slirp: Canonicalize restrict syntax
[qemu.git] / target-arm / cpu.h
blobadef42785c50af5e760459e656227ec5db1cb20c
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
22 #define TARGET_LONG_BITS 32
24 #define ELF_MACHINE EM_ARM
26 #define CPUState struct CPUARMState
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "cpu-defs.h"
32 #include "softfloat.h"
34 #define TARGET_HAS_ICE 1
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
40 #define EXCP_IRQ 5
41 #define EXCP_FIQ 6
42 #define EXCP_BKPT 7
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
45 #define EXCP_STREX 10
47 #define ARMV7M_EXCP_RESET 1
48 #define ARMV7M_EXCP_NMI 2
49 #define ARMV7M_EXCP_HARD 3
50 #define ARMV7M_EXCP_MEM 4
51 #define ARMV7M_EXCP_BUS 5
52 #define ARMV7M_EXCP_USAGE 6
53 #define ARMV7M_EXCP_SVC 11
54 #define ARMV7M_EXCP_DEBUG 12
55 #define ARMV7M_EXCP_PENDSV 14
56 #define ARMV7M_EXCP_SYSTICK 15
58 /* ARM-specific interrupt pending bits. */
59 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
62 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
67 struct arm_boot_info;
69 #define NB_MMU_MODES 2
71 /* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
79 typedef struct CPUARMState {
80 /* Regs for current mode. */
81 uint32_t regs[16];
82 /* Frequently accessed CPSR bits are stored separately for efficiently.
83 This contains all the other bits. Use cpsr_{read,write} to access
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
102 uint32_t QF; /* 0 or 1 */
103 uint32_t GE; /* cpsr[19:16] */
104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
107 /* System control coprocessor (cp15) */
108 struct {
109 uint32_t c0_cpuid;
110 uint32_t c0_cachetype;
111 uint32_t c0_ccsid[16]; /* Cache size. */
112 uint32_t c0_clid; /* Cache level. */
113 uint32_t c0_cssel; /* Cache size selection. */
114 uint32_t c0_c1[8]; /* Feature registers. */
115 uint32_t c0_c2[8]; /* Instruction set registers. */
116 uint32_t c1_sys; /* System control register. */
117 uint32_t c1_coproc; /* Coprocessor access register. */
118 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
119 uint32_t c2_base0; /* MMU translation table base 0. */
120 uint32_t c2_base1; /* MMU translation table base 1. */
121 uint32_t c2_control; /* MMU translation table base control. */
122 uint32_t c2_mask; /* MMU translation table base selection mask. */
123 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
124 uint32_t c2_data; /* MPU data cachable bits. */
125 uint32_t c2_insn; /* MPU instruction cachable bits. */
126 uint32_t c3; /* MMU domain access control register
127 MPU write buffer control. */
128 uint32_t c5_insn; /* Fault status registers. */
129 uint32_t c5_data;
130 uint32_t c6_region[8]; /* MPU base/size registers. */
131 uint32_t c6_insn; /* Fault address registers. */
132 uint32_t c6_data;
133 uint32_t c7_par; /* Translation result. */
134 uint32_t c9_insn; /* Cache lockdown registers. */
135 uint32_t c9_data;
136 uint32_t c9_pmcr; /* performance monitor control register */
137 uint32_t c9_pmcnten; /* perf monitor counter enables */
138 uint32_t c9_pmovsr; /* perf monitor overflow status */
139 uint32_t c9_pmxevtyper; /* perf monitor event type */
140 uint32_t c9_pmuserenr; /* perf monitor user enable */
141 uint32_t c9_pminten; /* perf monitor interrupt enables */
142 uint32_t c13_fcse; /* FCSE PID. */
143 uint32_t c13_context; /* Context ID. */
144 uint32_t c13_tls1; /* User RW Thread register. */
145 uint32_t c13_tls2; /* User RO Thread register. */
146 uint32_t c13_tls3; /* Privileged Thread register. */
147 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
148 uint32_t c15_ticonfig; /* TI925T configuration byte. */
149 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
150 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
151 uint32_t c15_threadid; /* TI debugger thread-ID. */
152 } cp15;
154 struct {
155 uint32_t other_sp;
156 uint32_t vecbase;
157 uint32_t basepri;
158 uint32_t control;
159 int current_sp;
160 int exception;
161 int pending_exception;
162 } v7m;
164 /* Thumb-2 EE state. */
165 uint32_t teecr;
166 uint32_t teehbr;
168 /* Internal CPU feature flags. */
169 uint32_t features;
171 /* VFP coprocessor state. */
172 struct {
173 float64 regs[32];
175 uint32_t xregs[16];
176 /* We store these fpcsr fields separately for convenience. */
177 int vec_len;
178 int vec_stride;
180 /* scratch space when Tn are not sufficient. */
181 uint32_t scratch[8];
183 /* fp_status is the "normal" fp status. standard_fp_status retains
184 * values corresponding to the ARM "Standard FPSCR Value", ie
185 * default-NaN, flush-to-zero, round-to-nearest and is used by
186 * any operations (generally Neon) which the architecture defines
187 * as controlled by the standard FPSCR value rather than the FPSCR.
189 * To avoid having to transfer exception bits around, we simply
190 * say that the FPSCR cumulative exception flags are the logical
191 * OR of the flags in the two fp statuses. This relies on the
192 * only thing which needs to read the exception flags being
193 * an explicit FPSCR read.
195 float_status fp_status;
196 float_status standard_fp_status;
197 } vfp;
198 uint32_t exclusive_addr;
199 uint32_t exclusive_val;
200 uint32_t exclusive_high;
201 #if defined(CONFIG_USER_ONLY)
202 uint32_t exclusive_test;
203 uint32_t exclusive_info;
204 #endif
206 /* iwMMXt coprocessor state. */
207 struct {
208 uint64_t regs[16];
209 uint64_t val;
211 uint32_t cregs[16];
212 } iwmmxt;
214 #if defined(CONFIG_USER_ONLY)
215 /* For usermode syscall translation. */
216 int eabi;
217 #endif
219 CPU_COMMON
221 /* These fields after the common ones so they are preserved on reset. */
223 /* Coprocessor IO used by peripherals */
224 struct {
225 ARMReadCPFunc *cp_read;
226 ARMWriteCPFunc *cp_write;
227 void *opaque;
228 } cp[15];
229 void *nvic;
230 const struct arm_boot_info *boot_info;
231 } CPUARMState;
233 CPUARMState *cpu_arm_init(const char *cpu_model);
234 void arm_translate_init(void);
235 int cpu_arm_exec(CPUARMState *s);
236 void cpu_arm_close(CPUARMState *s);
237 void do_interrupt(CPUARMState *);
238 void switch_mode(CPUARMState *, int);
239 uint32_t do_arm_semihosting(CPUARMState *env);
241 /* you can call this signal handler from your SIGBUS and SIGSEGV
242 signal handlers to inform the virtual CPU of exceptions. non zero
243 is returned if the signal was handled by the virtual CPU. */
244 int cpu_arm_signal_handler(int host_signum, void *pinfo,
245 void *puc);
246 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
247 int mmu_idx, int is_softmuu);
248 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
250 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
252 env->cp15.c13_tls2 = newtls;
255 #define CPSR_M (0x1f)
256 #define CPSR_T (1 << 5)
257 #define CPSR_F (1 << 6)
258 #define CPSR_I (1 << 7)
259 #define CPSR_A (1 << 8)
260 #define CPSR_E (1 << 9)
261 #define CPSR_IT_2_7 (0xfc00)
262 #define CPSR_GE (0xf << 16)
263 #define CPSR_RESERVED (0xf << 20)
264 #define CPSR_J (1 << 24)
265 #define CPSR_IT_0_1 (3 << 25)
266 #define CPSR_Q (1 << 27)
267 #define CPSR_V (1 << 28)
268 #define CPSR_C (1 << 29)
269 #define CPSR_Z (1 << 30)
270 #define CPSR_N (1 << 31)
271 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
273 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
274 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
275 /* Bits writable in user mode. */
276 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
277 /* Execution state bits. MRS read as zero, MSR writes ignored. */
278 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
280 /* Return the current CPSR value. */
281 uint32_t cpsr_read(CPUARMState *env);
282 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
283 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
285 /* Return the current xPSR value. */
286 static inline uint32_t xpsr_read(CPUARMState *env)
288 int ZF;
289 ZF = (env->ZF == 0);
290 return (env->NF & 0x80000000) | (ZF << 30)
291 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
292 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
293 | ((env->condexec_bits & 0xfc) << 8)
294 | env->v7m.exception;
297 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
298 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
300 if (mask & CPSR_NZCV) {
301 env->ZF = (~val) & CPSR_Z;
302 env->NF = val;
303 env->CF = (val >> 29) & 1;
304 env->VF = (val << 3) & 0x80000000;
306 if (mask & CPSR_Q)
307 env->QF = ((val & CPSR_Q) != 0);
308 if (mask & (1 << 24))
309 env->thumb = ((val & (1 << 24)) != 0);
310 if (mask & CPSR_IT_0_1) {
311 env->condexec_bits &= ~3;
312 env->condexec_bits |= (val >> 25) & 3;
314 if (mask & CPSR_IT_2_7) {
315 env->condexec_bits &= 3;
316 env->condexec_bits |= (val >> 8) & 0xfc;
318 if (mask & 0x1ff) {
319 env->v7m.exception = val & 0x1ff;
323 /* Return the current FPSCR value. */
324 uint32_t vfp_get_fpscr(CPUARMState *env);
325 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
327 enum arm_cpu_mode {
328 ARM_CPU_MODE_USR = 0x10,
329 ARM_CPU_MODE_FIQ = 0x11,
330 ARM_CPU_MODE_IRQ = 0x12,
331 ARM_CPU_MODE_SVC = 0x13,
332 ARM_CPU_MODE_ABT = 0x17,
333 ARM_CPU_MODE_UND = 0x1b,
334 ARM_CPU_MODE_SYS = 0x1f
337 /* VFP system registers. */
338 #define ARM_VFP_FPSID 0
339 #define ARM_VFP_FPSCR 1
340 #define ARM_VFP_MVFR1 6
341 #define ARM_VFP_MVFR0 7
342 #define ARM_VFP_FPEXC 8
343 #define ARM_VFP_FPINST 9
344 #define ARM_VFP_FPINST2 10
346 /* iwMMXt coprocessor control registers. */
347 #define ARM_IWMMXT_wCID 0
348 #define ARM_IWMMXT_wCon 1
349 #define ARM_IWMMXT_wCSSF 2
350 #define ARM_IWMMXT_wCASF 3
351 #define ARM_IWMMXT_wCGR0 8
352 #define ARM_IWMMXT_wCGR1 9
353 #define ARM_IWMMXT_wCGR2 10
354 #define ARM_IWMMXT_wCGR3 11
356 enum arm_features {
357 ARM_FEATURE_VFP,
358 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
359 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
360 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
361 ARM_FEATURE_V6,
362 ARM_FEATURE_V6K,
363 ARM_FEATURE_V7,
364 ARM_FEATURE_THUMB2,
365 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
366 ARM_FEATURE_VFP3,
367 ARM_FEATURE_VFP_FP16,
368 ARM_FEATURE_NEON,
369 ARM_FEATURE_DIV,
370 ARM_FEATURE_M, /* Microcontroller profile. */
371 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
372 ARM_FEATURE_THUMB2EE,
373 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
374 ARM_FEATURE_V4T,
375 ARM_FEATURE_V5,
376 ARM_FEATURE_STRONGARM,
379 static inline int arm_feature(CPUARMState *env, int feature)
381 return (env->features & (1u << feature)) != 0;
384 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
386 /* Interface between CPU and Interrupt controller. */
387 void armv7m_nvic_set_pending(void *opaque, int irq);
388 int armv7m_nvic_acknowledge_irq(void *opaque);
389 void armv7m_nvic_complete_irq(void *opaque, int irq);
391 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
392 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
393 void *opaque);
395 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
396 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
397 conventional cores (ie. Application or Realtime profile). */
399 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
400 #define ARM_CPUID(env) (env->cp15.c0_cpuid)
402 #define ARM_CPUID_ARM1026 0x4106a262
403 #define ARM_CPUID_ARM926 0x41069265
404 #define ARM_CPUID_ARM946 0x41059461
405 #define ARM_CPUID_TI915T 0x54029152
406 #define ARM_CPUID_TI925T 0x54029252
407 #define ARM_CPUID_SA1100 0x4401A11B
408 #define ARM_CPUID_SA1110 0x6901B119
409 #define ARM_CPUID_PXA250 0x69052100
410 #define ARM_CPUID_PXA255 0x69052d00
411 #define ARM_CPUID_PXA260 0x69052903
412 #define ARM_CPUID_PXA261 0x69052d05
413 #define ARM_CPUID_PXA262 0x69052d06
414 #define ARM_CPUID_PXA270 0x69054110
415 #define ARM_CPUID_PXA270_A0 0x69054110
416 #define ARM_CPUID_PXA270_A1 0x69054111
417 #define ARM_CPUID_PXA270_B0 0x69054112
418 #define ARM_CPUID_PXA270_B1 0x69054113
419 #define ARM_CPUID_PXA270_C0 0x69054114
420 #define ARM_CPUID_PXA270_C5 0x69054117
421 #define ARM_CPUID_ARM1136 0x4117b363
422 #define ARM_CPUID_ARM1136_R2 0x4107b362
423 #define ARM_CPUID_ARM11MPCORE 0x410fb022
424 #define ARM_CPUID_CORTEXA8 0x410fc080
425 #define ARM_CPUID_CORTEXA9 0x410fc090
426 #define ARM_CPUID_CORTEXM3 0x410fc231
427 #define ARM_CPUID_ANY 0xffffffff
429 #if defined(CONFIG_USER_ONLY)
430 #define TARGET_PAGE_BITS 12
431 #else
432 /* The ARM MMU allows 1k pages. */
433 /* ??? Linux doesn't actually use these, and they're deprecated in recent
434 architecture revisions. Maybe a configure option to disable them. */
435 #define TARGET_PAGE_BITS 10
436 #endif
438 #define TARGET_PHYS_ADDR_SPACE_BITS 32
439 #define TARGET_VIRT_ADDR_SPACE_BITS 32
441 #define cpu_init cpu_arm_init
442 #define cpu_exec cpu_arm_exec
443 #define cpu_gen_code cpu_arm_gen_code
444 #define cpu_signal_handler cpu_arm_signal_handler
445 #define cpu_list arm_cpu_list
447 #define CPU_SAVE_VERSION 4
449 /* MMU modes definitions */
450 #define MMU_MODE0_SUFFIX _kernel
451 #define MMU_MODE1_SUFFIX _user
452 #define MMU_USER_IDX 1
453 static inline int cpu_mmu_index (CPUState *env)
455 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
458 #if defined(CONFIG_USER_ONLY)
459 static inline void cpu_clone_regs(CPUState *env, target_ulong newsp)
461 if (newsp)
462 env->regs[13] = newsp;
463 env->regs[0] = 0;
465 #endif
467 #include "cpu-all.h"
469 /* Bit usage in the TB flags field: */
470 #define ARM_TBFLAG_THUMB_SHIFT 0
471 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
472 #define ARM_TBFLAG_VECLEN_SHIFT 1
473 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
474 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
475 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
476 #define ARM_TBFLAG_PRIV_SHIFT 6
477 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
478 #define ARM_TBFLAG_VFPEN_SHIFT 7
479 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
480 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
481 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
482 /* Bits 31..16 are currently unused. */
484 /* some convenience accessor macros */
485 #define ARM_TBFLAG_THUMB(F) \
486 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
487 #define ARM_TBFLAG_VECLEN(F) \
488 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
489 #define ARM_TBFLAG_VECSTRIDE(F) \
490 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
491 #define ARM_TBFLAG_PRIV(F) \
492 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
493 #define ARM_TBFLAG_VFPEN(F) \
494 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
495 #define ARM_TBFLAG_CONDEXEC(F) \
496 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
498 static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc,
499 target_ulong *cs_base, int *flags)
501 int privmode;
502 *pc = env->regs[15];
503 *cs_base = 0;
504 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
505 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
506 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
507 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT);
508 if (arm_feature(env, ARM_FEATURE_M)) {
509 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
510 } else {
511 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
513 if (privmode) {
514 *flags |= ARM_TBFLAG_PRIV_MASK;
516 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
517 *flags |= ARM_TBFLAG_VFPEN_MASK;
521 static inline bool cpu_has_work(CPUState *env)
523 return env->interrupt_request &
524 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
527 #include "exec-all.h"
529 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
531 env->regs[15] = tb->pc;
534 #endif