfo & NVME_PRINFO_PRACT) {
2532 return NVME_INVALID_PROT_INFO | NVME_DNR;
2536 if (len > n->page_size << n->params.vsl) {
2537 return NVME_INVALID_FIELD | NVME_DNR;
2540 status = nvme_check_bounds(ns, slba, nlb);
2541 if (status) {
2542 return status;
2545 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2546 status = nvme_check_dulbe(ns, slba, nlb);
2547 if (status) {
2548 return status;
2552 ctx = g_new0(NvmeBounceContext, 1);
2553 ctx->req = req;
2555 ctx->data.bounce = g_malloc(len);
2557 qemu_iovec_init(&ctx->data.iov, 1);
2558 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2560 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2561 BLOCK_ACCT_READ);
2563 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2564 nvme_verify_mdata_in_cb, ctx);
2565 return NVME_NO_COMPLETE;
2568 typedef struct NvmeCopyAIOCB {
2569 BlockAIOCB common;
2570 BlockAIOCB *aiocb;
2571 NvmeRequest *req;
2572 int ret;
2574 void *ranges;
2575 unsigned int format;
2576 int nr;
2577 int idx;
2579 uint8_t *bounce;
2580 QEMUIOVector iov;
2581 struct {
2582 BlockAcctCookie read;
2583 BlockAcctCookie write;
2584 } acct;
2586 uint64_t reftag;
2587 uint64_t slba;
2589 NvmeZone *zone;
2590 } NvmeCopyAIOCB;
2592 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2594 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2596 iocb->ret = -ECANCELED;
2598 if (iocb->aiocb) {
2599 blk_aio_cancel_async(iocb->aiocb);
2600 iocb->aiocb = NULL;
2604 static const AIOCBInfo nvme_copy_aiocb_info = {
2605 .aiocb_size = sizeof(NvmeCopyAIOCB),
2606 .cancel_async = nvme_copy_cancel,
2609 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2611 NvmeRequest *req = iocb->req;
2612 NvmeNamespace *ns = req->ns;
2613 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2615 if (iocb->idx != iocb->nr) {
2616 req->cqe.result = cpu_to_le32(iocb->idx);
2619 qemu_iovec_destroy(&iocb->iov);
2620 g_free(iocb->bounce);
2622 if (iocb->ret < 0) {
2623 block_acct_failed(stats, &iocb->acct.read);
2624 block_acct_failed(stats, &iocb->acct.write);
2625 } else {
2626 block_acct_done(stats, &iocb->acct.read);
2627 block_acct_done(stats, &iocb->acct.write);
2630 iocb->common.cb(iocb->common.opaque, iocb->ret);
2631 qemu_aio_unref(iocb);
2634 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2636 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2637 uint64_t *slba, uint32_t *nlb,
2638 uint16_t *apptag,
2639 uint16_t *appmask,
2640 uint64_t *reftag)
2642 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2644 if (slba) {
2645 *slba = le64_to_cpu(_ranges[idx].slba);
2648 if (nlb) {
2649 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2652 if (apptag) {
2653 *apptag = le16_to_cpu(_ranges[idx].apptag);
2656 if (appmask) {
2657 *appmask = le16_to_cpu(_ranges[idx].appmask);
2660 if (reftag) {
2661 *reftag = le32_to_cpu(_ranges[idx].reftag);
2665 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2666 uint64_t *slba, uint32_t *nlb,
2667 uint16_t *apptag,
2668 uint16_t *appmask,
2669 uint64_t *reftag)
2671 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2673 if (slba) {
2674 *slba = le64_to_cpu(_ranges[idx].slba);
2677 if (nlb) {
2678 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2681 if (apptag) {
2682 *apptag = le16_to_cpu(_ranges[idx].apptag);
2685 if (appmask) {
2686 *appmask = le16_to_cpu(_ranges[idx].appmask);
2689 if (reftag) {
2690 *reftag = 0;
2692 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2693 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2694 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2695 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2696 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2697 *reftag |= (uint64_t)_ranges[idx].sr[9];
2701 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2702 uint64_t *slba, uint32_t *nlb,
2703 uint16_t *apptag, uint16_t *appmask,
2704 uint64_t *reftag)
2706 switch (format) {
2707 case NVME_COPY_FORMAT_0:
2708 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2709 appmask, reftag);
2710 break;
2712 case NVME_COPY_FORMAT_1:
2713 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2714 appmask, reftag);
2715 break;
2717 default:
2718 abort();
2722 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2724 NvmeCopyAIOCB *iocb = opaque;
2725 NvmeRequest *req = iocb->req;
2726 NvmeNamespace *ns = req->ns;
2727 uint32_t nlb;
2729 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2730 &nlb, NULL, NULL, NULL);
2732 if (ret < 0) {
2733 iocb->ret = ret;
2734 goto out;
2735 } else if (iocb->ret < 0) {
2736 goto out;
2739 if (ns->params.zoned) {
2740 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2743 iocb->idx++;
2744 iocb->slba += nlb;
2745 out:
2746 nvme_do_copy(iocb);
2749 static void nvme_copy_out_cb(void *opaque, int ret)
2751 NvmeCopyAIOCB *iocb = opaque;
2752 NvmeRequest *req = iocb->req;
2753 NvmeNamespace *ns = req->ns;
2754 uint32_t nlb;
2755 size_t mlen;
2756 uint8_t *mbounce;
2758 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2759 goto out;
2762 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2763 &nlb, NULL, NULL, NULL);
2765 mlen = nvme_m2b(ns, nlb);
2766 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2768 qemu_iovec_reset(&iocb->iov);
2769 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2771 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2772 &iocb->iov, 0, nvme_copy_out_completed_cb,
2773 iocb);
2775 return;
2777 out:
2778 nvme_copy_out_completed_cb(iocb, ret);
2781 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2783 NvmeCopyAIOCB *iocb = opaque;
2784 NvmeRequest *req = iocb->req;
2785 NvmeNamespace *ns = req->ns;
2786 uint32_t nlb;
2787 uint64_t slba;
2788 uint16_t apptag, appmask;
2789 uint64_t reftag;
2790 size_t len;
2791 uint16_t status;
2793 if (ret < 0) {
2794 iocb->ret = ret;
2795 goto out;
2796 } else if (iocb->ret < 0) {
2797 goto out;
2800 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2801 &nlb, &apptag, &appmask, &reftag);
2802 len = nvme_l2b(ns, nlb);
2804 trace_pci_nvme_copy_out(iocb->slba, nlb);
2806 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2807 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2809 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2810 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2812 size_t mlen = nvme_m2b(ns, nlb);
2813 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2815 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2816 if (status) {
2817 goto invalid;
2819 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2820 slba, apptag, appmask, &reftag);
2821 if (status) {
2822 goto invalid;
2825 apptag = le16_to_cpu(copy->apptag);
2826 appmask = le16_to_cpu(copy->appmask);
2828 if (prinfow & NVME_PRINFO_PRACT) {
2829 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2830 if (status) {
2831 goto invalid;
2834 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2835 apptag, &iocb->reftag);
2836 } else {
2837 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2838 prinfow, iocb->slba, apptag, appmask,
2839 &iocb->reftag);
2840 if (status) {
2841 goto invalid;
2846 status = nvme_check_bounds(ns, iocb->slba, nlb);
2847 if (status) {
2848 goto invalid;
2851 if (ns->params.zoned) {
2852 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2853 if (status) {
2854 goto invalid;
2857 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2858 iocb->zone->w_ptr += nlb;
2862 qemu_iovec_reset(&iocb->iov);
2863 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2865 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2866 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2868 return;
2870 invalid:
2871 req->status = status;
2872 iocb->ret = -1;
2873 out:
2874 nvme_do_copy(iocb);
2877 static void nvme_copy_in_cb(void *opaque, int ret)
2879 NvmeCopyAIOCB *iocb = opaque;
2880 NvmeRequest *req = iocb->req;
2881 NvmeNamespace *ns = req->ns;
2882 uint64_t slba;
2883 uint32_t nlb;
2885 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2886 goto out;
2889 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2890 &nlb, NULL, NULL, NULL);
2892 qemu_iovec_reset(&iocb->iov);
2893 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2894 nvme_m2b(ns, nlb));
2896 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2897 &iocb->iov, 0, nvme_copy_in_completed_cb,
2898 iocb);
2899 return;
2901 out:
2902 nvme_copy_in_completed_cb(iocb, ret);
2905 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
2907 NvmeRequest *req = iocb->req;
2908 NvmeNamespace *ns = req->ns;
2909 uint64_t slba;
2910 uint32_t nlb;
2911 size_t len;
2912 uint16_t status;
2914 if (iocb->ret < 0) {
2915 goto done;
2918 if (iocb->idx == iocb->nr) {
2919 goto done;
2922 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2923 &nlb, NULL, NULL, NULL);
2924 len = nvme_l2b(ns, nlb);
2926 trace_pci_nvme_copy_source_range(slba, nlb);
2928 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2929 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2930 goto invalid;
2933 status = nvme_check_bounds(ns, slba, nlb);
2934 if (status) {
2935 goto invalid;
2938 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2939 status = nvme_check_dulbe(ns, slba, nlb);
2940 if (status) {
2941 goto invalid;
2945 if (ns->params.zoned) {
2946 status = nvme_check_zone_read(ns, slba, nlb);
2947 if (status) {
2948 goto invalid;
2952 qemu_iovec_reset(&iocb->iov);
2953 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2955 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2956 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2957 return;
2959 invalid:
2960 req->status = status;
2961 iocb->ret = -1;
2962 done:
2963 nvme_copy_done(iocb);
2966 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2968 NvmeNamespace *ns = req->ns;
2969 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2970 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2971 nvme_misc_cb, req);
2972 uint16_t nr = copy->nr + 1;
2973 uint8_t format = copy->control[0] & 0xf;
2974 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2975 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2976 size_t len = sizeof(NvmeCopySourceRangeFormat0);
2978 uint16_t status;
2980 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2982 iocb->ranges = NULL;
2983 iocb->zone = NULL;
2985 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2986 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2987 status = NVME_INVALID_FIELD | NVME_DNR;
2988 goto invalid;
2991 if (!(n->id_ctrl.ocfs & (1 << format))) {
2992 trace_pci_nvme_err_copy_invalid_format(format);
2993 status = NVME_INVALID_FIELD | NVME_DNR;
2994 goto invalid;
2997 if (nr > ns->id_ns.msrc + 1) {
2998 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2999 goto invalid;
3002 if ((ns->pif == 0x0 && format != 0x0) ||
3003 (ns->pif != 0x0 && format != 0x1)) {
3004 status = NVME_INVALID_FORMAT | NVME_DNR;
3005 goto invalid;
3008 if (ns->pif) {
3009 len = sizeof(NvmeCopySourceRangeFormat1);
3012 iocb->format = format;
3013 iocb->ranges = g_malloc_n(nr, len);
3014 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3015 if (status) {
3016 goto invalid;
3019 iocb->slba = le64_to_cpu(copy->sdlba);
3021 if (ns->params.zoned) {
3022 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3023 if (!iocb->zone) {
3024 status = NVME_LBA_RANGE | NVME_DNR;
3025 goto invalid;
3028 status = nvme_zrm_auto(n, ns, iocb->zone);
3029 if (status) {
3030 goto invalid;
3034 iocb->req = req;
3035 iocb->ret = 0;
3036 iocb->nr = nr;
3037 iocb->idx = 0;
3038 iocb->reftag = le32_to_cpu(copy->reftag);
3039 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3040 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3041 ns->lbasz + ns->lbaf.ms);
3043 qemu_iovec_init(&iocb->iov, 1);
3045 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3046 BLOCK_ACCT_READ);
3047 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3048 BLOCK_ACCT_WRITE);
3050 req->aiocb = &iocb->common;
3051 nvme_do_copy(iocb);
3053 return NVME_NO_COMPLETE;
3055 invalid:
3056 g_free(iocb->ranges);
3057 qemu_aio_unref(iocb);
3058 return status;
3061 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3063 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3064 NvmeNamespace *ns = req->ns;
3065 BlockBackend *blk = ns->blkconf.blk;
3066 uint64_t slba = le64_to_cpu(rw->slba);
3067 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3068 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3069 size_t data_len = nvme_l2b(ns, nlb);
3070 size_t len = data_len;
3071 int64_t offset = nvme_l2b(ns, slba);
3072 struct nvme_compare_ctx *ctx = NULL;
3073 uint16_t status;
3075 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3077 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3078 return NVME_INVALID_PROT_INFO | NVME_DNR;
3081 if (nvme_ns_ext(ns)) {
3082 len += nvme_m2b(ns, nlb);
3085 status = nvme_check_mdts(n, len);
3086 if (status) {
3087 return status;
3090 status = nvme_check_bounds(ns, slba, nlb);
3091 if (status) {
3092 return status;
3095 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3096 status = nvme_check_dulbe(ns, slba, nlb);
3097 if (status) {
3098 return status;
3102 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3103 if (status) {
3104 return status;
3107 ctx = g_new(struct nvme_compare_ctx, 1);
3108 ctx->data.bounce = g_malloc(data_len);
3110 req->opaque = ctx;
3112 qemu_iovec_init(&ctx->data.iov, 1);
3113 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3115 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3116 BLOCK_ACCT_READ);
3117 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3118 nvme_compare_data_cb, req);
3120 return NVME_NO_COMPLETE;
3123 typedef struct NvmeFlushAIOCB {
3124 BlockAIOCB common;
3125 BlockAIOCB *aiocb;
3126 NvmeRequest *req;
3127 int ret;
3129 NvmeNamespace *ns;
3130 uint32_t nsid;
3131 bool broadcast;
3132 } NvmeFlushAIOCB;
3134 static void nvme_flush_cancel(BlockAIOCB *acb)
3136 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3138 iocb->ret = -ECANCELED;
3140 if (iocb->aiocb) {
3141 blk_aio_cancel_async(iocb->aiocb);
3142 iocb->aiocb = NULL;
3146 static const AIOCBInfo nvme_flush_aiocb_info = {
3147 .aiocb_size = sizeof(NvmeFlushAIOCB),
3148 .cancel_async = nvme_flush_cancel,
3149 .get_aio_context = nvme_get_aio_context,
3152 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3154 static void nvme_flush_ns_cb(void *opaque, int ret)
3156 NvmeFlushAIOCB *iocb = opaque;
3157 NvmeNamespace *ns = iocb->ns;
3159 if (ret < 0) {
3160 iocb->ret = ret;
3161 goto out;
3162 } else if (iocb->ret < 0) {
3163 goto out;
3166 if (ns) {
3167 trace_pci_nvme_flush_ns(iocb->nsid);
3169 iocb->ns = NULL;
3170 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3171 return;
3174 out:
3175 nvme_do_flush(iocb);
3178 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3180 NvmeRequest *req = iocb->req;
3181 NvmeCtrl *n = nvme_ctrl(req);
3182 int i;
3184 if (iocb->ret < 0) {
3185 goto done;
3188 if (iocb->broadcast) {
3189 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3190 iocb->ns = nvme_ns(n, i);
3191 if (iocb->ns) {
3192 iocb->nsid = i;
3193 break;
3198 if (!iocb->ns) {
3199 goto done;
3202 nvme_flush_ns_cb(iocb, 0);
3203 return;
3205 done:
3206 iocb->common.cb(iocb->common.opaque, iocb->ret);
3207 qemu_aio_unref(iocb);
3210 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3212 NvmeFlushAIOCB *iocb;
3213 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3214 uint16_t status;
3216 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3218 iocb->req = req;
3219 iocb->ret = 0;
3220 iocb->ns = NULL;
3221 iocb->nsid = 0;
3222 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3224 if (!iocb->broadcast) {
3225 if (!nvme_nsid_valid(n, nsid)) {
3226 status = NVME_INVALID_NSID | NVME_DNR;
3227 goto out;
3230 iocb->ns = nvme_ns(n, nsid);
3231 if (!iocb->ns) {
3232 status = NVME_INVALID_FIELD | NVME_DNR;
3233 goto out;
3236 iocb->nsid = nsid;
3239 req->aiocb = &iocb->common;
3240 nvme_do_flush(iocb);
3242 return NVME_NO_COMPLETE;
3244 out:
3245 qemu_aio_unref(iocb);
3247 return status;
3250 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3252 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3253 NvmeNamespace *ns = req->ns;
3254 uint64_t slba = le64_to_cpu(rw->slba);
3255 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3256 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3257 uint64_t data_size = nvme_l2b(ns, nlb);
3258 uint64_t mapped_size = data_size;
3259 uint64_t data_offset;
3260 BlockBackend *blk = ns->blkconf.blk;
3261 uint16_t status;
3263 if (nvme_ns_ext(ns)) {
3264 mapped_size += nvme_m2b(ns, nlb);
3266 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3267 bool pract = prinfo & NVME_PRINFO_PRACT;
3269 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3270 mapped_size = data_size;
3275 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3277 status = nvme_check_mdts(n, mapped_size);
3278 if (status) {
3279 goto invalid;
3282 status = nvme_check_bounds(ns, slba, nlb);
3283 if (status) {
3284 goto invalid;
3287 if (ns->params.zoned) {
3288 status = nvme_check_zone_read(ns, slba, nlb);
3289 if (status) {
3290 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3291 goto invalid;
3295 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3296 status = nvme_check_dulbe(ns, slba, nlb);
3297 if (status) {
3298 goto invalid;
3302 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3303 return nvme_dif_rw(n, req);
3306 status = nvme_map_data(n, nlb, req);
3307 if (status) {
3308 goto invalid;
3311 data_offset = nvme_l2b(ns, slba);
3313 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3314 BLOCK_ACCT_READ);
3315 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3316 return NVME_NO_COMPLETE;
3318 invalid:
3319 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3320 return status | NVME_DNR;
3323 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3324 bool wrz)
3326 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3327 NvmeNamespace *ns = req->ns;
3328 uint64_t slba = le64_to_cpu(rw->slba);
3329 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3330 uint16_t ctrl = le16_to_cpu(rw->control);
3331 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3332 uint64_t data_size = nvme_l2b(ns, nlb);
3333 uint64_t mapped_size = data_size;
3334 uint64_t data_offset;
3335 NvmeZone *zone;
3336 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3337 BlockBackend *blk = ns->blkconf.blk;
3338 uint16_t status;
3340 if (nvme_ns_ext(ns)) {
3341 mapped_size += nvme_m2b(ns, nlb);
3343 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3344 bool pract = prinfo & NVME_PRINFO_PRACT;
3346 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3347 mapped_size -= nvme_m2b(ns, nlb);
3352 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3353 nvme_nsid(ns), nlb, mapped_size, slba);
3355 if (!wrz) {
3356 status = nvme_check_mdts(n, mapped_size);
3357 if (status) {
3358 goto invalid;
3362 status = nvme_check_bounds(ns, slba, nlb);
3363 if (status) {
3364 goto invalid;
3367 if (ns->params.zoned) {
3368 zone = nvme_get_zone_by_slba(ns, slba);
3369 assert(zone);
3371 if (append) {
3372 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3374 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3375 return NVME_INVALID_ZONE_OP | NVME_DNR;
3378 if (unlikely(slba != zone->d.zslba)) {
3379 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3380 status = NVME_INVALID_FIELD;
3381 goto invalid;
3384 if (n->params.zasl &&
3385 data_size > (uint64_t)n->page_size << n->params.zasl) {
3386 trace_pci_nvme_err_zasl(data_size);
3387 return NVME_INVALID_FIELD | NVME_DNR;
3390 slba = zone->w_ptr;
3391 rw->slba = cpu_to_le64(slba);
3392 res->slba = cpu_to_le64(slba);
3394 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3395 case NVME_ID_NS_DPS_TYPE_1:
3396 if (!piremap) {
3397 return NVME_INVALID_PROT_INFO | NVME_DNR;
3400 /* fallthrough */
3402 case NVME_ID_NS_DPS_TYPE_2:
3403 if (piremap) {
3404 uint32_t reftag = le32_to_cpu(rw->reftag);
3405 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3408 break;
3410 case NVME_ID_NS_DPS_TYPE_3:
3411 if (piremap) {
3412 return NVME_INVALID_PROT_INFO | NVME_DNR;
3415 break;
3419 status = nvme_check_zone_write(ns, zone, slba, nlb);
3420 if (status) {
3421 goto invalid;
3424 status = nvme_zrm_auto(n, ns, zone);
3425 if (status) {
3426 goto invalid;
3429 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3430 zone->w_ptr += nlb;
3434 data_offset = nvme_l2b(ns, slba);
3436 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3437 return nvme_dif_rw(n, req);
3440 if (!wrz) {
3441 status = nvme_map_data(n, nlb, req);
3442 if (status) {
3443 goto invalid;
3446 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3447 BLOCK_ACCT_WRITE);
3448 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3449 } else {
3450 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3451 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3452 req);
3455 return NVME_NO_COMPLETE;
3457 invalid:
3458 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3459 return status | NVME_DNR;
3462 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3464 return nvme_do_write(n, req, false, false);
3467 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3469 return nvme_do_write(n, req, false, true);
3472 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3474 return nvme_do_write(n, req, true, false);
3477 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3478 uint64_t *slba, uint32_t *zone_idx)
3480 uint32_t dw10 = le32_to_cpu(c->cdw10);
3481 uint32_t dw11 = le32_to_cpu(c->cdw11);
3483 if (!ns->params.zoned) {
3484 trace_pci_nvme_err_invalid_opc(c->opcode);
3485 return NVME_INVALID_OPCODE | NVME_DNR;
3488 *slba = ((uint64_t)dw11) << 32 | dw10;
3489 if (unlikely(*slba >= ns->id_ns.nsze)) {
3490 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3491 *slba = 0;
3492 return NVME_LBA_RANGE | NVME_DNR;
3495 *zone_idx = nvme_zone_idx(ns, *slba);
3496 assert(*zone_idx < ns->num_zones);
3498 return NVME_SUCCESS;
3501 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3502 NvmeRequest *);
3504 enum NvmeZoneProcessingMask {
3505 NVME_PROC_CURRENT_ZONE = 0,
3506 NVME_PROC_OPENED_ZONES = 1 << 0,
3507 NVME_PROC_CLOSED_ZONES = 1 << 1,
3508 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3509 NVME_PROC_FULL_ZONES = 1 << 3,
3512 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3513 NvmeZoneState state, NvmeRequest *req)
3515 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3516 int flags = 0;
3518 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3519 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3521 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3522 return NVME_INVALID_ZONE_OP | NVME_DNR;
3525 if (zone->w_ptr % ns->zns.zrwafg) {
3526 return NVME_NOZRWA | NVME_DNR;
3529 flags = NVME_ZRM_ZRWA;
3532 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3535 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3536 NvmeZoneState state, NvmeRequest *req)
3538 return nvme_zrm_close(ns, zone);
3541 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3542 NvmeZoneState state, NvmeRequest *req)
3544 return nvme_zrm_finish(ns, zone);
3547 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3548 NvmeZoneState state, NvmeRequest *req)
3550 switch (state) {
3551 case NVME_ZONE_STATE_READ_ONLY:
3552 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3553 /* fall through */
3554 case NVME_ZONE_STATE_OFFLINE:
3555 return NVME_SUCCESS;
3556 default:
3557 return NVME_ZONE_INVAL_TRANSITION;
3561 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3563 uint16_t status;
3564 uint8_t state = nvme_get_zone_state(zone);
3566 if (state == NVME_ZONE_STATE_EMPTY) {
3567 status = nvme_aor_check(ns, 1, 0);
3568 if (status) {
3569 return status;
3571 nvme_aor_inc_active(ns);
3572 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3573 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3574 return NVME_SUCCESS;
3577 return NVME_ZONE_INVAL_TRANSITION;
3580 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3581 enum NvmeZoneProcessingMask proc_mask,
3582 op_handler_t op_hndlr, NvmeRequest *req)
3584 uint16_t status = NVME_SUCCESS;
3585 NvmeZoneState zs = nvme_get_zone_state(zone);
3586 bool proc_zone;
3588 switch (zs) {
3589 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3590 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3591 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3592 break;
3593 case NVME_ZONE_STATE_CLOSED:
3594 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3595 break;
3596 case NVME_ZONE_STATE_READ_ONLY:
3597 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3598 break;
3599 case NVME_ZONE_STATE_FULL:
3600 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3601 break;
3602 default:
3603 proc_zone = false;
3606 if (proc_zone) {
3607 status = op_hndlr(ns, zone, zs, req);
3610 return status;
3613 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3614 enum NvmeZoneProcessingMask proc_mask,
3615 op_handler_t op_hndlr, NvmeRequest *req)
3617 NvmeZone *next;
3618 uint16_t status = NVME_SUCCESS;
3619 int i;
3621 if (!proc_mask) {
3622 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3623 } else {
3624 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3625 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3626 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627 req);
3628 if (status && status != NVME_NO_COMPLETE) {
3629 goto out;
3633 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3634 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3635 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636 req);
3637 if (status && status != NVME_NO_COMPLETE) {
3638 goto out;
3642 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3643 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3644 req);
3645 if (status && status != NVME_NO_COMPLETE) {
3646 goto out;
3650 if (proc_mask & NVME_PROC_FULL_ZONES) {
3651 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3652 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3653 req);
3654 if (status && status != NVME_NO_COMPLETE) {
3655 goto out;
3660 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3661 for (i = 0; i < ns->num_zones; i++, zone++) {
3662 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3663 req);
3664 if (status && status != NVME_NO_COMPLETE) {
3665 goto out;
3671 out:
3672 return status;
3675 typedef struct NvmeZoneResetAIOCB {
3676 BlockAIOCB common;
3677 BlockAIOCB *aiocb;
3678 NvmeRequest *req;
3679 int ret;
3681 bool all;
3682 int idx;
3683 NvmeZone *zone;
3684 } NvmeZoneResetAIOCB;
3686 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3688 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3689 NvmeRequest *req = iocb->req;
3690 NvmeNamespace *ns = req->ns;
3692 iocb->idx = ns->num_zones;
3694 iocb->ret = -ECANCELED;
3696 if (iocb->aiocb) {
3697 blk_aio_cancel_async(iocb->aiocb);
3698 iocb->aiocb = NULL;
3702 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3703 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3704 .cancel_async = nvme_zone_reset_cancel,
3707 static void nvme_zone_reset_cb(void *opaque, int ret);
3709 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3711 NvmeZoneResetAIOCB *iocb = opaque;
3712 NvmeRequest *req = iocb->req;
3713 NvmeNamespace *ns = req->ns;
3714 int64_t moff;
3715 int count;
3717 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3718 goto out;
3721 moff = nvme_moff(ns, iocb->zone->d.zslba);
3722 count = nvme_m2b(ns, ns->zone_size);
3724 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3725 BDRV_REQ_MAY_UNMAP,
3726 nvme_zone_reset_cb, iocb);
3727 return;
3729 out:
3730 nvme_zone_reset_cb(iocb, ret);
3733 static void nvme_zone_reset_cb(void *opaque, int ret)
3735 NvmeZoneResetAIOCB *iocb = opaque;
3736 NvmeRequest *req = iocb->req;
3737 NvmeNamespace *ns = req->ns;
3739 if (iocb->ret < 0) {
3740 goto done;
3741 } else if (ret < 0) {
3742 iocb->ret = ret;
3743 goto done;
3746 if (iocb->zone) {
3747 nvme_zrm_reset(ns, iocb->zone);
3749 if (!iocb->all) {
3750 goto done;
3754 while (iocb->idx < ns->num_zones) {
3755 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3757 switch (nvme_get_zone_state(zone)) {
3758 case NVME_ZONE_STATE_EMPTY:
3759 if (!iocb->all) {
3760 goto done;
3763 continue;
3765 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3766 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3767 case NVME_ZONE_STATE_CLOSED:
3768 case NVME_ZONE_STATE_FULL:
3769 iocb->zone = zone;
3770 break;
3772 default:
3773 continue;
3776 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3778 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3779 nvme_l2b(ns, zone->d.zslba),
3780 nvme_l2b(ns, ns->zone_size),
3781 BDRV_REQ_MAY_UNMAP,
3782 nvme_zone_reset_epilogue_cb,
3783 iocb);
3784 return;
3787 done:
3788 iocb->aiocb = NULL;
3790 iocb->common.cb(iocb->common.opaque, iocb->ret);
3791 qemu_aio_unref(iocb);
3794 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3795 uint64_t elba, NvmeRequest *req)
3797 NvmeNamespace *ns = req->ns;
3798 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3799 uint64_t wp = zone->d.wp;
3800 uint32_t nlb = elba - wp + 1;
3801 uint16_t status;
3804 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3805 return NVME_INVALID_ZONE_OP | NVME_DNR;
3808 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3809 return NVME_INVALID_FIELD | NVME_DNR;
3812 if (elba < wp || elba > wp + ns->zns.zrwas) {
3813 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3816 if (nlb % ns->zns.zrwafg) {
3817 return NVME_INVALID_FIELD | NVME_DNR;
3820 status = nvme_zrm_auto(n, ns, zone);
3821 if (status) {
3822 return status;
3825 zone->w_ptr += nlb;
3827 nvme_advance_zone_wp(ns, zone, nlb);
3829 return NVME_SUCCESS;
3832 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3834 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3835 NvmeNamespace *ns = req->ns;
3836 NvmeZone *zone;
3837 NvmeZoneResetAIOCB *iocb;
3838 uint8_t *zd_ext;
3839 uint64_t slba = 0;
3840 uint32_t zone_idx = 0;
3841 uint16_t status;
3842 uint8_t action = cmd->zsa;
3843 bool all;
3844 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3846 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3848 req->status = NVME_SUCCESS;
3850 if (!all) {
3851 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3852 if (status) {
3853 return status;
3857 zone = &ns->zone_array[zone_idx];
3858 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3859 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3860 return NVME_INVALID_FIELD | NVME_DNR;
3863 switch (action) {
3865 case NVME_ZONE_ACTION_OPEN:
3866 if (all) {
3867 proc_mask = NVME_PROC_CLOSED_ZONES;
3869 trace_pci_nvme_open_zone(slba, zone_idx, all);
3870 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3871 break;
3873 case NVME_ZONE_ACTION_CLOSE:
3874 if (all) {
3875 proc_mask = NVME_PROC_OPENED_ZONES;
3877 trace_pci_nvme_close_zone(slba, zone_idx, all);
3878 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3879 break;
3881 case NVME_ZONE_ACTION_FINISH:
3882 if (all) {
3883 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3885 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3886 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3887 break;
3889 case NVME_ZONE_ACTION_RESET:
3890 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3892 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3893 nvme_misc_cb, req);
3895 iocb->req = req;
3896 iocb->ret = 0;
3897 iocb->all = all;
3898 iocb->idx = zone_idx;
3899 iocb->zone = NULL;
3901 req->aiocb = &iocb->common;
3902 nvme_zone_reset_cb(iocb, 0);
3904 return NVME_NO_COMPLETE;
3906 case NVME_ZONE_ACTION_OFFLINE:
3907 if (all) {
3908 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3910 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3911 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3912 break;
3914 case NVME_ZONE_ACTION_SET_ZD_EXT:
3915 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3916 if (all || !ns->params.zd_extension_size) {
3917 return NVME_INVALID_FIELD | NVME_DNR;
3919 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3920 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3921 if (status) {
3922 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3923 return status;
3926 status = nvme_set_zd_ext(ns, zone);
3927 if (status == NVME_SUCCESS) {
3928 trace_pci_nvme_zd_extension_set(zone_idx);
3929 return status;
3931 break;
3933 case NVME_ZONE_ACTION_ZRWA_FLUSH:
3934 if (all) {
3935 return NVME_INVALID_FIELD | NVME_DNR;
3938 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3940 default:
3941 trace_pci_nvme_err_invalid_mgmt_action(action);
3942 status = NVME_INVALID_FIELD;
3945 if (status == NVME_ZONE_INVAL_TRANSITION) {
3946 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3947 zone->d.za);
3949 if (status) {
3950 status |= NVME_DNR;
3953 return status;
3956 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3958 NvmeZoneState zs = nvme_get_zone_state(zl);
3960 switch (zafs) {
3961 case NVME_ZONE_REPORT_ALL:
3962 return true;
3963 case NVME_ZONE_REPORT_EMPTY:
3964 return zs == NVME_ZONE_STATE_EMPTY;
3965 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3966 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3967 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3968 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3969 case NVME_ZONE_REPORT_CLOSED:
3970 return zs == NVME_ZONE_STATE_CLOSED;
3971 case NVME_ZONE_REPORT_FULL:
3972 return zs == NVME_ZONE_STATE_FULL;
3973 case NVME_ZONE_REPORT_READ_ONLY:
3974 return zs == NVME_ZONE_STATE_READ_ONLY;
3975 case NVME_ZONE_REPORT_OFFLINE:
3976 return zs == NVME_ZONE_STATE_OFFLINE;
3977 default:
3978 return false;
3982 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3984 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3985 NvmeNamespace *ns = req->ns;
3986 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3987 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3988 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3989 uint32_t zone_idx, zra, zrasf, partial;
3990 uint64_t max_zones, nr_zones = 0;
3991 uint16_t status;
3992 uint64_t slba;
3993 NvmeZoneDescr *z;
3994 NvmeZone *zone;
3995 NvmeZoneReportHeader *header;
3996 void *buf, *buf_p;
3997 size_t zone_entry_sz;
3998 int i;
4000 req->status = NVME_SUCCESS;
4002 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4003 if (status) {
4004 return status;
4007 zra = dw13 & 0xff;
4008 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4009 return NVME_INVALID_FIELD | NVME_DNR;
4011 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4012 return NVME_INVALID_FIELD | NVME_DNR;
4015 zrasf = (dw13 >> 8) & 0xff;
4016 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4017 return NVME_INVALID_FIELD | NVME_DNR;
4020 if (data_size < sizeof(NvmeZoneReportHeader)) {
4021 return NVME_INVALID_FIELD | NVME_DNR;
4024 status = nvme_check_mdts(n, data_size);
4025 if (status) {
4026 return status;
4029 partial = (dw13 >> 16) & 0x01;
4031 zone_entry_sz = sizeof(NvmeZoneDescr);
4032 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4033 zone_entry_sz += ns->params.zd_extension_size;
4036 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4037 buf = g_malloc0(data_size);
4039 zone = &ns->zone_array[zone_idx];
4040 for (i = zone_idx; i < ns->num_zones; i++) {
4041 if (partial && nr_zones >= max_zones) {
4042 break;
4044 if (nvme_zone_matches_filter(zrasf, zone++)) {
4045 nr_zones++;
4048 header = buf;
4049 header->nr_zones = cpu_to_le64(nr_zones);
4051 buf_p = buf + sizeof(NvmeZoneReportHeader);
4052 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4053 zone = &ns->zone_array[zone_idx];
4054 if (nvme_zone_matches_filter(zrasf, zone)) {
4055 z = buf_p;
4056 buf_p += sizeof(NvmeZoneDescr);
4058 z->zt = zone->d.zt;
4059 z->zs = zone->d.zs;
4060 z->zcap = cpu_to_le64(zone->d.zcap);
4061 z->zslba = cpu_to_le64(zone->d.zslba);
4062 z->za = zone->d.za;
4064 if (nvme_wp_is_valid(zone)) {
4065 z->wp = cpu_to_le64(zone->d.wp);
4066 } else {
4067 z->wp = cpu_to_le64(~0ULL);
4070 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4071 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4072 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4073 ns->params.zd_extension_size);
4075 buf_p += ns->params.zd_extension_size;
4078 max_zones--;
4082 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4084 g_free(buf);
4086 return status;
4089 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4091 NvmeNamespace *ns;
4092 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4094 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4095 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4097 if (!nvme_nsid_valid(n, nsid)) {
4098 return NVME_INVALID_NSID | NVME_DNR;
4102 * In the base NVM command set, Flush may apply to all namespaces
4103 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4104 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4106 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4107 * opcode with a specific command since we cannot determine a unique I/O
4108 * command set. Opcode 0h could have any other meaning than something
4109 * equivalent to flushing and say it DOES have completely different
4110 * semantics in some other command set - does an NSID of FFFFFFFFh then
4111 * mean "for all namespaces, apply whatever command set specific command
4112 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4113 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4114 * to be FFFFFFFFh"?
4116 * Anyway (and luckily), for now, we do not care about this since the
4117 * device only supports namespace types that includes the NVM Flush command
4118 * (NVM and Zoned), so always do an NVM Flush.
4120 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4121 return nvme_flush(n, req);
4124 ns = nvme_ns(n, nsid);
4125 if (unlikely(!ns)) {
4126 return NVME_INVALID_FIELD | NVME_DNR;
4129 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4130 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4131 return NVME_INVALID_OPCODE | NVME_DNR;
4134 if (ns->status) {
4135 return ns->status;
4138 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4139 return NVME_INVALID_FIELD;
4142 req->ns = ns;
4144 switch (req->cmd.opcode) {
4145 case NVME_CMD_WRITE_ZEROES:
4146 return nvme_write_zeroes(n, req);
4147 case NVME_CMD_ZONE_APPEND:
4148 return nvme_zone_append(n, req);
4149 case NVME_CMD_WRITE:
4150 return nvme_write(n, req);
4151 case NVME_CMD_READ:
4152 return nvme_read(n, req);
4153 case NVME_CMD_COMPARE:
4154 return nvme_compare(n, req);
4155 case NVME_CMD_DSM:
4156 return nvme_dsm(n, req);
4157 case NVME_CMD_VERIFY:
4158 return nvme_verify(n, req);
4159 case NVME_CMD_COPY:
4160 return nvme_copy(n, req);
4161 case NVME_CMD_ZONE_MGMT_SEND:
4162 return nvme_zone_mgmt_send(n, req);
4163 case NVME_CMD_ZONE_MGMT_RECV:
4164 return nvme_zone_mgmt_recv(n, req);
4165 default:
4166 assert(false);
4169 return NVME_INVALID_OPCODE | NVME_DNR;
4172 static void nvme_cq_notifier(EventNotifier *e)
4174 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4175 NvmeCtrl *n = cq->ctrl;
4177 if (!event_notifier_test_and_clear(e)) {
4178 return;
4181 nvme_update_cq_head(cq);
4183 if (cq->tail == cq->head) {
4184 if (cq->irq_enabled) {
4185 n->cq_pending--;
4188 nvme_irq_deassert(n, cq);
4191 qemu_bh_schedule(cq->bh);
4194 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4196 NvmeCtrl *n = cq->ctrl;
4197 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4198 int ret;
4200 ret = event_notifier_init(&cq->notifier, 0);
4201 if (ret < 0) {
4202 return ret;
4205 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4206 memory_region_add_eventfd(&n->iomem,
4207 0x1000 + offset, 4, false, 0, &cq->notifier);
4209 return 0;
4212 static void nvme_sq_notifier(EventNotifier *e)
4214 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4216 if (!event_notifier_test_and_clear(e)) {
4217 return;
4220 nvme_process_sq(sq);
4223 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4225 NvmeCtrl *n = sq->ctrl;
4226 uint16_t offset = sq->sqid << 3;
4227 int ret;
4229 ret = event_notifier_init(&sq->notifier, 0);
4230 if (ret < 0) {
4231 return ret;
4234 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4235 memory_region_add_eventfd(&n->iomem,
4236 0x1000 + offset, 4, false, 0, &sq->notifier);
4238 return 0;
4241 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4243 uint16_t offset = sq->sqid << 3;
4245 n->sq[sq->sqid] = NULL;
4246 qemu_bh_delete(sq->bh);
4247 if (sq->ioeventfd_enabled) {
4248 memory_region_del_eventfd(&n->iomem,
4249 0x1000 + offset, 4, false, 0, &sq->notifier);
4250 event_notifier_set_handler(&sq->notifier, NULL);
4251 event_notifier_cleanup(&sq->notifier);
4253 g_free(sq->io_req);
4254 if (sq->sqid) {
4255 g_free(sq);
4259 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4261 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4262 NvmeRequest *r, *next;
4263 NvmeSQueue *sq;
4264 NvmeCQueue *cq;
4265 uint16_t qid = le16_to_cpu(c->qid);
4267 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4268 trace_pci_nvme_err_invalid_del_sq(qid);
4269 return NVME_INVALID_QID | NVME_DNR;
4272 trace_pci_nvme_del_sq(qid);
4274 sq = n->sq[qid];
4275 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4276 r = QTAILQ_FIRST(&sq->out_req_list);
4277 assert(r->aiocb);
4278 blk_aio_cancel(r->aiocb);
4281 assert(QTAILQ_EMPTY(&sq->out_req_list));
4283 if (!nvme_check_cqid(n, sq->cqid)) {
4284 cq = n->cq[sq->cqid];
4285 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4287 nvme_post_cqes(cq);
4288 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4289 if (r->sq == sq) {
4290 QTAILQ_REMOVE(&cq->req_list, r, entry);
4291 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4296 nvme_free_sq(sq, n);
4297 return NVME_SUCCESS;
4300 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4301 uint16_t sqid, uint16_t cqid, uint16_t size)
4303 int i;
4304 NvmeCQueue *cq;
4306 sq->ctrl = n;
4307 sq->dma_addr = dma_addr;
4308 sq->sqid = sqid;
4309 sq->size = size;
4310 sq->cqid = cqid;
4311 sq->head = sq->tail = 0;
4312 sq->io_req = g_new0(NvmeRequest, sq->size);
4314 QTAILQ_INIT(&sq->req_list);
4315 QTAILQ_INIT(&sq->out_req_list);
4316 for (i = 0; i < sq->size; i++) {
4317 sq->io_req[i].sq = sq;
4318 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4321 sq->bh = qemu_bh_new(nvme_process_sq, sq);
4323 if (n->dbbuf_enabled) {
4324 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4325 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4327 if (n->params.ioeventfd && sq->sqid != 0) {
4328 if (!nvme_init_sq_ioeventfd(sq)) {
4329 sq->ioeventfd_enabled = true;
4334 assert(n->cq[cqid]);
4335 cq = n->cq[cqid];
4336 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4337 n->sq[sqid] = sq;
4340 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4342 NvmeSQueue *sq;
4343 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4345 uint16_t cqid = le16_to_cpu(c->cqid);
4346 uint16_t sqid = le16_to_cpu(c->sqid);
4347 uint16_t qsize = le16_to_cpu(c->qsize);
4348 uint16_t qflags = le16_to_cpu(c->sq_flags);
4349 uint64_t prp1 = le64_to_cpu(c->prp1);
4351 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4353 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4354 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4355 return NVME_INVALID_CQID | NVME_DNR;
4357 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4358 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4359 return NVME_INVALID_QID | NVME_DNR;
4361 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4362 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4363 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4365 if (unlikely(prp1 & (n->page_size - 1))) {
4366 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4367 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4369 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4370 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4371 return NVME_INVALID_FIELD | NVME_DNR;
4373 sq = g_malloc0(sizeof(*sq));
4374 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4375 return NVME_SUCCESS;
4378 struct nvme_stats {
4379 uint64_t units_read;
4380 uint64_t units_written;
4381 uint64_t read_commands;
4382 uint64_t write_commands;
4385 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4387 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4389 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4390 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4391 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4392 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4395 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4396 uint64_t off, NvmeRequest *req)
4398 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4399 struct nvme_stats stats = { 0 };
4400 NvmeSmartLog smart = { 0 };
4401 uint32_t trans_len;
4402 NvmeNamespace *ns;
4403 time_t current_ms;
4405 if (off >= sizeof(smart)) {
4406 return NVME_INVALID_FIELD | NVME_DNR;
4409 if (nsid != 0xffffffff) {
4410 ns = nvme_ns(n, nsid);
4411 if (!ns) {
4412 return NVME_INVALID_NSID | NVME_DNR;
4414 nvme_set_blk_stats(ns, &stats);
4415 } else {
4416 int i;
4418 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4419 ns = nvme_ns(n, i);
4420 if (!ns) {
4421 continue;
4423 nvme_set_blk_stats(ns, &stats);
4427 trans_len = MIN(sizeof(smart) - off, buf_len);
4428 smart.critical_warning = n->smart_critical_warning;
4430 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4431 1000));
4432 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4433 1000));
4434 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4435 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4437 smart.temperature = cpu_to_le16(n->temperature);
4439 if ((n->temperature >= n->features.temp_thresh_hi) ||
4440 (n->temperature <= n->features.temp_thresh_low)) {
4441 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4444 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4445 smart.power_on_hours[0] =
4446 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4448 if (!rae) {
4449 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4452 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4455 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4456 NvmeRequest *req)
4458 uint32_t trans_len;
4459 NvmeFwSlotInfoLog fw_log = {
4460 .afi = 0x1,
4463 if (off >= sizeof(fw_log)) {
4464 return NVME_INVALID_FIELD | NVME_DNR;
4467 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4468 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4470 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4473 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4474 uint64_t off, NvmeRequest *req)
4476 uint32_t trans_len;
4477 NvmeErrorLog errlog;
4479 if (off >= sizeof(errlog)) {
4480 return NVME_INVALID_FIELD | NVME_DNR;
4483 if (!rae) {
4484 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4487 memset(&errlog, 0x0, sizeof(errlog));
4488 trans_len = MIN(sizeof(errlog) - off, buf_len);
4490 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4493 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4494 uint64_t off, NvmeRequest *req)
4496 uint32_t nslist[1024];
4497 uint32_t trans_len;
4498 int i = 0;
4499 uint32_t nsid;
4501 if (off >= sizeof(nslist)) {
4502 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4503 return NVME_INVALID_FIELD | NVME_DNR;
4506 memset(nslist, 0x0, sizeof(nslist));
4507 trans_len = MIN(sizeof(nslist) - off, buf_len);
4509 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4510 NVME_CHANGED_NSID_SIZE) {
4512 * If more than 1024 namespaces, the first entry in the log page should
4513 * be set to FFFFFFFFh and the others to 0 as spec.
4515 if (i == ARRAY_SIZE(nslist)) {
4516 memset(nslist, 0x0, sizeof(nslist));
4517 nslist[0] = 0xffffffff;
4518 break;
4521 nslist[i++] = nsid;
4522 clear_bit(nsid, n->changed_nsids);
4526 * Remove all the remaining list entries in case returns directly due to
4527 * more than 1024 namespaces.
4529 if (nslist[0] == 0xffffffff) {
4530 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4533 if (!rae) {
4534 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4537 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4540 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4541 uint64_t off, NvmeRequest *req)
4543 NvmeEffectsLog log = {};
4544 const uint32_t *src_iocs = NULL;
4545 uint32_t trans_len;
4547 if (off >= sizeof(log)) {
4548 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4549 return NVME_INVALID_FIELD | NVME_DNR;
4552 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4553 case NVME_CC_CSS_NVM:
4554 src_iocs = nvme_cse_iocs_nvm;
4555 /* fall through */
4556 case NVME_CC_CSS_ADMIN_ONLY:
4557 break;
4558 case NVME_CC_CSS_CSI:
4559 switch (csi) {
4560 case NVME_CSI_NVM:
4561 src_iocs = nvme_cse_iocs_nvm;
4562 break;
4563 case NVME_CSI_ZONED:
4564 src_iocs = nvme_cse_iocs_zoned;
4565 break;
4569 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4571 if (src_iocs) {
4572 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4575 trans_len = MIN(sizeof(log) - off, buf_len);
4577 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4580 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4582 NvmeCmd *cmd = &req->cmd;
4584 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4585 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4586 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4587 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4588 uint8_t lid = dw10 & 0xff;
4589 uint8_t lsp = (dw10 >> 8) & 0xf;
4590 uint8_t rae = (dw10 >> 15) & 0x1;
4591 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4592 uint32_t numdl, numdu;
4593 uint64_t off, lpol, lpou;
4594 size_t len;
4595 uint16_t status;
4597 numdl = (dw10 >> 16);
4598 numdu = (dw11 & 0xffff);
4599 lpol = dw12;
4600 lpou = dw13;
4602 len = (((numdu << 16) | numdl) + 1) << 2;
4603 off = (lpou << 32ULL) | lpol;
4605 if (off & 0x3) {
4606 return NVME_INVALID_FIELD | NVME_DNR;
4609 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4611 status = nvme_check_mdts(n, len);
4612 if (status) {
4613 return status;
4616 switch (lid) {
4617 case NVME_LOG_ERROR_INFO:
4618 return nvme_error_info(n, rae, len, off, req);
4619 case NVME_LOG_SMART_INFO:
4620 return nvme_smart_info(n, rae, len, off, req);
4621 case NVME_LOG_FW_SLOT_INFO:
4622 return nvme_fw_log_info(n, len, off, req);
4623 case NVME_LOG_CHANGED_NSLIST:
4624 return nvme_changed_nslist(n, rae, len, off, req);
4625 case NVME_LOG_CMD_EFFECTS:
4626 return nvme_cmd_effects(n, csi, len, off, req);
4627 default:
4628 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4629 return NVME_INVALID_FIELD | NVME_DNR;
4633 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4635 PCIDevice *pci = PCI_DEVICE(n);
4636 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4638 n->cq[cq->cqid] = NULL;
4639 qemu_bh_delete(cq->bh);
4640 if (cq->ioeventfd_enabled) {
4641 memory_region_del_eventfd(&n->iomem,
4642 0x1000 + offset, 4, false, 0, &cq->notifier);
4643 event_notifier_set_handler(&cq->notifier, NULL);
4644 event_notifier_cleanup(&cq->notifier);
4646 if (msix_enabled(pci)) {
4647 msix_vector_unuse(pci, cq->vector);
4649 if (cq->cqid) {
4650 g_free(cq);
4654 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4656 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4657 NvmeCQueue *cq;
4658 uint16_t qid = le16_to_cpu(c->qid);
4660 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4661 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4662 return NVME_INVALID_CQID | NVME_DNR;
4665 cq = n->cq[qid];
4666 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4667 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4668 return NVME_INVALID_QUEUE_DEL;
4671 if (cq->irq_enabled && cq->tail != cq->head) {
4672 n->cq_pending--;
4675 nvme_irq_deassert(n, cq);
4676 trace_pci_nvme_del_cq(qid);
4677 nvme_free_cq(cq, n);
4678 return NVME_SUCCESS;
4681 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4682 uint16_t cqid, uint16_t vector, uint16_t size,
4683 uint16_t irq_enabled)
4685 PCIDevice *pci = PCI_DEVICE(n);
4687 if (msix_enabled(pci)) {
4688 msix_vector_use(pci, vector);
4690 cq->ctrl = n;
4691 cq->cqid = cqid;
4692 cq->size = size;
4693 cq->dma_addr = dma_addr;
4694 cq->phase = 1;
4695 cq->irq_enabled = irq_enabled;
4696 cq->vector = vector;
4697 cq->head = cq->tail = 0;
4698 QTAILQ_INIT(&cq->req_list);
4699 QTAILQ_INIT(&cq->sq_list);
4700 if (n->dbbuf_enabled) {
4701 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4702 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4704 if (n->params.ioeventfd && cqid != 0) {
4705 if (!nvme_init_cq_ioeventfd(cq)) {
4706 cq->ioeventfd_enabled = true;
4710 n->cq[cqid] = cq;
4711 cq->bh = qemu_bh_new(nvme_post_cqes, cq);
4714 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4716 NvmeCQueue *cq;
4717 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4718 uint16_t cqid = le16_to_cpu(c->cqid);
4719 uint16_t vector = le16_to_cpu(c->irq_vector);
4720 uint16_t qsize = le16_to_cpu(c->qsize);
4721 uint16_t qflags = le16_to_cpu(c->cq_flags);
4722 uint64_t prp1 = le64_to_cpu(c->prp1);
4724 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4725 NVME_CQ_FLAGS_IEN(qflags) != 0);
4727 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4728 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4729 return NVME_INVALID_QID | NVME_DNR;
4731 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4732 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4733 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4735 if (unlikely(prp1 & (n->page_size - 1))) {
4736 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4737 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4739 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
4740 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4741 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4743 if (unlikely(vector >= n->conf_msix_qsize)) {
4744 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4745 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4747 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4748 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4749 return NVME_INVALID_FIELD | NVME_DNR;
4752 cq = g_malloc0(sizeof(*cq));
4753 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4754 NVME_CQ_FLAGS_IEN(qflags));
4757 * It is only required to set qs_created when creating a completion queue;
4758 * creating a submission queue without a matching completion queue will
4759 * fail.
4761 n->qs_created = true;
4762 return NVME_SUCCESS;
4765 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4767 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4769 return nvme_c2h(n, id, sizeof(id), req);
4772 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4774 trace_pci_nvme_identify_ctrl();
4776 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4779 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4781 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4782 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4783 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4785 trace_pci_nvme_identify_ctrl_csi(c->csi);
4787 switch (c->csi) {
4788 case NVME_CSI_NVM:
4789 id_nvm->vsl = n->params.vsl;
4790 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4791 break;
4793 case NVME_CSI_ZONED:
4794 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4795 break;
4797 default:
4798 return NVME_INVALID_FIELD | NVME_DNR;
4801 return nvme_c2h(n, id, sizeof(id), req);
4804 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4806 NvmeNamespace *ns;
4807 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4808 uint32_t nsid = le32_to_cpu(c->nsid);
4810 trace_pci_nvme_identify_ns(nsid);
4812 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4813 return NVME_INVALID_NSID | NVME_DNR;
4816 ns = nvme_ns(n, nsid);
4817 if (unlikely(!ns)) {
4818 if (!active) {
4819 ns = nvme_subsys_ns(n->subsys, nsid);
4820 if (!ns) {
4821 return nvme_rpt_empty_id_struct(n, req);
4823 } else {
4824 return nvme_rpt_empty_id_struct(n, req);
4828 if (active || ns->csi == NVME_CSI_NVM) {
4829 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4832 return NVME_INVALID_CMD_SET | NVME_DNR;
4835 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4836 bool attached)
4838 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4839 uint32_t nsid = le32_to_cpu(c->nsid);
4840 uint16_t min_id = le16_to_cpu(c->ctrlid);
4841 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4842 uint16_t *ids = &list[1];
4843 NvmeNamespace *ns;
4844 NvmeCtrl *ctrl;
4845 int cntlid, nr_ids = 0;
4847 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4849 if (!n->subsys) {
4850 return NVME_INVALID_FIELD | NVME_DNR;
4853 if (attached) {
4854 if (nsid == NVME_NSID_BROADCAST) {
4855 return NVME_INVALID_FIELD | NVME_DNR;
4858 ns = nvme_subsys_ns(n->subsys, nsid);
4859 if (!ns) {
4860 return NVME_INVALID_FIELD | NVME_DNR;
4864 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4865 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4866 if (!ctrl) {
4867 continue;
4870 if (attached && !nvme_ns(ctrl, nsid)) {
4871 continue;
4874 ids[nr_ids++] = cntlid;
4877 list[0] = nr_ids;
4879 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4882 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4884 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4886 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4887 sizeof(NvmePriCtrlCap), req);
4890 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4892 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4893 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4894 uint16_t min_id = le16_to_cpu(c->ctrlid);
4895 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4896 NvmeSecCtrlList list = {0};
4897 uint8_t i;
4899 for (i = 0; i < num_sec_ctrl; i++) {
4900 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4901 list.numcntl = num_sec_ctrl - i;
4902 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4903 list.numcntl * sizeof(NvmeSecCtrlEntry));
4904 break;
4908 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4910 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4913 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4914 bool active)
4916 NvmeNamespace *ns;
4917 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4918 uint32_t nsid = le32_to_cpu(c->nsid);
4920 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4922 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4923 return NVME_INVALID_NSID | NVME_DNR;
4926 ns = nvme_ns(n, nsid);
4927 if (unlikely(!ns)) {
4928 if (!active) {
4929 ns = nvme_subsys_ns(n->subsys, nsid);
4930 if (!ns) {
4931 return nvme_rpt_empty_id_struct(n, req);
4933 } else {
4934 return nvme_rpt_empty_id_struct(n, req);
4938 if (c->csi == NVME_CSI_NVM) {
4939 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4940 req);
4941 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4942 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4943 req);
4946 return NVME_INVALID_FIELD | NVME_DNR;
4949 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4950 bool active)
4952 NvmeNamespace *ns;
4953 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4954 uint32_t min_nsid = le32_to_cpu(c->nsid);
4955 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4956 static const int data_len = sizeof(list);
4957 uint32_t *list_ptr = (uint32_t *)list;
4958 int i, j = 0;
4960 trace_pci_nvme_identify_nslist(min_nsid);
4963 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4964 * since the Active Namespace ID List should return namespaces with ids
4965 * *higher* than the NSID specified in the command. This is also specified
4966 * in the spec (NVM Express v1.3d, Section 5.15.4).
4968 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4969 return NVME_INVALID_NSID | NVME_DNR;
4972 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4973 ns = nvme_ns(n, i);
4974 if (!ns) {
4975 if (!active) {
4976 ns = nvme_subsys_ns(n->subsys, i);
4977 if (!ns) {
4978 continue;
4980 } else {
4981 continue;
4984 if (ns->params.nsid <= min_nsid) {
4985 continue;
4987 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4988 if (j == data_len / sizeof(uint32_t)) {
4989 break;
4993 return nvme_c2h(n, list, data_len, req);
4996 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4997 bool active)
4999 NvmeNamespace *ns;
5000 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5001 uint32_t min_nsid = le32_to_cpu(c->nsid);
5002 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5003 static const int data_len = sizeof(list);
5004 uint32_t *list_ptr = (uint32_t *)list;
5005 int i, j = 0;
5007 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5010 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5012 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5013 return NVME_INVALID_NSID | NVME_DNR;
5016 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5017 return NVME_INVALID_FIELD | NVME_DNR;
5020 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5021 ns = nvme_ns(n, i);
5022 if (!ns) {
5023 if (!active) {
5024 ns = nvme_subsys_ns(n->subsys, i);
5025 if (!ns) {
5026 continue;
5028 } else {
5029 continue;
5032 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5033 continue;
5035 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5036 if (j == data_len / sizeof(uint32_t)) {
5037 break;
5041 return nvme_c2h(n, list, data_len, req);
5044 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5046 NvmeNamespace *ns;
5047 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5048 uint32_t nsid = le32_to_cpu(c->nsid);
5049 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5050 uint8_t *pos = list;
5051 struct {
5052 NvmeIdNsDescr hdr;
5053 uint8_t v[NVME_NIDL_UUID];
5054 } QEMU_PACKED uuid = {};
5055 struct {
5056 NvmeIdNsDescr hdr;
5057 uint64_t v;
5058 } QEMU_PACKED eui64 = {};
5059 struct {
5060 NvmeIdNsDescr hdr;
5061 uint8_t v;
5062 } QEMU_PACKED csi = {};
5064 trace_pci_nvme_identify_ns_descr_list(nsid);
5066 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5067 return NVME_INVALID_NSID | NVME_DNR;
5070 ns = nvme_ns(n, nsid);
5071 if (unlikely(!ns)) {
5072 return NVME_INVALID_FIELD | NVME_DNR;
5075 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5076 uuid.hdr.nidt = NVME_NIDT_UUID;
5077 uuid.hdr.nidl = NVME_NIDL_UUID;
5078 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5079 memcpy(pos, &uuid, sizeof(uuid));
5080 pos += sizeof(uuid);
5083 if (ns->params.eui64) {
5084 eui64.hdr.nidt = NVME_NIDT_EUI64;
5085 eui64.hdr.nidl = NVME_NIDL_EUI64;
5086 eui64.v = cpu_to_be64(ns->params.eui64);
5087 memcpy(pos, &eui64, sizeof(eui64));
5088 pos += sizeof(eui64);
5091 csi.hdr.nidt = NVME_NIDT_CSI;
5092 csi.hdr.nidl = NVME_NIDL_CSI;
5093 csi.v = ns->csi;
5094 memcpy(pos, &csi, sizeof(csi));
5095 pos += sizeof(csi);
5097 return nvme_c2h(n, list, sizeof(list), req);
5100 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5102 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5103 static const int data_len = sizeof(list);
5105 trace_pci_nvme_identify_cmd_set();
5107 NVME_SET_CSI(*list, NVME_CSI_NVM);
5108 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5110 return nvme_c2h(n, list, data_len, req);
5113 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5115 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5117 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5118 c->csi);
5120 switch (c->cns) {
5121 case NVME_ID_CNS_NS:
5122 return nvme_identify_ns(n, req, true);
5123 case NVME_ID_CNS_NS_PRESENT:
5124 return nvme_identify_ns(n, req, false);
5125 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5126 return nvme_identify_ctrl_list(n, req, true);
5127 case NVME_ID_CNS_CTRL_LIST:
5128 return nvme_identify_ctrl_list(n, req, false);
5129 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5130 return nvme_identify_pri_ctrl_cap(n, req);
5131 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5132 return nvme_identify_sec_ctrl_list(n, req);
5133 case NVME_ID_CNS_CS_NS:
5134 return nvme_identify_ns_csi(n, req, true);
5135 case NVME_ID_CNS_CS_NS_PRESENT:
5136 return nvme_identify_ns_csi(n, req, false);
5137 case NVME_ID_CNS_CTRL:
5138 return nvme_identify_ctrl(n, req);
5139 case NVME_ID_CNS_CS_CTRL:
5140 return nvme_identify_ctrl_csi(n, req);
5141 case NVME_ID_CNS_NS_ACTIVE_LIST:
5142 return nvme_identify_nslist(n, req, true);
5143 case NVME_ID_CNS_NS_PRESENT_LIST:
5144 return nvme_identify_nslist(n, req, false);
5145 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5146 return nvme_identify_nslist_csi(n, req, true);
5147 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5148 return nvme_identify_nslist_csi(n, req, false);
5149 case NVME_ID_CNS_NS_DESCR_LIST:
5150 return nvme_identify_ns_descr_list(n, req);
5151 case NVME_ID_CNS_IO_COMMAND_SET:
5152 return nvme_identify_cmd_set(n, req);
5153 default:
5154 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5155 return NVME_INVALID_FIELD | NVME_DNR;
5159 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5161 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5163 req->cqe.result = 1;
5164 if (nvme_check_sqid(n, sqid)) {
5165 return NVME_INVALID_FIELD | NVME_DNR;
5168 return NVME_SUCCESS;
5171 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5173 trace_pci_nvme_setfeat_timestamp(ts);
5175 n->host_timestamp = le64_to_cpu(ts);
5176 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5179 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5181 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5182 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5184 union nvme_timestamp {
5185 struct {
5186 uint64_t timestamp:48;
5187 uint64_t sync:1;
5188 uint64_t origin:3;
5189 uint64_t rsvd1:12;
5191 uint64_t all;
5194 union nvme_timestamp ts;
5195 ts.all = 0;
5196 ts.timestamp = n->host_timestamp + elapsed_time;
5198 /* If the host timestamp is non-zero, set the timestamp origin */
5199 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5201 trace_pci_nvme_getfeat_timestamp(ts.all);
5203 return cpu_to_le64(ts.all);
5206 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5208 uint64_t timestamp = nvme_get_timestamp(n);
5210 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5213 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5215 NvmeCmd *cmd = &req->cmd;
5216 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5217 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5218 uint32_t nsid = le32_to_cpu(cmd->nsid);
5219 uint32_t result;
5220 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5221 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5222 uint16_t iv;
5223 NvmeNamespace *ns;
5224 int i;
5226 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5227 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5230 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5232 if (!nvme_feature_support[fid]) {
5233 return NVME_INVALID_FIELD | NVME_DNR;
5236 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5237 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5239 * The Reservation Notification Mask and Reservation Persistence
5240 * features require a status code of Invalid Field in Command when
5241 * NSID is FFFFFFFFh. Since the device does not support those
5242 * features we can always return Invalid Namespace or Format as we
5243 * should do for all other features.
5245 return NVME_INVALID_NSID | NVME_DNR;
5248 if (!nvme_ns(n, nsid)) {
5249 return NVME_INVALID_FIELD | NVME_DNR;
5253 switch (sel) {
5254 case NVME_GETFEAT_SELECT_CURRENT:
5255 break;
5256 case NVME_GETFEAT_SELECT_SAVED:
5257 /* no features are saveable by the controller; fallthrough */
5258 case NVME_GETFEAT_SELECT_DEFAULT:
5259 goto defaults;
5260 case NVME_GETFEAT_SELECT_CAP:
5261 result = nvme_feature_cap[fid];
5262 goto out;
5265 switch (fid) {
5266 case NVME_TEMPERATURE_THRESHOLD:
5267 result = 0;
5270 * The controller only implements the Composite Temperature sensor, so
5271 * return 0 for all other sensors.
5273 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5274 goto out;
5277 switch (NVME_TEMP_THSEL(dw11)) {
5278 case NVME_TEMP_THSEL_OVER:
5279 result = n->features.temp_thresh_hi;
5280 goto out;
5281 case NVME_TEMP_THSEL_UNDER:
5282 result = n->features.temp_thresh_low;
5283 goto out;
5286 return NVME_INVALID_FIELD | NVME_DNR;
5287 case NVME_ERROR_RECOVERY:
5288 if (!nvme_nsid_valid(n, nsid)) {
5289 return NVME_INVALID_NSID | NVME_DNR;
5292 ns = nvme_ns(n, nsid);
5293 if (unlikely(!ns)) {
5294 return NVME_INVALID_FIELD | NVME_DNR;
5297 result = ns->features.err_rec;
5298 goto out;
5299 case NVME_VOLATILE_WRITE_CACHE:
5300 result = 0;
5301 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5302 ns = nvme_ns(n, i);
5303 if (!ns) {
5304 continue;
5307 result = blk_enable_write_cache(ns->blkconf.blk);
5308 if (result) {
5309 break;
5312 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5313 goto out;
5314 case NVME_ASYNCHRONOUS_EVENT_CONF:
5315 result = n->features.async_config;
5316 goto out;
5317 case NVME_TIMESTAMP:
5318 return nvme_get_feature_timestamp(n, req);
5319 case NVME_HOST_BEHAVIOR_SUPPORT:
5320 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5321 sizeof(n->features.hbs), req);
5322 default:
5323 break;
5326 defaults:
5327 switch (fid) {
5328 case NVME_TEMPERATURE_THRESHOLD:
5329 result = 0;
5331 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5332 break;
5335 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5336 result = NVME_TEMPERATURE_WARNING;
5339 break;
5340 case NVME_NUMBER_OF_QUEUES:
5341 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5342 trace_pci_nvme_getfeat_numq(result);
5343 break;
5344 case NVME_INTERRUPT_VECTOR_CONF:
5345 iv = dw11 & 0xffff;
5346 if (iv >= n->conf_ioqpairs + 1) {
5347 return NVME_INVALID_FIELD | NVME_DNR;
5350 result = iv;
5351 if (iv == n->admin_cq.vector) {
5352 result |= NVME_INTVC_NOCOALESCING;
5354 break;
5355 default:
5356 result = nvme_feature_default[fid];
5357 break;
5360 out:
5361 req->cqe.result = cpu_to_le32(result);
5362 return NVME_SUCCESS;
5365 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5367 uint16_t ret;
5368 uint64_t timestamp;
5370 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5371 if (ret) {
5372 return ret;
5375 nvme_set_timestamp(n, timestamp);
5377 return NVME_SUCCESS;
5380 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5382 NvmeNamespace *ns = NULL;
5384 NvmeCmd *cmd = &req->cmd;
5385 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5386 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5387 uint32_t nsid = le32_to_cpu(cmd->nsid);
5388 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5389 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5390 uint16_t status;
5391 int i;
5393 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5395 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5396 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5399 if (!nvme_feature_support[fid]) {
5400 return NVME_INVALID_FIELD | NVME_DNR;
5403 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5404 if (nsid != NVME_NSID_BROADCAST) {
5405 if (!nvme_nsid_valid(n, nsid)) {
5406 return NVME_INVALID_NSID | NVME_DNR;
5409 ns = nvme_ns(n, nsid);
5410 if (unlikely(!ns)) {
5411 return NVME_INVALID_FIELD | NVME_DNR;
5414 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5415 if (!nvme_nsid_valid(n, nsid)) {
5416 return NVME_INVALID_NSID | NVME_DNR;
5419 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5422 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5423 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5426 switch (fid) {
5427 case NVME_TEMPERATURE_THRESHOLD:
5428 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5429 break;
5432 switch (NVME_TEMP_THSEL(dw11)) {
5433 case NVME_TEMP_THSEL_OVER:
5434 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5435 break;
5436 case NVME_TEMP_THSEL_UNDER:
5437 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5438 break;
5439 default:
5440 return NVME_INVALID_FIELD | NVME_DNR;
5443 if ((n->temperature >= n->features.temp_thresh_hi) ||
5444 (n->temperature <= n->features.temp_thresh_low)) {
5445 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5448 break;
5449 case NVME_ERROR_RECOVERY:
5450 if (nsid == NVME_NSID_BROADCAST) {
5451 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5452 ns = nvme_ns(n, i);
5454 if (!ns) {
5455 continue;
5458 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5459 ns->features.err_rec = dw11;
5463 break;
5466 assert(ns);
5467 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5468 ns->features.err_rec = dw11;
5470 break;
5471 case NVME_VOLATILE_WRITE_CACHE:
5472 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5473 ns = nvme_ns(n, i);
5474 if (!ns) {
5475 continue;
5478 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5479 blk_flush(ns->blkconf.blk);
5482 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5485 break;
5487 case NVME_NUMBER_OF_QUEUES:
5488 if (n->qs_created) {
5489 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5493 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5494 * and NSQR.
5496 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5497 return NVME_INVALID_FIELD | NVME_DNR;
5500 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5501 ((dw11 >> 16) & 0xffff) + 1,
5502 n->conf_ioqpairs,
5503 n->conf_ioqpairs);
5504 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5505 ((n->conf_ioqpairs - 1) << 16));
5506 break;
5507 case NVME_ASYNCHRONOUS_EVENT_CONF:
5508 n->features.async_config = dw11;
5509 break;
5510 case NVME_TIMESTAMP:
5511 return nvme_set_feature_timestamp(n, req);
5512 case NVME_HOST_BEHAVIOR_SUPPORT:
5513 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5514 sizeof(n->features.hbs), req);
5515 if (status) {
5516 return status;
5519 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5520 ns = nvme_ns(n, i);
5522 if (!ns) {
5523 continue;
5526 ns->id_ns.nlbaf = ns->nlbaf - 1;
5527 if (!n->features.hbs.lbafee) {
5528 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5532 return status;
5533 case NVME_COMMAND_SET_PROFILE:
5534 if (dw11 & 0x1ff) {
5535 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5536 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5538 break;
5539 default:
5540 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5542 return NVME_SUCCESS;
5545 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5547 trace_pci_nvme_aer(nvme_cid(req));
5549 if (n->outstanding_aers > n->params.aerl) {
5550 trace_pci_nvme_aer_aerl_exceeded();
5551 return NVME_AER_LIMIT_EXCEEDED;
5554 n->aer_reqs[n->outstanding_aers] = req;
5555 n->outstanding_aers++;
5557 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5558 nvme_process_aers(n);
5561 return NVME_NO_COMPLETE;
5564 static void nvme_update_dmrsl(NvmeCtrl *n)
5566 int nsid;
5568 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5569 NvmeNamespace *ns = nvme_ns(n, nsid);
5570 if (!ns) {
5571 continue;
5574 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5575 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5579 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5581 uint32_t cc = ldl_le_p(&n->bar.cc);
5583 ns->iocs = nvme_cse_iocs_none;
5584 switch (ns->csi) {
5585 case NVME_CSI_NVM:
5586 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5587 ns->iocs = nvme_cse_iocs_nvm;
5589 break;
5590 case NVME_CSI_ZONED:
5591 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5592 ns->iocs = nvme_cse_iocs_zoned;
5593 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5594 ns->iocs = nvme_cse_iocs_nvm;
5596 break;
5600 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5602 NvmeNamespace *ns;
5603 NvmeCtrl *ctrl;
5604 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5605 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5606 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5607 uint8_t sel = dw10 & 0xf;
5608 uint16_t *nr_ids = &list[0];
5609 uint16_t *ids = &list[1];
5610 uint16_t ret;
5611 int i;
5613 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5615 if (!nvme_nsid_valid(n, nsid)) {
5616 return NVME_INVALID_NSID | NVME_DNR;
5619 ns = nvme_subsys_ns(n->subsys, nsid);
5620 if (!ns) {
5621 return NVME_INVALID_FIELD | NVME_DNR;
5624 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5625 if (ret) {
5626 return ret;
5629 if (!*nr_ids) {
5630 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5633 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5634 for (i = 0; i < *nr_ids; i++) {
5635 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5636 if (!ctrl) {
5637 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5640 switch (sel) {
5641 case NVME_NS_ATTACHMENT_ATTACH:
5642 if (nvme_ns(ctrl, nsid)) {
5643 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5646 if (ns->attached && !ns->params.shared) {
5647 return NVME_NS_PRIVATE | NVME_DNR;
5650 nvme_attach_ns(ctrl, ns);
5651 nvme_select_iocs_ns(ctrl, ns);
5653 break;
5655 case NVME_NS_ATTACHMENT_DETACH:
5656 if (!nvme_ns(ctrl, nsid)) {
5657 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5660 ctrl->namespaces[nsid] = NULL;
5661 ns->attached--;
5663 nvme_update_dmrsl(ctrl);
5665 break;
5667 default:
5668 return NVME_INVALID_FIELD | NVME_DNR;
5672 * Add namespace id to the changed namespace id list for event clearing
5673 * via Get Log Page command.
5675 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5676 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5677 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5678 NVME_LOG_CHANGED_NSLIST);
5682 return NVME_SUCCESS;
5685 typedef struct NvmeFormatAIOCB {
5686 BlockAIOCB common;
5687 BlockAIOCB *aiocb;
5688 NvmeRequest *req;
5689 int ret;
5691 NvmeNamespace *ns;
5692 uint32_t nsid;
5693 bool broadcast;
5694 int64_t offset;
5696 uint8_t lbaf;
5697 uint8_t mset;
5698 uint8_t pi;
5699 uint8_t pil;
5700 } NvmeFormatAIOCB;
5702 static void nvme_format_cancel(BlockAIOCB *aiocb)
5704 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5706 iocb->ret = -ECANCELED;
5708 if (iocb->aiocb) {
5709 blk_aio_cancel_async(iocb->aiocb);
5710 iocb->aiocb = NULL;
5714 static const AIOCBInfo nvme_format_aiocb_info = {
5715 .aiocb_size = sizeof(NvmeFormatAIOCB),
5716 .cancel_async = nvme_format_cancel,
5717 .get_aio_context = nvme_get_aio_context,
5720 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5721 uint8_t pi, uint8_t pil)
5723 uint8_t lbafl = lbaf & 0xf;
5724 uint8_t lbafu = lbaf >> 4;
5726 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5728 ns->id_ns.dps = (pil << 3) | pi;
5729 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5731 nvme_ns_init_format(ns);
5734 static void nvme_do_format(NvmeFormatAIOCB *iocb);
5736 static void nvme_format_ns_cb(void *opaque, int ret)
5738 NvmeFormatAIOCB *iocb = opaque;
5739 NvmeNamespace *ns = iocb->ns;
5740 int bytes;
5742 if (iocb->ret < 0) {
5743 goto done;
5744 } else if (ret < 0) {
5745 iocb->ret = ret;
5746 goto done;
5749 assert(ns);
5751 if (iocb->offset < ns->size) {
5752 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5754 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5755 bytes, BDRV_REQ_MAY_UNMAP,
5756 nvme_format_ns_cb, iocb);
5758 iocb->offset += bytes;
5759 return;
5762 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5763 ns->status = 0x0;
5764 iocb->ns = NULL;
5765 iocb->offset = 0;
5767 done:
5768 nvme_do_format(iocb);
5771 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5773 if (ns->params.zoned) {
5774 return NVME_INVALID_FORMAT | NVME_DNR;
5777 if (lbaf > ns->id_ns.nlbaf) {
5778 return NVME_INVALID_FORMAT | NVME_DNR;
5781 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5782 return NVME_INVALID_FORMAT | NVME_DNR;
5785 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5786 return NVME_INVALID_FIELD | NVME_DNR;
5789 return NVME_SUCCESS;
5792 static void nvme_do_format(NvmeFormatAIOCB *iocb)
5794 NvmeRequest *req = iocb->req;
5795 NvmeCtrl *n = nvme_ctrl(req);
5796 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5797 uint8_t lbaf = dw10 & 0xf;
5798 uint8_t pi = (dw10 >> 5) & 0x7;
5799 uint16_t status;
5800 int i;
5802 if (iocb->ret < 0) {
5803 goto done;
5806 if (iocb->broadcast) {
5807 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5808 iocb->ns = nvme_ns(n, i);
5809 if (iocb->ns) {
5810 iocb->nsid = i;
5811 break;
5816 if (!iocb->ns) {
5817 goto done;
5820 status = nvme_format_check(iocb->ns, lbaf, pi);
5821 if (status) {
5822 req->status = status;
5823 goto done;
5826 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5827 nvme_format_ns_cb(iocb, 0);
5828 return;
5830 done:
5831 iocb->common.cb(iocb->common.opaque, iocb->ret);
5832 qemu_aio_unref(iocb);
5835 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5837 NvmeFormatAIOCB *iocb;
5838 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5839 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5840 uint8_t lbaf = dw10 & 0xf;
5841 uint8_t mset = (dw10 >> 4) & 0x1;
5842 uint8_t pi = (dw10 >> 5) & 0x7;
5843 uint8_t pil = (dw10 >> 8) & 0x1;
5844 uint8_t lbafu = (dw10 >> 12) & 0x3;
5845 uint16_t status;
5847 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5849 iocb->req = req;
5850 iocb->ret = 0;
5851 iocb->ns = NULL;
5852 iocb->nsid = 0;
5853 iocb->lbaf = lbaf;
5854 iocb->mset = mset;
5855 iocb->pi = pi;
5856 iocb->pil = pil;
5857 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5858 iocb->offset = 0;
5860 if (n->features.hbs.lbafee) {
5861 iocb->lbaf |= lbafu << 4;
5864 if (!iocb->broadcast) {
5865 if (!nvme_nsid_valid(n, nsid)) {
5866 status = NVME_INVALID_NSID | NVME_DNR;
5867 goto out;
5870 iocb->ns = nvme_ns(n, nsid);
5871 if (!iocb->ns) {
5872 status = NVME_INVALID_FIELD | NVME_DNR;
5873 goto out;
5877 req->aiocb = &iocb->common;
5878 nvme_do_format(iocb);
5880 return NVME_NO_COMPLETE;
5882 out:
5883 qemu_aio_unref(iocb);
5885 return status;
5888 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5889 int *num_prim, int *num_sec)
5891 *num_total = le32_to_cpu(rt ?
5892 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5893 *num_prim = le16_to_cpu(rt ?
5894 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5895 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5898 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5899 uint16_t cntlid, uint8_t rt,
5900 int nr)
5902 int num_total, num_prim, num_sec;
5904 if (cntlid != n->cntlid) {
5905 return NVME_INVALID_CTRL_ID | NVME_DNR;
5908 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5910 if (nr > num_total) {
5911 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5914 if (nr > num_total - num_sec) {
5915 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5918 if (rt) {
5919 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5920 } else {
5921 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5924 req->cqe.result = cpu_to_le32(nr);
5925 return req->status;
5928 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5929 uint8_t rt, int nr)
5931 int prev_nr, prev_total;
5933 if (rt) {
5934 prev_nr = le16_to_cpu(sctrl->nvi);
5935 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5936 sctrl->nvi = cpu_to_le16(nr);
5937 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5938 } else {
5939 prev_nr = le16_to_cpu(sctrl->nvq);
5940 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
5941 sctrl->nvq = cpu_to_le16(nr);
5942 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
5946 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
5947 uint16_t cntlid, uint8_t rt, int nr)
5949 int num_total, num_prim, num_sec, num_free, diff, limit;
5950 NvmeSecCtrlEntry *sctrl;
5952 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5953 if (!sctrl) {
5954 return NVME_INVALID_CTRL_ID | NVME_DNR;
5957 if (sctrl->scs) {
5958 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5961 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
5962 if (nr > limit) {
5963 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5966 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5967 num_free = num_total - num_prim - num_sec;
5968 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
5970 if (diff > num_free) {
5971 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5974 nvme_update_virt_res(n, sctrl, rt, nr);
5975 req->cqe.result = cpu_to_le32(nr);
5977 return req->status;
5980 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
5982 PCIDevice *pci = PCI_DEVICE(n);
5983 NvmeCtrl *sn = NULL;
5984 NvmeSecCtrlEntry *sctrl;
5985 int vf_index;
5987 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5988 if (!sctrl) {
5989 return NVME_INVALID_CTRL_ID | NVME_DNR;
5992 if (!pci_is_vf(pci)) {
5993 vf_index = le16_to_cpu(sctrl->vfn) - 1;
5994 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
5997 if (online) {
5998 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
5999 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6002 if (!sctrl->scs) {
6003 sctrl->scs = 0x1;
6004 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6006 } else {
6007 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6008 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6010 if (sctrl->scs) {
6011 sctrl->scs = 0x0;
6012 if (sn) {
6013 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6018 return NVME_SUCCESS;
6021 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6023 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6024 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6025 uint8_t act = dw10 & 0xf;
6026 uint8_t rt = (dw10 >> 8) & 0x7;
6027 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6028 int nr = dw11 & 0xffff;
6030 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6032 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6033 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6036 switch (act) {
6037 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6038 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6039 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6040 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6041 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6042 return nvme_virt_set_state(n, cntlid, true);
6043 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6044 return nvme_virt_set_state(n, cntlid, false);
6045 default:
6046 return NVME_INVALID_FIELD | NVME_DNR;
6050 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6052 PCIDevice *pci = PCI_DEVICE(n);
6053 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6054 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6055 int i;
6057 /* Address should be page aligned */
6058 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6059 return NVME_INVALID_FIELD | NVME_DNR;
6062 /* Save shadow buffer base addr for use during queue creation */
6063 n->dbbuf_dbs = dbs_addr;
6064 n->dbbuf_eis = eis_addr;
6065 n->dbbuf_enabled = true;
6067 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6068 NvmeSQueue *sq = n->sq[i];
6069 NvmeCQueue *cq = n->cq[i];
6071 if (sq) {
6073 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6074 * nvme_process_db() uses this hard-coded way to calculate
6075 * doorbell offsets. Be consistent with that here.
6077 sq->db_addr = dbs_addr + (i << 3);
6078 sq->ei_addr = eis_addr + (i << 3);
6079 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6081 if (n->params.ioeventfd && sq->sqid != 0) {
6082 if (!nvme_init_sq_ioeventfd(sq)) {
6083 sq->ioeventfd_enabled = true;
6088 if (cq) {
6089 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6090 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6091 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6092 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6094 if (n->params.ioeventfd && cq->cqid != 0) {
6095 if (!nvme_init_cq_ioeventfd(cq)) {
6096 cq->ioeventfd_enabled = true;
6102 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6104 return NVME_SUCCESS;
6107 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6109 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6110 nvme_adm_opc_str(req->cmd.opcode));
6112 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6113 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6114 return NVME_INVALID_OPCODE | NVME_DNR;
6117 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6118 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6119 return NVME_INVALID_FIELD | NVME_DNR;
6122 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6123 return NVME_INVALID_FIELD;
6126 switch (req->cmd.opcode) {
6127 case NVME_ADM_CMD_DELETE_SQ:
6128 return nvme_del_sq(n, req);
6129 case NVME_ADM_CMD_CREATE_SQ:
6130 return nvme_create_sq(n, req);
6131 case NVME_ADM_CMD_GET_LOG_PAGE:
6132 return nvme_get_log(n, req);
6133 case NVME_ADM_CMD_DELETE_CQ:
6134 return nvme_del_cq(n, req);
6135 case NVME_ADM_CMD_CREATE_CQ:
6136 return nvme_create_cq(n, req);
6137 case NVME_ADM_CMD_IDENTIFY:
6138 return nvme_identify(n, req);
6139 case NVME_ADM_CMD_ABORT:
6140 return nvme_abort(n, req);
6141 case NVME_ADM_CMD_SET_FEATURES:
6142 return nvme_set_feature(n, req);
6143 case NVME_ADM_CMD_GET_FEATURES:
6144 return nvme_get_feature(n, req);
6145 case NVME_ADM_CMD_ASYNC_EV_REQ:
6146 return nvme_aer(n, req);
6147 case NVME_ADM_CMD_NS_ATTACHMENT:
6148 return nvme_ns_attachment(n, req);
6149 case NVME_ADM_CMD_VIRT_MNGMT:
6150 return nvme_virt_mngmt(n, req);
6151 case NVME_ADM_CMD_DBBUF_CONFIG:
6152 return nvme_dbbuf_config(n, req);
6153 case NVME_ADM_CMD_FORMAT_NVM:
6154 return nvme_format(n, req);
6155 default:
6156 assert(false);
6159 return NVME_INVALID_OPCODE | NVME_DNR;
6162 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6164 uint32_t v = cpu_to_le32(sq->tail);
6166 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6168 pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v));
6171 static void nvme_update_sq_tail(NvmeSQueue *sq)
6173 uint32_t v;
6175 pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v));
6177 sq->tail = le32_to_cpu(v);
6179 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6182 static void nvme_process_sq(void *opaque)
6184 NvmeSQueue *sq = opaque;
6185 NvmeCtrl *n = sq->ctrl;
6186 NvmeCQueue *cq = n->cq[sq->cqid];
6188 uint16_t status;
6189 hwaddr addr;
6190 NvmeCmd cmd;
6191 NvmeRequest *req;
6193 if (n->dbbuf_enabled) {
6194 nvme_update_sq_tail(sq);
6197 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6198 addr = sq->dma_addr + sq->head * n->sqe_size;
6199 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6200 trace_pci_nvme_err_addr_read(addr);
6201 trace_pci_nvme_err_cfs();
6202 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6203 break;
6205 nvme_inc_sq_head(sq);
6207 req = QTAILQ_FIRST(&sq->req_list);
6208 QTAILQ_REMOVE(&sq->req_list, req, entry);
6209 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6210 nvme_req_clear(req);
6211 req->cqe.cid = cmd.cid;
6212 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6214 status = sq->sqid ? nvme_io_cmd(n, req) :
6215 nvme_admin_cmd(n, req);
6216 if (status != NVME_NO_COMPLETE) {
6217 req->status = status;
6218 nvme_enqueue_req_completion(cq, req);
6221 if (n->dbbuf_enabled) {
6222 nvme_update_sq_eventidx(sq);
6223 nvme_update_sq_tail(sq);
6228 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6230 uint8_t *config;
6232 if (!msix_present(pci_dev)) {
6233 return;
6236 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6238 config = pci_dev->config + pci_dev->msix_cap;
6239 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6240 table_size - 1);
6243 static void nvme_activate_virt_res(NvmeCtrl *n)
6245 PCIDevice *pci_dev = PCI_DEVICE(n);
6246 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6247 NvmeSecCtrlEntry *sctrl;
6249 /* -1 to account for the admin queue */
6250 if (pci_is_vf(pci_dev)) {
6251 sctrl = nvme_sctrl(n);
6252 cap->vqprt = sctrl->nvq;
6253 cap->viprt = sctrl->nvi;
6254 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6255 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6256 } else {
6257 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6258 cap->virfap = n->next_pri_ctrl_cap.virfap;
6259 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6260 le16_to_cpu(cap->vqrfap) - 1;
6261 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6262 le16_to_cpu(cap->virfap);
6266 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6268 PCIDevice *pci_dev = PCI_DEVICE(n);
6269 NvmeSecCtrlEntry *sctrl;
6270 NvmeNamespace *ns;
6271 int i;
6273 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6274 ns = nvme_ns(n, i);
6275 if (!ns) {
6276 continue;
6279 nvme_ns_drain(ns);
6282 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6283 if (n->sq[i] != NULL) {
6284 nvme_free_sq(n->sq[i], n);
6287 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6288 if (n->cq[i] != NULL) {
6289 nvme_free_cq(n->cq[i], n);
6293 while (!QTAILQ_EMPTY(&n->aer_queue)) {
6294 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6295 QTAILQ_REMOVE(&n->aer_queue, event, entry);
6296 g_free(event);
6299 if (n->params.sriov_max_vfs) {
6300 if (!pci_is_vf(pci_dev)) {
6301 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6302 sctrl = &n->sec_ctrl_list.sec[i];
6303 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6306 if (rst != NVME_RESET_CONTROLLER) {
6307 pcie_sriov_pf_disable_vfs(pci_dev);
6311 if (rst != NVME_RESET_CONTROLLER) {
6312 nvme_activate_virt_res(n);
6316 n->aer_queued = 0;
6317 n->aer_mask = 0;
6318 n->outstanding_aers = 0;
6319 n->qs_created = false;
6321 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6323 if (pci_is_vf(pci_dev)) {
6324 sctrl = nvme_sctrl(n);
6326 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6327 } else {
6328 stl_le_p(&n->bar.csts, 0);
6331 stl_le_p(&n->bar.intms, 0);
6332 stl_le_p(&n->bar.intmc, 0);
6333 stl_le_p(&n->bar.cc, 0);
6335 n->dbbuf_dbs = 0;
6336 n->dbbuf_eis = 0;
6337 n->dbbuf_enabled = false;
6340 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6342 NvmeNamespace *ns;
6343 int i;
6345 if (n->pmr.dev) {
6346 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6349 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6350 ns = nvme_ns(n, i);
6351 if (!ns) {
6352 continue;
6355 nvme_ns_shutdown(ns);
6359 static void nvme_select_iocs(NvmeCtrl *n)
6361 NvmeNamespace *ns;
6362 int i;
6364 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6365 ns = nvme_ns(n, i);
6366 if (!ns) {
6367 continue;
6370 nvme_select_iocs_ns(n, ns);
6374 static int nvme_start_ctrl(NvmeCtrl *n)
6376 uint64_t cap = ldq_le_p(&n->bar.cap);
6377 uint32_t cc = ldl_le_p(&n->bar.cc);
6378 uint32_t aqa = ldl_le_p(&n->bar.aqa);
6379 uint64_t asq = ldq_le_p(&n->bar.asq);
6380 uint64_t acq = ldq_le_p(&n->bar.acq);
6381 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6382 uint32_t page_size = 1 << page_bits;
6383 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6385 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
6386 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6387 le16_to_cpu(sctrl->nvq),
6388 sctrl->scs ? "ONLINE" :
6389 "OFFLINE");
6390 return -1;
6392 if (unlikely(n->cq[0])) {
6393 trace_pci_nvme_err_startfail_cq();
6394 return -1;
6396 if (unlikely(n->sq[0])) {
6397 trace_pci_nvme_err_startfail_sq();
6398 return -1;
6400 if (unlikely(asq & (page_size - 1))) {
6401 trace_pci_nvme_err_startfail_asq_misaligned(asq);
6402 return -1;
6404 if (unlikely(acq & (page_size - 1))) {
6405 trace_pci_nvme_err_startfail_acq_misaligned(acq);
6406 return -1;
6408 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6409 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6410 return -1;
6412 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6413 trace_pci_nvme_err_startfail_page_too_small(
6414 NVME_CC_MPS(cc),
6415 NVME_CAP_MPSMIN(cap));
6416 return -1;
6418 if (unlikely(NVME_CC_MPS(cc) >
6419 NVME_CAP_MPSMAX(cap))) {
6420 trace_pci_nvme_err_startfail_page_too_large(
6421 NVME_CC_MPS(cc),
6422 NVME_CAP_MPSMAX(cap));
6423 return -1;
6425 if (unlikely(NVME_CC_IOCQES(cc) <
6426 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6427 trace_pci_nvme_err_startfail_cqent_too_small(
6428 NVME_CC_IOCQES(cc),
6429 NVME_CTRL_CQES_MIN(cap));
6430 return -1;
6432 if (unlikely(NVME_CC_IOCQES(cc) >
6433 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6434 trace_pci_nvme_err_startfail_cqent_too_large(
6435 NVME_CC_IOCQES(cc),
6436 NVME_CTRL_CQES_MAX(cap));
6437 return -1;
6439 if (unlikely(NVME_CC_IOSQES(cc) <
6440 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6441 trace_pci_nvme_err_startfail_sqent_too_small(
6442 NVME_CC_IOSQES(cc),
6443 NVME_CTRL_SQES_MIN(cap));
6444 return -1;
6446 if (unlikely(NVME_CC_IOSQES(cc) >
6447 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6448 trace_pci_nvme_err_startfail_sqent_too_large(
6449 NVME_CC_IOSQES(cc),
6450 NVME_CTRL_SQES_MAX(cap));
6451 return -1;
6453 if (unlikely(!NVME_AQA_ASQS(aqa))) {
6454 trace_pci_nvme_err_startfail_asqent_sz_zero();
6455 return -1;
6457 if (unlikely(!NVME_AQA_ACQS(aqa))) {
6458 trace_pci_nvme_err_startfail_acqent_sz_zero();
6459 return -1;
6462 n->page_bits = page_bits;
6463 n->page_size = page_size;
6464 n->max_prp_ents = n->page_size / sizeof(uint64_t);
6465 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6466 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6467 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6468 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6470 nvme_set_timestamp(n, 0ULL);
6472 nvme_select_iocs(n);
6474 return 0;
6477 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6479 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6480 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6482 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6483 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6484 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6485 stl_le_p(&n->bar.cmbloc, cmbloc);
6487 NVME_CMBSZ_SET_SQS(cmbsz, 1);
6488 NVME_CMBSZ_SET_CQS(cmbsz, 0);
6489 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6490 NVME_CMBSZ_SET_RDS(cmbsz, 1);
6491 NVME_CMBSZ_SET_WDS(cmbsz, 1);
6492 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6493 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6494 stl_le_p(&n->bar.cmbsz, cmbsz);
6497 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6498 unsigned size)
6500 PCIDevice *pci = PCI_DEVICE(n);
6501 uint64_t cap = ldq_le_p(&n->bar.cap);
6502 uint32_t cc = ldl_le_p(&n->bar.cc);
6503 uint32_t intms = ldl_le_p(&n->bar.intms);
6504 uint32_t csts = ldl_le_p(&n->bar.csts);
6505 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6507 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6508 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6509 "MMIO write not 32-bit aligned,"
6510 " offset=0x%"PRIx64"", offset);
6511 /* should be ignored, fall through for now */
6514 if (unlikely(size < sizeof(uint32_t))) {
6515 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6516 "MMIO write smaller than 32-bits,"
6517 " offset=0x%"PRIx64", size=%u",
6518 offset, size);
6519 /* should be ignored, fall through for now */
6522 switch (offset) {
6523 case NVME_REG_INTMS:
6524 if (unlikely(msix_enabled(pci))) {
6525 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6526 "undefined access to interrupt mask set"
6527 " when MSI-X is enabled");
6528 /* should be ignored, fall through for now */
6530 intms |= data;
6531 stl_le_p(&n->bar.intms, intms);
6532 n->bar.intmc = n->bar.intms;
6533 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6534 nvme_irq_check(n);
6535 break;
6536 case NVME_REG_INTMC:
6537 if (unlikely(msix_enabled(pci))) {
6538 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6539 "undefined access to interrupt mask clr"
6540 " when MSI-X is enabled");
6541 /* should be ignored, fall through for now */
6543 intms &= ~data;
6544 stl_le_p(&n->bar.intms, intms);
6545 n->bar.intmc = n->bar.intms;
6546 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6547 nvme_irq_check(n);
6548 break;
6549 case NVME_REG_CC:
6550 stl_le_p(&n->bar.cc, data);
6552 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6554 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6555 trace_pci_nvme_mmio_shutdown_set();
6556 nvme_ctrl_shutdown(n);
6557 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6558 csts |= NVME_CSTS_SHST_COMPLETE;
6559 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6560 trace_pci_nvme_mmio_shutdown_cleared();
6561 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6564 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6565 if (unlikely(nvme_start_ctrl(n))) {
6566 trace_pci_nvme_err_startfail();
6567 csts = NVME_CSTS_FAILED;
6568 } else {
6569 trace_pci_nvme_mmio_start_success();
6570 csts = NVME_CSTS_READY;
6572 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6573 trace_pci_nvme_mmio_stopped();
6574 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6576 break;
6579 stl_le_p(&n->bar.csts, csts);
6581 break;
6582 case NVME_REG_CSTS:
6583 if (data & (1 << 4)) {
6584 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6585 "attempted to W1C CSTS.NSSRO"
6586 " but CAP.NSSRS is zero (not supported)");
6587 } else if (data != 0) {
6588 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6589 "attempted to set a read only bit"
6590 " of controller status");
6592 break;
6593 case NVME_REG_NSSR:
6594 if (data == 0x4e564d65) {
6595 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6596 } else {
6597 /* The spec says that writes of other values have no effect */
6598 return;
6600 break;
6601 case NVME_REG_AQA:
6602 stl_le_p(&n->bar.aqa, data);
6603 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6604 break;
6605 case NVME_REG_ASQ:
6606 stn_le_p(&n->bar.asq, size, data);
6607 trace_pci_nvme_mmio_asqaddr(data);
6608 break;
6609 case NVME_REG_ASQ + 4:
6610 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6611 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6612 break;
6613 case NVME_REG_ACQ:
6614 trace_pci_nvme_mmio_acqaddr(data);
6615 stn_le_p(&n->bar.acq, size, data);
6616 break;
6617 case NVME_REG_ACQ + 4:
6618 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6619 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6620 break;
6621 case NVME_REG_CMBLOC:
6622 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6623 "invalid write to reserved CMBLOC"
6624 " when CMBSZ is zero, ignored");
6625 return;
6626 case NVME_REG_CMBSZ:
6627 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6628 "invalid write to read only CMBSZ, ignored");
6629 return;
6630 case NVME_REG_CMBMSC:
6631 if (!NVME_CAP_CMBS(cap)) {
6632 return;
6635 stn_le_p(&n->bar.cmbmsc, size, data);
6636 n->cmb.cmse = false;
6638 if (NVME_CMBMSC_CRE(data)) {
6639 nvme_cmb_enable_regs(n);
6641 if (NVME_CMBMSC_CMSE(data)) {
6642 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6643 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6644 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6645 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6646 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6647 stl_le_p(&n->bar.cmbsts, cmbsts);
6648 return;
6651 n->cmb.cba = cba;
6652 n->cmb.cmse = true;
6654 } else {
6655 n->bar.cmbsz = 0;
6656 n->bar.cmbloc = 0;
6659 return;
6660 case NVME_REG_CMBMSC + 4:
6661 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6662 return;
6664 case NVME_REG_PMRCAP:
6665 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6666 "invalid write to PMRCAP register, ignored");
6667 return;
6668 case NVME_REG_PMRCTL:
6669 if (!NVME_CAP_PMRS(cap)) {
6670 return;
6673 stl_le_p(&n->bar.pmrctl, data);
6674 if (NVME_PMRCTL_EN(data)) {
6675 memory_region_set_enabled(&n->pmr.dev->mr, true);
6676 pmrsts = 0;
6677 } else {
6678 memory_region_set_enabled(&n->pmr.dev->mr, false);
6679 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6680 n->pmr.cmse = false;
6682 stl_le_p(&n->bar.pmrsts, pmrsts);
6683 return;
6684 case NVME_REG_PMRSTS:
6685 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6686 "invalid write to PMRSTS register, ignored");
6687 return;
6688 case NVME_REG_PMREBS:
6689 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6690 "invalid write to PMREBS register, ignored");
6691 return;
6692 case NVME_REG_PMRSWTP:
6693 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6694 "invalid write to PMRSWTP register, ignored");
6695 return;
6696 case NVME_REG_PMRMSCL:
6697 if (!NVME_CAP_PMRS(cap)) {
6698 return;
6701 stl_le_p(&n->bar.pmrmscl, data);
6702 n->pmr.cmse = false;
6704 if (NVME_PMRMSCL_CMSE(data)) {
6705 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6706 hwaddr cba = pmrmscu << 32 |
6707 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6708 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6709 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6710 stl_le_p(&n->bar.pmrsts, pmrsts);
6711 return;
6714 n->pmr.cmse = true;
6715 n->pmr.cba = cba;
6718 return;
6719 case NVME_REG_PMRMSCU:
6720 if (!NVME_CAP_PMRS(cap)) {
6721 return;
6724 stl_le_p(&n->bar.pmrmscu, data);
6725 return;
6726 default:
6727 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6728 "invalid MMIO write,"
6729 " offset=0x%"PRIx64", data=%"PRIx64"",
6730 offset, data);
6731 break;
6735 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6737 NvmeCtrl *n = (NvmeCtrl *)opaque;
6738 uint8_t *ptr = (uint8_t *)&n->bar;
6740 trace_pci_nvme_mmio_read(addr, size);
6742 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6743 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6744 "MMIO read not 32-bit aligned,"
6745 " offset=0x%"PRIx64"", addr);
6746 /* should RAZ, fall through for now */
6747 } else if (unlikely(size < sizeof(uint32_t))) {
6748 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6749 "MMIO read smaller than 32-bits,"
6750 " offset=0x%"PRIx64"", addr);
6751 /* should RAZ, fall through for now */
6754 if (addr > sizeof(n->bar) - size) {
6755 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6756 "MMIO read beyond last register,"
6757 " offset=0x%"PRIx64", returning 0", addr);
6759 return 0;
6762 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
6763 addr != NVME_REG_CSTS) {
6764 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6765 return 0;
6769 * When PMRWBM bit 1 is set then read from
6770 * from PMRSTS should ensure prior writes
6771 * made it to persistent media
6773 if (addr == NVME_REG_PMRSTS &&
6774 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6775 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6778 return ldn_le_p(ptr + addr, size);
6781 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6783 PCIDevice *pci = PCI_DEVICE(n);
6784 uint32_t qid;
6786 if (unlikely(addr & ((1 << 2) - 1))) {
6787 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6788 "doorbell write not 32-bit aligned,"
6789 " offset=0x%"PRIx64", ignoring", addr);
6790 return;
6793 if (((addr - 0x1000) >> 2) & 1) {
6794 /* Completion queue doorbell write */
6796 uint16_t new_head = val & 0xffff;
6797 int start_sqs;
6798 NvmeCQueue *cq;
6800 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6801 if (unlikely(nvme_check_cqid(n, qid))) {
6802 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6803 "completion queue doorbell write"
6804 " for nonexistent queue,"
6805 " sqid=%"PRIu32", ignoring", qid);
6808 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6809 * an invalid value to the Submission Queue Tail Doorbell or
6810 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6811 * Request command is outstanding, then an asynchronous event is
6812 * posted to the Admin Completion Queue with a status code of
6813 * Invalid Doorbell Write Value."
6815 * Also note that the spec includes the "Invalid Doorbell Register"
6816 * status code, but nowhere does it specify when to use it.
6817 * However, it seems reasonable to use it here in a similar
6818 * fashion.
6820 if (n->outstanding_aers) {
6821 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6822 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6823 NVME_LOG_ERROR_INFO);
6826 return;
6829 cq = n->cq[qid];
6830 if (unlikely(new_head >= cq->size)) {
6831 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6832 "completion queue doorbell write value"
6833 " beyond queue size, sqid=%"PRIu32","
6834 " new_head=%"PRIu16", ignoring",
6835 qid, new_head);
6837 if (n->outstanding_aers) {
6838 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6839 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6840 NVME_LOG_ERROR_INFO);
6843 return;
6846 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6848 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6849 cq->head = new_head;
6850 if (!qid && n->dbbuf_enabled) {
6851 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6853 if (start_sqs) {
6854 NvmeSQueue *sq;
6855 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6856 qemu_bh_schedule(sq->bh);
6858 qemu_bh_schedule(cq->bh);
6861 if (cq->tail == cq->head) {
6862 if (cq->irq_enabled) {
6863 n->cq_pending--;
6866 nvme_irq_deassert(n, cq);
6868 } else {
6869 /* Submission queue doorbell write */
6871 uint16_t new_tail = val & 0xffff;
6872 NvmeSQueue *sq;
6874 qid = (addr - 0x1000) >> 3;
6875 if (unlikely(nvme_check_sqid(n, qid))) {
6876 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6877 "submission queue doorbell write"
6878 " for nonexistent queue,"
6879 " sqid=%"PRIu32", ignoring", qid);
6881 if (n->outstanding_aers) {
6882 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6883 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6884 NVME_LOG_ERROR_INFO);
6887 return;
6890 sq = n->sq[qid];
6891 if (unlikely(new_tail >= sq->size)) {
6892 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6893 "submission queue doorbell write value"
6894 " beyond queue size, sqid=%"PRIu32","
6895 " new_tail=%"PRIu16", ignoring",
6896 qid, new_tail);
6898 if (n->outstanding_aers) {
6899 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6900 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6901 NVME_LOG_ERROR_INFO);
6904 return;
6907 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6909 sq->tail = new_tail;
6910 if (!qid && n->dbbuf_enabled) {
6912 * The spec states "the host shall also update the controller's
6913 * corresponding doorbell property to match the value of that entry
6914 * in the Shadow Doorbell buffer."
6916 * Since this context is currently a VM trap, we can safely enforce
6917 * the requirement from the device side in case the host is
6918 * misbehaving.
6920 * Note, we shouldn't have to do this, but various drivers
6921 * including ones that run on Linux, are not updating Admin Queues,
6922 * so we can't trust reading it for an appropriate sq tail.
6924 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6927 qemu_bh_schedule(sq->bh);
6931 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6932 unsigned size)
6934 NvmeCtrl *n = (NvmeCtrl *)opaque;
6936 trace_pci_nvme_mmio_write(addr, data, size);
6938 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
6939 addr != NVME_REG_CSTS) {
6940 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6941 return;
6944 if (addr < sizeof(n->bar)) {
6945 nvme_write_bar(n, addr, data, size);
6946 } else {
6947 nvme_process_db(n, addr, data);
6951 static const MemoryRegionOps nvme_mmio_ops = {
6952 .read = nvme_mmio_read,
6953 .write = nvme_mmio_write,
6954 .endianness = DEVICE_LITTLE_ENDIAN,
6955 .impl = {
6956 .min_access_size = 2,
6957 .max_access_size = 8,
6961 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6962 unsigned size)
6964 NvmeCtrl *n = (NvmeCtrl *)opaque;
6965 stn_le_p(&n->cmb.buf[addr], size, data);
6968 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6970 NvmeCtrl *n = (NvmeCtrl *)opaque;
6971 return ldn_le_p(&n->cmb.buf[addr], size);
6974 static const MemoryRegionOps nvme_cmb_ops = {
6975 .read = nvme_cmb_read,
6976 .write = nvme_cmb_write,
6977 .endianness = DEVICE_LITTLE_ENDIAN,
6978 .impl = {
6979 .min_access_size = 1,
6980 .max_access_size = 8,
6984 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
6986 NvmeParams *params = &n->params;
6988 if (params->num_queues) {
6989 warn_report("num_queues is deprecated; please use max_ioqpairs "
6990 "instead");
6992 params->max_ioqpairs = params->num_queues - 1;
6995 if (n->namespace.blkconf.blk && n->subsys) {
6996 error_setg(errp, "subsystem support is unavailable with legacy "
6997 "namespace ('drive' property)");
6998 return false;
7001 if (params->max_ioqpairs < 1 ||
7002 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7003 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7004 NVME_MAX_IOQPAIRS);
7005 return false;
7008 if (params->msix_qsize < 1 ||
7009 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7010 error_setg(errp, "msix_qsize must be between 1 and %d",
7011 PCI_MSIX_FLAGS_QSIZE + 1);
7012 return false;
7015 if (!params->serial) {
7016 error_setg(errp, "serial property not set");
7017 return false;
7020 if (n->pmr.dev) {
7021 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7022 error_setg(errp, "can't use already busy memdev: %s",
7023 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7024 return false;
7027 if (!is_power_of_2(n->pmr.dev->size)) {
7028 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7029 return false;
7032 host_memory_backend_set_mapped(n->pmr.dev, true);
7035 if (n->params.zasl > n->params.mdts) {
7036 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7037 "than or equal to mdts (Maximum Data Transfer Size)");
7038 return false;
7041 if (!n->params.vsl) {
7042 error_setg(errp, "vsl must be non-zero");
7043 return false;
7046 if (params->sriov_max_vfs) {
7047 if (!n->subsys) {
7048 error_setg(errp, "subsystem is required for the use of SR-IOV");
7049 return false;
7052 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7053 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7054 NVME_MAX_VFS);
7055 return false;
7058 if (params->cmb_size_mb) {
7059 error_setg(errp, "CMB is not supported with SR-IOV");
7060 return false;
7063 if (n->pmr.dev) {
7064 error_setg(errp, "PMR is not supported with SR-IOV");
7065 return false;
7068 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7069 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7070 " must be set for the use of SR-IOV");
7071 return false;
7074 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7075 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7076 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7077 return false;
7080 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7081 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7082 " greater than or equal to 2");
7083 return false;
7086 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7087 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7088 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7089 return false;
7092 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7093 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7094 " greater than or equal to 1");
7095 return false;
7098 if (params->sriov_max_vi_per_vf &&
7099 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7100 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7101 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7102 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7103 return false;
7106 if (params->sriov_max_vq_per_vf &&
7107 (params->sriov_max_vq_per_vf < 2 ||
7108 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7109 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7110 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7111 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7112 return false;
7116 return true;
7119 static void nvme_init_state(NvmeCtrl *n)
7121 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7122 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7123 NvmeSecCtrlEntry *sctrl;
7124 PCIDevice *pci = PCI_DEVICE(n);
7125 uint8_t max_vfs;
7126 int i;
7128 if (pci_is_vf(pci)) {
7129 sctrl = nvme_sctrl(n);
7130 max_vfs = 0;
7131 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7132 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7133 } else {
7134 max_vfs = n->params.sriov_max_vfs;
7135 n->conf_ioqpairs = n->params.max_ioqpairs;
7136 n->conf_msix_qsize = n->params.msix_qsize;
7139 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7140 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7141 n->temperature = NVME_TEMPERATURE;
7142 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7143 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7144 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7145 QTAILQ_INIT(&n->aer_queue);
7147 list->numcntl = cpu_to_le16(max_vfs);
7148 for (i = 0; i < max_vfs; i++) {
7149 sctrl = &list->sec[i];
7150 sctrl->pcid = cpu_to_le16(n->cntlid);
7151 sctrl->vfn = cpu_to_le16(i + 1);
7154 cap->cntlid = cpu_to_le16(n->cntlid);
7155 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7157 if (pci_is_vf(pci)) {
7158 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7159 } else {
7160 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7161 n->params.sriov_vq_flexible);
7162 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7163 cap->vqrfap = cap->vqfrt;
7164 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7165 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7166 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7167 cap->vqfrt / MAX(max_vfs, 1);
7170 if (pci_is_vf(pci)) {
7171 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7172 } else {
7173 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7174 n->params.sriov_vi_flexible);
7175 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7176 cap->virfap = cap->vifrt;
7177 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7178 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7179 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7180 cap->vifrt / MAX(max_vfs, 1);
7184 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7186 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7187 uint64_t cap = ldq_le_p(&n->bar.cap);
7189 n->cmb.buf = g_malloc0(cmb_size);
7190 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7191 "nvme-cmb", cmb_size);
7192 pci_register_bar(pci_dev, NVME_CMB_BIR,
7193 PCI_BASE_ADDRESS_SPACE_MEMORY |
7194 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7195 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7197 NVME_CAP_SET_CMBS(cap, 1);
7198 stq_le_p(&n->bar.cap, cap);
7200 if (n->params.legacy_cmb) {
7201 nvme_cmb_enable_regs(n);
7202 n->cmb.cmse = true;
7206 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7208 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7210 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7211 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7212 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7213 /* Turn on bit 1 support */
7214 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7215 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7216 stl_le_p(&n->bar.pmrcap, pmrcap);
7218 pci_register_bar(pci_dev, NVME_PMR_BIR,
7219 PCI_BASE_ADDRESS_SPACE_MEMORY |
7220 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7221 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7223 memory_region_set_enabled(&n->pmr.dev->mr, false);
7226 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7227 unsigned *msix_table_offset,
7228 unsigned *msix_pba_offset)
7230 uint64_t bar_size, msix_table_size, msix_pba_size;
7232 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7233 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7235 if (msix_table_offset) {
7236 *msix_table_offset = bar_size;
7239 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7240 bar_size += msix_table_size;
7241 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7243 if (msix_pba_offset) {
7244 *msix_pba_offset = bar_size;
7247 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7248 bar_size += msix_pba_size;
7250 bar_size = pow2ceil(bar_size);
7251 return bar_size;
7254 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7256 uint16_t vf_dev_id = n->params.use_intel_id ?
7257 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7258 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7259 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7260 le16_to_cpu(cap->vifrsm),
7261 NULL, NULL);
7263 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7264 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7265 NVME_VF_OFFSET, NVME_VF_STRIDE);
7267 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7268 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7271 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7273 Error *err = NULL;
7274 int ret;
7276 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7277 PCI_PM_SIZEOF, &err);
7278 if (err) {
7279 error_report_err(err);
7280 return ret;
7283 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7284 PCI_PM_CAP_VER_1_2);
7285 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7286 PCI_PM_CTRL_NO_SOFT_RESET);
7287 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7288 PCI_PM_CTRL_STATE_MASK);
7290 return 0;
7293 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7295 ERRP_GUARD();
7296 uint8_t *pci_conf = pci_dev->config;
7297 uint64_t bar_size;
7298 unsigned msix_table_offset, msix_pba_offset;
7299 int ret;
7301 pci_conf[PCI_INTERRUPT_PIN] = 1;
7302 pci_config_set_prog_interface(pci_conf, 0x2);
7304 if (n->params.use_intel_id) {
7305 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7306 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7307 } else {
7308 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7309 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7312 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7313 nvme_add_pm_capability(pci_dev, 0x60);
7314 pcie_endpoint_cap_init(pci_dev, 0x80);
7315 pcie_cap_flr_init(pci_dev);
7316 if (n->params.sriov_max_vfs) {
7317 pcie_ari_init(pci_dev, 0x100, 1);
7320 /* add one to max_ioqpairs to account for the admin queue pair */
7321 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7322 &msix_table_offset, &msix_pba_offset);
7324 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7325 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7326 msix_table_offset);
7327 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7329 if (pci_is_vf(pci_dev)) {
7330 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7331 } else {
7332 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7333 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7335 ret = msix_init(pci_dev, n->params.msix_qsize,
7336 &n->bar0, 0, msix_table_offset,
7337 &n->bar0, 0, msix_pba_offset, 0, errp);
7338 if (ret == -ENOTSUP) {
7339 /* report that msix is not supported, but do not error out */
7340 warn_report_err(*errp);
7341 *errp = NULL;
7342 } else if (ret < 0) {
7343 /* propagate error to caller */
7344 return false;
7347 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7349 if (n->params.cmb_size_mb) {
7350 nvme_init_cmb(n, pci_dev);
7353 if (n->pmr.dev) {
7354 nvme_init_pmr(n, pci_dev);
7357 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7358 nvme_init_sriov(n, pci_dev, 0x120);
7361 return true;
7364 static void nvme_init_subnqn(NvmeCtrl *n)
7366 NvmeSubsystem *subsys = n->subsys;
7367 NvmeIdCtrl *id = &n->id_ctrl;
7369 if (!subsys) {
7370 snprintf((char *)id->subnqn, sizeof(id->subnqn),
7371 "nqn.2019-08.org.qemu:%s", n->params.serial);
7372 } else {
7373 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7377 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7379 NvmeIdCtrl *id = &n->id_ctrl;
7380 uint8_t *pci_conf = pci_dev->config;
7381 uint64_t cap = ldq_le_p(&n->bar.cap);
7382 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7384 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7385 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7386 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7387 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7388 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7390 id->cntlid = cpu_to_le16(n->cntlid);
7392 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7393 id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7395 id->rab = 6;
7397 if (n->params.use_intel_id) {
7398 id->ieee[0] = 0xb3;
7399 id->ieee[1] = 0x02;
7400 id->ieee[2] = 0x00;
7401 } else {
7402 id->ieee[0] = 0x00;
7403 id->ieee[1] = 0x54;
7404 id->ieee[2] = 0x52;
7407 id->mdts = n->params.mdts;
7408 id->ver = cpu_to_le32(NVME_SPEC_VER);
7409 id->oacs =
7410 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7411 id->cntrltype = 0x1;
7414 * Because the controller always completes the Abort command immediately,
7415 * there can never be more than one concurrently executing Abort command,
7416 * so this value is never used for anything. Note that there can easily be
7417 * many Abort commands in the queues, but they are not considered
7418 * "executing" until processed by nvme_abort.
7420 * The specification recommends a value of 3 for Abort Command Limit (four
7421 * concurrently outstanding Abort commands), so lets use that though it is
7422 * inconsequential.
7424 id->acl = 3;
7425 id->aerl = n->params.aerl;
7426 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7427 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7429 /* recommended default value (~70 C) */
7430 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7431 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7433 id->sqes = (0x6 << 4) | 0x6;
7434 id->cqes = (0x4 << 4) | 0x4;
7435 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7436 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7437 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7438 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7441 * NOTE: If this device ever supports a command set that does NOT use 0x0
7442 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7443 * should probably be removed.
7445 * See comment in nvme_io_cmd.
7447 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7449 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7450 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7452 nvme_init_subnqn(n);
7454 id->psd[0].mp = cpu_to_le16(0x9c4);
7455 id->psd[0].enlat = cpu_to_le32(0x10);
7456 id->psd[0].exlat = cpu_to_le32(0x4);
7458 if (n->subsys) {
7459 id->cmic |= NVME_CMIC_MULTI_CTRL;
7462 NVME_CAP_SET_MQES(cap, 0x7ff);
7463 NVME_CAP_SET_CQR(cap, 1);
7464 NVME_CAP_SET_TO(cap, 0xf);
7465 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7466 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7467 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7468 NVME_CAP_SET_MPSMAX(cap, 4);
7469 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7470 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7471 stq_le_p(&n->bar.cap, cap);
7473 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7474 n->bar.intmc = n->bar.intms = 0;
7476 if (pci_is_vf(pci_dev) && !sctrl->scs) {
7477 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7481 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7483 int cntlid;
7485 if (!n->subsys) {
7486 return 0;
7489 cntlid = nvme_subsys_register_ctrl(n, errp);
7490 if (cntlid < 0) {
7491 return -1;
7494 n->cntlid = cntlid;
7496 return 0;
7499 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7501 uint32_t nsid = ns->params.nsid;
7502 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7504 n->namespaces[nsid] = ns;
7505 ns->attached++;
7507 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7508 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7511 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7513 NvmeCtrl *n = NVME(pci_dev);
7514 DeviceState *dev = DEVICE(pci_dev);
7515 NvmeNamespace *ns;
7516 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7518 if (pci_is_vf(pci_dev)) {
7520 * VFs derive settings from the parent. PF's lifespan exceeds
7521 * that of VF's, so it's safe to share params.serial.
7523 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7524 n->subsys = pn->subsys;
7527 if (!nvme_check_params(n, errp)) {
7528 return;
7531 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
7533 if (nvme_init_subsys(n, errp)) {
7534 return;
7536 nvme_init_state(n);
7537 if (!nvme_init_pci(n, pci_dev, errp)) {
7538 return;
7540 nvme_init_ctrl(n, pci_dev);
7542 /* setup a namespace if the controller drive property was given */
7543 if (n->namespace.blkconf.blk) {
7544 ns = &n->namespace;
7545 ns->params.nsid = 1;
7547 if (nvme_ns_setup(ns, errp)) {
7548 return;
7551 nvme_attach_ns(n, ns);
7555 static void nvme_exit(PCIDevice *pci_dev)
7557 NvmeCtrl *n = NVME(pci_dev);
7558 NvmeNamespace *ns;
7559 int i;
7561 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7563 if (n->subsys) {
7564 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7565 ns = nvme_ns(n, i);
7566 if (ns) {
7567 ns->attached--;
7571 nvme_subsys_unregister_ctrl(n->subsys, n);
7574 g_free(n->cq);
7575 g_free(n->sq);
7576 g_free(n->aer_reqs);
7578 if (n->params.cmb_size_mb) {
7579 g_free(n->cmb.buf);
7582 if (n->pmr.dev) {
7583 host_memory_backend_set_mapped(n->pmr.dev, false);
7586 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7587 pcie_sriov_pf_exit(pci_dev);
7590 msix_uninit(pci_dev, &n->bar0, &n->bar0);
7591 memory_region_del_subregion(&n->bar0, &n->iomem);
7594 static Property nvme_props[] = {
7595 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7596 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7597 HostMemoryBackend *),
7598 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7599 NvmeSubsystem *),
7600 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7601 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7602 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7603 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7604 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7605 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7606 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7607 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7608 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7609 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7610 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7611 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7612 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7613 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7614 params.auto_transition_zones, true),
7615 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7616 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7617 params.sriov_vq_flexible, 0),
7618 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7619 params.sriov_vi_flexible, 0),
7620 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7621 params.sriov_max_vi_per_vf, 0),
7622 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7623 params.sriov_max_vq_per_vf, 0),
7624 DEFINE_PROP_END_OF_LIST(),
7627 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7628 void *opaque, Error **errp)
7630 NvmeCtrl *n = NVME(obj);
7631 uint8_t value = n->smart_critical_warning;
7633 visit_type_uint8(v, name, &value, errp);
7636 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7637 void *opaque, Error **errp)
7639 NvmeCtrl *n = NVME(obj);
7640 uint8_t value, old_value, cap = 0, index, event;
7642 if (!visit_type_uint8(v, name, &value, errp)) {
7643 return;
7646 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7647 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7648 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7649 cap |= NVME_SMART_PMR_UNRELIABLE;
7652 if ((value & cap) != value) {
7653 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7654 value & ~cap);
7655 return;
7658 old_value = n->smart_critical_warning;
7659 n->smart_critical_warning = value;
7661 /* only inject new bits of smart critical warning */
7662 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7663 event = 1 << index;
7664 if (value & ~old_value & event)
7665 nvme_smart_event(n, event);
7669 static void nvme_pci_reset(DeviceState *qdev)
7671 PCIDevice *pci_dev = PCI_DEVICE(qdev);
7672 NvmeCtrl *n = NVME(pci_dev);
7674 trace_pci_nvme_pci_reset();
7675 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7678 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7679 uint32_t val, int len)
7681 NvmeCtrl *n = NVME(dev);
7682 NvmeSecCtrlEntry *sctrl;
7683 uint16_t sriov_cap = dev->exp.sriov_cap;
7684 uint32_t off = address - sriov_cap;
7685 int i, num_vfs;
7687 if (!sriov_cap) {
7688 return;
7691 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7692 if (!(val & PCI_SRIOV_CTRL_VFE)) {
7693 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7694 for (i = 0; i < num_vfs; i++) {
7695 sctrl = &n->sec_ctrl_list.sec[i];
7696 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7702 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7703 uint32_t val, int len)
7705 nvme_sriov_pre_write_ctrl(dev, address, val, len);
7706 pci_default_write_config(dev, address, val, len);
7707 pcie_cap_flr_write_config(dev, address, val, len);
7710 static const VMStateDescription nvme_vmstate = {
7711 .name = "nvme",
7712 .unmigratable = 1,
7715 static void nvme_class_init(ObjectClass *oc, void *data)
7717 DeviceClass *dc = DEVICE_CLASS(oc);
7718 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7720 pc->realize = nvme_realize;
7721 pc->config_write = nvme_pci_write_config;
7722 pc->exit = nvme_exit;
7723 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7724 pc->revision = 2;
7726 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7727 dc->desc = "Non-Volatile Memory Express";
7728 device_class_set_props(dc, nvme_props);
7729 dc->vmsd = &nvme_vmstate;
7730 dc->reset = nvme_pci_reset;
7733 static void nvme_instance_init(Object *obj)
7735 NvmeCtrl *n = NVME(obj);
7737 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7738 "bootindex", "/namespace@1,0",
7739 DEVICE(obj));
7741 object_property_add(obj, "smart_critical_warning", "uint8",
7742 nvme_get_smart_warning,
7743 nvme_set_smart_warning, NULL, NULL);
7746 static const TypeInfo nvme_info = {
7747 .name = TYPE_NVME,
7748 .parent = TYPE_PCI_DEVICE,
7749 .instance_size = sizeof(NvmeCtrl),
7750 .instance_init = nvme_instance_init,
7751 .class_init = nvme_class_init,
7752 .interfaces = (InterfaceInfo[]) {
7753 { INTERFACE_PCIE_DEVICE },
7758 static const TypeInfo nvme_bus_info = {
7759 .name = TYPE_NVME_BUS,
7760 .parent = TYPE_BUS,
7761 .instance_size = sizeof(NvmeBus),
7764 static void nvme_register_types(void)
7766 type_register_static(&nvme_info);
7767 type_register_static(&nvme_bus_info);
7770 type_init(nvme_register_types)