4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
67 MemoryRegion io_mem_rom
, io_mem_notdirty
;
68 static MemoryRegion io_mem_unassigned
;
72 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUState
*, current_cpu
);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry
;
85 struct PhysPageEntry
{
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 typedef PhysPageEntry Node
[L2_SIZE
];
93 struct AddressSpaceDispatch
{
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
97 PhysPageEntry phys_map
;
99 MemoryRegionSection
*sections
;
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t
{
108 uint16_t sub_section
[TARGET_PAGE_SIZE
];
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
116 typedef struct PhysPageMap
{
117 unsigned sections_nb
;
118 unsigned sections_nb_alloc
;
120 unsigned nodes_nb_alloc
;
122 MemoryRegionSection
*sections
;
125 static PhysPageMap
*prev_map
;
126 static PhysPageMap next_map
;
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
134 static MemoryRegion io_mem_watch
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void phys_map_node_reserve(unsigned nodes
)
141 if (next_map
.nodes_nb
+ nodes
> next_map
.nodes_nb_alloc
) {
142 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
* 2,
144 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
,
145 next_map
.nodes_nb
+ nodes
);
146 next_map
.nodes
= g_renew(Node
, next_map
.nodes
,
147 next_map
.nodes_nb_alloc
);
151 static uint16_t phys_map_node_alloc(void)
156 ret
= next_map
.nodes_nb
++;
157 assert(ret
!= PHYS_MAP_NODE_NIL
);
158 assert(ret
!= next_map
.nodes_nb_alloc
);
159 for (i
= 0; i
< L2_SIZE
; ++i
) {
160 next_map
.nodes
[ret
][i
].is_leaf
= 0;
161 next_map
.nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
166 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
167 hwaddr
*nb
, uint16_t leaf
,
172 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
174 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
175 lp
->ptr
= phys_map_node_alloc();
176 p
= next_map
.nodes
[lp
->ptr
];
178 for (i
= 0; i
< L2_SIZE
; i
++) {
180 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
184 p
= next_map
.nodes
[lp
->ptr
];
186 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
188 while (*nb
&& lp
< &p
[L2_SIZE
]) {
189 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
195 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
201 static void phys_page_set(AddressSpaceDispatch
*d
,
202 hwaddr index
, hwaddr nb
,
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS
);
208 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
211 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr index
,
212 Node
*nodes
, MemoryRegionSection
*sections
)
217 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
218 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
219 return §ions
[PHYS_SECTION_UNASSIGNED
];
222 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
224 return §ions
[lp
.ptr
];
227 bool memory_region_is_unassigned(MemoryRegion
*mr
)
229 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
230 && mr
!= &io_mem_watch
;
233 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
235 bool resolve_subpage
)
237 MemoryRegionSection
*section
;
240 section
= phys_page_find(d
->phys_map
, addr
>> TARGET_PAGE_BITS
,
241 d
->nodes
, d
->sections
);
242 if (resolve_subpage
&& section
->mr
->subpage
) {
243 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
244 section
= &d
->sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
249 static MemoryRegionSection
*
250 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
251 hwaddr
*plen
, bool resolve_subpage
)
253 MemoryRegionSection
*section
;
256 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
257 /* Compute offset within MemoryRegionSection */
258 addr
-= section
->offset_within_address_space
;
260 /* Compute offset within MemoryRegion */
261 *xlat
= addr
+ section
->offset_within_region
;
263 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
264 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
268 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
269 hwaddr
*xlat
, hwaddr
*plen
,
273 MemoryRegionSection
*section
;
278 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
281 if (!mr
->iommu_ops
) {
285 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
286 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
287 | (addr
& iotlb
.addr_mask
));
288 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
289 if (!(iotlb
.perm
& (1 << is_write
))) {
290 mr
= &io_mem_unassigned
;
294 as
= iotlb
.target_as
;
302 MemoryRegionSection
*
303 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
306 MemoryRegionSection
*section
;
307 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
309 assert(!section
->mr
->iommu_ops
);
314 void cpu_exec_init_all(void)
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list
.mutex
);
323 #if !defined(CONFIG_USER_ONLY)
325 static int cpu_common_post_load(void *opaque
, int version_id
)
327 CPUState
*cpu
= opaque
;
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu
->interrupt_request
&= ~0x01;
332 tlb_flush(cpu
->env_ptr
, 1);
337 const VMStateDescription vmstate_cpu_common
= {
338 .name
= "cpu_common",
340 .minimum_version_id
= 1,
341 .minimum_version_id_old
= 1,
342 .post_load
= cpu_common_post_load
,
343 .fields
= (VMStateField
[]) {
344 VMSTATE_UINT32(halted
, CPUState
),
345 VMSTATE_UINT32(interrupt_request
, CPUState
),
346 VMSTATE_END_OF_LIST()
352 CPUState
*qemu_get_cpu(int index
)
357 if (cpu
->cpu_index
== index
) {
365 void cpu_exec_init(CPUArchState
*env
)
367 CPUState
*cpu
= ENV_GET_CPU(env
);
368 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
372 #if defined(CONFIG_USER_ONLY)
376 CPU_FOREACH(some_cpu
) {
379 cpu
->cpu_index
= cpu_index
;
381 QTAILQ_INIT(&env
->breakpoints
);
382 QTAILQ_INIT(&env
->watchpoints
);
383 #ifndef CONFIG_USER_ONLY
384 cpu
->thread_id
= qemu_get_thread_id();
386 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
387 #if defined(CONFIG_USER_ONLY)
390 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
391 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
395 cpu_save
, cpu_load
, env
);
396 assert(cc
->vmsd
== NULL
);
397 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
399 if (cc
->vmsd
!= NULL
) {
400 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
408 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
411 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu
, pc
) |
414 (pc
& ~TARGET_PAGE_MASK
));
417 #endif /* TARGET_HAS_ICE */
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
425 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
426 int flags
, CPUWatchpoint
**watchpoint
)
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
433 int flags
, CPUWatchpoint
**watchpoint
)
435 target_ulong len_mask
= ~(len
- 1);
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
440 len
== 0 || len
> TARGET_PAGE_SIZE
) {
441 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
445 wp
= g_malloc(sizeof(*wp
));
448 wp
->len_mask
= len_mask
;
451 /* keep all GDB-injected watchpoints in front */
453 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
455 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
457 tlb_flush_page(env
, addr
);
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
468 target_ulong len_mask
= ~(len
- 1);
471 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
472 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
473 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
474 cpu_watchpoint_remove_by_ref(env
, wp
);
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
484 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
486 tlb_flush_page(env
, watchpoint
->vaddr
);
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
494 CPUWatchpoint
*wp
, *next
;
496 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
497 if (wp
->flags
& mask
)
498 cpu_watchpoint_remove_by_ref(env
, wp
);
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
505 CPUBreakpoint
**breakpoint
)
507 #if defined(TARGET_HAS_ICE)
510 bp
= g_malloc(sizeof(*bp
));
515 /* keep all GDB-injected breakpoints in front */
516 if (flags
& BP_GDB
) {
517 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
519 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
522 breakpoint_invalidate(ENV_GET_CPU(env
), pc
);
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
536 #if defined(TARGET_HAS_ICE)
539 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
540 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
541 cpu_breakpoint_remove_by_ref(env
, bp
);
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
557 breakpoint_invalidate(ENV_GET_CPU(env
), breakpoint
->pc
);
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint
*bp
, *next
;
569 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
570 if (bp
->flags
& mask
)
571 cpu_breakpoint_remove_by_ref(env
, bp
);
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState
*cpu
, int enabled
)
580 #if defined(TARGET_HAS_ICE)
581 if (cpu
->singlestep_enabled
!= enabled
) {
582 cpu
->singlestep_enabled
= enabled
;
584 kvm_update_guest_debug(cpu
, 0);
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState
*env
= cpu
->env_ptr
;
595 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
597 CPUState
*cpu
= ENV_GET_CPU(env
);
603 fprintf(stderr
, "qemu: fatal: ");
604 vfprintf(stderr
, fmt
, ap
);
605 fprintf(stderr
, "\n");
606 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt
, ap2
);
611 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
617 #if defined(CONFIG_USER_ONLY)
619 struct sigaction act
;
620 sigfillset(&act
.sa_mask
);
621 act
.sa_handler
= SIG_DFL
;
622 sigaction(SIGABRT
, &act
, NULL
);
628 CPUArchState
*cpu_copy(CPUArchState
*env
)
630 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
631 #if defined(TARGET_HAS_ICE)
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env
));
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env
, env
, sizeof(CPUArchState
));
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env
->breakpoints
);
646 QTAILQ_INIT(&env
->watchpoints
);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
649 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
651 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
652 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
672 != (end
- 1) - start
) {
675 cpu_tlb_reset_dirty_all(start1
, length
);
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
685 start
&= TARGET_PAGE_MASK
;
686 end
= TARGET_PAGE_ALIGN(end
);
688 length
= end
- start
;
691 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
694 tlb_reset_dirty_range_all(start
, end
, length
);
698 static int cpu_physical_memory_set_dirty_tracking(int enable
)
701 in_migration
= enable
;
705 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
706 MemoryRegionSection
*section
,
708 hwaddr paddr
, hwaddr xlat
,
710 target_ulong
*address
)
715 if (memory_region_is_ram(section
->mr
)) {
717 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
719 if (!section
->readonly
) {
720 iotlb
|= PHYS_SECTION_NOTDIRTY
;
722 iotlb
|= PHYS_SECTION_ROM
;
725 iotlb
= section
- address_space_memory
.dispatch
->sections
;
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
732 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
735 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
736 *address
|= TLB_MMIO
;
744 #endif /* defined(CONFIG_USER_ONLY) */
746 #if !defined(CONFIG_USER_ONLY)
748 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
750 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
752 static void *(*phys_mem_alloc
)(ram_addr_t size
) = qemu_anon_ram_alloc
;
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
759 void phys_mem_set_alloc(void *(*alloc
)(ram_addr_t
))
761 phys_mem_alloc
= alloc
;
764 static uint16_t phys_section_add(MemoryRegionSection
*section
)
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
770 assert(next_map
.sections_nb
< TARGET_PAGE_SIZE
);
772 if (next_map
.sections_nb
== next_map
.sections_nb_alloc
) {
773 next_map
.sections_nb_alloc
= MAX(next_map
.sections_nb_alloc
* 2,
775 next_map
.sections
= g_renew(MemoryRegionSection
, next_map
.sections
,
776 next_map
.sections_nb_alloc
);
778 next_map
.sections
[next_map
.sections_nb
] = *section
;
779 memory_region_ref(section
->mr
);
780 return next_map
.sections_nb
++;
783 static void phys_section_destroy(MemoryRegion
*mr
)
785 memory_region_unref(mr
);
788 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
789 memory_region_destroy(&subpage
->iomem
);
794 static void phys_sections_free(PhysPageMap
*map
)
796 while (map
->sections_nb
> 0) {
797 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
798 phys_section_destroy(section
->mr
);
800 g_free(map
->sections
);
805 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
808 hwaddr base
= section
->offset_within_address_space
810 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
>> TARGET_PAGE_BITS
,
811 next_map
.nodes
, next_map
.sections
);
812 MemoryRegionSection subsection
= {
813 .offset_within_address_space
= base
,
814 .size
= int128_make64(TARGET_PAGE_SIZE
),
818 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
820 if (!(existing
->mr
->subpage
)) {
821 subpage
= subpage_init(d
->as
, base
);
822 subsection
.mr
= &subpage
->iomem
;
823 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
824 phys_section_add(&subsection
));
826 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
828 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
829 end
= start
+ int128_get64(section
->size
) - 1;
830 subpage_register(subpage
, start
, end
, phys_section_add(section
));
834 static void register_multipage(AddressSpaceDispatch
*d
,
835 MemoryRegionSection
*section
)
837 hwaddr start_addr
= section
->offset_within_address_space
;
838 uint16_t section_index
= phys_section_add(section
);
839 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
843 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
846 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
848 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
849 AddressSpaceDispatch
*d
= as
->next_dispatch
;
850 MemoryRegionSection now
= *section
, remain
= *section
;
851 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
853 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
854 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
855 - now
.offset_within_address_space
;
857 now
.size
= int128_min(int128_make64(left
), now
.size
);
858 register_subpage(d
, &now
);
860 now
.size
= int128_zero();
862 while (int128_ne(remain
.size
, now
.size
)) {
863 remain
.size
= int128_sub(remain
.size
, now
.size
);
864 remain
.offset_within_address_space
+= int128_get64(now
.size
);
865 remain
.offset_within_region
+= int128_get64(now
.size
);
867 if (int128_lt(remain
.size
, page_size
)) {
868 register_subpage(d
, &now
);
869 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
870 now
.size
= page_size
;
871 register_subpage(d
, &now
);
873 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
874 register_multipage(d
, &now
);
879 void qemu_flush_coalesced_mmio_buffer(void)
882 kvm_flush_coalesced_mmio_buffer();
885 void qemu_mutex_lock_ramlist(void)
887 qemu_mutex_lock(&ram_list
.mutex
);
890 void qemu_mutex_unlock_ramlist(void)
892 qemu_mutex_unlock(&ram_list
.mutex
);
899 #define HUGETLBFS_MAGIC 0x958458f6
901 static long gethugepagesize(const char *path
)
907 ret
= statfs(path
, &fs
);
908 } while (ret
!= 0 && errno
== EINTR
);
915 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
916 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
921 static void *file_ram_alloc(RAMBlock
*block
,
926 char *sanitized_name
;
933 unsigned long hpagesize
;
935 hpagesize
= gethugepagesize(path
);
940 if (memory
< hpagesize
) {
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name
= g_strdup(block
->mr
->name
);
951 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
956 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
958 g_free(sanitized_name
);
960 fd
= mkstemp(filename
);
962 perror("unable to create backing store for hugepages");
969 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
977 if (ftruncate(fd
, memory
))
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
985 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
986 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
988 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
990 if (area
== MAP_FAILED
) {
991 perror("file_ram_alloc: can't mmap RAM pages");
999 static void *file_ram_alloc(RAMBlock
*block
,
1003 fprintf(stderr
, "-mem-path not supported on this host\n");
1008 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1010 RAMBlock
*block
, *next_block
;
1011 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1013 assert(size
!= 0); /* it would hand out same offset multiple times */
1015 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1018 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1019 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1021 end
= block
->offset
+ block
->length
;
1023 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1024 if (next_block
->offset
>= end
) {
1025 next
= MIN(next
, next_block
->offset
);
1028 if (next
- end
>= size
&& next
- end
< mingap
) {
1030 mingap
= next
- end
;
1034 if (offset
== RAM_ADDR_MAX
) {
1035 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1043 ram_addr_t
last_ram_offset(void)
1046 ram_addr_t last
= 0;
1048 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1049 last
= MAX(last
, block
->offset
+ block
->length
);
1054 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1058 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1059 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1060 "dump-guest-core", true)) {
1061 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1063 perror("qemu_madvise");
1064 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1065 "but dump_guest_core=off specified\n");
1070 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1072 RAMBlock
*new_block
, *block
;
1075 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1076 if (block
->offset
== addr
) {
1082 assert(!new_block
->idstr
[0]);
1085 char *id
= qdev_get_dev_path(dev
);
1087 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1091 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1093 /* This assumes the iothread lock is taken here too. */
1094 qemu_mutex_lock_ramlist();
1095 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1096 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1097 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1102 qemu_mutex_unlock_ramlist();
1105 static int memory_try_enable_merging(void *addr
, size_t len
)
1107 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1108 /* disabled by the user */
1112 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1115 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1118 RAMBlock
*block
, *new_block
;
1120 size
= TARGET_PAGE_ALIGN(size
);
1121 new_block
= g_malloc0(sizeof(*new_block
));
1124 /* This assumes the iothread lock is taken here too. */
1125 qemu_mutex_lock_ramlist();
1127 new_block
->offset
= find_ram_offset(size
);
1129 new_block
->host
= host
;
1130 new_block
->flags
|= RAM_PREALLOC_MASK
;
1131 } else if (xen_enabled()) {
1133 fprintf(stderr
, "-mem-path not supported with Xen\n");
1136 xen_ram_alloc(new_block
->offset
, size
, mr
);
1139 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1141 * file_ram_alloc() needs to allocate just like
1142 * phys_mem_alloc, but we haven't bothered to provide
1146 "-mem-path not supported with this accelerator\n");
1149 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1151 if (!new_block
->host
) {
1152 new_block
->host
= phys_mem_alloc(size
);
1153 if (!new_block
->host
) {
1154 fprintf(stderr
, "Cannot set up guest memory '%s': %s\n",
1155 new_block
->mr
->name
, strerror(errno
));
1158 memory_try_enable_merging(new_block
->host
, size
);
1161 new_block
->length
= size
;
1163 /* Keep the list sorted from biggest to smallest block. */
1164 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1165 if (block
->length
< new_block
->length
) {
1170 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1172 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1174 ram_list
.mru_block
= NULL
;
1177 qemu_mutex_unlock_ramlist();
1179 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1180 last_ram_offset() >> TARGET_PAGE_BITS
);
1181 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1182 0, size
>> TARGET_PAGE_BITS
);
1183 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1185 qemu_ram_setup_dump(new_block
->host
, size
);
1186 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1189 kvm_setup_guest_memory(new_block
->host
, size
);
1191 return new_block
->offset
;
1194 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1196 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1199 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
1205 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1206 if (addr
== block
->offset
) {
1207 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1208 ram_list
.mru_block
= NULL
;
1214 qemu_mutex_unlock_ramlist();
1217 void qemu_ram_free(ram_addr_t addr
)
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
1223 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1224 if (addr
== block
->offset
) {
1225 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1226 ram_list
.mru_block
= NULL
;
1228 if (block
->flags
& RAM_PREALLOC_MASK
) {
1230 } else if (xen_enabled()) {
1231 xen_invalidate_map_cache_entry(block
->host
);
1232 } else if (block
->fd
>= 0) {
1233 munmap(block
->host
, block
->length
);
1236 qemu_anon_ram_free(block
->host
, block
->length
);
1242 qemu_mutex_unlock_ramlist();
1247 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1254 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1255 offset
= addr
- block
->offset
;
1256 if (offset
< block
->length
) {
1257 vaddr
= block
->host
+ offset
;
1258 if (block
->flags
& RAM_PREALLOC_MASK
) {
1260 } else if (xen_enabled()) {
1264 munmap(vaddr
, length
);
1265 if (block
->fd
>= 0) {
1267 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1270 flags
|= MAP_PRIVATE
;
1272 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1273 flags
, block
->fd
, offset
);
1276 * Remap needs to match alloc. Accelerators that
1277 * set phys_mem_alloc never remap. If they did,
1278 * we'd need a remap hook here.
1280 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1282 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1283 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1286 if (area
!= vaddr
) {
1287 fprintf(stderr
, "Could not remap addr: "
1288 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1292 memory_try_enable_merging(vaddr
, length
);
1293 qemu_ram_setup_dump(vaddr
, length
);
1299 #endif /* !_WIN32 */
1301 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1305 /* The list is protected by the iothread lock here. */
1306 block
= ram_list
.mru_block
;
1307 if (block
&& addr
- block
->offset
< block
->length
) {
1310 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1311 if (addr
- block
->offset
< block
->length
) {
1316 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1320 ram_list
.mru_block
= block
;
1324 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1325 With the exception of the softmmu code in this file, this should
1326 only be used for local memory (e.g. video ram) that the device owns,
1327 and knows it isn't going to access beyond the end of the block.
1329 It should not be used for general purpose DMA.
1330 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1332 void *qemu_get_ram_ptr(ram_addr_t addr
)
1334 RAMBlock
*block
= qemu_get_ram_block(addr
);
1336 if (xen_enabled()) {
1337 /* We need to check if the requested address is in the RAM
1338 * because we don't want to map the entire memory in QEMU.
1339 * In that case just map until the end of the page.
1341 if (block
->offset
== 0) {
1342 return xen_map_cache(addr
, 0, 0);
1343 } else if (block
->host
== NULL
) {
1345 xen_map_cache(block
->offset
, block
->length
, 1);
1348 return block
->host
+ (addr
- block
->offset
);
1351 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1352 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1354 * ??? Is this still necessary?
1356 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1360 /* The list is protected by the iothread lock here. */
1361 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1362 if (addr
- block
->offset
< block
->length
) {
1363 if (xen_enabled()) {
1364 /* We need to check if the requested address is in the RAM
1365 * because we don't want to map the entire memory in QEMU.
1366 * In that case just map until the end of the page.
1368 if (block
->offset
== 0) {
1369 return xen_map_cache(addr
, 0, 0);
1370 } else if (block
->host
== NULL
) {
1372 xen_map_cache(block
->offset
, block
->length
, 1);
1375 return block
->host
+ (addr
- block
->offset
);
1379 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1385 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1386 * but takes a size argument */
1387 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1392 if (xen_enabled()) {
1393 return xen_map_cache(addr
, *size
, 1);
1397 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1398 if (addr
- block
->offset
< block
->length
) {
1399 if (addr
- block
->offset
+ *size
> block
->length
)
1400 *size
= block
->length
- addr
+ block
->offset
;
1401 return block
->host
+ (addr
- block
->offset
);
1405 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1410 /* Some of the softmmu routines need to translate from a host pointer
1411 (typically a TLB entry) back to a ram offset. */
1412 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1415 uint8_t *host
= ptr
;
1417 if (xen_enabled()) {
1418 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1419 return qemu_get_ram_block(*ram_addr
)->mr
;
1422 block
= ram_list
.mru_block
;
1423 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1427 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1428 /* This case append when the block is not mapped. */
1429 if (block
->host
== NULL
) {
1432 if (host
- block
->host
< block
->length
) {
1440 *ram_addr
= block
->offset
+ (host
- block
->host
);
1444 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1445 uint64_t val
, unsigned size
)
1448 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1449 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1450 tb_invalidate_phys_page_fast(ram_addr
, size
);
1451 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1455 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1458 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1461 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1466 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1467 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1468 /* we remove the notdirty callback only if the code has been
1470 if (dirty_flags
== 0xff) {
1471 CPUArchState
*env
= current_cpu
->env_ptr
;
1472 tlb_set_dirty(env
, env
->mem_io_vaddr
);
1476 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1477 unsigned size
, bool is_write
)
1482 static const MemoryRegionOps notdirty_mem_ops
= {
1483 .write
= notdirty_mem_write
,
1484 .valid
.accepts
= notdirty_mem_accepts
,
1485 .endianness
= DEVICE_NATIVE_ENDIAN
,
1488 /* Generate a debug exception if a watchpoint has been hit. */
1489 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1491 CPUArchState
*env
= current_cpu
->env_ptr
;
1492 target_ulong pc
, cs_base
;
1497 if (env
->watchpoint_hit
) {
1498 /* We re-entered the check after replacing the TB. Now raise
1499 * the debug interrupt so that is will trigger after the
1500 * current instruction. */
1501 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1504 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1505 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1506 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1507 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1508 wp
->flags
|= BP_WATCHPOINT_HIT
;
1509 if (!env
->watchpoint_hit
) {
1510 env
->watchpoint_hit
= wp
;
1511 tb_check_watchpoint(env
);
1512 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1513 env
->exception_index
= EXCP_DEBUG
;
1516 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1517 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1518 cpu_resume_from_signal(env
, NULL
);
1522 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1527 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1528 so these check for a hit then pass through to the normal out-of-line
1530 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1533 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1535 case 1: return ldub_phys(addr
);
1536 case 2: return lduw_phys(addr
);
1537 case 4: return ldl_phys(addr
);
1542 static void watch_mem_write(void *opaque
, hwaddr addr
,
1543 uint64_t val
, unsigned size
)
1545 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1548 stb_phys(addr
, val
);
1551 stw_phys(addr
, val
);
1554 stl_phys(addr
, val
);
1560 static const MemoryRegionOps watch_mem_ops
= {
1561 .read
= watch_mem_read
,
1562 .write
= watch_mem_write
,
1563 .endianness
= DEVICE_NATIVE_ENDIAN
,
1566 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1569 subpage_t
*subpage
= opaque
;
1572 #if defined(DEBUG_SUBPAGE)
1573 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
"\n", __func__
,
1574 subpage
, len
, addr
);
1576 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1589 static void subpage_write(void *opaque
, hwaddr addr
,
1590 uint64_t value
, unsigned len
)
1592 subpage_t
*subpage
= opaque
;
1595 #if defined(DEBUG_SUBPAGE)
1596 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1597 " value %"PRIx64
"\n",
1598 __func__
, subpage
, len
, addr
, value
);
1613 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1616 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1617 unsigned size
, bool is_write
)
1619 subpage_t
*subpage
= opaque
;
1620 #if defined(DEBUG_SUBPAGE)
1621 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
"\n",
1622 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1625 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1629 static const MemoryRegionOps subpage_ops
= {
1630 .read
= subpage_read
,
1631 .write
= subpage_write
,
1632 .valid
.accepts
= subpage_accepts
,
1633 .endianness
= DEVICE_NATIVE_ENDIAN
,
1636 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1641 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1643 idx
= SUBPAGE_IDX(start
);
1644 eidx
= SUBPAGE_IDX(end
);
1645 #if defined(DEBUG_SUBPAGE)
1646 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1647 mmio
, start
, end
, idx
, eidx
, memory
);
1649 for (; idx
<= eidx
; idx
++) {
1650 mmio
->sub_section
[idx
] = section
;
1656 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1660 mmio
= g_malloc0(sizeof(subpage_t
));
1664 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1665 "subpage", TARGET_PAGE_SIZE
);
1666 mmio
->iomem
.subpage
= true;
1667 #if defined(DEBUG_SUBPAGE)
1668 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1669 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1671 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1676 static uint16_t dummy_section(MemoryRegion
*mr
)
1678 MemoryRegionSection section
= {
1680 .offset_within_address_space
= 0,
1681 .offset_within_region
= 0,
1682 .size
= int128_2_64(),
1685 return phys_section_add(§ion
);
1688 MemoryRegion
*iotlb_to_region(hwaddr index
)
1690 return address_space_memory
.dispatch
->sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1693 static void io_mem_init(void)
1695 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1696 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1697 "unassigned", UINT64_MAX
);
1698 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1699 "notdirty", UINT64_MAX
);
1700 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1701 "watch", UINT64_MAX
);
1704 static void mem_begin(MemoryListener
*listener
)
1706 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1707 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1709 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1711 as
->next_dispatch
= d
;
1714 static void mem_commit(MemoryListener
*listener
)
1716 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1717 AddressSpaceDispatch
*cur
= as
->dispatch
;
1718 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1720 next
->nodes
= next_map
.nodes
;
1721 next
->sections
= next_map
.sections
;
1723 as
->dispatch
= next
;
1727 static void core_begin(MemoryListener
*listener
)
1731 prev_map
= g_new(PhysPageMap
, 1);
1732 *prev_map
= next_map
;
1734 memset(&next_map
, 0, sizeof(next_map
));
1735 n
= dummy_section(&io_mem_unassigned
);
1736 assert(n
== PHYS_SECTION_UNASSIGNED
);
1737 n
= dummy_section(&io_mem_notdirty
);
1738 assert(n
== PHYS_SECTION_NOTDIRTY
);
1739 n
= dummy_section(&io_mem_rom
);
1740 assert(n
== PHYS_SECTION_ROM
);
1741 n
= dummy_section(&io_mem_watch
);
1742 assert(n
== PHYS_SECTION_WATCH
);
1745 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1746 * All AddressSpaceDispatch instances have switched to the next map.
1748 static void core_commit(MemoryListener
*listener
)
1750 phys_sections_free(prev_map
);
1753 static void tcg_commit(MemoryListener
*listener
)
1757 /* since each CPU stores ram addresses in its TLB cache, we must
1758 reset the modified entries */
1761 CPUArchState
*env
= cpu
->env_ptr
;
1767 static void core_log_global_start(MemoryListener
*listener
)
1769 cpu_physical_memory_set_dirty_tracking(1);
1772 static void core_log_global_stop(MemoryListener
*listener
)
1774 cpu_physical_memory_set_dirty_tracking(0);
1777 static MemoryListener core_memory_listener
= {
1778 .begin
= core_begin
,
1779 .commit
= core_commit
,
1780 .log_global_start
= core_log_global_start
,
1781 .log_global_stop
= core_log_global_stop
,
1785 static MemoryListener tcg_memory_listener
= {
1786 .commit
= tcg_commit
,
1789 void address_space_init_dispatch(AddressSpace
*as
)
1791 as
->dispatch
= NULL
;
1792 as
->dispatch_listener
= (MemoryListener
) {
1794 .commit
= mem_commit
,
1795 .region_add
= mem_add
,
1796 .region_nop
= mem_add
,
1799 memory_listener_register(&as
->dispatch_listener
, as
);
1802 void address_space_destroy_dispatch(AddressSpace
*as
)
1804 AddressSpaceDispatch
*d
= as
->dispatch
;
1806 memory_listener_unregister(&as
->dispatch_listener
);
1808 as
->dispatch
= NULL
;
1811 static void memory_map_init(void)
1813 system_memory
= g_malloc(sizeof(*system_memory
));
1814 memory_region_init(system_memory
, NULL
, "system", INT64_MAX
);
1815 address_space_init(&address_space_memory
, system_memory
, "memory");
1817 system_io
= g_malloc(sizeof(*system_io
));
1818 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
1820 address_space_init(&address_space_io
, system_io
, "I/O");
1822 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1823 if (tcg_enabled()) {
1824 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1828 MemoryRegion
*get_system_memory(void)
1830 return system_memory
;
1833 MemoryRegion
*get_system_io(void)
1838 #endif /* !defined(CONFIG_USER_ONLY) */
1840 /* physical memory access (slow version, mainly for debug) */
1841 #if defined(CONFIG_USER_ONLY)
1842 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
1843 uint8_t *buf
, int len
, int is_write
)
1850 page
= addr
& TARGET_PAGE_MASK
;
1851 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1854 flags
= page_get_flags(page
);
1855 if (!(flags
& PAGE_VALID
))
1858 if (!(flags
& PAGE_WRITE
))
1860 /* XXX: this code should not depend on lock_user */
1861 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1864 unlock_user(p
, addr
, l
);
1866 if (!(flags
& PAGE_READ
))
1868 /* XXX: this code should not depend on lock_user */
1869 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1872 unlock_user(p
, addr
, 0);
1883 static void invalidate_and_set_dirty(hwaddr addr
,
1886 if (!cpu_physical_memory_is_dirty(addr
)) {
1887 /* invalidate code */
1888 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1890 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1892 xen_modified_memory(addr
, length
);
1895 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1897 if (memory_region_is_ram(mr
)) {
1898 return !(is_write
&& mr
->readonly
);
1900 if (memory_region_is_romd(mr
)) {
1907 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
1909 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
1911 /* Regions are assumed to support 1-4 byte accesses unless
1912 otherwise specified. */
1913 if (access_size_max
== 0) {
1914 access_size_max
= 4;
1917 /* Bound the maximum access by the alignment of the address. */
1918 if (!mr
->ops
->impl
.unaligned
) {
1919 unsigned align_size_max
= addr
& -addr
;
1920 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
1921 access_size_max
= align_size_max
;
1925 /* Don't attempt accesses larger than the maximum. */
1926 if (l
> access_size_max
) {
1927 l
= access_size_max
;
1930 l
= 1 << (qemu_fls(l
) - 1);
1936 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1937 int len
, bool is_write
)
1948 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1951 if (!memory_access_is_direct(mr
, is_write
)) {
1952 l
= memory_access_size(mr
, l
, addr1
);
1953 /* XXX: could force current_cpu to NULL to avoid
1957 /* 64 bit write access */
1959 error
|= io_mem_write(mr
, addr1
, val
, 8);
1962 /* 32 bit write access */
1964 error
|= io_mem_write(mr
, addr1
, val
, 4);
1967 /* 16 bit write access */
1969 error
|= io_mem_write(mr
, addr1
, val
, 2);
1972 /* 8 bit write access */
1974 error
|= io_mem_write(mr
, addr1
, val
, 1);
1980 addr1
+= memory_region_get_ram_addr(mr
);
1982 ptr
= qemu_get_ram_ptr(addr1
);
1983 memcpy(ptr
, buf
, l
);
1984 invalidate_and_set_dirty(addr1
, l
);
1987 if (!memory_access_is_direct(mr
, is_write
)) {
1989 l
= memory_access_size(mr
, l
, addr1
);
1992 /* 64 bit read access */
1993 error
|= io_mem_read(mr
, addr1
, &val
, 8);
1997 /* 32 bit read access */
1998 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2002 /* 16 bit read access */
2003 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2007 /* 8 bit read access */
2008 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2016 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2017 memcpy(buf
, ptr
, l
);
2028 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2029 const uint8_t *buf
, int len
)
2031 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2034 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2036 return address_space_rw(as
, addr
, buf
, len
, false);
2040 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2041 int len
, int is_write
)
2043 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2046 /* used for ROM loading : can write in RAM and ROM */
2047 void cpu_physical_memory_write_rom(hwaddr addr
,
2048 const uint8_t *buf
, int len
)
2057 mr
= address_space_translate(&address_space_memory
,
2058 addr
, &addr1
, &l
, true);
2060 if (!(memory_region_is_ram(mr
) ||
2061 memory_region_is_romd(mr
))) {
2064 addr1
+= memory_region_get_ram_addr(mr
);
2066 ptr
= qemu_get_ram_ptr(addr1
);
2067 memcpy(ptr
, buf
, l
);
2068 invalidate_and_set_dirty(addr1
, l
);
2083 static BounceBuffer bounce
;
2085 typedef struct MapClient
{
2087 void (*callback
)(void *opaque
);
2088 QLIST_ENTRY(MapClient
) link
;
2091 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2092 = QLIST_HEAD_INITIALIZER(map_client_list
);
2094 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2096 MapClient
*client
= g_malloc(sizeof(*client
));
2098 client
->opaque
= opaque
;
2099 client
->callback
= callback
;
2100 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2104 static void cpu_unregister_map_client(void *_client
)
2106 MapClient
*client
= (MapClient
*)_client
;
2108 QLIST_REMOVE(client
, link
);
2112 static void cpu_notify_map_clients(void)
2116 while (!QLIST_EMPTY(&map_client_list
)) {
2117 client
= QLIST_FIRST(&map_client_list
);
2118 client
->callback(client
->opaque
);
2119 cpu_unregister_map_client(client
);
2123 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2130 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2131 if (!memory_access_is_direct(mr
, is_write
)) {
2132 l
= memory_access_size(mr
, l
, addr
);
2133 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2144 /* Map a physical memory region into a host virtual address.
2145 * May map a subset of the requested range, given by and returned in *plen.
2146 * May return NULL if resources needed to perform the mapping are exhausted.
2147 * Use only for reads OR writes - not for read-modify-write operations.
2148 * Use cpu_register_map_client() to know when retrying the map operation is
2149 * likely to succeed.
2151 void *address_space_map(AddressSpace
*as
,
2158 hwaddr l
, xlat
, base
;
2159 MemoryRegion
*mr
, *this_mr
;
2167 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2168 if (!memory_access_is_direct(mr
, is_write
)) {
2169 if (bounce
.buffer
) {
2172 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2176 memory_region_ref(mr
);
2179 address_space_read(as
, addr
, bounce
.buffer
, l
);
2183 return bounce
.buffer
;
2187 raddr
= memory_region_get_ram_addr(mr
);
2198 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2199 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2204 memory_region_ref(mr
);
2206 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2209 /* Unmaps a memory region previously mapped by address_space_map().
2210 * Will also mark the memory as dirty if is_write == 1. access_len gives
2211 * the amount of memory that was actually read or written by the caller.
2213 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2214 int is_write
, hwaddr access_len
)
2216 if (buffer
!= bounce
.buffer
) {
2220 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2223 while (access_len
) {
2225 l
= TARGET_PAGE_SIZE
;
2228 invalidate_and_set_dirty(addr1
, l
);
2233 if (xen_enabled()) {
2234 xen_invalidate_map_cache_entry(buffer
);
2236 memory_region_unref(mr
);
2240 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2242 qemu_vfree(bounce
.buffer
);
2243 bounce
.buffer
= NULL
;
2244 memory_region_unref(bounce
.mr
);
2245 cpu_notify_map_clients();
2248 void *cpu_physical_memory_map(hwaddr addr
,
2252 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2255 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2256 int is_write
, hwaddr access_len
)
2258 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2261 /* warning: addr must be aligned */
2262 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2263 enum device_endian endian
)
2271 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2273 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2275 io_mem_read(mr
, addr1
, &val
, 4);
2276 #if defined(TARGET_WORDS_BIGENDIAN)
2277 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2281 if (endian
== DEVICE_BIG_ENDIAN
) {
2287 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2291 case DEVICE_LITTLE_ENDIAN
:
2292 val
= ldl_le_p(ptr
);
2294 case DEVICE_BIG_ENDIAN
:
2295 val
= ldl_be_p(ptr
);
2305 uint32_t ldl_phys(hwaddr addr
)
2307 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2310 uint32_t ldl_le_phys(hwaddr addr
)
2312 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2315 uint32_t ldl_be_phys(hwaddr addr
)
2317 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2320 /* warning: addr must be aligned */
2321 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2322 enum device_endian endian
)
2330 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2332 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2334 io_mem_read(mr
, addr1
, &val
, 8);
2335 #if defined(TARGET_WORDS_BIGENDIAN)
2336 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2340 if (endian
== DEVICE_BIG_ENDIAN
) {
2346 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2350 case DEVICE_LITTLE_ENDIAN
:
2351 val
= ldq_le_p(ptr
);
2353 case DEVICE_BIG_ENDIAN
:
2354 val
= ldq_be_p(ptr
);
2364 uint64_t ldq_phys(hwaddr addr
)
2366 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2369 uint64_t ldq_le_phys(hwaddr addr
)
2371 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2374 uint64_t ldq_be_phys(hwaddr addr
)
2376 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2380 uint32_t ldub_phys(hwaddr addr
)
2383 cpu_physical_memory_read(addr
, &val
, 1);
2387 /* warning: addr must be aligned */
2388 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2389 enum device_endian endian
)
2397 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2399 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2401 io_mem_read(mr
, addr1
, &val
, 2);
2402 #if defined(TARGET_WORDS_BIGENDIAN)
2403 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2407 if (endian
== DEVICE_BIG_ENDIAN
) {
2413 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2417 case DEVICE_LITTLE_ENDIAN
:
2418 val
= lduw_le_p(ptr
);
2420 case DEVICE_BIG_ENDIAN
:
2421 val
= lduw_be_p(ptr
);
2431 uint32_t lduw_phys(hwaddr addr
)
2433 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2436 uint32_t lduw_le_phys(hwaddr addr
)
2438 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2441 uint32_t lduw_be_phys(hwaddr addr
)
2443 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2446 /* warning: addr must be aligned. The ram page is not masked as dirty
2447 and the code inside is not invalidated. It is useful if the dirty
2448 bits are used to track modified PTEs */
2449 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2456 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2458 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2459 io_mem_write(mr
, addr1
, val
, 4);
2461 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2462 ptr
= qemu_get_ram_ptr(addr1
);
2465 if (unlikely(in_migration
)) {
2466 if (!cpu_physical_memory_is_dirty(addr1
)) {
2467 /* invalidate code */
2468 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2470 cpu_physical_memory_set_dirty_flags(
2471 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2477 /* warning: addr must be aligned */
2478 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2479 enum device_endian endian
)
2486 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2488 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2489 #if defined(TARGET_WORDS_BIGENDIAN)
2490 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2494 if (endian
== DEVICE_BIG_ENDIAN
) {
2498 io_mem_write(mr
, addr1
, val
, 4);
2501 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2502 ptr
= qemu_get_ram_ptr(addr1
);
2504 case DEVICE_LITTLE_ENDIAN
:
2507 case DEVICE_BIG_ENDIAN
:
2514 invalidate_and_set_dirty(addr1
, 4);
2518 void stl_phys(hwaddr addr
, uint32_t val
)
2520 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2523 void stl_le_phys(hwaddr addr
, uint32_t val
)
2525 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2528 void stl_be_phys(hwaddr addr
, uint32_t val
)
2530 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2534 void stb_phys(hwaddr addr
, uint32_t val
)
2537 cpu_physical_memory_write(addr
, &v
, 1);
2540 /* warning: addr must be aligned */
2541 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2542 enum device_endian endian
)
2549 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2551 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2552 #if defined(TARGET_WORDS_BIGENDIAN)
2553 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2557 if (endian
== DEVICE_BIG_ENDIAN
) {
2561 io_mem_write(mr
, addr1
, val
, 2);
2564 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2565 ptr
= qemu_get_ram_ptr(addr1
);
2567 case DEVICE_LITTLE_ENDIAN
:
2570 case DEVICE_BIG_ENDIAN
:
2577 invalidate_and_set_dirty(addr1
, 2);
2581 void stw_phys(hwaddr addr
, uint32_t val
)
2583 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2586 void stw_le_phys(hwaddr addr
, uint32_t val
)
2588 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2591 void stw_be_phys(hwaddr addr
, uint32_t val
)
2593 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2597 void stq_phys(hwaddr addr
, uint64_t val
)
2600 cpu_physical_memory_write(addr
, &val
, 8);
2603 void stq_le_phys(hwaddr addr
, uint64_t val
)
2605 val
= cpu_to_le64(val
);
2606 cpu_physical_memory_write(addr
, &val
, 8);
2609 void stq_be_phys(hwaddr addr
, uint64_t val
)
2611 val
= cpu_to_be64(val
);
2612 cpu_physical_memory_write(addr
, &val
, 8);
2615 /* virtual memory access for debug (includes writing to ROM) */
2616 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2617 uint8_t *buf
, int len
, int is_write
)
2624 page
= addr
& TARGET_PAGE_MASK
;
2625 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2626 /* if no physical page mapped, return an error */
2627 if (phys_addr
== -1)
2629 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2632 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2634 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2636 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2645 #if !defined(CONFIG_USER_ONLY)
2648 * A helper function for the _utterly broken_ virtio device model to find out if
2649 * it's running on a big endian machine. Don't do this at home kids!
2651 bool virtio_is_big_endian(void);
2652 bool virtio_is_big_endian(void)
2654 #if defined(TARGET_WORDS_BIGENDIAN)
2663 #ifndef CONFIG_USER_ONLY
2664 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2669 mr
= address_space_translate(&address_space_memory
,
2670 phys_addr
, &phys_addr
, &l
, false);
2672 return !(memory_region_is_ram(mr
) ||
2673 memory_region_is_romd(mr
));
2676 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2680 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2681 func(block
->host
, block
->offset
, block
->length
, opaque
);