ne2000: Drop ne2000_can_receive
[qemu.git] / hw / arm / virt.c
blobd5a84175c91de8af97c52488dbe00f596e750390
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 #include "kvm_arm.h"
54 /* Number of external interrupt lines to configure the GIC with */
55 #define NUM_IRQS 256
57 #define PLATFORM_BUS_NUM_IRQS 64
59 static ARMPlatformBusSystemParams platform_bus_params;
61 typedef struct VirtBoardInfo {
62 struct arm_boot_info bootinfo;
63 const char *cpu_model;
64 const MemMapEntry *memmap;
65 const int *irqmap;
66 int smp_cpus;
67 void *fdt;
68 int fdt_size;
69 uint32_t clock_phandle;
70 uint32_t gic_phandle;
71 uint32_t v2m_phandle;
72 } VirtBoardInfo;
74 typedef struct {
75 MachineClass parent;
76 VirtBoardInfo *daughterboard;
77 } VirtMachineClass;
79 typedef struct {
80 MachineState parent;
81 bool secure;
82 } VirtMachineState;
84 #define TYPE_VIRT_MACHINE "virt"
85 #define VIRT_MACHINE(obj) \
86 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
87 #define VIRT_MACHINE_GET_CLASS(obj) \
88 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
89 #define VIRT_MACHINE_CLASS(klass) \
90 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
92 /* Addresses and sizes of our components.
93 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
94 * 128MB..256MB is used for miscellaneous device I/O.
95 * 256MB..1GB is reserved for possible future PCI support (ie where the
96 * PCI memory window will go if we add a PCI host controller).
97 * 1GB and up is RAM (which may happily spill over into the
98 * high memory region beyond 4GB).
99 * This represents a compromise between how much RAM can be given to
100 * a 32 bit VM and leaving space for expansion and in particular for PCI.
101 * Note that devices should generally be placed at multiples of 0x10000,
102 * to accommodate guests using 64K pages.
104 static const MemMapEntry a15memmap[] = {
105 /* Space up to 0x8000000 is reserved for a boot ROM */
106 [VIRT_FLASH] = { 0, 0x08000000 },
107 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
108 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
109 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
110 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
111 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
112 [VIRT_UART] = { 0x09000000, 0x00001000 },
113 [VIRT_RTC] = { 0x09010000, 0x00001000 },
114 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
115 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
116 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
117 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
118 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
119 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
120 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
121 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
124 static const int a15irqmap[] = {
125 [VIRT_UART] = 1,
126 [VIRT_RTC] = 2,
127 [VIRT_PCIE] = 3, /* ... to 6 */
128 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
129 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
130 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
133 static VirtBoardInfo machines[] = {
135 .cpu_model = "cortex-a15",
136 .memmap = a15memmap,
137 .irqmap = a15irqmap,
140 .cpu_model = "cortex-a53",
141 .memmap = a15memmap,
142 .irqmap = a15irqmap,
145 .cpu_model = "cortex-a57",
146 .memmap = a15memmap,
147 .irqmap = a15irqmap,
150 .cpu_model = "host",
151 .memmap = a15memmap,
152 .irqmap = a15irqmap,
156 static VirtBoardInfo *find_machine_info(const char *cpu)
158 int i;
160 for (i = 0; i < ARRAY_SIZE(machines); i++) {
161 if (strcmp(cpu, machines[i].cpu_model) == 0) {
162 return &machines[i];
165 return NULL;
168 static void create_fdt(VirtBoardInfo *vbi)
170 void *fdt = create_device_tree(&vbi->fdt_size);
172 if (!fdt) {
173 error_report("create_device_tree() failed");
174 exit(1);
177 vbi->fdt = fdt;
179 /* Header */
180 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
181 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
182 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
185 * /chosen and /memory nodes must exist for load_dtb
186 * to fill in necessary properties later
188 qemu_fdt_add_subnode(fdt, "/chosen");
189 qemu_fdt_add_subnode(fdt, "/memory");
190 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
192 /* Clock node, for the benefit of the UART. The kernel device tree
193 * binding documentation claims the PL011 node clock properties are
194 * optional but in practice if you omit them the kernel refuses to
195 * probe for the device.
197 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
198 qemu_fdt_add_subnode(fdt, "/apb-pclk");
199 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
200 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
201 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
202 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
203 "clk24mhz");
204 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
208 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
210 uint32_t cpu_suspend_fn;
211 uint32_t cpu_off_fn;
212 uint32_t cpu_on_fn;
213 uint32_t migrate_fn;
214 void *fdt = vbi->fdt;
215 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
217 qemu_fdt_add_subnode(fdt, "/psci");
218 if (armcpu->psci_version == 2) {
219 const char comp[] = "arm,psci-0.2\0arm,psci";
220 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
222 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
223 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
224 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
225 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
226 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
227 } else {
228 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
229 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
230 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
232 } else {
233 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
235 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
236 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
237 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
238 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
241 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
242 * to the instruction that should be used to invoke PSCI functions.
243 * However, the device tree binding uses 'method' instead, so that is
244 * what we should use here.
246 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
248 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
249 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
250 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
251 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
254 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
256 /* Note that on A15 h/w these interrupts are level-triggered,
257 * but for the GIC implementation provided by both QEMU and KVM
258 * they are edge-triggered.
260 ARMCPU *armcpu;
261 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
263 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
264 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
266 qemu_fdt_add_subnode(vbi->fdt, "/timer");
268 armcpu = ARM_CPU(qemu_get_cpu(0));
269 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
270 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
271 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
272 compat, sizeof(compat));
273 } else {
274 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
275 "arm,armv7-timer");
277 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
278 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
279 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
280 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
281 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
284 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
286 int cpu;
288 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
289 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
290 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
292 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
293 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
294 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
296 qemu_fdt_add_subnode(vbi->fdt, nodename);
297 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
298 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
299 armcpu->dtb_compatible);
301 if (vbi->smp_cpus > 1) {
302 qemu_fdt_setprop_string(vbi->fdt, nodename,
303 "enable-method", "psci");
306 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity);
307 g_free(nodename);
311 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
313 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
314 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
315 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
316 "arm,gic-v2m-frame");
317 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
318 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
319 2, vbi->memmap[VIRT_GIC_V2M].base,
320 2, vbi->memmap[VIRT_GIC_V2M].size);
321 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
324 static void fdt_add_gic_node(VirtBoardInfo *vbi)
326 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
327 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
329 qemu_fdt_add_subnode(vbi->fdt, "/intc");
330 /* 'cortex-a15-gic' means 'GIC v2' */
331 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
332 "arm,cortex-a15-gic");
333 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
334 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
335 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
336 2, vbi->memmap[VIRT_GIC_DIST].base,
337 2, vbi->memmap[VIRT_GIC_DIST].size,
338 2, vbi->memmap[VIRT_GIC_CPU].base,
339 2, vbi->memmap[VIRT_GIC_CPU].size);
340 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
341 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
342 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
343 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
346 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
348 int i;
349 int irq = vbi->irqmap[VIRT_GIC_V2M];
350 DeviceState *dev;
352 dev = qdev_create(NULL, "arm-gicv2m");
353 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
354 qdev_prop_set_uint32(dev, "base-spi", irq);
355 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
356 qdev_init_nofail(dev);
358 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
359 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
362 fdt_add_v2m_gic_node(vbi);
365 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
367 /* We create a standalone GIC v2 */
368 DeviceState *gicdev;
369 SysBusDevice *gicbusdev;
370 const char *gictype;
371 int i;
373 gictype = gic_class_name();
375 gicdev = qdev_create(NULL, gictype);
376 qdev_prop_set_uint32(gicdev, "revision", 2);
377 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
378 /* Note that the num-irq property counts both internal and external
379 * interrupts; there are always 32 of the former (mandated by GIC spec).
381 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
382 qdev_init_nofail(gicdev);
383 gicbusdev = SYS_BUS_DEVICE(gicdev);
384 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
385 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
387 /* Wire the outputs from each CPU's generic timer to the
388 * appropriate GIC PPI inputs, and the GIC's IRQ output to
389 * the CPU's IRQ input.
391 for (i = 0; i < smp_cpus; i++) {
392 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
393 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
394 int irq;
395 /* Mapping from the output timer irq lines from the CPU to the
396 * GIC PPI inputs we use for the virt board.
398 const int timer_irq[] = {
399 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
400 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
401 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
402 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
405 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
406 qdev_connect_gpio_out(cpudev, irq,
407 qdev_get_gpio_in(gicdev,
408 ppibase + timer_irq[irq]));
411 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
412 sysbus_connect_irq(gicbusdev, i + smp_cpus,
413 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
416 for (i = 0; i < NUM_IRQS; i++) {
417 pic[i] = qdev_get_gpio_in(gicdev, i);
420 fdt_add_gic_node(vbi);
422 create_v2m(vbi, pic);
425 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
427 char *nodename;
428 hwaddr base = vbi->memmap[VIRT_UART].base;
429 hwaddr size = vbi->memmap[VIRT_UART].size;
430 int irq = vbi->irqmap[VIRT_UART];
431 const char compat[] = "arm,pl011\0arm,primecell";
432 const char clocknames[] = "uartclk\0apb_pclk";
434 sysbus_create_simple("pl011", base, pic[irq]);
436 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
437 qemu_fdt_add_subnode(vbi->fdt, nodename);
438 /* Note that we can't use setprop_string because of the embedded NUL */
439 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
440 compat, sizeof(compat));
441 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
442 2, base, 2, size);
443 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
444 GIC_FDT_IRQ_TYPE_SPI, irq,
445 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
446 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
447 vbi->clock_phandle, vbi->clock_phandle);
448 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
449 clocknames, sizeof(clocknames));
451 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
452 g_free(nodename);
455 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
457 char *nodename;
458 hwaddr base = vbi->memmap[VIRT_RTC].base;
459 hwaddr size = vbi->memmap[VIRT_RTC].size;
460 int irq = vbi->irqmap[VIRT_RTC];
461 const char compat[] = "arm,pl031\0arm,primecell";
463 sysbus_create_simple("pl031", base, pic[irq]);
465 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
466 qemu_fdt_add_subnode(vbi->fdt, nodename);
467 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
468 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
469 2, base, 2, size);
470 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
471 GIC_FDT_IRQ_TYPE_SPI, irq,
472 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
473 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
474 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
475 g_free(nodename);
478 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
480 int i;
481 hwaddr size = vbi->memmap[VIRT_MMIO].size;
483 /* We create the transports in forwards order. Since qbus_realize()
484 * prepends (not appends) new child buses, the incrementing loop below will
485 * create a list of virtio-mmio buses with decreasing base addresses.
487 * When a -device option is processed from the command line,
488 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
489 * order. The upshot is that -device options in increasing command line
490 * order are mapped to virtio-mmio buses with decreasing base addresses.
492 * When this code was originally written, that arrangement ensured that the
493 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
494 * the first -device on the command line. (The end-to-end order is a
495 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
496 * guest kernel's name-to-address assignment strategy.)
498 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
499 * the message, if not necessarily the code, of commit 70161ff336.
500 * Therefore the loop now establishes the inverse of the original intent.
502 * Unfortunately, we can't counteract the kernel change by reversing the
503 * loop; it would break existing command lines.
505 * In any case, the kernel makes no guarantee about the stability of
506 * enumeration order of virtio devices (as demonstrated by it changing
507 * between kernel versions). For reliable and stable identification
508 * of disks users must use UUIDs or similar mechanisms.
510 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
511 int irq = vbi->irqmap[VIRT_MMIO] + i;
512 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
514 sysbus_create_simple("virtio-mmio", base, pic[irq]);
517 /* We add dtb nodes in reverse order so that they appear in the finished
518 * device tree lowest address first.
520 * Note that this mapping is independent of the loop above. The previous
521 * loop influences virtio device to virtio transport assignment, whereas
522 * this loop controls how virtio transports are laid out in the dtb.
524 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
525 char *nodename;
526 int irq = vbi->irqmap[VIRT_MMIO] + i;
527 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
529 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
530 qemu_fdt_add_subnode(vbi->fdt, nodename);
531 qemu_fdt_setprop_string(vbi->fdt, nodename,
532 "compatible", "virtio,mmio");
533 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
534 2, base, 2, size);
535 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
536 GIC_FDT_IRQ_TYPE_SPI, irq,
537 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
538 g_free(nodename);
542 static void create_one_flash(const char *name, hwaddr flashbase,
543 hwaddr flashsize)
545 /* Create and map a single flash device. We use the same
546 * parameters as the flash devices on the Versatile Express board.
548 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
549 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
550 const uint64_t sectorlength = 256 * 1024;
552 if (dinfo) {
553 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
554 &error_abort);
557 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
558 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
559 qdev_prop_set_uint8(dev, "width", 4);
560 qdev_prop_set_uint8(dev, "device-width", 2);
561 qdev_prop_set_bit(dev, "big-endian", false);
562 qdev_prop_set_uint16(dev, "id0", 0x89);
563 qdev_prop_set_uint16(dev, "id1", 0x18);
564 qdev_prop_set_uint16(dev, "id2", 0x00);
565 qdev_prop_set_uint16(dev, "id3", 0x00);
566 qdev_prop_set_string(dev, "name", name);
567 qdev_init_nofail(dev);
569 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
572 static void create_flash(const VirtBoardInfo *vbi)
574 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
575 * Any file passed via -bios goes in the first of these.
577 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
578 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
579 char *nodename;
581 if (bios_name) {
582 char *fn;
583 int image_size;
585 if (drive_get(IF_PFLASH, 0, 0)) {
586 error_report("The contents of the first flash device may be "
587 "specified with -bios or with -drive if=pflash... "
588 "but you cannot use both options at once");
589 exit(1);
591 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
592 if (!fn) {
593 error_report("Could not find ROM image '%s'", bios_name);
594 exit(1);
596 image_size = load_image_targphys(fn, flashbase, flashsize);
597 g_free(fn);
598 if (image_size < 0) {
599 error_report("Could not load ROM image '%s'", bios_name);
600 exit(1);
604 create_one_flash("virt.flash0", flashbase, flashsize);
605 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
607 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
608 qemu_fdt_add_subnode(vbi->fdt, nodename);
609 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
610 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
611 2, flashbase, 2, flashsize,
612 2, flashbase + flashsize, 2, flashsize);
613 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
614 g_free(nodename);
617 static void create_fw_cfg(const VirtBoardInfo *vbi)
619 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
620 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
621 char *nodename;
623 fw_cfg_init_mem_wide(base + 8, base, 8);
625 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
626 qemu_fdt_add_subnode(vbi->fdt, nodename);
627 qemu_fdt_setprop_string(vbi->fdt, nodename,
628 "compatible", "qemu,fw-cfg-mmio");
629 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
630 2, base, 2, size);
631 g_free(nodename);
634 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
635 int first_irq, const char *nodename)
637 int devfn, pin;
638 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
639 uint32_t *irq_map = full_irq_map;
641 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
642 for (pin = 0; pin < 4; pin++) {
643 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
644 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
645 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
646 int i;
648 uint32_t map[] = {
649 devfn << 8, 0, 0, /* devfn */
650 pin + 1, /* PCI pin */
651 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
653 /* Convert map to big endian */
654 for (i = 0; i < 10; i++) {
655 irq_map[i] = cpu_to_be32(map[i]);
657 irq_map += 10;
661 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
662 full_irq_map, sizeof(full_irq_map));
664 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
665 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
666 0x7 /* PCI irq */);
669 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
671 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
672 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
673 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
674 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
675 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
676 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
677 hwaddr base = base_mmio;
678 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
679 int irq = vbi->irqmap[VIRT_PCIE];
680 MemoryRegion *mmio_alias;
681 MemoryRegion *mmio_reg;
682 MemoryRegion *ecam_alias;
683 MemoryRegion *ecam_reg;
684 DeviceState *dev;
685 char *nodename;
686 int i;
688 dev = qdev_create(NULL, TYPE_GPEX_HOST);
689 qdev_init_nofail(dev);
691 /* Map only the first size_ecam bytes of ECAM space */
692 ecam_alias = g_new0(MemoryRegion, 1);
693 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
694 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
695 ecam_reg, 0, size_ecam);
696 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
698 /* Map the MMIO window into system address space so as to expose
699 * the section of PCI MMIO space which starts at the same base address
700 * (ie 1:1 mapping for that part of PCI MMIO space visible through
701 * the window).
703 mmio_alias = g_new0(MemoryRegion, 1);
704 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
705 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
706 mmio_reg, base_mmio, size_mmio);
707 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
709 /* Map IO port space */
710 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
712 for (i = 0; i < GPEX_NUM_IRQS; i++) {
713 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
716 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
717 qemu_fdt_add_subnode(vbi->fdt, nodename);
718 qemu_fdt_setprop_string(vbi->fdt, nodename,
719 "compatible", "pci-host-ecam-generic");
720 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
721 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
722 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
723 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
724 nr_pcie_buses - 1);
726 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
728 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
729 2, base_ecam, 2, size_ecam);
730 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
731 1, FDT_PCI_RANGE_IOPORT, 2, 0,
732 2, base_pio, 2, size_pio,
733 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
734 2, base_mmio, 2, size_mmio);
736 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
737 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
739 g_free(nodename);
742 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
744 DeviceState *dev;
745 SysBusDevice *s;
746 int i;
747 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
748 MemoryRegion *sysmem = get_system_memory();
750 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
751 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
752 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
753 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
755 fdt_params->system_params = &platform_bus_params;
756 fdt_params->binfo = &vbi->bootinfo;
757 fdt_params->intc = "/intc";
759 * register a machine init done notifier that creates the device tree
760 * nodes of the platform bus and its children dynamic sysbus devices
762 arm_register_platform_bus_fdt_creator(fdt_params);
764 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
765 dev->id = TYPE_PLATFORM_BUS_DEVICE;
766 qdev_prop_set_uint32(dev, "num_irqs",
767 platform_bus_params.platform_bus_num_irqs);
768 qdev_prop_set_uint32(dev, "mmio_size",
769 platform_bus_params.platform_bus_size);
770 qdev_init_nofail(dev);
771 s = SYS_BUS_DEVICE(dev);
773 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
774 int irqn = platform_bus_params.platform_bus_first_irq + i;
775 sysbus_connect_irq(s, i, pic[irqn]);
778 memory_region_add_subregion(sysmem,
779 platform_bus_params.platform_bus_base,
780 sysbus_mmio_get_region(s, 0));
783 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
785 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
787 *fdt_size = board->fdt_size;
788 return board->fdt;
791 static
792 void virt_guest_info_machine_done(Notifier *notifier, void *data)
794 VirtGuestInfoState *guest_info_state = container_of(notifier,
795 VirtGuestInfoState, machine_done);
796 virt_acpi_setup(&guest_info_state->info);
799 static void machvirt_init(MachineState *machine)
801 VirtMachineState *vms = VIRT_MACHINE(machine);
802 qemu_irq pic[NUM_IRQS];
803 MemoryRegion *sysmem = get_system_memory();
804 int n;
805 MemoryRegion *ram = g_new(MemoryRegion, 1);
806 const char *cpu_model = machine->cpu_model;
807 VirtBoardInfo *vbi;
808 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
809 VirtGuestInfo *guest_info = &guest_info_state->info;
810 char **cpustr;
812 if (!cpu_model) {
813 cpu_model = "cortex-a15";
816 /* Separate the actual CPU model name from any appended features */
817 cpustr = g_strsplit(cpu_model, ",", 2);
819 vbi = find_machine_info(cpustr[0]);
821 if (!vbi) {
822 error_report("mach-virt: CPU %s not supported", cpustr[0]);
823 exit(1);
826 vbi->smp_cpus = smp_cpus;
828 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
829 error_report("mach-virt: cannot model more than 30GB RAM");
830 exit(1);
833 create_fdt(vbi);
835 for (n = 0; n < smp_cpus; n++) {
836 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
837 CPUClass *cc = CPU_CLASS(oc);
838 Object *cpuobj;
839 Error *err = NULL;
840 char *cpuopts = g_strdup(cpustr[1]);
842 if (!oc) {
843 fprintf(stderr, "Unable to find CPU definition\n");
844 exit(1);
846 cpuobj = object_new(object_class_get_name(oc));
848 /* Handle any CPU options specified by the user */
849 cc->parse_features(CPU(cpuobj), cpuopts, &err);
850 g_free(cpuopts);
851 if (err) {
852 error_report_err(err);
853 exit(1);
856 if (!vms->secure) {
857 object_property_set_bool(cpuobj, false, "has_el3", NULL);
860 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
861 NULL);
863 /* Secondary CPUs start in PSCI powered-down state */
864 if (n > 0) {
865 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
868 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
869 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
870 "reset-cbar", &error_abort);
873 object_property_set_bool(cpuobj, true, "realized", NULL);
875 g_strfreev(cpustr);
876 fdt_add_timer_nodes(vbi);
877 fdt_add_cpu_nodes(vbi);
878 fdt_add_psci_node(vbi);
880 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
881 machine->ram_size);
882 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
884 create_flash(vbi);
886 create_gic(vbi, pic);
888 create_uart(vbi, pic);
890 create_rtc(vbi, pic);
892 create_pcie(vbi, pic);
894 /* Create mmio transports, so the user can create virtio backends
895 * (which will be automatically plugged in to the transports). If
896 * no backend is created the transport will just sit harmlessly idle.
898 create_virtio_devices(vbi, pic);
900 create_fw_cfg(vbi);
901 rom_set_fw(fw_cfg_find());
903 guest_info->smp_cpus = smp_cpus;
904 guest_info->fw_cfg = fw_cfg_find();
905 guest_info->memmap = vbi->memmap;
906 guest_info->irqmap = vbi->irqmap;
907 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
908 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
910 vbi->bootinfo.ram_size = machine->ram_size;
911 vbi->bootinfo.kernel_filename = machine->kernel_filename;
912 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
913 vbi->bootinfo.initrd_filename = machine->initrd_filename;
914 vbi->bootinfo.nb_cpus = smp_cpus;
915 vbi->bootinfo.board_id = -1;
916 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
917 vbi->bootinfo.get_dtb = machvirt_dtb;
918 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
919 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
922 * arm_load_kernel machine init done notifier registration must
923 * happen before the platform_bus_create call. In this latter,
924 * another notifier is registered which adds platform bus nodes.
925 * Notifiers are executed in registration reverse order.
927 create_platform_bus(vbi, pic);
930 static bool virt_get_secure(Object *obj, Error **errp)
932 VirtMachineState *vms = VIRT_MACHINE(obj);
934 return vms->secure;
937 static void virt_set_secure(Object *obj, bool value, Error **errp)
939 VirtMachineState *vms = VIRT_MACHINE(obj);
941 vms->secure = value;
944 static void virt_instance_init(Object *obj)
946 VirtMachineState *vms = VIRT_MACHINE(obj);
948 /* EL3 is enabled by default on virt */
949 vms->secure = true;
950 object_property_add_bool(obj, "secure", virt_get_secure,
951 virt_set_secure, NULL);
952 object_property_set_description(obj, "secure",
953 "Set on/off to enable/disable the ARM "
954 "Security Extensions (TrustZone)",
955 NULL);
958 static void virt_class_init(ObjectClass *oc, void *data)
960 MachineClass *mc = MACHINE_CLASS(oc);
962 mc->name = TYPE_VIRT_MACHINE;
963 mc->desc = "ARM Virtual Machine",
964 mc->init = machvirt_init;
965 mc->max_cpus = 8;
966 mc->has_dynamic_sysbus = true;
967 mc->block_default_type = IF_VIRTIO;
968 mc->no_cdrom = 1;
971 static const TypeInfo machvirt_info = {
972 .name = TYPE_VIRT_MACHINE,
973 .parent = TYPE_MACHINE,
974 .instance_size = sizeof(VirtMachineState),
975 .instance_init = virt_instance_init,
976 .class_size = sizeof(VirtMachineClass),
977 .class_init = virt_class_init,
980 static void machvirt_machine_init(void)
982 type_register_static(&machvirt_info);
985 machine_init(machvirt_machine_init);