armv7m: Forward idau property to CPU object
[qemu.git] / hw / arm / armv7m.c
blob9f38d3b254899af7df2f0e15f8f682815661bb2c
1 /*
2 * ARMV7M System emulation.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "hw/arm/armv7m.h"
12 #include "qapi/error.h"
13 #include "qemu-common.h"
14 #include "cpu.h"
15 #include "hw/sysbus.h"
16 #include "hw/arm/arm.h"
17 #include "hw/loader.h"
18 #include "elf.h"
19 #include "sysemu/qtest.h"
20 #include "qemu/error-report.h"
21 #include "exec/address-spaces.h"
22 #include "target/arm/idau.h"
24 /* Bitbanded IO. Each word corresponds to a single bit. */
26 /* Get the byte address of the real memory for a bitband access. */
27 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
29 return s->base | (offset & 0x1ffffff) >> 5;
32 static MemTxResult bitband_read(void *opaque, hwaddr offset,
33 uint64_t *data, unsigned size, MemTxAttrs attrs)
35 BitBandState *s = opaque;
36 uint8_t buf[4];
37 MemTxResult res;
38 int bitpos, bit;
39 hwaddr addr;
41 assert(size <= 4);
43 /* Find address in underlying memory and round down to multiple of size */
44 addr = bitband_addr(s, offset) & (-size);
45 res = address_space_read(&s->source_as, addr, attrs, buf, size);
46 if (res) {
47 return res;
49 /* Bit position in the N bytes read... */
50 bitpos = (offset >> 2) & ((size * 8) - 1);
51 /* ...converted to byte in buffer and bit in byte */
52 bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
53 *data = bit;
54 return MEMTX_OK;
57 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
58 unsigned size, MemTxAttrs attrs)
60 BitBandState *s = opaque;
61 uint8_t buf[4];
62 MemTxResult res;
63 int bitpos, bit;
64 hwaddr addr;
66 assert(size <= 4);
68 /* Find address in underlying memory and round down to multiple of size */
69 addr = bitband_addr(s, offset) & (-size);
70 res = address_space_read(&s->source_as, addr, attrs, buf, size);
71 if (res) {
72 return res;
74 /* Bit position in the N bytes read... */
75 bitpos = (offset >> 2) & ((size * 8) - 1);
76 /* ...converted to byte in buffer and bit in byte */
77 bit = 1 << (bitpos & 7);
78 if (value & 1) {
79 buf[bitpos >> 3] |= bit;
80 } else {
81 buf[bitpos >> 3] &= ~bit;
83 return address_space_write(&s->source_as, addr, attrs, buf, size);
86 static const MemoryRegionOps bitband_ops = {
87 .read_with_attrs = bitband_read,
88 .write_with_attrs = bitband_write,
89 .endianness = DEVICE_NATIVE_ENDIAN,
90 .impl.min_access_size = 1,
91 .impl.max_access_size = 4,
92 .valid.min_access_size = 1,
93 .valid.max_access_size = 4,
96 static void bitband_init(Object *obj)
98 BitBandState *s = BITBAND(obj);
99 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
101 memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
102 "bitband", 0x02000000);
103 sysbus_init_mmio(dev, &s->iomem);
106 static void bitband_realize(DeviceState *dev, Error **errp)
108 BitBandState *s = BITBAND(dev);
110 if (!s->source_memory) {
111 error_setg(errp, "source-memory property not set");
112 return;
115 address_space_init(&s->source_as, s->source_memory, "bitband-source");
118 /* Board init. */
120 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
121 0x20000000, 0x40000000
124 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
125 0x22000000, 0x42000000
128 static void armv7m_instance_init(Object *obj)
130 ARMv7MState *s = ARMV7M(obj);
131 int i;
133 /* Can't init the cpu here, we don't yet know which model to use */
135 memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
137 object_initialize(&s->nvic, sizeof(s->nvic), TYPE_NVIC);
138 qdev_set_parent_bus(DEVICE(&s->nvic), sysbus_get_default());
139 object_property_add_alias(obj, "num-irq",
140 OBJECT(&s->nvic), "num-irq", &error_abort);
142 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
143 object_initialize(&s->bitband[i], sizeof(s->bitband[i]), TYPE_BITBAND);
144 qdev_set_parent_bus(DEVICE(&s->bitband[i]), sysbus_get_default());
148 static void armv7m_realize(DeviceState *dev, Error **errp)
150 ARMv7MState *s = ARMV7M(dev);
151 SysBusDevice *sbd;
152 Error *err = NULL;
153 int i;
155 if (!s->board_memory) {
156 error_setg(errp, "memory property was not set");
157 return;
160 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
162 s->cpu = ARM_CPU(object_new(s->cpu_type));
164 object_property_set_link(OBJECT(s->cpu), OBJECT(&s->container), "memory",
165 &error_abort);
166 if (object_property_find(OBJECT(s->cpu), "idau", NULL)) {
167 object_property_set_link(OBJECT(s->cpu), s->idau, "idau", &err);
168 if (err != NULL) {
169 error_propagate(errp, err);
170 return;
173 object_property_set_bool(OBJECT(s->cpu), true, "realized", &err);
174 if (err != NULL) {
175 error_propagate(errp, err);
176 return;
179 /* Note that we must realize the NVIC after the CPU */
180 object_property_set_bool(OBJECT(&s->nvic), true, "realized", &err);
181 if (err != NULL) {
182 error_propagate(errp, err);
183 return;
186 /* Alias the NVIC's input and output GPIOs as our own so the board
187 * code can wire them up. (We do this in realize because the
188 * NVIC doesn't create the input GPIO array until realize.)
190 qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
191 qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
193 /* Wire the NVIC up to the CPU */
194 sbd = SYS_BUS_DEVICE(&s->nvic);
195 sysbus_connect_irq(sbd, 0,
196 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
197 s->cpu->env.nvic = &s->nvic;
199 memory_region_add_subregion(&s->container, 0xe000e000,
200 sysbus_mmio_get_region(sbd, 0));
202 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
203 Object *obj = OBJECT(&s->bitband[i]);
204 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
206 object_property_set_int(obj, bitband_input_addr[i], "base", &err);
207 if (err != NULL) {
208 error_propagate(errp, err);
209 return;
211 object_property_set_link(obj, OBJECT(s->board_memory),
212 "source-memory", &error_abort);
213 object_property_set_bool(obj, true, "realized", &err);
214 if (err != NULL) {
215 error_propagate(errp, err);
216 return;
219 memory_region_add_subregion(&s->container, bitband_output_addr[i],
220 sysbus_mmio_get_region(sbd, 0));
224 static Property armv7m_properties[] = {
225 DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
226 DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
227 MemoryRegion *),
228 DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
229 DEFINE_PROP_END_OF_LIST(),
232 static void armv7m_class_init(ObjectClass *klass, void *data)
234 DeviceClass *dc = DEVICE_CLASS(klass);
236 dc->realize = armv7m_realize;
237 dc->props = armv7m_properties;
240 static const TypeInfo armv7m_info = {
241 .name = TYPE_ARMV7M,
242 .parent = TYPE_SYS_BUS_DEVICE,
243 .instance_size = sizeof(ARMv7MState),
244 .instance_init = armv7m_instance_init,
245 .class_init = armv7m_class_init,
248 static void armv7m_reset(void *opaque)
250 ARMCPU *cpu = opaque;
252 cpu_reset(CPU(cpu));
255 /* Init CPU and memory for a v7-M based board.
256 mem_size is in bytes.
257 Returns the ARMv7M device. */
259 DeviceState *armv7m_init(MemoryRegion *system_memory, int mem_size, int num_irq,
260 const char *kernel_filename, const char *cpu_type)
262 DeviceState *armv7m;
264 armv7m = qdev_create(NULL, TYPE_ARMV7M);
265 qdev_prop_set_uint32(armv7m, "num-irq", num_irq);
266 qdev_prop_set_string(armv7m, "cpu-type", cpu_type);
267 object_property_set_link(OBJECT(armv7m), OBJECT(get_system_memory()),
268 "memory", &error_abort);
269 /* This will exit with an error if the user passed us a bad cpu_type */
270 qdev_init_nofail(armv7m);
272 armv7m_load_kernel(ARM_CPU(first_cpu), kernel_filename, mem_size);
273 return armv7m;
276 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, int mem_size)
278 int image_size;
279 uint64_t entry;
280 uint64_t lowaddr;
281 int big_endian;
282 AddressSpace *as;
283 int asidx;
284 CPUState *cs = CPU(cpu);
286 #ifdef TARGET_WORDS_BIGENDIAN
287 big_endian = 1;
288 #else
289 big_endian = 0;
290 #endif
292 if (!kernel_filename && !qtest_enabled()) {
293 error_report("Guest image must be specified (using -kernel)");
294 exit(1);
297 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
298 asidx = ARMASIdx_S;
299 } else {
300 asidx = ARMASIdx_NS;
302 as = cpu_get_address_space(cs, asidx);
304 if (kernel_filename) {
305 image_size = load_elf_as(kernel_filename, NULL, NULL, &entry, &lowaddr,
306 NULL, big_endian, EM_ARM, 1, 0, as);
307 if (image_size < 0) {
308 image_size = load_image_targphys_as(kernel_filename, 0,
309 mem_size, as);
310 lowaddr = 0;
312 if (image_size < 0) {
313 error_report("Could not load kernel '%s'", kernel_filename);
314 exit(1);
318 /* CPU objects (unlike devices) are not automatically reset on system
319 * reset, so we must always register a handler to do so. Unlike
320 * A-profile CPUs, we don't need to do anything special in the
321 * handler to arrange that it starts correctly.
322 * This is arguably the wrong place to do this, but it matches the
323 * way A-profile does it. Note that this means that every M profile
324 * board must call this function!
326 qemu_register_reset(armv7m_reset, cpu);
329 static Property bitband_properties[] = {
330 DEFINE_PROP_UINT32("base", BitBandState, base, 0),
331 DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
332 TYPE_MEMORY_REGION, MemoryRegion *),
333 DEFINE_PROP_END_OF_LIST(),
336 static void bitband_class_init(ObjectClass *klass, void *data)
338 DeviceClass *dc = DEVICE_CLASS(klass);
340 dc->realize = bitband_realize;
341 dc->props = bitband_properties;
344 static const TypeInfo bitband_info = {
345 .name = TYPE_BITBAND,
346 .parent = TYPE_SYS_BUS_DEVICE,
347 .instance_size = sizeof(BitBandState),
348 .instance_init = bitband_init,
349 .class_init = bitband_class_init,
352 static void armv7m_register_types(void)
354 type_register_static(&bitband_info);
355 type_register_static(&armv7m_info);
358 type_init(armv7m_register_types)