4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
88 int robust_singlestep
;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing
*irq_routes
;
104 int nr_allocated_irq_routes
;
105 uint32_t *used_gsi_bitmap
;
106 unsigned int gsi_count
;
107 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 bool kvm_kernel_irqchip
;
119 bool kvm_async_interrupts_allowed
;
120 bool kvm_halt_in_kernel_allowed
;
121 bool kvm_eventfds_allowed
;
122 bool kvm_irqfds_allowed
;
123 bool kvm_msi_via_irqfd_allowed
;
124 bool kvm_gsi_routing_allowed
;
125 bool kvm_gsi_direct_mapping
;
127 bool kvm_readonly_mem_allowed
;
129 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
130 KVM_CAP_INFO(USER_MEMORY
),
131 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
135 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
139 for (i
= 0; i
< s
->nr_slots
; i
++) {
140 if (s
->slots
[i
].memory_size
== 0) {
145 fprintf(stderr
, "%s: no free slot available\n", __func__
);
149 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
155 for (i
= 0; i
< s
->nr_slots
; i
++) {
156 KVMSlot
*mem
= &s
->slots
[i
];
158 if (start_addr
== mem
->start_addr
&&
159 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
168 * Find overlapping slot with lowest start address
170 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
174 KVMSlot
*found
= NULL
;
177 for (i
= 0; i
< s
->nr_slots
; i
++) {
178 KVMSlot
*mem
= &s
->slots
[i
];
180 if (mem
->memory_size
== 0 ||
181 (found
&& found
->start_addr
< mem
->start_addr
)) {
185 if (end_addr
> mem
->start_addr
&&
186 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
194 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
199 for (i
= 0; i
< s
->nr_slots
; i
++) {
200 KVMSlot
*mem
= &s
->slots
[i
];
202 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
203 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
211 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
213 struct kvm_userspace_memory_region mem
;
215 mem
.slot
= slot
->slot
;
216 mem
.guest_phys_addr
= slot
->start_addr
;
217 mem
.userspace_addr
= (unsigned long)slot
->ram
;
218 mem
.flags
= slot
->flags
;
219 if (s
->migration_log
) {
220 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
223 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
224 /* Set the slot size to 0 before setting the slot to the desired
225 * value. This is needed based on KVM commit 75d61fbc. */
227 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
229 mem
.memory_size
= slot
->memory_size
;
230 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
233 int kvm_init_vcpu(CPUState
*cpu
)
235 KVMState
*s
= kvm_state
;
239 DPRINTF("kvm_init_vcpu\n");
241 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
243 DPRINTF("kvm_create_vcpu failed\n");
249 cpu
->kvm_vcpu_dirty
= true;
251 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
258 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
260 if (cpu
->kvm_run
== MAP_FAILED
) {
262 DPRINTF("mmap'ing vcpu state failed\n");
266 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
267 s
->coalesced_mmio_ring
=
268 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
271 ret
= kvm_arch_init_vcpu(cpu
);
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
283 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
284 if (readonly
&& kvm_readonly_mem_allowed
) {
285 flags
|= KVM_MEM_READONLY
;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
292 KVMState
*s
= kvm_state
;
293 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
296 old_flags
= mem
->flags
;
298 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s
->migration_log
) {
303 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
306 if (flags
== old_flags
) {
310 return kvm_set_user_memory_region(s
, mem
);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
314 ram_addr_t size
, bool log_dirty
)
316 KVMState
*s
= kvm_state
;
317 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
320 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
321 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
322 (hwaddr
)(phys_addr
+ size
- 1));
325 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
328 static void kvm_log_start(MemoryListener
*listener
,
329 MemoryRegionSection
*section
)
333 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
334 int128_get64(section
->size
), true);
340 static void kvm_log_stop(MemoryListener
*listener
,
341 MemoryRegionSection
*section
)
345 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
346 int128_get64(section
->size
), false);
352 static int kvm_set_migration_log(int enable
)
354 KVMState
*s
= kvm_state
;
358 s
->migration_log
= enable
;
360 for (i
= 0; i
< s
->nr_slots
; i
++) {
363 if (!mem
->memory_size
) {
366 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
369 err
= kvm_set_user_memory_region(s
, mem
);
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
379 unsigned long *bitmap
)
381 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
382 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
384 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
388 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
392 * This function updates qemu's dirty bitmap using
393 * memory_region_set_dirty(). This means all bits are set
396 * @start_add: start of logged region.
397 * @end_addr: end of logged region.
399 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
401 KVMState
*s
= kvm_state
;
402 unsigned long size
, allocated_size
= 0;
406 hwaddr start_addr
= section
->offset_within_address_space
;
407 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
409 d
.dirty_bitmap
= NULL
;
410 while (start_addr
< end_addr
) {
411 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
416 /* XXX bad kernel interface alert
417 * For dirty bitmap, kernel allocates array of size aligned to
418 * bits-per-long. But for case when the kernel is 64bits and
419 * the userspace is 32bits, userspace can't align to the same
420 * bits-per-long, since sizeof(long) is different between kernel
421 * and user space. This way, userspace will provide buffer which
422 * may be 4 bytes less than the kernel will use, resulting in
423 * userspace memory corruption (which is not detectable by valgrind
424 * too, in most cases).
425 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
426 * a hope that sizeof(long) wont become >8 any time soon.
428 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
429 /*HOST_LONG_BITS*/ 64) / 8;
430 if (!d
.dirty_bitmap
) {
431 d
.dirty_bitmap
= g_malloc(size
);
432 } else if (size
> allocated_size
) {
433 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
435 allocated_size
= size
;
436 memset(d
.dirty_bitmap
, 0, allocated_size
);
440 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
441 DPRINTF("ioctl failed %d\n", errno
);
446 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
447 start_addr
= mem
->start_addr
+ mem
->memory_size
;
449 g_free(d
.dirty_bitmap
);
454 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
455 MemoryRegionSection
*secion
,
456 hwaddr start
, hwaddr size
)
458 KVMState
*s
= kvm_state
;
460 if (s
->coalesced_mmio
) {
461 struct kvm_coalesced_mmio_zone zone
;
467 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
471 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
472 MemoryRegionSection
*secion
,
473 hwaddr start
, hwaddr size
)
475 KVMState
*s
= kvm_state
;
477 if (s
->coalesced_mmio
) {
478 struct kvm_coalesced_mmio_zone zone
;
484 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
488 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
492 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
500 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
504 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
506 /* VM wide version not implemented, use global one instead */
507 ret
= kvm_check_extension(s
, extension
);
513 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
514 bool assign
, uint32_t size
, bool datamatch
)
517 struct kvm_ioeventfd iofd
;
519 iofd
.datamatch
= datamatch
? val
: 0;
525 if (!kvm_enabled()) {
530 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
533 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
536 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
545 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
546 bool assign
, uint32_t size
, bool datamatch
)
548 struct kvm_ioeventfd kick
= {
549 .datamatch
= datamatch
? val
: 0,
551 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
556 if (!kvm_enabled()) {
560 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
563 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
565 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
573 static int kvm_check_many_ioeventfds(void)
575 /* Userspace can use ioeventfd for io notification. This requires a host
576 * that supports eventfd(2) and an I/O thread; since eventfd does not
577 * support SIGIO it cannot interrupt the vcpu.
579 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
580 * can avoid creating too many ioeventfds.
582 #if defined(CONFIG_EVENTFD)
585 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
586 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
587 if (ioeventfds
[i
] < 0) {
590 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
592 close(ioeventfds
[i
]);
597 /* Decide whether many devices are supported or not */
598 ret
= i
== ARRAY_SIZE(ioeventfds
);
601 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
602 close(ioeventfds
[i
]);
610 static const KVMCapabilityInfo
*
611 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
614 if (!kvm_check_extension(s
, list
->value
)) {
622 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
624 KVMState
*s
= kvm_state
;
627 MemoryRegion
*mr
= section
->mr
;
628 bool log_dirty
= memory_region_is_logging(mr
);
629 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
630 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
631 hwaddr start_addr
= section
->offset_within_address_space
;
632 ram_addr_t size
= int128_get64(section
->size
);
636 /* kvm works in page size chunks, but the function may be called
637 with sub-page size and unaligned start address. Pad the start
638 address to next and truncate size to previous page boundary. */
639 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
640 delta
&= ~TARGET_PAGE_MASK
;
646 size
&= TARGET_PAGE_MASK
;
647 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
651 if (!memory_region_is_ram(mr
)) {
652 if (writeable
|| !kvm_readonly_mem_allowed
) {
654 } else if (!mr
->romd_mode
) {
655 /* If the memory device is not in romd_mode, then we actually want
656 * to remove the kvm memory slot so all accesses will trap. */
661 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
664 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
669 if (add
&& start_addr
>= mem
->start_addr
&&
670 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
671 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
672 /* The new slot fits into the existing one and comes with
673 * identical parameters - update flags and done. */
674 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
680 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
681 kvm_physical_sync_dirty_bitmap(section
);
684 /* unregister the overlapping slot */
685 mem
->memory_size
= 0;
686 err
= kvm_set_user_memory_region(s
, mem
);
688 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
689 __func__
, strerror(-err
));
693 /* Workaround for older KVM versions: we can't join slots, even not by
694 * unregistering the previous ones and then registering the larger
695 * slot. We have to maintain the existing fragmentation. Sigh.
697 * This workaround assumes that the new slot starts at the same
698 * address as the first existing one. If not or if some overlapping
699 * slot comes around later, we will fail (not seen in practice so far)
700 * - and actually require a recent KVM version. */
701 if (s
->broken_set_mem_region
&&
702 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
703 mem
= kvm_alloc_slot(s
);
704 mem
->memory_size
= old
.memory_size
;
705 mem
->start_addr
= old
.start_addr
;
707 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
709 err
= kvm_set_user_memory_region(s
, mem
);
711 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
716 start_addr
+= old
.memory_size
;
717 ram
+= old
.memory_size
;
718 size
-= old
.memory_size
;
722 /* register prefix slot */
723 if (old
.start_addr
< start_addr
) {
724 mem
= kvm_alloc_slot(s
);
725 mem
->memory_size
= start_addr
- old
.start_addr
;
726 mem
->start_addr
= old
.start_addr
;
728 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
730 err
= kvm_set_user_memory_region(s
, mem
);
732 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
733 __func__
, strerror(-err
));
735 fprintf(stderr
, "%s: This is probably because your kernel's " \
736 "PAGE_SIZE is too big. Please try to use 4k " \
737 "PAGE_SIZE!\n", __func__
);
743 /* register suffix slot */
744 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
745 ram_addr_t size_delta
;
747 mem
= kvm_alloc_slot(s
);
748 mem
->start_addr
= start_addr
+ size
;
749 size_delta
= mem
->start_addr
- old
.start_addr
;
750 mem
->memory_size
= old
.memory_size
- size_delta
;
751 mem
->ram
= old
.ram
+ size_delta
;
752 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
754 err
= kvm_set_user_memory_region(s
, mem
);
756 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
757 __func__
, strerror(-err
));
763 /* in case the KVM bug workaround already "consumed" the new slot */
770 mem
= kvm_alloc_slot(s
);
771 mem
->memory_size
= size
;
772 mem
->start_addr
= start_addr
;
774 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
776 err
= kvm_set_user_memory_region(s
, mem
);
778 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
784 static void kvm_region_add(MemoryListener
*listener
,
785 MemoryRegionSection
*section
)
787 memory_region_ref(section
->mr
);
788 kvm_set_phys_mem(section
, true);
791 static void kvm_region_del(MemoryListener
*listener
,
792 MemoryRegionSection
*section
)
794 kvm_set_phys_mem(section
, false);
795 memory_region_unref(section
->mr
);
798 static void kvm_log_sync(MemoryListener
*listener
,
799 MemoryRegionSection
*section
)
803 r
= kvm_physical_sync_dirty_bitmap(section
);
809 static void kvm_log_global_start(struct MemoryListener
*listener
)
813 r
= kvm_set_migration_log(1);
817 static void kvm_log_global_stop(struct MemoryListener
*listener
)
821 r
= kvm_set_migration_log(0);
825 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
826 MemoryRegionSection
*section
,
827 bool match_data
, uint64_t data
,
830 int fd
= event_notifier_get_fd(e
);
833 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
834 data
, true, int128_get64(section
->size
),
837 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
838 __func__
, strerror(-r
));
843 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
844 MemoryRegionSection
*section
,
845 bool match_data
, uint64_t data
,
848 int fd
= event_notifier_get_fd(e
);
851 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
852 data
, false, int128_get64(section
->size
),
859 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
860 MemoryRegionSection
*section
,
861 bool match_data
, uint64_t data
,
864 int fd
= event_notifier_get_fd(e
);
867 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
868 data
, true, int128_get64(section
->size
),
871 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
872 __func__
, strerror(-r
));
877 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
878 MemoryRegionSection
*section
,
879 bool match_data
, uint64_t data
,
883 int fd
= event_notifier_get_fd(e
);
886 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
887 data
, false, int128_get64(section
->size
),
894 static MemoryListener kvm_memory_listener
= {
895 .region_add
= kvm_region_add
,
896 .region_del
= kvm_region_del
,
897 .log_start
= kvm_log_start
,
898 .log_stop
= kvm_log_stop
,
899 .log_sync
= kvm_log_sync
,
900 .log_global_start
= kvm_log_global_start
,
901 .log_global_stop
= kvm_log_global_stop
,
902 .eventfd_add
= kvm_mem_ioeventfd_add
,
903 .eventfd_del
= kvm_mem_ioeventfd_del
,
904 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
905 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
909 static MemoryListener kvm_io_listener
= {
910 .eventfd_add
= kvm_io_ioeventfd_add
,
911 .eventfd_del
= kvm_io_ioeventfd_del
,
915 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
917 cpu
->interrupt_request
|= mask
;
919 if (!qemu_cpu_is_self(cpu
)) {
924 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
926 struct kvm_irq_level event
;
929 assert(kvm_async_interrupts_enabled());
933 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
935 perror("kvm_set_irq");
939 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
942 #ifdef KVM_CAP_IRQ_ROUTING
943 typedef struct KVMMSIRoute
{
944 struct kvm_irq_routing_entry kroute
;
945 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
948 static void set_gsi(KVMState
*s
, unsigned int gsi
)
950 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
953 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
955 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
958 void kvm_init_irq_routing(KVMState
*s
)
962 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
964 unsigned int gsi_bits
, i
;
966 /* Round up so we can search ints using ffs */
967 gsi_bits
= ALIGN(gsi_count
, 32);
968 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
969 s
->gsi_count
= gsi_count
;
971 /* Mark any over-allocated bits as already in use */
972 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
977 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
978 s
->nr_allocated_irq_routes
= 0;
980 if (!s
->direct_msi
) {
981 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
982 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
986 kvm_arch_init_irq_routing(s
);
989 void kvm_irqchip_commit_routes(KVMState
*s
)
993 s
->irq_routes
->flags
= 0;
994 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
998 static void kvm_add_routing_entry(KVMState
*s
,
999 struct kvm_irq_routing_entry
*entry
)
1001 struct kvm_irq_routing_entry
*new;
1004 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1005 n
= s
->nr_allocated_irq_routes
* 2;
1009 size
= sizeof(struct kvm_irq_routing
);
1010 size
+= n
* sizeof(*new);
1011 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1012 s
->nr_allocated_irq_routes
= n
;
1014 n
= s
->irq_routes
->nr
++;
1015 new = &s
->irq_routes
->entries
[n
];
1019 set_gsi(s
, entry
->gsi
);
1022 static int kvm_update_routing_entry(KVMState
*s
,
1023 struct kvm_irq_routing_entry
*new_entry
)
1025 struct kvm_irq_routing_entry
*entry
;
1028 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1029 entry
= &s
->irq_routes
->entries
[n
];
1030 if (entry
->gsi
!= new_entry
->gsi
) {
1034 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1038 *entry
= *new_entry
;
1040 kvm_irqchip_commit_routes(s
);
1048 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1050 struct kvm_irq_routing_entry e
= {};
1052 assert(pin
< s
->gsi_count
);
1055 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1057 e
.u
.irqchip
.irqchip
= irqchip
;
1058 e
.u
.irqchip
.pin
= pin
;
1059 kvm_add_routing_entry(s
, &e
);
1062 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1064 struct kvm_irq_routing_entry
*e
;
1067 if (kvm_gsi_direct_mapping()) {
1071 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1072 e
= &s
->irq_routes
->entries
[i
];
1073 if (e
->gsi
== virq
) {
1074 s
->irq_routes
->nr
--;
1075 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1081 static unsigned int kvm_hash_msi(uint32_t data
)
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1088 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1090 KVMMSIRoute
*route
, *next
;
1093 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1094 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1095 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1096 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1102 static int kvm_irqchip_get_virq(KVMState
*s
)
1104 uint32_t *word
= s
->used_gsi_bitmap
;
1105 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1110 /* Return the lowest unused GSI in the bitmap */
1111 for (i
= 0; i
< max_words
; i
++) {
1112 bit
= ffs(~word
[i
]);
1117 return bit
- 1 + i
* 32;
1119 if (!s
->direct_msi
&& retry
) {
1121 kvm_flush_dynamic_msi_routes(s
);
1128 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1130 unsigned int hash
= kvm_hash_msi(msg
.data
);
1133 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1134 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1135 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1136 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1143 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1148 if (s
->direct_msi
) {
1149 msi
.address_lo
= (uint32_t)msg
.address
;
1150 msi
.address_hi
= msg
.address
>> 32;
1151 msi
.data
= le32_to_cpu(msg
.data
);
1153 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1155 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1158 route
= kvm_lookup_msi_route(s
, msg
);
1162 virq
= kvm_irqchip_get_virq(s
);
1167 route
= g_malloc0(sizeof(KVMMSIRoute
));
1168 route
->kroute
.gsi
= virq
;
1169 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1170 route
->kroute
.flags
= 0;
1171 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1172 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1173 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1175 kvm_add_routing_entry(s
, &route
->kroute
);
1176 kvm_irqchip_commit_routes(s
);
1178 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1182 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1184 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1187 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1189 struct kvm_irq_routing_entry kroute
= {};
1192 if (kvm_gsi_direct_mapping()) {
1193 return msg
.data
& 0xffff;
1196 if (!kvm_gsi_routing_enabled()) {
1200 virq
= kvm_irqchip_get_virq(s
);
1206 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1208 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1209 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1210 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1212 kvm_add_routing_entry(s
, &kroute
);
1213 kvm_irqchip_commit_routes(s
);
1218 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1220 struct kvm_irq_routing_entry kroute
= {};
1222 if (kvm_gsi_direct_mapping()) {
1226 if (!kvm_irqchip_in_kernel()) {
1231 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1233 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1234 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1235 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1237 return kvm_update_routing_entry(s
, &kroute
);
1240 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1243 struct kvm_irqfd irqfd
= {
1246 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1250 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1251 irqfd
.resamplefd
= rfd
;
1254 if (!kvm_irqfds_enabled()) {
1258 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1261 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1263 struct kvm_irq_routing_entry kroute
;
1266 if (!kvm_gsi_routing_enabled()) {
1270 virq
= kvm_irqchip_get_virq(s
);
1276 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1278 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1279 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1280 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1281 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1282 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1284 kvm_add_routing_entry(s
, &kroute
);
1285 kvm_irqchip_commit_routes(s
);
1290 #else /* !KVM_CAP_IRQ_ROUTING */
1292 void kvm_init_irq_routing(KVMState
*s
)
1296 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1300 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1305 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1310 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1315 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1320 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1324 #endif /* !KVM_CAP_IRQ_ROUTING */
1326 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1327 EventNotifier
*rn
, int virq
)
1329 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1330 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1333 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1335 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1339 static int kvm_irqchip_create(KVMState
*s
)
1343 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1344 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1345 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1349 /* First probe and see if there's a arch-specific hook to create the
1350 * in-kernel irqchip for us */
1351 ret
= kvm_arch_irqchip_create(s
);
1354 } else if (ret
== 0) {
1355 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1357 fprintf(stderr
, "Create kernel irqchip failed\n");
1362 kvm_kernel_irqchip
= true;
1363 /* If we have an in-kernel IRQ chip then we must have asynchronous
1364 * interrupt delivery (though the reverse is not necessarily true)
1366 kvm_async_interrupts_allowed
= true;
1367 kvm_halt_in_kernel_allowed
= true;
1369 kvm_init_irq_routing(s
);
1374 /* Find number of supported CPUs using the recommended
1375 * procedure from the kernel API documentation to cope with
1376 * older kernels that may be missing capabilities.
1378 static int kvm_recommended_vcpus(KVMState
*s
)
1380 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1381 return (ret
) ? ret
: 4;
1384 static int kvm_max_vcpus(KVMState
*s
)
1386 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1387 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1390 static int kvm_init(MachineState
*ms
)
1392 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1393 static const char upgrade_note
[] =
1394 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1395 "(see http://sourceforge.net/projects/kvm).\n";
1400 { "SMP", smp_cpus
},
1401 { "hotpluggable", max_cpus
},
1404 int soft_vcpus_limit
, hard_vcpus_limit
;
1406 const KVMCapabilityInfo
*missing_cap
;
1409 const char *kvm_type
;
1411 s
= KVM_STATE(ms
->accelerator
);
1414 * On systems where the kernel can support different base page
1415 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1416 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1417 * page size for the system though.
1419 assert(TARGET_PAGE_SIZE
<= getpagesize());
1424 #ifdef KVM_CAP_SET_GUEST_DEBUG
1425 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1428 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1430 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1435 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1436 if (ret
< KVM_API_VERSION
) {
1440 fprintf(stderr
, "kvm version too old\n");
1444 if (ret
> KVM_API_VERSION
) {
1446 fprintf(stderr
, "kvm version not supported\n");
1450 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1452 /* If unspecified, use the default value */
1457 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1459 for (i
= 0; i
< s
->nr_slots
; i
++) {
1460 s
->slots
[i
].slot
= i
;
1463 /* check the vcpu limits */
1464 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1465 hard_vcpus_limit
= kvm_max_vcpus(s
);
1468 if (nc
->num
> soft_vcpus_limit
) {
1470 "Warning: Number of %s cpus requested (%d) exceeds "
1471 "the recommended cpus supported by KVM (%d)\n",
1472 nc
->name
, nc
->num
, soft_vcpus_limit
);
1474 if (nc
->num
> hard_vcpus_limit
) {
1475 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1476 "the maximum cpus supported by KVM (%d)\n",
1477 nc
->name
, nc
->num
, hard_vcpus_limit
);
1484 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1486 type
= mc
->kvm_type(kvm_type
);
1487 } else if (kvm_type
) {
1489 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1494 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1495 } while (ret
== -EINTR
);
1498 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1502 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1503 "your host kernel command line\n");
1509 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1512 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1516 fprintf(stderr
, "kvm does not support %s\n%s",
1517 missing_cap
->name
, upgrade_note
);
1521 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1523 s
->broken_set_mem_region
= 1;
1524 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1526 s
->broken_set_mem_region
= 0;
1529 #ifdef KVM_CAP_VCPU_EVENTS
1530 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1533 s
->robust_singlestep
=
1534 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1536 #ifdef KVM_CAP_DEBUGREGS
1537 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1540 #ifdef KVM_CAP_XSAVE
1541 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1545 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1548 #ifdef KVM_CAP_PIT_STATE2
1549 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1552 #ifdef KVM_CAP_IRQ_ROUTING
1553 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1556 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1558 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1559 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1560 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1563 #ifdef KVM_CAP_READONLY_MEM
1564 kvm_readonly_mem_allowed
=
1565 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1568 kvm_eventfds_allowed
=
1569 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1571 ret
= kvm_arch_init(s
);
1576 ret
= kvm_irqchip_create(s
);
1582 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1583 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1585 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1587 cpu_interrupt_handler
= kvm_handle_interrupt
;
1604 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1606 s
->sigmask_len
= sigmask_len
;
1609 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1613 uint8_t *ptr
= data
;
1615 for (i
= 0; i
< count
; i
++) {
1616 address_space_rw(&address_space_io
, port
, ptr
, size
,
1617 direction
== KVM_EXIT_IO_OUT
);
1622 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1624 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1625 run
->internal
.suberror
);
1627 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1630 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1631 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1632 i
, (uint64_t)run
->internal
.data
[i
]);
1635 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1636 fprintf(stderr
, "emulation failure\n");
1637 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1638 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1639 return EXCP_INTERRUPT
;
1642 /* FIXME: Should trigger a qmp message to let management know
1643 * something went wrong.
1648 void kvm_flush_coalesced_mmio_buffer(void)
1650 KVMState
*s
= kvm_state
;
1652 if (s
->coalesced_flush_in_progress
) {
1656 s
->coalesced_flush_in_progress
= true;
1658 if (s
->coalesced_mmio_ring
) {
1659 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1660 while (ring
->first
!= ring
->last
) {
1661 struct kvm_coalesced_mmio
*ent
;
1663 ent
= &ring
->coalesced_mmio
[ring
->first
];
1665 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1667 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1671 s
->coalesced_flush_in_progress
= false;
1674 static void do_kvm_cpu_synchronize_state(void *arg
)
1676 CPUState
*cpu
= arg
;
1678 if (!cpu
->kvm_vcpu_dirty
) {
1679 kvm_arch_get_registers(cpu
);
1680 cpu
->kvm_vcpu_dirty
= true;
1684 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1686 if (!cpu
->kvm_vcpu_dirty
) {
1687 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1691 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1693 CPUState
*cpu
= arg
;
1695 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1696 cpu
->kvm_vcpu_dirty
= false;
1699 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1701 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1704 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1706 CPUState
*cpu
= arg
;
1708 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1709 cpu
->kvm_vcpu_dirty
= false;
1712 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1714 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1717 void kvm_cpu_clean_state(CPUState
*cpu
)
1719 cpu
->kvm_vcpu_dirty
= false;
1722 int kvm_cpu_exec(CPUState
*cpu
)
1724 struct kvm_run
*run
= cpu
->kvm_run
;
1727 DPRINTF("kvm_cpu_exec()\n");
1729 if (kvm_arch_process_async_events(cpu
)) {
1730 cpu
->exit_request
= 0;
1735 if (cpu
->kvm_vcpu_dirty
) {
1736 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1737 cpu
->kvm_vcpu_dirty
= false;
1740 kvm_arch_pre_run(cpu
, run
);
1741 if (cpu
->exit_request
) {
1742 DPRINTF("interrupt exit requested\n");
1744 * KVM requires us to reenter the kernel after IO exits to complete
1745 * instruction emulation. This self-signal will ensure that we
1748 qemu_cpu_kick_self();
1750 qemu_mutex_unlock_iothread();
1752 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1754 qemu_mutex_lock_iothread();
1755 kvm_arch_post_run(cpu
, run
);
1758 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1759 DPRINTF("io window exit\n");
1760 ret
= EXCP_INTERRUPT
;
1763 fprintf(stderr
, "error: kvm run failed %s\n",
1764 strerror(-run_ret
));
1769 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1770 switch (run
->exit_reason
) {
1772 DPRINTF("handle_io\n");
1773 kvm_handle_io(run
->io
.port
,
1774 (uint8_t *)run
+ run
->io
.data_offset
,
1781 DPRINTF("handle_mmio\n");
1782 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1785 run
->mmio
.is_write
);
1788 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1789 DPRINTF("irq_window_open\n");
1790 ret
= EXCP_INTERRUPT
;
1792 case KVM_EXIT_SHUTDOWN
:
1793 DPRINTF("shutdown\n");
1794 qemu_system_reset_request();
1795 ret
= EXCP_INTERRUPT
;
1797 case KVM_EXIT_UNKNOWN
:
1798 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1799 (uint64_t)run
->hw
.hardware_exit_reason
);
1802 case KVM_EXIT_INTERNAL_ERROR
:
1803 ret
= kvm_handle_internal_error(cpu
, run
);
1805 case KVM_EXIT_SYSTEM_EVENT
:
1806 switch (run
->system_event
.type
) {
1807 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1808 qemu_system_shutdown_request();
1809 ret
= EXCP_INTERRUPT
;
1811 case KVM_SYSTEM_EVENT_RESET
:
1812 qemu_system_reset_request();
1813 ret
= EXCP_INTERRUPT
;
1816 DPRINTF("kvm_arch_handle_exit\n");
1817 ret
= kvm_arch_handle_exit(cpu
, run
);
1822 DPRINTF("kvm_arch_handle_exit\n");
1823 ret
= kvm_arch_handle_exit(cpu
, run
);
1829 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1830 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1833 cpu
->exit_request
= 0;
1837 int kvm_ioctl(KVMState
*s
, int type
, ...)
1844 arg
= va_arg(ap
, void *);
1847 trace_kvm_ioctl(type
, arg
);
1848 ret
= ioctl(s
->fd
, type
, arg
);
1855 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1862 arg
= va_arg(ap
, void *);
1865 trace_kvm_vm_ioctl(type
, arg
);
1866 ret
= ioctl(s
->vmfd
, type
, arg
);
1873 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1880 arg
= va_arg(ap
, void *);
1883 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1884 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1891 int kvm_device_ioctl(int fd
, int type
, ...)
1898 arg
= va_arg(ap
, void *);
1901 trace_kvm_device_ioctl(fd
, type
, arg
);
1902 ret
= ioctl(fd
, type
, arg
);
1909 int kvm_has_sync_mmu(void)
1911 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1914 int kvm_has_vcpu_events(void)
1916 return kvm_state
->vcpu_events
;
1919 int kvm_has_robust_singlestep(void)
1921 return kvm_state
->robust_singlestep
;
1924 int kvm_has_debugregs(void)
1926 return kvm_state
->debugregs
;
1929 int kvm_has_xsave(void)
1931 return kvm_state
->xsave
;
1934 int kvm_has_xcrs(void)
1936 return kvm_state
->xcrs
;
1939 int kvm_has_pit_state2(void)
1941 return kvm_state
->pit_state2
;
1944 int kvm_has_many_ioeventfds(void)
1946 if (!kvm_enabled()) {
1949 return kvm_state
->many_ioeventfds
;
1952 int kvm_has_gsi_routing(void)
1954 #ifdef KVM_CAP_IRQ_ROUTING
1955 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1961 int kvm_has_intx_set_mask(void)
1963 return kvm_state
->intx_set_mask
;
1966 void kvm_setup_guest_memory(void *start
, size_t size
)
1968 if (!kvm_has_sync_mmu()) {
1969 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1972 perror("qemu_madvise");
1974 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1980 #ifdef KVM_CAP_SET_GUEST_DEBUG
1981 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1984 struct kvm_sw_breakpoint
*bp
;
1986 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1994 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1996 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1999 struct kvm_set_guest_debug_data
{
2000 struct kvm_guest_debug dbg
;
2005 static void kvm_invoke_set_guest_debug(void *data
)
2007 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2009 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2013 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2015 struct kvm_set_guest_debug_data data
;
2017 data
.dbg
.control
= reinject_trap
;
2019 if (cpu
->singlestep_enabled
) {
2020 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2022 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2025 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2029 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2030 target_ulong len
, int type
)
2032 struct kvm_sw_breakpoint
*bp
;
2035 if (type
== GDB_BREAKPOINT_SW
) {
2036 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2042 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2049 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2055 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2057 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2064 err
= kvm_update_guest_debug(cpu
, 0);
2072 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2073 target_ulong len
, int type
)
2075 struct kvm_sw_breakpoint
*bp
;
2078 if (type
== GDB_BREAKPOINT_SW
) {
2079 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2084 if (bp
->use_count
> 1) {
2089 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2094 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2097 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2104 err
= kvm_update_guest_debug(cpu
, 0);
2112 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2114 struct kvm_sw_breakpoint
*bp
, *next
;
2115 KVMState
*s
= cpu
->kvm_state
;
2118 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2119 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2120 /* Try harder to find a CPU that currently sees the breakpoint. */
2121 CPU_FOREACH(tmpcpu
) {
2122 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2127 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2130 kvm_arch_remove_all_hw_breakpoints();
2133 kvm_update_guest_debug(cpu
, 0);
2137 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2139 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2144 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2145 target_ulong len
, int type
)
2150 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2151 target_ulong len
, int type
)
2156 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2159 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2161 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2163 KVMState
*s
= kvm_state
;
2164 struct kvm_signal_mask
*sigmask
;
2168 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2171 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2173 sigmask
->len
= s
->sigmask_len
;
2174 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2175 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2180 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2182 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2185 int kvm_on_sigbus(int code
, void *addr
)
2187 return kvm_arch_on_sigbus(code
, addr
);
2190 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2193 struct kvm_create_device create_dev
;
2195 create_dev
.type
= type
;
2197 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2199 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2203 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2208 return test
? 0 : create_dev
.fd
;
2211 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2213 struct kvm_one_reg reg
;
2217 reg
.addr
= (uintptr_t) source
;
2218 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2220 trace_kvm_failed_reg_set(id
, strerror(r
));
2225 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2227 struct kvm_one_reg reg
;
2231 reg
.addr
= (uintptr_t) target
;
2232 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2234 trace_kvm_failed_reg_get(id
, strerror(r
));
2239 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2241 AccelClass
*ac
= ACCEL_CLASS(oc
);
2243 ac
->init_machine
= kvm_init
;
2244 ac
->allowed
= &kvm_allowed
;
2247 static const TypeInfo kvm_accel_type
= {
2248 .name
= TYPE_KVM_ACCEL
,
2249 .parent
= TYPE_ACCEL
,
2250 .class_init
= kvm_accel_class_init
,
2251 .instance_size
= sizeof(KVMState
),
2254 static void kvm_type_init(void)
2256 type_register_static(&kvm_accel_type
);
2259 type_init(kvm_type_init
);