4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include <sys/types.h>
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
37 #include "disas/disas.h"
39 #if defined(CONFIG_USER_ONLY)
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
48 #include <machine/profile.h>
57 #include "exec/address-spaces.h"
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc
{
79 /* list of TBs intersecting this ram page */
80 TranslationBlock
*first_tb
;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count
;
84 unsigned long *code_bitmap
;
85 #if defined(CONFIG_USER_ONLY)
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
102 /* Size of the L2 (and L3, etc) page tables. */
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
113 #define V_L1_BITS V_L1_BITS_REM
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_host_page_size
;
121 uintptr_t qemu_host_page_mask
;
123 /* The bottom level has pointers to PageDesc */
124 static void *l1_map
[V_L1_SIZE
];
126 /* code generation context */
129 /* translation block context */
130 #ifdef CONFIG_USER_ONLY
131 __thread
int have_tb_lock
;
136 #ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock
);
138 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
145 #ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock
);
148 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
152 void tb_lock_reset(void)
154 #ifdef CONFIG_USER_ONLY
156 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
162 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
163 tb_page_addr_t phys_page2
);
164 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
166 void cpu_gen_init(void)
168 tcg_context_init(&tcg_ctx
);
171 /* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173 static uint8_t *encode_sleb128(uint8_t *p
, target_long val
)
180 more
= !((val
== 0 && (byte
& 0x40) == 0)
181 || (val
== -1 && (byte
& 0x40) != 0));
191 /* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193 static target_long
decode_sleb128(uint8_t **pp
)
201 val
|= (target_ulong
)(byte
& 0x7f) << shift
;
203 } while (byte
& 0x80);
204 if (shift
< TARGET_LONG_BITS
&& (byte
& 0x40)) {
205 val
|= -(target_ulong
)1 << shift
;
212 /* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
224 static int encode_search(TranslationBlock
*tb
, uint8_t *block
)
226 uint8_t *highwater
= tcg_ctx
.code_gen_highwater
;
230 tb
->tc_search
= block
;
232 for (i
= 0, n
= tb
->icount
; i
< n
; ++i
) {
235 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
237 prev
= (j
== 0 ? tb
->pc
: 0);
239 prev
= tcg_ctx
.gen_insn_data
[i
- 1][j
];
241 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_data
[i
][j
] - prev
);
243 prev
= (i
== 0 ? 0 : tcg_ctx
.gen_insn_end_off
[i
- 1]);
244 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_end_off
[i
] - prev
);
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p
> highwater
)) {
258 /* The cpu state corresponding to 'searched_pc' is restored. */
259 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
260 uintptr_t searched_pc
)
262 target_ulong data
[TARGET_INSN_START_WORDS
] = { tb
->pc
};
263 uintptr_t host_pc
= (uintptr_t)tb
->tc_ptr
;
264 CPUArchState
*env
= cpu
->env_ptr
;
265 uint8_t *p
= tb
->tc_search
;
266 int i
, j
, num_insns
= tb
->icount
;
267 #ifdef CONFIG_PROFILER
268 int64_t ti
= profile_getclock();
271 if (searched_pc
< host_pc
) {
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i
= 0; i
< num_insns
; ++i
) {
278 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
279 data
[j
] += decode_sleb128(&p
);
281 host_pc
+= decode_sleb128(&p
);
282 if (host_pc
> searched_pc
) {
289 if (tb
->cflags
& CF_USE_ICOUNT
) {
291 /* Reset the cycle counter to the start of the block. */
292 cpu
->icount_decr
.u16
.low
+= num_insns
;
293 /* Clear the IO flag. */
296 cpu
->icount_decr
.u16
.low
-= i
;
297 restore_state_to_opc(env
, tb
, data
);
299 #ifdef CONFIG_PROFILER
300 tcg_ctx
.restore_time
+= profile_getclock() - ti
;
301 tcg_ctx
.restore_count
++;
306 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
308 TranslationBlock
*tb
;
310 tb
= tb_find_pc(retaddr
);
312 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
313 if (tb
->cflags
& CF_NOCACHE
) {
314 /* one-shot translation, invalidate it immediately */
315 cpu
->current_tb
= NULL
;
316 tb_phys_invalidate(tb
, -1);
324 void page_size_init(void)
326 /* NOTE: we can always suppose that qemu_host_page_size >=
328 qemu_real_host_page_size
= getpagesize();
329 qemu_real_host_page_mask
= ~(qemu_real_host_page_size
- 1);
330 if (qemu_host_page_size
== 0) {
331 qemu_host_page_size
= qemu_real_host_page_size
;
333 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
334 qemu_host_page_size
= TARGET_PAGE_SIZE
;
336 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
339 static void page_init(void)
342 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
344 #ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry
*freep
;
348 freep
= kinfo_getvmmap(getpid(), &cnt
);
351 for (i
= 0; i
< cnt
; i
++) {
352 unsigned long startaddr
, endaddr
;
354 startaddr
= freep
[i
].kve_start
;
355 endaddr
= freep
[i
].kve_end
;
356 if (h2g_valid(startaddr
)) {
357 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
359 if (h2g_valid(endaddr
)) {
360 endaddr
= h2g(endaddr
);
361 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
363 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
365 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
376 last_brk
= (unsigned long)sbrk(0);
378 f
= fopen("/compat/linux/proc/self/maps", "r");
383 unsigned long startaddr
, endaddr
;
386 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
388 if (n
== 2 && h2g_valid(startaddr
)) {
389 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
391 if (h2g_valid(endaddr
)) {
392 endaddr
= h2g(endaddr
);
396 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
409 * Called with mmap_lock held for user-mode emulation.
411 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
417 /* Level 1. Always allocated. */
418 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
421 for (i
= V_L1_SHIFT
/ V_L2_BITS
- 1; i
> 0; i
--) {
422 void **p
= atomic_rcu_read(lp
);
428 p
= g_new0(void *, V_L2_SIZE
);
429 atomic_rcu_set(lp
, p
);
432 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
435 pd
= atomic_rcu_read(lp
);
440 pd
= g_new0(PageDesc
, V_L2_SIZE
);
441 atomic_rcu_set(lp
, pd
);
444 return pd
+ (index
& (V_L2_SIZE
- 1));
447 static inline PageDesc
*page_find(tb_page_addr_t index
)
449 return page_find_alloc(index
, 0);
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457 #define USE_STATIC_CODE_GEN_BUFFER
460 /* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
464 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467 #if defined(__x86_64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469 #elif defined(__sparc__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__aarch64__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
473 #elif defined(__arm__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
475 #elif defined(__s390x__)
476 /* We have a +- 4GB range on the branches; leave some slop. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
478 #elif defined(__mips__)
479 /* We have a 256MB branch region, but leave room to make sure the
480 main executable is also within that region. */
481 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
483 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
488 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
489 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
490 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
492 static inline size_t size_code_gen_buffer(size_t tb_size
)
494 /* Size the buffer. */
496 #ifdef USE_STATIC_CODE_GEN_BUFFER
497 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
499 /* ??? Needs adjustments. */
500 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
501 static buffer, we could size this on RESERVED_VA, on the text
502 segment size of the executable, or continue to use the default. */
503 tb_size
= (unsigned long)(ram_size
/ 4);
506 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
507 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
509 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
510 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
512 tcg_ctx
.code_gen_buffer_size
= tb_size
;
517 /* In order to use J and JAL within the code_gen_buffer, we require
518 that the buffer not cross a 256MB boundary. */
519 static inline bool cross_256mb(void *addr
, size_t size
)
521 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & 0xf0000000;
524 /* We weren't able to allocate a buffer without crossing that boundary,
525 so make do with the larger portion of the buffer that doesn't cross.
526 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
527 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
529 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & 0xf0000000);
530 size_t size2
= buf1
+ size1
- buf2
;
538 tcg_ctx
.code_gen_buffer_size
= size1
;
543 #ifdef USE_STATIC_CODE_GEN_BUFFER
544 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
545 __attribute__((aligned(CODE_GEN_ALIGN
)));
548 static inline void do_protect(void *addr
, long size
, int prot
)
551 VirtualProtect(addr
, size
, prot
, &old_protect
);
554 static inline void map_exec(void *addr
, long size
)
556 do_protect(addr
, size
, PAGE_EXECUTE_READWRITE
);
559 static inline void map_none(void *addr
, long size
)
561 do_protect(addr
, size
, PAGE_NOACCESS
);
564 static inline void do_protect(void *addr
, long size
, int prot
)
566 uintptr_t start
, end
;
568 start
= (uintptr_t)addr
;
569 start
&= qemu_real_host_page_mask
;
571 end
= (uintptr_t)addr
+ size
;
572 end
= ROUND_UP(end
, qemu_real_host_page_size
);
574 mprotect((void *)start
, end
- start
, prot
);
577 static inline void map_exec(void *addr
, long size
)
579 do_protect(addr
, size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
);
582 static inline void map_none(void *addr
, long size
)
584 do_protect(addr
, size
, PROT_NONE
);
588 static inline void *alloc_code_gen_buffer(void)
590 void *buf
= static_code_gen_buffer
;
591 size_t full_size
, size
;
593 /* The size of the buffer, rounded down to end on a page boundary. */
594 full_size
= (((uintptr_t)buf
+ sizeof(static_code_gen_buffer
))
595 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
597 /* Reserve a guard page. */
598 size
= full_size
- qemu_real_host_page_size
;
600 /* Honor a command-line option limiting the size of the buffer. */
601 if (size
> tcg_ctx
.code_gen_buffer_size
) {
602 size
= (((uintptr_t)buf
+ tcg_ctx
.code_gen_buffer_size
)
603 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
605 tcg_ctx
.code_gen_buffer_size
= size
;
608 if (cross_256mb(buf
, size
)) {
609 buf
= split_cross_256mb(buf
, size
);
610 size
= tcg_ctx
.code_gen_buffer_size
;
615 map_none(buf
+ size
, qemu_real_host_page_size
);
616 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
620 #elif defined(_WIN32)
621 static inline void *alloc_code_gen_buffer(void)
623 size_t size
= tcg_ctx
.code_gen_buffer_size
;
626 /* Perform the allocation in two steps, so that the guard page
627 is reserved but uncommitted. */
628 buf1
= VirtualAlloc(NULL
, size
+ qemu_real_host_page_size
,
629 MEM_RESERVE
, PAGE_NOACCESS
);
631 buf2
= VirtualAlloc(buf1
, size
, MEM_COMMIT
, PAGE_EXECUTE_READWRITE
);
632 assert(buf1
== buf2
);
638 static inline void *alloc_code_gen_buffer(void)
640 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
642 size_t size
= tcg_ctx
.code_gen_buffer_size
;
645 /* Constrain the position of the buffer based on the host cpu.
646 Note that these addresses are chosen in concert with the
647 addresses assigned in the relevant linker script file. */
648 # if defined(__PIE__) || defined(__PIC__)
649 /* Don't bother setting a preferred location if we're building
650 a position-independent executable. We're more likely to get
651 an address near the main executable if we let the kernel
652 choose the address. */
653 # elif defined(__x86_64__) && defined(MAP_32BIT)
654 /* Force the memory down into low memory with the executable.
655 Leave the choice of exact location with the kernel. */
657 /* Cannot expect to map more than 800MB in low memory. */
658 if (size
> 800u * 1024 * 1024) {
659 tcg_ctx
.code_gen_buffer_size
= size
= 800u * 1024 * 1024;
661 # elif defined(__sparc__)
662 start
= 0x40000000ul
;
663 # elif defined(__s390x__)
664 start
= 0x90000000ul
;
665 # elif defined(__mips__)
666 # if _MIPS_SIM == _ABI64
667 start
= 0x128000000ul
;
669 start
= 0x08000000ul
;
673 buf
= mmap((void *)start
, size
+ qemu_real_host_page_size
,
674 PROT_NONE
, flags
, -1, 0);
675 if (buf
== MAP_FAILED
) {
680 if (cross_256mb(buf
, size
)) {
681 /* Try again, with the original still mapped, to avoid re-acquiring
682 that 256mb crossing. This time don't specify an address. */
684 void *buf2
= mmap(NULL
, size
+ qemu_real_host_page_size
,
685 PROT_NONE
, flags
, -1, 0);
686 switch (buf2
!= MAP_FAILED
) {
688 if (!cross_256mb(buf2
, size
)) {
689 /* Success! Use the new buffer. */
693 /* Failure. Work with what we had. */
697 /* Split the original buffer. Free the smaller half. */
698 buf2
= split_cross_256mb(buf
, size
);
699 size2
= tcg_ctx
.code_gen_buffer_size
;
701 munmap(buf
+ size2
+ qemu_real_host_page_size
, size
- size2
);
703 munmap(buf
, size
- size2
);
712 /* Make the final buffer accessible. The guard page at the end
713 will remain inaccessible with PROT_NONE. */
714 mprotect(buf
, size
, PROT_WRITE
| PROT_READ
| PROT_EXEC
);
716 /* Request large pages for the buffer. */
717 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
721 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
723 static inline void code_gen_alloc(size_t tb_size
)
725 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
726 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
727 if (tcg_ctx
.code_gen_buffer
== NULL
) {
728 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
732 /* Estimate a good size for the number of TBs we can support. We
733 still haven't deducted the prologue from the buffer size here,
734 but that's minimal and won't affect the estimate much. */
735 tcg_ctx
.code_gen_max_blocks
736 = tcg_ctx
.code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
737 tcg_ctx
.tb_ctx
.tbs
= g_new(TranslationBlock
, tcg_ctx
.code_gen_max_blocks
);
739 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
742 /* Must be called before using the QEMU cpus. 'tb_size' is the size
743 (in bytes) allocated to the translation buffer. Zero means default
745 void tcg_exec_init(unsigned long tb_size
)
749 code_gen_alloc(tb_size
);
750 #if defined(CONFIG_SOFTMMU)
751 /* There's no guest base to take into account, so go ahead and
752 initialize the prologue now. */
753 tcg_prologue_init(&tcg_ctx
);
757 bool tcg_enabled(void)
759 return tcg_ctx
.code_gen_buffer
!= NULL
;
762 /* Allocate a new translation block. Flush the translation buffer if
763 too many translation blocks or too much generated code. */
764 static TranslationBlock
*tb_alloc(target_ulong pc
)
766 TranslationBlock
*tb
;
768 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
) {
771 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
777 void tb_free(TranslationBlock
*tb
)
779 /* In practice this is mostly used for single use temporary TB
780 Ignore the hard cases and just back up if this TB happens to
781 be the last one generated. */
782 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
783 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
784 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
785 tcg_ctx
.tb_ctx
.nb_tbs
--;
789 static inline void invalidate_page_bitmap(PageDesc
*p
)
791 g_free(p
->code_bitmap
);
792 p
->code_bitmap
= NULL
;
793 p
->code_write_count
= 0;
796 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
797 static void page_flush_tb_1(int level
, void **lp
)
807 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
808 pd
[i
].first_tb
= NULL
;
809 invalidate_page_bitmap(pd
+ i
);
814 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
815 page_flush_tb_1(level
- 1, pp
+ i
);
820 static void page_flush_tb(void)
824 for (i
= 0; i
< V_L1_SIZE
; i
++) {
825 page_flush_tb_1(V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
829 /* flush all the translation blocks */
830 /* XXX: tb_flush is currently not thread safe */
831 void tb_flush(CPUState
*cpu
)
833 #if defined(DEBUG_FLUSH)
834 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
835 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
836 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
837 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
838 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
840 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
841 > tcg_ctx
.code_gen_buffer_size
) {
842 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
844 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
847 memset(cpu
->tb_jmp_cache
, 0, sizeof(cpu
->tb_jmp_cache
));
850 memset(tcg_ctx
.tb_ctx
.tb_phys_hash
, 0, sizeof(tcg_ctx
.tb_ctx
.tb_phys_hash
));
853 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
854 /* XXX: flush processor icache at this point if cache flush is
856 tcg_ctx
.tb_ctx
.tb_flush_count
++;
859 #ifdef DEBUG_TB_CHECK
861 static void tb_invalidate_check(target_ulong address
)
863 TranslationBlock
*tb
;
866 address
&= TARGET_PAGE_MASK
;
867 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
868 for (tb
= tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
869 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
870 address
>= tb
->pc
+ tb
->size
)) {
871 printf("ERROR invalidate: address=" TARGET_FMT_lx
872 " PC=%08lx size=%04x\n",
873 address
, (long)tb
->pc
, tb
->size
);
879 /* verify that all the pages have correct rights for code */
880 static void tb_page_check(void)
882 TranslationBlock
*tb
;
883 int i
, flags1
, flags2
;
885 for (i
= 0; i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
886 for (tb
= tcg_ctx
.tb_ctx
.tb_phys_hash
[i
]; tb
!= NULL
;
887 tb
= tb
->phys_hash_next
) {
888 flags1
= page_get_flags(tb
->pc
);
889 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
890 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
891 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
892 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
900 static inline void tb_hash_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
902 TranslationBlock
*tb1
;
907 *ptb
= tb1
->phys_hash_next
;
910 ptb
= &tb1
->phys_hash_next
;
914 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
916 TranslationBlock
*tb1
;
921 n1
= (uintptr_t)tb1
& 3;
922 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
924 *ptb
= tb1
->page_next
[n1
];
927 ptb
= &tb1
->page_next
[n1
];
931 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
933 TranslationBlock
*tb1
, **ptb
;
936 ptb
= &tb
->jmp_next
[n
];
939 /* find tb(n) in circular list */
942 n1
= (uintptr_t)tb1
& 3;
943 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
944 if (n1
== n
&& tb1
== tb
) {
948 ptb
= &tb1
->jmp_first
;
950 ptb
= &tb1
->jmp_next
[n1
];
953 /* now we can suppress tb(n) from the list */
954 *ptb
= tb
->jmp_next
[n
];
956 tb
->jmp_next
[n
] = NULL
;
960 /* reset the jump entry 'n' of a TB so that it is not chained to
962 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
964 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
967 /* invalidate one TB */
968 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
973 tb_page_addr_t phys_pc
;
974 TranslationBlock
*tb1
, *tb2
;
976 /* remove the TB from the hash list */
977 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
978 h
= tb_phys_hash_func(phys_pc
);
979 tb_hash_remove(&tcg_ctx
.tb_ctx
.tb_phys_hash
[h
], tb
);
981 /* remove the TB from the page list */
982 if (tb
->page_addr
[0] != page_addr
) {
983 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
984 tb_page_remove(&p
->first_tb
, tb
);
985 invalidate_page_bitmap(p
);
987 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
988 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
989 tb_page_remove(&p
->first_tb
, tb
);
990 invalidate_page_bitmap(p
);
993 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
995 /* remove the TB from the hash list */
996 h
= tb_jmp_cache_hash_func(tb
->pc
);
998 if (cpu
->tb_jmp_cache
[h
] == tb
) {
999 cpu
->tb_jmp_cache
[h
] = NULL
;
1003 /* suppress this TB from the two jump lists */
1004 tb_jmp_remove(tb
, 0);
1005 tb_jmp_remove(tb
, 1);
1007 /* suppress any remaining jumps to this TB */
1008 tb1
= tb
->jmp_first
;
1010 n1
= (uintptr_t)tb1
& 3;
1014 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1015 tb2
= tb1
->jmp_next
[n1
];
1016 tb_reset_jump(tb1
, n1
);
1017 tb1
->jmp_next
[n1
] = NULL
;
1020 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
1022 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
1025 static void build_page_bitmap(PageDesc
*p
)
1027 int n
, tb_start
, tb_end
;
1028 TranslationBlock
*tb
;
1030 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
1033 while (tb
!= NULL
) {
1034 n
= (uintptr_t)tb
& 3;
1035 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1036 /* NOTE: this is subtle as a TB may span two physical pages */
1038 /* NOTE: tb_end may be after the end of the page, but
1039 it is not a problem */
1040 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1041 tb_end
= tb_start
+ tb
->size
;
1042 if (tb_end
> TARGET_PAGE_SIZE
) {
1043 tb_end
= TARGET_PAGE_SIZE
;
1047 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1049 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1050 tb
= tb
->page_next
[n
];
1054 /* Called with mmap_lock held for user mode emulation. */
1055 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
1056 target_ulong pc
, target_ulong cs_base
,
1057 int flags
, int cflags
)
1059 CPUArchState
*env
= cpu
->env_ptr
;
1060 TranslationBlock
*tb
;
1061 tb_page_addr_t phys_pc
, phys_page2
;
1062 target_ulong virt_page2
;
1063 tcg_insn_unit
*gen_code_buf
;
1064 int gen_code_size
, search_size
;
1065 #ifdef CONFIG_PROFILER
1069 phys_pc
= get_page_addr_code(env
, pc
);
1071 cflags
|= CF_USE_ICOUNT
;
1075 if (unlikely(!tb
)) {
1077 /* flush must be done */
1079 /* cannot fail at this point */
1082 /* Don't forget to invalidate previous TB info. */
1083 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 1;
1086 gen_code_buf
= tcg_ctx
.code_gen_ptr
;
1087 tb
->tc_ptr
= gen_code_buf
;
1088 tb
->cs_base
= cs_base
;
1090 tb
->cflags
= cflags
;
1092 #ifdef CONFIG_PROFILER
1093 tcg_ctx
.tb_count1
++; /* includes aborted translations because of
1095 ti
= profile_getclock();
1098 tcg_func_start(&tcg_ctx
);
1100 gen_intermediate_code(env
, tb
);
1102 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
1104 /* generate machine code */
1105 tb
->tb_next_offset
[0] = 0xffff;
1106 tb
->tb_next_offset
[1] = 0xffff;
1107 tcg_ctx
.tb_next_offset
= tb
->tb_next_offset
;
1108 #ifdef USE_DIRECT_JUMP
1109 tcg_ctx
.tb_jmp_offset
= tb
->tb_jmp_offset
;
1110 tcg_ctx
.tb_next
= NULL
;
1112 tcg_ctx
.tb_jmp_offset
= NULL
;
1113 tcg_ctx
.tb_next
= tb
->tb_next
;
1116 #ifdef CONFIG_PROFILER
1118 tcg_ctx
.interm_time
+= profile_getclock() - ti
;
1119 tcg_ctx
.code_time
-= profile_getclock();
1122 /* ??? Overflow could be handled better here. In particular, we
1123 don't need to re-do gen_intermediate_code, nor should we re-do
1124 the tcg optimization currently hidden inside tcg_gen_code. All
1125 that should be required is to flush the TBs, allocate a new TB,
1126 re-initialize it per above, and re-do the actual code generation. */
1127 gen_code_size
= tcg_gen_code(&tcg_ctx
, gen_code_buf
);
1128 if (unlikely(gen_code_size
< 0)) {
1129 goto buffer_overflow
;
1131 search_size
= encode_search(tb
, (void *)gen_code_buf
+ gen_code_size
);
1132 if (unlikely(search_size
< 0)) {
1133 goto buffer_overflow
;
1136 #ifdef CONFIG_PROFILER
1137 tcg_ctx
.code_time
+= profile_getclock();
1138 tcg_ctx
.code_in_len
+= tb
->size
;
1139 tcg_ctx
.code_out_len
+= gen_code_size
;
1140 tcg_ctx
.search_out_len
+= search_size
;
1144 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
)) {
1145 qemu_log("OUT: [size=%d]\n", gen_code_size
);
1146 log_disas(tb
->tc_ptr
, gen_code_size
);
1152 tcg_ctx
.code_gen_ptr
= (void *)
1153 ROUND_UP((uintptr_t)gen_code_buf
+ gen_code_size
+ search_size
,
1156 /* check next page if needed */
1157 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1159 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1160 phys_page2
= get_page_addr_code(env
, virt_page2
);
1162 tb_link_page(tb
, phys_pc
, phys_page2
);
1167 * Invalidate all TBs which intersect with the target physical address range
1168 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1169 * 'is_cpu_write_access' should be true if called from a real cpu write
1170 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * Called with mmap_lock held for user-mode emulation
1175 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
)
1177 while (start
< end
) {
1178 tb_invalidate_phys_page_range(start
, end
, 0);
1179 start
&= TARGET_PAGE_MASK
;
1180 start
+= TARGET_PAGE_SIZE
;
1185 * Invalidate all TBs which intersect with the target physical address range
1186 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1187 * 'is_cpu_write_access' should be true if called from a real cpu write
1188 * access: the virtual CPU will exit the current TB if code is modified inside
1191 * Called with mmap_lock held for user-mode emulation
1193 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1194 int is_cpu_write_access
)
1196 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1197 CPUState
*cpu
= current_cpu
;
1198 #if defined(TARGET_HAS_PRECISE_SMC)
1199 CPUArchState
*env
= NULL
;
1201 tb_page_addr_t tb_start
, tb_end
;
1204 #ifdef TARGET_HAS_PRECISE_SMC
1205 int current_tb_not_found
= is_cpu_write_access
;
1206 TranslationBlock
*current_tb
= NULL
;
1207 int current_tb_modified
= 0;
1208 target_ulong current_pc
= 0;
1209 target_ulong current_cs_base
= 0;
1210 int current_flags
= 0;
1211 #endif /* TARGET_HAS_PRECISE_SMC */
1213 p
= page_find(start
>> TARGET_PAGE_BITS
);
1217 #if defined(TARGET_HAS_PRECISE_SMC)
1223 /* we remove all the TBs in the range [start, end[ */
1224 /* XXX: see if in some cases it could be faster to invalidate all
1227 while (tb
!= NULL
) {
1228 n
= (uintptr_t)tb
& 3;
1229 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1230 tb_next
= tb
->page_next
[n
];
1231 /* NOTE: this is subtle as a TB may span two physical pages */
1233 /* NOTE: tb_end may be after the end of the page, but
1234 it is not a problem */
1235 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1236 tb_end
= tb_start
+ tb
->size
;
1238 tb_start
= tb
->page_addr
[1];
1239 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1241 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb_not_found
) {
1244 current_tb_not_found
= 0;
1246 if (cpu
->mem_io_pc
) {
1247 /* now we have a real cpu fault */
1248 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1251 if (current_tb
== tb
&&
1252 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1259 current_tb_modified
= 1;
1260 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1261 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1264 #endif /* TARGET_HAS_PRECISE_SMC */
1265 /* we need to do that to handle the case where a signal
1266 occurs while doing tb_phys_invalidate() */
1269 saved_tb
= cpu
->current_tb
;
1270 cpu
->current_tb
= NULL
;
1272 tb_phys_invalidate(tb
, -1);
1274 cpu
->current_tb
= saved_tb
;
1275 if (cpu
->interrupt_request
&& cpu
->current_tb
) {
1276 cpu_interrupt(cpu
, cpu
->interrupt_request
);
1282 #if !defined(CONFIG_USER_ONLY)
1283 /* if no code remaining, no need to continue to use slow writes */
1285 invalidate_page_bitmap(p
);
1286 tlb_unprotect_code(start
);
1289 #ifdef TARGET_HAS_PRECISE_SMC
1290 if (current_tb_modified
) {
1291 /* we generate a block containing just the instruction
1292 modifying the memory. It will ensure that it cannot modify
1294 cpu
->current_tb
= NULL
;
1295 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1296 cpu_resume_from_signal(cpu
, NULL
);
1301 /* len must be <= 8 and start must be a multiple of len */
1302 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1308 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1309 cpu_single_env
->mem_io_vaddr
, len
,
1310 cpu_single_env
->eip
,
1311 cpu_single_env
->eip
+
1312 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1315 p
= page_find(start
>> TARGET_PAGE_BITS
);
1319 if (!p
->code_bitmap
&&
1320 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
) {
1321 /* build code bitmap */
1322 build_page_bitmap(p
);
1324 if (p
->code_bitmap
) {
1328 nr
= start
& ~TARGET_PAGE_MASK
;
1329 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1330 if (b
& ((1 << len
) - 1)) {
1335 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1339 #if !defined(CONFIG_SOFTMMU)
1340 /* Called with mmap_lock held. */
1341 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1342 uintptr_t pc
, void *puc
,
1345 TranslationBlock
*tb
;
1348 #ifdef TARGET_HAS_PRECISE_SMC
1349 TranslationBlock
*current_tb
= NULL
;
1350 CPUState
*cpu
= current_cpu
;
1351 CPUArchState
*env
= NULL
;
1352 int current_tb_modified
= 0;
1353 target_ulong current_pc
= 0;
1354 target_ulong current_cs_base
= 0;
1355 int current_flags
= 0;
1358 addr
&= TARGET_PAGE_MASK
;
1359 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1364 #ifdef TARGET_HAS_PRECISE_SMC
1365 if (tb
&& pc
!= 0) {
1366 current_tb
= tb_find_pc(pc
);
1372 while (tb
!= NULL
) {
1373 n
= (uintptr_t)tb
& 3;
1374 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1375 #ifdef TARGET_HAS_PRECISE_SMC
1376 if (current_tb
== tb
&&
1377 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1378 /* If we are modifying the current TB, we must stop
1379 its execution. We could be more precise by checking
1380 that the modification is after the current PC, but it
1381 would require a specialized function to partially
1382 restore the CPU state */
1384 current_tb_modified
= 1;
1385 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1386 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1389 #endif /* TARGET_HAS_PRECISE_SMC */
1390 tb_phys_invalidate(tb
, addr
);
1391 tb
= tb
->page_next
[n
];
1394 #ifdef TARGET_HAS_PRECISE_SMC
1395 if (current_tb_modified
) {
1396 /* we generate a block containing just the instruction
1397 modifying the memory. It will ensure that it cannot modify
1399 cpu
->current_tb
= NULL
;
1400 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1404 cpu_resume_from_signal(cpu
, puc
);
1410 /* add the tb in the target page and protect it if necessary
1412 * Called with mmap_lock held for user-mode emulation.
1414 static inline void tb_alloc_page(TranslationBlock
*tb
,
1415 unsigned int n
, tb_page_addr_t page_addr
)
1418 #ifndef CONFIG_USER_ONLY
1419 bool page_already_protected
;
1422 tb
->page_addr
[n
] = page_addr
;
1423 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1424 tb
->page_next
[n
] = p
->first_tb
;
1425 #ifndef CONFIG_USER_ONLY
1426 page_already_protected
= p
->first_tb
!= NULL
;
1428 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1429 invalidate_page_bitmap(p
);
1431 #if defined(CONFIG_USER_ONLY)
1432 if (p
->flags
& PAGE_WRITE
) {
1437 /* force the host page as non writable (writes will have a
1438 page fault + mprotect overhead) */
1439 page_addr
&= qemu_host_page_mask
;
1441 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1442 addr
+= TARGET_PAGE_SIZE
) {
1444 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1449 p2
->flags
&= ~PAGE_WRITE
;
1451 mprotect(g2h(page_addr
), qemu_host_page_size
,
1452 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1453 #ifdef DEBUG_TB_INVALIDATE
1454 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1459 /* if some code is already present, then the pages are already
1460 protected. So we handle the case where only the first TB is
1461 allocated in a physical page */
1462 if (!page_already_protected
) {
1463 tlb_protect_code(page_addr
);
1468 /* add a new TB and link it to the physical page tables. phys_page2 is
1469 * (-1) to indicate that only one page contains the TB.
1471 * Called with mmap_lock held for user-mode emulation.
1473 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1474 tb_page_addr_t phys_page2
)
1477 TranslationBlock
**ptb
;
1479 /* add in the physical hash table */
1480 h
= tb_phys_hash_func(phys_pc
);
1481 ptb
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
1482 tb
->phys_hash_next
= *ptb
;
1485 /* add in the page list */
1486 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1487 if (phys_page2
!= -1) {
1488 tb_alloc_page(tb
, 1, phys_page2
);
1490 tb
->page_addr
[1] = -1;
1493 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1494 tb
->jmp_next
[0] = NULL
;
1495 tb
->jmp_next
[1] = NULL
;
1497 /* init original jump addresses */
1498 if (tb
->tb_next_offset
[0] != 0xffff) {
1499 tb_reset_jump(tb
, 0);
1501 if (tb
->tb_next_offset
[1] != 0xffff) {
1502 tb_reset_jump(tb
, 1);
1505 #ifdef DEBUG_TB_CHECK
1510 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1511 tb[1].tc_ptr. Return NULL if not found */
1512 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1514 int m_min
, m_max
, m
;
1516 TranslationBlock
*tb
;
1518 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1521 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1522 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1525 /* binary search (cf Knuth) */
1527 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1528 while (m_min
<= m_max
) {
1529 m
= (m_min
+ m_max
) >> 1;
1530 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1531 v
= (uintptr_t)tb
->tc_ptr
;
1534 } else if (tc_ptr
< v
) {
1540 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1543 #if !defined(CONFIG_USER_ONLY)
1544 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1546 ram_addr_t ram_addr
;
1551 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1552 if (!(memory_region_is_ram(mr
)
1553 || memory_region_is_romd(mr
))) {
1557 ram_addr
= (memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
)
1559 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1562 #endif /* !defined(CONFIG_USER_ONLY) */
1564 void tb_check_watchpoint(CPUState
*cpu
)
1566 TranslationBlock
*tb
;
1568 tb
= tb_find_pc(cpu
->mem_io_pc
);
1570 /* We can use retranslation to find the PC. */
1571 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1572 tb_phys_invalidate(tb
, -1);
1574 /* The exception probably happened in a helper. The CPU state should
1575 have been saved before calling it. Fetch the PC from there. */
1576 CPUArchState
*env
= cpu
->env_ptr
;
1577 target_ulong pc
, cs_base
;
1578 tb_page_addr_t addr
;
1581 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
1582 addr
= get_page_addr_code(env
, pc
);
1583 tb_invalidate_phys_range(addr
, addr
+ 1);
1587 #ifndef CONFIG_USER_ONLY
1588 /* in deterministic execution mode, instructions doing device I/Os
1589 must be at the end of the TB */
1590 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1592 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1593 CPUArchState
*env
= cpu
->env_ptr
;
1595 TranslationBlock
*tb
;
1597 target_ulong pc
, cs_base
;
1600 tb
= tb_find_pc(retaddr
);
1602 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1605 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1606 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1607 /* Calculate how many instructions had been executed before the fault
1609 n
= n
- cpu
->icount_decr
.u16
.low
;
1610 /* Generate a new TB ending on the I/O insn. */
1612 /* On MIPS and SH, delay slot instructions can only be restarted if
1613 they were already the first instruction in the TB. If this is not
1614 the first instruction in a TB then re-execute the preceding
1616 #if defined(TARGET_MIPS)
1617 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1618 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1619 cpu
->icount_decr
.u16
.low
++;
1620 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1622 #elif defined(TARGET_SH4)
1623 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1626 cpu
->icount_decr
.u16
.low
++;
1627 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1630 /* This should never happen. */
1631 if (n
> CF_COUNT_MASK
) {
1632 cpu_abort(cpu
, "TB too big during recompile");
1635 cflags
= n
| CF_LAST_IO
;
1637 cs_base
= tb
->cs_base
;
1639 tb_phys_invalidate(tb
, -1);
1640 if (tb
->cflags
& CF_NOCACHE
) {
1642 /* Invalidate original TB if this TB was generated in
1643 * cpu_exec_nocache() */
1644 tb_phys_invalidate(tb
->orig_tb
, -1);
1648 /* FIXME: In theory this could raise an exception. In practice
1649 we have already translated the block once so it's probably ok. */
1650 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1651 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1652 the first in the TB) then we end up generating a whole new TB and
1653 repeating the fault, which is horribly inefficient.
1654 Better would be to execute just this insn uncached, or generate a
1656 cpu_resume_from_signal(cpu
, NULL
);
1659 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1663 /* Discard jump cache entries for any tb which might potentially
1664 overlap the flushed page. */
1665 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1666 memset(&cpu
->tb_jmp_cache
[i
], 0,
1667 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1669 i
= tb_jmp_cache_hash_page(addr
);
1670 memset(&cpu
->tb_jmp_cache
[i
], 0,
1671 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1674 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1676 int i
, target_code_size
, max_target_code_size
;
1677 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1678 TranslationBlock
*tb
;
1680 target_code_size
= 0;
1681 max_target_code_size
= 0;
1683 direct_jmp_count
= 0;
1684 direct_jmp2_count
= 0;
1685 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1686 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1687 target_code_size
+= tb
->size
;
1688 if (tb
->size
> max_target_code_size
) {
1689 max_target_code_size
= tb
->size
;
1691 if (tb
->page_addr
[1] != -1) {
1694 if (tb
->tb_next_offset
[0] != 0xffff) {
1696 if (tb
->tb_next_offset
[1] != 0xffff) {
1697 direct_jmp2_count
++;
1701 /* XXX: avoid using doubles ? */
1702 cpu_fprintf(f
, "Translation buffer state:\n");
1703 cpu_fprintf(f
, "gen code size %td/%zd\n",
1704 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1705 tcg_ctx
.code_gen_highwater
- tcg_ctx
.code_gen_buffer
);
1706 cpu_fprintf(f
, "TB count %d/%d\n",
1707 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1708 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1709 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1710 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1711 max_target_code_size
);
1712 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1713 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1714 tcg_ctx
.code_gen_buffer
) /
1715 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1716 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1717 tcg_ctx
.code_gen_buffer
) /
1718 target_code_size
: 0);
1719 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1720 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1721 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1722 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1724 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1725 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1727 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1728 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1729 cpu_fprintf(f
, "\nStatistics:\n");
1730 cpu_fprintf(f
, "TB flush count %d\n", tcg_ctx
.tb_ctx
.tb_flush_count
);
1731 cpu_fprintf(f
, "TB invalidate count %d\n",
1732 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1733 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1734 tcg_dump_info(f
, cpu_fprintf
);
1737 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1739 tcg_dump_op_count(f
, cpu_fprintf
);
1742 #else /* CONFIG_USER_ONLY */
1744 void cpu_interrupt(CPUState
*cpu
, int mask
)
1746 cpu
->interrupt_request
|= mask
;
1747 cpu
->tcg_exit_req
= 1;
1751 * Walks guest process memory "regions" one by one
1752 * and calls callback function 'fn' for each region.
1754 struct walk_memory_regions_data
{
1755 walk_memory_regions_fn fn
;
1761 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1762 target_ulong end
, int new_prot
)
1764 if (data
->start
!= -1u) {
1765 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1771 data
->start
= (new_prot
? end
: -1u);
1772 data
->prot
= new_prot
;
1777 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1778 target_ulong base
, int level
, void **lp
)
1784 return walk_memory_regions_end(data
, base
, 0);
1790 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1791 int prot
= pd
[i
].flags
;
1793 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1794 if (prot
!= data
->prot
) {
1795 rc
= walk_memory_regions_end(data
, pa
, prot
);
1804 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1805 pa
= base
| ((target_ulong
)i
<<
1806 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1807 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1817 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1819 struct walk_memory_regions_data data
;
1827 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1828 int rc
= walk_memory_regions_1(&data
, (target_ulong
)i
<< (V_L1_SHIFT
+ TARGET_PAGE_BITS
),
1829 V_L1_SHIFT
/ V_L2_BITS
- 1, l1_map
+ i
);
1835 return walk_memory_regions_end(&data
, 0, 0);
1838 static int dump_region(void *priv
, target_ulong start
,
1839 target_ulong end
, unsigned long prot
)
1841 FILE *f
= (FILE *)priv
;
1843 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1844 " "TARGET_FMT_lx
" %c%c%c\n",
1845 start
, end
, end
- start
,
1846 ((prot
& PAGE_READ
) ? 'r' : '-'),
1847 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1848 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1853 /* dump memory mappings */
1854 void page_dump(FILE *f
)
1856 const int length
= sizeof(target_ulong
) * 2;
1857 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1858 length
, "start", length
, "end", length
, "size", "prot");
1859 walk_memory_regions(f
, dump_region
);
1862 int page_get_flags(target_ulong address
)
1866 p
= page_find(address
>> TARGET_PAGE_BITS
);
1873 /* Modify the flags of a page and invalidate the code if necessary.
1874 The flag PAGE_WRITE_ORG is positioned automatically depending
1875 on PAGE_WRITE. The mmap_lock should already be held. */
1876 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1878 target_ulong addr
, len
;
1880 /* This function should never be called with addresses outside the
1881 guest address space. If this assert fires, it probably indicates
1882 a missing call to h2g_valid. */
1883 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1884 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1886 assert(start
< end
);
1888 start
= start
& TARGET_PAGE_MASK
;
1889 end
= TARGET_PAGE_ALIGN(end
);
1891 if (flags
& PAGE_WRITE
) {
1892 flags
|= PAGE_WRITE_ORG
;
1895 for (addr
= start
, len
= end
- start
;
1897 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1898 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1900 /* If the write protection bit is set, then we invalidate
1902 if (!(p
->flags
& PAGE_WRITE
) &&
1903 (flags
& PAGE_WRITE
) &&
1905 tb_invalidate_phys_page(addr
, 0, NULL
, false);
1911 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
1917 /* This function should never be called with addresses outside the
1918 guest address space. If this assert fires, it probably indicates
1919 a missing call to h2g_valid. */
1920 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1921 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1927 if (start
+ len
- 1 < start
) {
1928 /* We've wrapped around. */
1932 /* must do before we loose bits in the next step */
1933 end
= TARGET_PAGE_ALIGN(start
+ len
);
1934 start
= start
& TARGET_PAGE_MASK
;
1936 for (addr
= start
, len
= end
- start
;
1938 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1939 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1943 if (!(p
->flags
& PAGE_VALID
)) {
1947 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
1950 if (flags
& PAGE_WRITE
) {
1951 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
1954 /* unprotect the page if it was put read-only because it
1955 contains translated code */
1956 if (!(p
->flags
& PAGE_WRITE
)) {
1957 if (!page_unprotect(addr
, 0, NULL
)) {
1966 /* called from signal handler: invalidate the code and unprotect the
1967 page. Return TRUE if the fault was successfully handled. */
1968 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
1972 target_ulong host_start
, host_end
, addr
;
1974 /* Technically this isn't safe inside a signal handler. However we
1975 know this only ever happens in a synchronous SEGV handler, so in
1976 practice it seems to be ok. */
1979 p
= page_find(address
>> TARGET_PAGE_BITS
);
1985 /* if the page was really writable, then we change its
1986 protection back to writable */
1987 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
1988 host_start
= address
& qemu_host_page_mask
;
1989 host_end
= host_start
+ qemu_host_page_size
;
1992 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
1993 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1994 p
->flags
|= PAGE_WRITE
;
1997 /* and since the content will be modified, we must invalidate
1998 the corresponding translated code. */
1999 tb_invalidate_phys_page(addr
, pc
, puc
, true);
2000 #ifdef DEBUG_TB_CHECK
2001 tb_invalidate_check(addr
);
2004 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2013 #endif /* CONFIG_USER_ONLY */