qemu-char: convert pty backend to data-driven creation
[qemu.git] / kvm-all.c
blob6f04fbbb86de5935f4ea1b252609bda18e6202c7
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "qemu/error-report.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
39 #include "hw/irq.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 struct KVMState
65 AccelState parent_obj;
67 int nr_slots;
68 int fd;
69 int vmfd;
70 int coalesced_mmio;
71 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
72 bool coalesced_flush_in_progress;
73 int broken_set_mem_region;
74 int vcpu_events;
75 int robust_singlestep;
76 int debugregs;
77 #ifdef KVM_CAP_SET_GUEST_DEBUG
78 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
79 #endif
80 int pit_state2;
81 int xsave, xcrs;
82 int many_ioeventfds;
83 int intx_set_mask;
84 /* The man page (and posix) say ioctl numbers are signed int, but
85 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
86 * unsigned, and treating them as signed here can break things */
87 unsigned irq_set_ioctl;
88 unsigned int sigmask_len;
89 GHashTable *gsimap;
90 #ifdef KVM_CAP_IRQ_ROUTING
91 struct kvm_irq_routing *irq_routes;
92 int nr_allocated_irq_routes;
93 uint32_t *used_gsi_bitmap;
94 unsigned int gsi_count;
95 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
96 bool direct_msi;
97 #endif
98 KVMMemoryListener memory_listener;
101 KVMState *kvm_state;
102 bool kvm_kernel_irqchip;
103 bool kvm_async_interrupts_allowed;
104 bool kvm_halt_in_kernel_allowed;
105 bool kvm_eventfds_allowed;
106 bool kvm_irqfds_allowed;
107 bool kvm_resamplefds_allowed;
108 bool kvm_msi_via_irqfd_allowed;
109 bool kvm_gsi_routing_allowed;
110 bool kvm_gsi_direct_mapping;
111 bool kvm_allowed;
112 bool kvm_readonly_mem_allowed;
113 bool kvm_vm_attributes_allowed;
115 static const KVMCapabilityInfo kvm_required_capabilites[] = {
116 KVM_CAP_INFO(USER_MEMORY),
117 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
118 KVM_CAP_LAST_INFO
121 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
123 KVMState *s = kvm_state;
124 int i;
126 for (i = 0; i < s->nr_slots; i++) {
127 if (kml->slots[i].memory_size == 0) {
128 return &kml->slots[i];
132 return NULL;
135 bool kvm_has_free_slot(MachineState *ms)
137 KVMState *s = KVM_STATE(ms->accelerator);
139 return kvm_get_free_slot(&s->memory_listener);
142 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
144 KVMSlot *slot = kvm_get_free_slot(kml);
146 if (slot) {
147 return slot;
150 fprintf(stderr, "%s: no free slot available\n", __func__);
151 abort();
154 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
155 hwaddr start_addr,
156 hwaddr end_addr)
158 KVMState *s = kvm_state;
159 int i;
161 for (i = 0; i < s->nr_slots; i++) {
162 KVMSlot *mem = &kml->slots[i];
164 if (start_addr == mem->start_addr &&
165 end_addr == mem->start_addr + mem->memory_size) {
166 return mem;
170 return NULL;
174 * Find overlapping slot with lowest start address
176 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
177 hwaddr start_addr,
178 hwaddr end_addr)
180 KVMState *s = kvm_state;
181 KVMSlot *found = NULL;
182 int i;
184 for (i = 0; i < s->nr_slots; i++) {
185 KVMSlot *mem = &kml->slots[i];
187 if (mem->memory_size == 0 ||
188 (found && found->start_addr < mem->start_addr)) {
189 continue;
192 if (end_addr > mem->start_addr &&
193 start_addr < mem->start_addr + mem->memory_size) {
194 found = mem;
198 return found;
201 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
202 hwaddr *phys_addr)
204 KVMMemoryListener *kml = &s->memory_listener;
205 int i;
207 for (i = 0; i < s->nr_slots; i++) {
208 KVMSlot *mem = &kml->slots[i];
210 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
211 *phys_addr = mem->start_addr + (ram - mem->ram);
212 return 1;
216 return 0;
219 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
221 KVMState *s = kvm_state;
222 struct kvm_userspace_memory_region mem;
224 mem.slot = slot->slot | (kml->as_id << 16);
225 mem.guest_phys_addr = slot->start_addr;
226 mem.userspace_addr = (unsigned long)slot->ram;
227 mem.flags = slot->flags;
229 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
230 /* Set the slot size to 0 before setting the slot to the desired
231 * value. This is needed based on KVM commit 75d61fbc. */
232 mem.memory_size = 0;
233 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
235 mem.memory_size = slot->memory_size;
236 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
239 int kvm_init_vcpu(CPUState *cpu)
241 KVMState *s = kvm_state;
242 long mmap_size;
243 int ret;
245 DPRINTF("kvm_init_vcpu\n");
247 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
248 if (ret < 0) {
249 DPRINTF("kvm_create_vcpu failed\n");
250 goto err;
253 cpu->kvm_fd = ret;
254 cpu->kvm_state = s;
255 cpu->kvm_vcpu_dirty = true;
257 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
258 if (mmap_size < 0) {
259 ret = mmap_size;
260 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
261 goto err;
264 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
265 cpu->kvm_fd, 0);
266 if (cpu->kvm_run == MAP_FAILED) {
267 ret = -errno;
268 DPRINTF("mmap'ing vcpu state failed\n");
269 goto err;
272 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
273 s->coalesced_mmio_ring =
274 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
277 ret = kvm_arch_init_vcpu(cpu);
278 err:
279 return ret;
283 * dirty pages logging control
286 static int kvm_mem_flags(MemoryRegion *mr)
288 bool readonly = mr->readonly || memory_region_is_romd(mr);
289 int flags = 0;
291 if (memory_region_get_dirty_log_mask(mr) != 0) {
292 flags |= KVM_MEM_LOG_DIRTY_PAGES;
294 if (readonly && kvm_readonly_mem_allowed) {
295 flags |= KVM_MEM_READONLY;
297 return flags;
300 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
301 MemoryRegion *mr)
303 int old_flags;
305 old_flags = mem->flags;
306 mem->flags = kvm_mem_flags(mr);
308 /* If nothing changed effectively, no need to issue ioctl */
309 if (mem->flags == old_flags) {
310 return 0;
313 return kvm_set_user_memory_region(kml, mem);
316 static int kvm_section_update_flags(KVMMemoryListener *kml,
317 MemoryRegionSection *section)
319 hwaddr phys_addr = section->offset_within_address_space;
320 ram_addr_t size = int128_get64(section->size);
321 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
323 if (mem == NULL) {
324 return 0;
325 } else {
326 return kvm_slot_update_flags(kml, mem, section->mr);
330 static void kvm_log_start(MemoryListener *listener,
331 MemoryRegionSection *section,
332 int old, int new)
334 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
335 int r;
337 if (old != 0) {
338 return;
341 r = kvm_section_update_flags(kml, section);
342 if (r < 0) {
343 abort();
347 static void kvm_log_stop(MemoryListener *listener,
348 MemoryRegionSection *section,
349 int old, int new)
351 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
352 int r;
354 if (new != 0) {
355 return;
358 r = kvm_section_update_flags(kml, section);
359 if (r < 0) {
360 abort();
364 /* get kvm's dirty pages bitmap and update qemu's */
365 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
366 unsigned long *bitmap)
368 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
369 ram_addr_t pages = int128_get64(section->size) / getpagesize();
371 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
372 return 0;
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
381 * to dirty.
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
386 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
387 MemoryRegionSection *section)
389 KVMState *s = kvm_state;
390 unsigned long size, allocated_size = 0;
391 struct kvm_dirty_log d = {};
392 KVMSlot *mem;
393 int ret = 0;
394 hwaddr start_addr = section->offset_within_address_space;
395 hwaddr end_addr = start_addr + int128_get64(section->size);
397 d.dirty_bitmap = NULL;
398 while (start_addr < end_addr) {
399 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
400 if (mem == NULL) {
401 break;
404 /* XXX bad kernel interface alert
405 * For dirty bitmap, kernel allocates array of size aligned to
406 * bits-per-long. But for case when the kernel is 64bits and
407 * the userspace is 32bits, userspace can't align to the same
408 * bits-per-long, since sizeof(long) is different between kernel
409 * and user space. This way, userspace will provide buffer which
410 * may be 4 bytes less than the kernel will use, resulting in
411 * userspace memory corruption (which is not detectable by valgrind
412 * too, in most cases).
413 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
414 * a hope that sizeof(long) wont become >8 any time soon.
416 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
417 /*HOST_LONG_BITS*/ 64) / 8;
418 if (!d.dirty_bitmap) {
419 d.dirty_bitmap = g_malloc(size);
420 } else if (size > allocated_size) {
421 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
423 allocated_size = size;
424 memset(d.dirty_bitmap, 0, allocated_size);
426 d.slot = mem->slot | (kml->as_id << 16);
427 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428 DPRINTF("ioctl failed %d\n", errno);
429 ret = -1;
430 break;
433 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434 start_addr = mem->start_addr + mem->memory_size;
436 g_free(d.dirty_bitmap);
438 return ret;
441 static void kvm_coalesce_mmio_region(MemoryListener *listener,
442 MemoryRegionSection *secion,
443 hwaddr start, hwaddr size)
445 KVMState *s = kvm_state;
447 if (s->coalesced_mmio) {
448 struct kvm_coalesced_mmio_zone zone;
450 zone.addr = start;
451 zone.size = size;
452 zone.pad = 0;
454 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
458 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
459 MemoryRegionSection *secion,
460 hwaddr start, hwaddr size)
462 KVMState *s = kvm_state;
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
467 zone.addr = start;
468 zone.size = size;
469 zone.pad = 0;
471 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
475 int kvm_check_extension(KVMState *s, unsigned int extension)
477 int ret;
479 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
480 if (ret < 0) {
481 ret = 0;
484 return ret;
487 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
489 int ret;
491 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
492 if (ret < 0) {
493 /* VM wide version not implemented, use global one instead */
494 ret = kvm_check_extension(s, extension);
497 return ret;
500 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
502 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
503 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
504 * endianness, but the memory core hands them in target endianness.
505 * For example, PPC is always treated as big-endian even if running
506 * on KVM and on PPC64LE. Correct here.
508 switch (size) {
509 case 2:
510 val = bswap16(val);
511 break;
512 case 4:
513 val = bswap32(val);
514 break;
516 #endif
517 return val;
520 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
521 bool assign, uint32_t size, bool datamatch)
523 int ret;
524 struct kvm_ioeventfd iofd = {
525 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
526 .addr = addr,
527 .len = size,
528 .flags = 0,
529 .fd = fd,
532 if (!kvm_enabled()) {
533 return -ENOSYS;
536 if (datamatch) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
539 if (!assign) {
540 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
543 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
545 if (ret < 0) {
546 return -errno;
549 return 0;
552 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
553 bool assign, uint32_t size, bool datamatch)
555 struct kvm_ioeventfd kick = {
556 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
557 .addr = addr,
558 .flags = KVM_IOEVENTFD_FLAG_PIO,
559 .len = size,
560 .fd = fd,
562 int r;
563 if (!kvm_enabled()) {
564 return -ENOSYS;
566 if (datamatch) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
569 if (!assign) {
570 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
572 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
573 if (r < 0) {
574 return r;
576 return 0;
580 static int kvm_check_many_ioeventfds(void)
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
587 * can avoid creating too many ioeventfds.
589 #if defined(CONFIG_EVENTFD)
590 int ioeventfds[7];
591 int i, ret = 0;
592 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
593 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
594 if (ioeventfds[i] < 0) {
595 break;
597 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
598 if (ret < 0) {
599 close(ioeventfds[i]);
600 break;
604 /* Decide whether many devices are supported or not */
605 ret = i == ARRAY_SIZE(ioeventfds);
607 while (i-- > 0) {
608 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
609 close(ioeventfds[i]);
611 return ret;
612 #else
613 return 0;
614 #endif
617 static const KVMCapabilityInfo *
618 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
620 while (list->name) {
621 if (!kvm_check_extension(s, list->value)) {
622 return list;
624 list++;
626 return NULL;
629 static void kvm_set_phys_mem(KVMMemoryListener *kml,
630 MemoryRegionSection *section, bool add)
632 KVMState *s = kvm_state;
633 KVMSlot *mem, old;
634 int err;
635 MemoryRegion *mr = section->mr;
636 bool writeable = !mr->readonly && !mr->rom_device;
637 hwaddr start_addr = section->offset_within_address_space;
638 ram_addr_t size = int128_get64(section->size);
639 void *ram = NULL;
640 unsigned delta;
642 /* kvm works in page size chunks, but the function may be called
643 with sub-page size and unaligned start address. Pad the start
644 address to next and truncate size to previous page boundary. */
645 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
646 delta &= ~qemu_real_host_page_mask;
647 if (delta > size) {
648 return;
650 start_addr += delta;
651 size -= delta;
652 size &= qemu_real_host_page_mask;
653 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
654 return;
657 if (!memory_region_is_ram(mr)) {
658 if (writeable || !kvm_readonly_mem_allowed) {
659 return;
660 } else if (!mr->romd_mode) {
661 /* If the memory device is not in romd_mode, then we actually want
662 * to remove the kvm memory slot so all accesses will trap. */
663 add = false;
667 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
669 while (1) {
670 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
671 if (!mem) {
672 break;
675 if (add && start_addr >= mem->start_addr &&
676 (start_addr + size <= mem->start_addr + mem->memory_size) &&
677 (ram - start_addr == mem->ram - mem->start_addr)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - update flags and done. */
680 kvm_slot_update_flags(kml, mem, mr);
681 return;
684 old = *mem;
686 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
687 kvm_physical_sync_dirty_bitmap(kml, section);
690 /* unregister the overlapping slot */
691 mem->memory_size = 0;
692 err = kvm_set_user_memory_region(kml, mem);
693 if (err) {
694 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
695 __func__, strerror(-err));
696 abort();
699 /* Workaround for older KVM versions: we can't join slots, even not by
700 * unregistering the previous ones and then registering the larger
701 * slot. We have to maintain the existing fragmentation. Sigh.
703 * This workaround assumes that the new slot starts at the same
704 * address as the first existing one. If not or if some overlapping
705 * slot comes around later, we will fail (not seen in practice so far)
706 * - and actually require a recent KVM version. */
707 if (s->broken_set_mem_region &&
708 old.start_addr == start_addr && old.memory_size < size && add) {
709 mem = kvm_alloc_slot(kml);
710 mem->memory_size = old.memory_size;
711 mem->start_addr = old.start_addr;
712 mem->ram = old.ram;
713 mem->flags = kvm_mem_flags(mr);
715 err = kvm_set_user_memory_region(kml, mem);
716 if (err) {
717 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
718 strerror(-err));
719 abort();
722 start_addr += old.memory_size;
723 ram += old.memory_size;
724 size -= old.memory_size;
725 continue;
728 /* register prefix slot */
729 if (old.start_addr < start_addr) {
730 mem = kvm_alloc_slot(kml);
731 mem->memory_size = start_addr - old.start_addr;
732 mem->start_addr = old.start_addr;
733 mem->ram = old.ram;
734 mem->flags = kvm_mem_flags(mr);
736 err = kvm_set_user_memory_region(kml, mem);
737 if (err) {
738 fprintf(stderr, "%s: error registering prefix slot: %s\n",
739 __func__, strerror(-err));
740 #ifdef TARGET_PPC
741 fprintf(stderr, "%s: This is probably because your kernel's " \
742 "PAGE_SIZE is too big. Please try to use 4k " \
743 "PAGE_SIZE!\n", __func__);
744 #endif
745 abort();
749 /* register suffix slot */
750 if (old.start_addr + old.memory_size > start_addr + size) {
751 ram_addr_t size_delta;
753 mem = kvm_alloc_slot(kml);
754 mem->start_addr = start_addr + size;
755 size_delta = mem->start_addr - old.start_addr;
756 mem->memory_size = old.memory_size - size_delta;
757 mem->ram = old.ram + size_delta;
758 mem->flags = kvm_mem_flags(mr);
760 err = kvm_set_user_memory_region(kml, mem);
761 if (err) {
762 fprintf(stderr, "%s: error registering suffix slot: %s\n",
763 __func__, strerror(-err));
764 abort();
769 /* in case the KVM bug workaround already "consumed" the new slot */
770 if (!size) {
771 return;
773 if (!add) {
774 return;
776 mem = kvm_alloc_slot(kml);
777 mem->memory_size = size;
778 mem->start_addr = start_addr;
779 mem->ram = ram;
780 mem->flags = kvm_mem_flags(mr);
782 err = kvm_set_user_memory_region(kml, mem);
783 if (err) {
784 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
785 strerror(-err));
786 abort();
790 static void kvm_region_add(MemoryListener *listener,
791 MemoryRegionSection *section)
793 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
795 memory_region_ref(section->mr);
796 kvm_set_phys_mem(kml, section, true);
799 static void kvm_region_del(MemoryListener *listener,
800 MemoryRegionSection *section)
802 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
804 kvm_set_phys_mem(kml, section, false);
805 memory_region_unref(section->mr);
808 static void kvm_log_sync(MemoryListener *listener,
809 MemoryRegionSection *section)
811 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
812 int r;
814 r = kvm_physical_sync_dirty_bitmap(kml, section);
815 if (r < 0) {
816 abort();
820 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
821 MemoryRegionSection *section,
822 bool match_data, uint64_t data,
823 EventNotifier *e)
825 int fd = event_notifier_get_fd(e);
826 int r;
828 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
829 data, true, int128_get64(section->size),
830 match_data);
831 if (r < 0) {
832 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
833 __func__, strerror(-r));
834 abort();
838 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
839 MemoryRegionSection *section,
840 bool match_data, uint64_t data,
841 EventNotifier *e)
843 int fd = event_notifier_get_fd(e);
844 int r;
846 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
847 data, false, int128_get64(section->size),
848 match_data);
849 if (r < 0) {
850 abort();
854 static void kvm_io_ioeventfd_add(MemoryListener *listener,
855 MemoryRegionSection *section,
856 bool match_data, uint64_t data,
857 EventNotifier *e)
859 int fd = event_notifier_get_fd(e);
860 int r;
862 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
863 data, true, int128_get64(section->size),
864 match_data);
865 if (r < 0) {
866 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
867 __func__, strerror(-r));
868 abort();
872 static void kvm_io_ioeventfd_del(MemoryListener *listener,
873 MemoryRegionSection *section,
874 bool match_data, uint64_t data,
875 EventNotifier *e)
878 int fd = event_notifier_get_fd(e);
879 int r;
881 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
882 data, false, int128_get64(section->size),
883 match_data);
884 if (r < 0) {
885 abort();
889 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
890 AddressSpace *as, int as_id)
892 int i;
894 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
895 kml->as_id = as_id;
897 for (i = 0; i < s->nr_slots; i++) {
898 kml->slots[i].slot = i;
901 kml->listener.region_add = kvm_region_add;
902 kml->listener.region_del = kvm_region_del;
903 kml->listener.log_start = kvm_log_start;
904 kml->listener.log_stop = kvm_log_stop;
905 kml->listener.log_sync = kvm_log_sync;
906 kml->listener.priority = 10;
908 memory_listener_register(&kml->listener, as);
911 static MemoryListener kvm_io_listener = {
912 .eventfd_add = kvm_io_ioeventfd_add,
913 .eventfd_del = kvm_io_ioeventfd_del,
914 .priority = 10,
917 static void kvm_handle_interrupt(CPUState *cpu, int mask)
919 cpu->interrupt_request |= mask;
921 if (!qemu_cpu_is_self(cpu)) {
922 qemu_cpu_kick(cpu);
926 int kvm_set_irq(KVMState *s, int irq, int level)
928 struct kvm_irq_level event;
929 int ret;
931 assert(kvm_async_interrupts_enabled());
933 event.level = level;
934 event.irq = irq;
935 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
936 if (ret < 0) {
937 perror("kvm_set_irq");
938 abort();
941 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
944 #ifdef KVM_CAP_IRQ_ROUTING
945 typedef struct KVMMSIRoute {
946 struct kvm_irq_routing_entry kroute;
947 QTAILQ_ENTRY(KVMMSIRoute) entry;
948 } KVMMSIRoute;
950 static void set_gsi(KVMState *s, unsigned int gsi)
952 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
955 static void clear_gsi(KVMState *s, unsigned int gsi)
957 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
960 void kvm_init_irq_routing(KVMState *s)
962 int gsi_count, i;
964 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
965 if (gsi_count > 0) {
966 unsigned int gsi_bits, i;
968 /* Round up so we can search ints using ffs */
969 gsi_bits = ALIGN(gsi_count, 32);
970 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
971 s->gsi_count = gsi_count;
973 /* Mark any over-allocated bits as already in use */
974 for (i = gsi_count; i < gsi_bits; i++) {
975 set_gsi(s, i);
979 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
980 s->nr_allocated_irq_routes = 0;
982 if (!s->direct_msi) {
983 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
984 QTAILQ_INIT(&s->msi_hashtab[i]);
988 kvm_arch_init_irq_routing(s);
991 void kvm_irqchip_commit_routes(KVMState *s)
993 int ret;
995 s->irq_routes->flags = 0;
996 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
997 assert(ret == 0);
1000 static void kvm_add_routing_entry(KVMState *s,
1001 struct kvm_irq_routing_entry *entry)
1003 struct kvm_irq_routing_entry *new;
1004 int n, size;
1006 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1007 n = s->nr_allocated_irq_routes * 2;
1008 if (n < 64) {
1009 n = 64;
1011 size = sizeof(struct kvm_irq_routing);
1012 size += n * sizeof(*new);
1013 s->irq_routes = g_realloc(s->irq_routes, size);
1014 s->nr_allocated_irq_routes = n;
1016 n = s->irq_routes->nr++;
1017 new = &s->irq_routes->entries[n];
1019 *new = *entry;
1021 set_gsi(s, entry->gsi);
1024 static int kvm_update_routing_entry(KVMState *s,
1025 struct kvm_irq_routing_entry *new_entry)
1027 struct kvm_irq_routing_entry *entry;
1028 int n;
1030 for (n = 0; n < s->irq_routes->nr; n++) {
1031 entry = &s->irq_routes->entries[n];
1032 if (entry->gsi != new_entry->gsi) {
1033 continue;
1036 if(!memcmp(entry, new_entry, sizeof *entry)) {
1037 return 0;
1040 *entry = *new_entry;
1042 kvm_irqchip_commit_routes(s);
1044 return 0;
1047 return -ESRCH;
1050 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1052 struct kvm_irq_routing_entry e = {};
1054 assert(pin < s->gsi_count);
1056 e.gsi = irq;
1057 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1058 e.flags = 0;
1059 e.u.irqchip.irqchip = irqchip;
1060 e.u.irqchip.pin = pin;
1061 kvm_add_routing_entry(s, &e);
1064 void kvm_irqchip_release_virq(KVMState *s, int virq)
1066 struct kvm_irq_routing_entry *e;
1067 int i;
1069 if (kvm_gsi_direct_mapping()) {
1070 return;
1073 for (i = 0; i < s->irq_routes->nr; i++) {
1074 e = &s->irq_routes->entries[i];
1075 if (e->gsi == virq) {
1076 s->irq_routes->nr--;
1077 *e = s->irq_routes->entries[s->irq_routes->nr];
1080 clear_gsi(s, virq);
1083 static unsigned int kvm_hash_msi(uint32_t data)
1085 /* This is optimized for IA32 MSI layout. However, no other arch shall
1086 * repeat the mistake of not providing a direct MSI injection API. */
1087 return data & 0xff;
1090 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1092 KVMMSIRoute *route, *next;
1093 unsigned int hash;
1095 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1096 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1097 kvm_irqchip_release_virq(s, route->kroute.gsi);
1098 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1099 g_free(route);
1104 static int kvm_irqchip_get_virq(KVMState *s)
1106 uint32_t *word = s->used_gsi_bitmap;
1107 int max_words = ALIGN(s->gsi_count, 32) / 32;
1108 int i, zeroes;
1111 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1112 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1113 * number can succeed even though a new route entry cannot be added.
1114 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1116 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1117 kvm_flush_dynamic_msi_routes(s);
1120 /* Return the lowest unused GSI in the bitmap */
1121 for (i = 0; i < max_words; i++) {
1122 zeroes = ctz32(~word[i]);
1123 if (zeroes == 32) {
1124 continue;
1127 return zeroes + i * 32;
1129 return -ENOSPC;
1133 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1135 unsigned int hash = kvm_hash_msi(msg.data);
1136 KVMMSIRoute *route;
1138 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1139 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1140 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1141 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1142 return route;
1145 return NULL;
1148 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1150 struct kvm_msi msi;
1151 KVMMSIRoute *route;
1153 if (s->direct_msi) {
1154 msi.address_lo = (uint32_t)msg.address;
1155 msi.address_hi = msg.address >> 32;
1156 msi.data = le32_to_cpu(msg.data);
1157 msi.flags = 0;
1158 memset(msi.pad, 0, sizeof(msi.pad));
1160 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1163 route = kvm_lookup_msi_route(s, msg);
1164 if (!route) {
1165 int virq;
1167 virq = kvm_irqchip_get_virq(s);
1168 if (virq < 0) {
1169 return virq;
1172 route = g_malloc0(sizeof(KVMMSIRoute));
1173 route->kroute.gsi = virq;
1174 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1175 route->kroute.flags = 0;
1176 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1177 route->kroute.u.msi.address_hi = msg.address >> 32;
1178 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1180 kvm_add_routing_entry(s, &route->kroute);
1181 kvm_irqchip_commit_routes(s);
1183 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1184 entry);
1187 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1189 return kvm_set_irq(s, route->kroute.gsi, 1);
1192 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1194 struct kvm_irq_routing_entry kroute = {};
1195 int virq;
1197 if (kvm_gsi_direct_mapping()) {
1198 return kvm_arch_msi_data_to_gsi(msg.data);
1201 if (!kvm_gsi_routing_enabled()) {
1202 return -ENOSYS;
1205 virq = kvm_irqchip_get_virq(s);
1206 if (virq < 0) {
1207 return virq;
1210 kroute.gsi = virq;
1211 kroute.type = KVM_IRQ_ROUTING_MSI;
1212 kroute.flags = 0;
1213 kroute.u.msi.address_lo = (uint32_t)msg.address;
1214 kroute.u.msi.address_hi = msg.address >> 32;
1215 kroute.u.msi.data = le32_to_cpu(msg.data);
1216 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1217 kvm_irqchip_release_virq(s, virq);
1218 return -EINVAL;
1221 kvm_add_routing_entry(s, &kroute);
1222 kvm_irqchip_commit_routes(s);
1224 return virq;
1227 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1229 struct kvm_irq_routing_entry kroute = {};
1231 if (kvm_gsi_direct_mapping()) {
1232 return 0;
1235 if (!kvm_irqchip_in_kernel()) {
1236 return -ENOSYS;
1239 kroute.gsi = virq;
1240 kroute.type = KVM_IRQ_ROUTING_MSI;
1241 kroute.flags = 0;
1242 kroute.u.msi.address_lo = (uint32_t)msg.address;
1243 kroute.u.msi.address_hi = msg.address >> 32;
1244 kroute.u.msi.data = le32_to_cpu(msg.data);
1245 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1246 return -EINVAL;
1249 return kvm_update_routing_entry(s, &kroute);
1252 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1253 bool assign)
1255 struct kvm_irqfd irqfd = {
1256 .fd = fd,
1257 .gsi = virq,
1258 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1261 if (rfd != -1) {
1262 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1263 irqfd.resamplefd = rfd;
1266 if (!kvm_irqfds_enabled()) {
1267 return -ENOSYS;
1270 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1273 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1275 struct kvm_irq_routing_entry kroute = {};
1276 int virq;
1278 if (!kvm_gsi_routing_enabled()) {
1279 return -ENOSYS;
1282 virq = kvm_irqchip_get_virq(s);
1283 if (virq < 0) {
1284 return virq;
1287 kroute.gsi = virq;
1288 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1289 kroute.flags = 0;
1290 kroute.u.adapter.summary_addr = adapter->summary_addr;
1291 kroute.u.adapter.ind_addr = adapter->ind_addr;
1292 kroute.u.adapter.summary_offset = adapter->summary_offset;
1293 kroute.u.adapter.ind_offset = adapter->ind_offset;
1294 kroute.u.adapter.adapter_id = adapter->adapter_id;
1296 kvm_add_routing_entry(s, &kroute);
1298 return virq;
1301 #else /* !KVM_CAP_IRQ_ROUTING */
1303 void kvm_init_irq_routing(KVMState *s)
1307 void kvm_irqchip_release_virq(KVMState *s, int virq)
1311 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1313 abort();
1316 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1318 return -ENOSYS;
1321 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1323 return -ENOSYS;
1326 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1328 abort();
1331 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1333 return -ENOSYS;
1335 #endif /* !KVM_CAP_IRQ_ROUTING */
1337 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1338 EventNotifier *rn, int virq)
1340 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1341 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1344 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1345 int virq)
1347 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1348 false);
1351 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1352 EventNotifier *rn, qemu_irq irq)
1354 gpointer key, gsi;
1355 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1357 if (!found) {
1358 return -ENXIO;
1360 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1363 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1364 qemu_irq irq)
1366 gpointer key, gsi;
1367 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1369 if (!found) {
1370 return -ENXIO;
1372 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1375 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1377 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1380 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1382 int ret;
1384 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1386 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1387 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1388 if (ret < 0) {
1389 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1390 exit(1);
1392 } else {
1393 return;
1396 /* First probe and see if there's a arch-specific hook to create the
1397 * in-kernel irqchip for us */
1398 ret = kvm_arch_irqchip_create(s);
1399 if (ret == 0) {
1400 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1402 if (ret < 0) {
1403 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1404 exit(1);
1407 kvm_kernel_irqchip = true;
1408 /* If we have an in-kernel IRQ chip then we must have asynchronous
1409 * interrupt delivery (though the reverse is not necessarily true)
1411 kvm_async_interrupts_allowed = true;
1412 kvm_halt_in_kernel_allowed = true;
1414 kvm_init_irq_routing(s);
1416 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1419 /* Find number of supported CPUs using the recommended
1420 * procedure from the kernel API documentation to cope with
1421 * older kernels that may be missing capabilities.
1423 static int kvm_recommended_vcpus(KVMState *s)
1425 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1426 return (ret) ? ret : 4;
1429 static int kvm_max_vcpus(KVMState *s)
1431 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1432 return (ret) ? ret : kvm_recommended_vcpus(s);
1435 static int kvm_init(MachineState *ms)
1437 MachineClass *mc = MACHINE_GET_CLASS(ms);
1438 static const char upgrade_note[] =
1439 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1440 "(see http://sourceforge.net/projects/kvm).\n";
1441 struct {
1442 const char *name;
1443 int num;
1444 } num_cpus[] = {
1445 { "SMP", smp_cpus },
1446 { "hotpluggable", max_cpus },
1447 { NULL, }
1448 }, *nc = num_cpus;
1449 int soft_vcpus_limit, hard_vcpus_limit;
1450 KVMState *s;
1451 const KVMCapabilityInfo *missing_cap;
1452 int ret;
1453 int type = 0;
1454 const char *kvm_type;
1456 s = KVM_STATE(ms->accelerator);
1459 * On systems where the kernel can support different base page
1460 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1461 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1462 * page size for the system though.
1464 assert(TARGET_PAGE_SIZE <= getpagesize());
1465 page_size_init();
1467 s->sigmask_len = 8;
1469 #ifdef KVM_CAP_SET_GUEST_DEBUG
1470 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1471 #endif
1472 s->vmfd = -1;
1473 s->fd = qemu_open("/dev/kvm", O_RDWR);
1474 if (s->fd == -1) {
1475 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1476 ret = -errno;
1477 goto err;
1480 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1481 if (ret < KVM_API_VERSION) {
1482 if (ret >= 0) {
1483 ret = -EINVAL;
1485 fprintf(stderr, "kvm version too old\n");
1486 goto err;
1489 if (ret > KVM_API_VERSION) {
1490 ret = -EINVAL;
1491 fprintf(stderr, "kvm version not supported\n");
1492 goto err;
1495 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1497 /* If unspecified, use the default value */
1498 if (!s->nr_slots) {
1499 s->nr_slots = 32;
1502 /* check the vcpu limits */
1503 soft_vcpus_limit = kvm_recommended_vcpus(s);
1504 hard_vcpus_limit = kvm_max_vcpus(s);
1506 while (nc->name) {
1507 if (nc->num > soft_vcpus_limit) {
1508 fprintf(stderr,
1509 "Warning: Number of %s cpus requested (%d) exceeds "
1510 "the recommended cpus supported by KVM (%d)\n",
1511 nc->name, nc->num, soft_vcpus_limit);
1513 if (nc->num > hard_vcpus_limit) {
1514 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1515 "the maximum cpus supported by KVM (%d)\n",
1516 nc->name, nc->num, hard_vcpus_limit);
1517 exit(1);
1520 nc++;
1523 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1524 if (mc->kvm_type) {
1525 type = mc->kvm_type(kvm_type);
1526 } else if (kvm_type) {
1527 ret = -EINVAL;
1528 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1529 goto err;
1532 do {
1533 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1534 } while (ret == -EINTR);
1536 if (ret < 0) {
1537 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1538 strerror(-ret));
1540 #ifdef TARGET_S390X
1541 if (ret == -EINVAL) {
1542 fprintf(stderr,
1543 "Host kernel setup problem detected. Please verify:\n");
1544 fprintf(stderr, "- for kernels supporting the switch_amode or"
1545 " user_mode parameters, whether\n");
1546 fprintf(stderr,
1547 " user space is running in primary address space\n");
1548 fprintf(stderr,
1549 "- for kernels supporting the vm.allocate_pgste sysctl, "
1550 "whether it is enabled\n");
1552 #endif
1553 goto err;
1556 s->vmfd = ret;
1557 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1558 if (!missing_cap) {
1559 missing_cap =
1560 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1562 if (missing_cap) {
1563 ret = -EINVAL;
1564 fprintf(stderr, "kvm does not support %s\n%s",
1565 missing_cap->name, upgrade_note);
1566 goto err;
1569 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1571 s->broken_set_mem_region = 1;
1572 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1573 if (ret > 0) {
1574 s->broken_set_mem_region = 0;
1577 #ifdef KVM_CAP_VCPU_EVENTS
1578 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1579 #endif
1581 s->robust_singlestep =
1582 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1584 #ifdef KVM_CAP_DEBUGREGS
1585 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1586 #endif
1588 #ifdef KVM_CAP_XSAVE
1589 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1590 #endif
1592 #ifdef KVM_CAP_XCRS
1593 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1594 #endif
1596 #ifdef KVM_CAP_PIT_STATE2
1597 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1598 #endif
1600 #ifdef KVM_CAP_IRQ_ROUTING
1601 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1602 #endif
1604 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1606 s->irq_set_ioctl = KVM_IRQ_LINE;
1607 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1608 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1611 #ifdef KVM_CAP_READONLY_MEM
1612 kvm_readonly_mem_allowed =
1613 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1614 #endif
1616 kvm_eventfds_allowed =
1617 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1619 kvm_irqfds_allowed =
1620 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1622 kvm_resamplefds_allowed =
1623 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1625 kvm_vm_attributes_allowed =
1626 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1628 ret = kvm_arch_init(ms, s);
1629 if (ret < 0) {
1630 goto err;
1633 if (machine_kernel_irqchip_allowed(ms)) {
1634 kvm_irqchip_create(ms, s);
1637 kvm_state = s;
1639 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1640 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1641 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1642 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1644 kvm_memory_listener_register(s, &s->memory_listener,
1645 &address_space_memory, 0);
1646 memory_listener_register(&kvm_io_listener,
1647 &address_space_io);
1649 s->many_ioeventfds = kvm_check_many_ioeventfds();
1651 cpu_interrupt_handler = kvm_handle_interrupt;
1653 return 0;
1655 err:
1656 assert(ret < 0);
1657 if (s->vmfd >= 0) {
1658 close(s->vmfd);
1660 if (s->fd != -1) {
1661 close(s->fd);
1663 g_free(s->memory_listener.slots);
1665 return ret;
1668 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1670 s->sigmask_len = sigmask_len;
1673 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1674 int size, uint32_t count)
1676 int i;
1677 uint8_t *ptr = data;
1679 for (i = 0; i < count; i++) {
1680 address_space_rw(&address_space_io, port, attrs,
1681 ptr, size,
1682 direction == KVM_EXIT_IO_OUT);
1683 ptr += size;
1687 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1689 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1690 run->internal.suberror);
1692 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1693 int i;
1695 for (i = 0; i < run->internal.ndata; ++i) {
1696 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1697 i, (uint64_t)run->internal.data[i]);
1700 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1701 fprintf(stderr, "emulation failure\n");
1702 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1703 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1704 return EXCP_INTERRUPT;
1707 /* FIXME: Should trigger a qmp message to let management know
1708 * something went wrong.
1710 return -1;
1713 void kvm_flush_coalesced_mmio_buffer(void)
1715 KVMState *s = kvm_state;
1717 if (s->coalesced_flush_in_progress) {
1718 return;
1721 s->coalesced_flush_in_progress = true;
1723 if (s->coalesced_mmio_ring) {
1724 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1725 while (ring->first != ring->last) {
1726 struct kvm_coalesced_mmio *ent;
1728 ent = &ring->coalesced_mmio[ring->first];
1730 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1731 smp_wmb();
1732 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1736 s->coalesced_flush_in_progress = false;
1739 static void do_kvm_cpu_synchronize_state(void *arg)
1741 CPUState *cpu = arg;
1743 if (!cpu->kvm_vcpu_dirty) {
1744 kvm_arch_get_registers(cpu);
1745 cpu->kvm_vcpu_dirty = true;
1749 void kvm_cpu_synchronize_state(CPUState *cpu)
1751 if (!cpu->kvm_vcpu_dirty) {
1752 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1756 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1758 CPUState *cpu = arg;
1760 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1761 cpu->kvm_vcpu_dirty = false;
1764 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1766 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1769 static void do_kvm_cpu_synchronize_post_init(void *arg)
1771 CPUState *cpu = arg;
1773 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1774 cpu->kvm_vcpu_dirty = false;
1777 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1779 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1782 void kvm_cpu_clean_state(CPUState *cpu)
1784 cpu->kvm_vcpu_dirty = false;
1787 int kvm_cpu_exec(CPUState *cpu)
1789 struct kvm_run *run = cpu->kvm_run;
1790 int ret, run_ret;
1792 DPRINTF("kvm_cpu_exec()\n");
1794 if (kvm_arch_process_async_events(cpu)) {
1795 cpu->exit_request = 0;
1796 return EXCP_HLT;
1799 qemu_mutex_unlock_iothread();
1801 do {
1802 MemTxAttrs attrs;
1804 if (cpu->kvm_vcpu_dirty) {
1805 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1806 cpu->kvm_vcpu_dirty = false;
1809 kvm_arch_pre_run(cpu, run);
1810 if (cpu->exit_request) {
1811 DPRINTF("interrupt exit requested\n");
1813 * KVM requires us to reenter the kernel after IO exits to complete
1814 * instruction emulation. This self-signal will ensure that we
1815 * leave ASAP again.
1817 qemu_cpu_kick_self();
1820 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1822 attrs = kvm_arch_post_run(cpu, run);
1824 if (run_ret < 0) {
1825 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1826 DPRINTF("io window exit\n");
1827 ret = EXCP_INTERRUPT;
1828 break;
1830 fprintf(stderr, "error: kvm run failed %s\n",
1831 strerror(-run_ret));
1832 #ifdef TARGET_PPC
1833 if (run_ret == -EBUSY) {
1834 fprintf(stderr,
1835 "This is probably because your SMT is enabled.\n"
1836 "VCPU can only run on primary threads with all "
1837 "secondary threads offline.\n");
1839 #endif
1840 ret = -1;
1841 break;
1844 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1845 switch (run->exit_reason) {
1846 case KVM_EXIT_IO:
1847 DPRINTF("handle_io\n");
1848 /* Called outside BQL */
1849 kvm_handle_io(run->io.port, attrs,
1850 (uint8_t *)run + run->io.data_offset,
1851 run->io.direction,
1852 run->io.size,
1853 run->io.count);
1854 ret = 0;
1855 break;
1856 case KVM_EXIT_MMIO:
1857 DPRINTF("handle_mmio\n");
1858 /* Called outside BQL */
1859 address_space_rw(&address_space_memory,
1860 run->mmio.phys_addr, attrs,
1861 run->mmio.data,
1862 run->mmio.len,
1863 run->mmio.is_write);
1864 ret = 0;
1865 break;
1866 case KVM_EXIT_IRQ_WINDOW_OPEN:
1867 DPRINTF("irq_window_open\n");
1868 ret = EXCP_INTERRUPT;
1869 break;
1870 case KVM_EXIT_SHUTDOWN:
1871 DPRINTF("shutdown\n");
1872 qemu_system_reset_request();
1873 ret = EXCP_INTERRUPT;
1874 break;
1875 case KVM_EXIT_UNKNOWN:
1876 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1877 (uint64_t)run->hw.hardware_exit_reason);
1878 ret = -1;
1879 break;
1880 case KVM_EXIT_INTERNAL_ERROR:
1881 ret = kvm_handle_internal_error(cpu, run);
1882 break;
1883 case KVM_EXIT_SYSTEM_EVENT:
1884 switch (run->system_event.type) {
1885 case KVM_SYSTEM_EVENT_SHUTDOWN:
1886 qemu_system_shutdown_request();
1887 ret = EXCP_INTERRUPT;
1888 break;
1889 case KVM_SYSTEM_EVENT_RESET:
1890 qemu_system_reset_request();
1891 ret = EXCP_INTERRUPT;
1892 break;
1893 case KVM_SYSTEM_EVENT_CRASH:
1894 qemu_mutex_lock_iothread();
1895 qemu_system_guest_panicked();
1896 qemu_mutex_unlock_iothread();
1897 ret = 0;
1898 break;
1899 default:
1900 DPRINTF("kvm_arch_handle_exit\n");
1901 ret = kvm_arch_handle_exit(cpu, run);
1902 break;
1904 break;
1905 default:
1906 DPRINTF("kvm_arch_handle_exit\n");
1907 ret = kvm_arch_handle_exit(cpu, run);
1908 break;
1910 } while (ret == 0);
1912 qemu_mutex_lock_iothread();
1914 if (ret < 0) {
1915 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1916 vm_stop(RUN_STATE_INTERNAL_ERROR);
1919 cpu->exit_request = 0;
1920 return ret;
1923 int kvm_ioctl(KVMState *s, int type, ...)
1925 int ret;
1926 void *arg;
1927 va_list ap;
1929 va_start(ap, type);
1930 arg = va_arg(ap, void *);
1931 va_end(ap);
1933 trace_kvm_ioctl(type, arg);
1934 ret = ioctl(s->fd, type, arg);
1935 if (ret == -1) {
1936 ret = -errno;
1938 return ret;
1941 int kvm_vm_ioctl(KVMState *s, int type, ...)
1943 int ret;
1944 void *arg;
1945 va_list ap;
1947 va_start(ap, type);
1948 arg = va_arg(ap, void *);
1949 va_end(ap);
1951 trace_kvm_vm_ioctl(type, arg);
1952 ret = ioctl(s->vmfd, type, arg);
1953 if (ret == -1) {
1954 ret = -errno;
1956 return ret;
1959 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1961 int ret;
1962 void *arg;
1963 va_list ap;
1965 va_start(ap, type);
1966 arg = va_arg(ap, void *);
1967 va_end(ap);
1969 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1970 ret = ioctl(cpu->kvm_fd, type, arg);
1971 if (ret == -1) {
1972 ret = -errno;
1974 return ret;
1977 int kvm_device_ioctl(int fd, int type, ...)
1979 int ret;
1980 void *arg;
1981 va_list ap;
1983 va_start(ap, type);
1984 arg = va_arg(ap, void *);
1985 va_end(ap);
1987 trace_kvm_device_ioctl(fd, type, arg);
1988 ret = ioctl(fd, type, arg);
1989 if (ret == -1) {
1990 ret = -errno;
1992 return ret;
1995 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1997 int ret;
1998 struct kvm_device_attr attribute = {
1999 .group = group,
2000 .attr = attr,
2003 if (!kvm_vm_attributes_allowed) {
2004 return 0;
2007 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2008 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2009 return ret ? 0 : 1;
2012 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2014 struct kvm_device_attr attribute = {
2015 .group = group,
2016 .attr = attr,
2017 .flags = 0,
2020 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2023 void kvm_device_access(int fd, int group, uint64_t attr,
2024 void *val, bool write)
2026 struct kvm_device_attr kvmattr;
2027 int err;
2029 kvmattr.flags = 0;
2030 kvmattr.group = group;
2031 kvmattr.attr = attr;
2032 kvmattr.addr = (uintptr_t)val;
2034 err = kvm_device_ioctl(fd,
2035 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2036 &kvmattr);
2037 if (err < 0) {
2038 error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2039 "Group %d attr 0x%016" PRIx64, write ? "SET" : "GET",
2040 strerror(-err), group, attr);
2041 abort();
2045 int kvm_has_sync_mmu(void)
2047 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2050 int kvm_has_vcpu_events(void)
2052 return kvm_state->vcpu_events;
2055 int kvm_has_robust_singlestep(void)
2057 return kvm_state->robust_singlestep;
2060 int kvm_has_debugregs(void)
2062 return kvm_state->debugregs;
2065 int kvm_has_xsave(void)
2067 return kvm_state->xsave;
2070 int kvm_has_xcrs(void)
2072 return kvm_state->xcrs;
2075 int kvm_has_pit_state2(void)
2077 return kvm_state->pit_state2;
2080 int kvm_has_many_ioeventfds(void)
2082 if (!kvm_enabled()) {
2083 return 0;
2085 return kvm_state->many_ioeventfds;
2088 int kvm_has_gsi_routing(void)
2090 #ifdef KVM_CAP_IRQ_ROUTING
2091 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2092 #else
2093 return false;
2094 #endif
2097 int kvm_has_intx_set_mask(void)
2099 return kvm_state->intx_set_mask;
2102 void kvm_setup_guest_memory(void *start, size_t size)
2104 if (!kvm_has_sync_mmu()) {
2105 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2107 if (ret) {
2108 perror("qemu_madvise");
2109 fprintf(stderr,
2110 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2111 exit(1);
2116 #ifdef KVM_CAP_SET_GUEST_DEBUG
2117 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2118 target_ulong pc)
2120 struct kvm_sw_breakpoint *bp;
2122 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2123 if (bp->pc == pc) {
2124 return bp;
2127 return NULL;
2130 int kvm_sw_breakpoints_active(CPUState *cpu)
2132 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2135 struct kvm_set_guest_debug_data {
2136 struct kvm_guest_debug dbg;
2137 CPUState *cpu;
2138 int err;
2141 static void kvm_invoke_set_guest_debug(void *data)
2143 struct kvm_set_guest_debug_data *dbg_data = data;
2145 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2146 &dbg_data->dbg);
2149 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2151 struct kvm_set_guest_debug_data data;
2153 data.dbg.control = reinject_trap;
2155 if (cpu->singlestep_enabled) {
2156 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2158 kvm_arch_update_guest_debug(cpu, &data.dbg);
2159 data.cpu = cpu;
2161 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2162 return data.err;
2165 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2166 target_ulong len, int type)
2168 struct kvm_sw_breakpoint *bp;
2169 int err;
2171 if (type == GDB_BREAKPOINT_SW) {
2172 bp = kvm_find_sw_breakpoint(cpu, addr);
2173 if (bp) {
2174 bp->use_count++;
2175 return 0;
2178 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2179 bp->pc = addr;
2180 bp->use_count = 1;
2181 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2182 if (err) {
2183 g_free(bp);
2184 return err;
2187 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2188 } else {
2189 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2190 if (err) {
2191 return err;
2195 CPU_FOREACH(cpu) {
2196 err = kvm_update_guest_debug(cpu, 0);
2197 if (err) {
2198 return err;
2201 return 0;
2204 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2205 target_ulong len, int type)
2207 struct kvm_sw_breakpoint *bp;
2208 int err;
2210 if (type == GDB_BREAKPOINT_SW) {
2211 bp = kvm_find_sw_breakpoint(cpu, addr);
2212 if (!bp) {
2213 return -ENOENT;
2216 if (bp->use_count > 1) {
2217 bp->use_count--;
2218 return 0;
2221 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2222 if (err) {
2223 return err;
2226 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2227 g_free(bp);
2228 } else {
2229 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2230 if (err) {
2231 return err;
2235 CPU_FOREACH(cpu) {
2236 err = kvm_update_guest_debug(cpu, 0);
2237 if (err) {
2238 return err;
2241 return 0;
2244 void kvm_remove_all_breakpoints(CPUState *cpu)
2246 struct kvm_sw_breakpoint *bp, *next;
2247 KVMState *s = cpu->kvm_state;
2248 CPUState *tmpcpu;
2250 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2251 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2252 /* Try harder to find a CPU that currently sees the breakpoint. */
2253 CPU_FOREACH(tmpcpu) {
2254 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2255 break;
2259 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2260 g_free(bp);
2262 kvm_arch_remove_all_hw_breakpoints();
2264 CPU_FOREACH(cpu) {
2265 kvm_update_guest_debug(cpu, 0);
2269 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2271 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2273 return -EINVAL;
2276 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2277 target_ulong len, int type)
2279 return -EINVAL;
2282 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2283 target_ulong len, int type)
2285 return -EINVAL;
2288 void kvm_remove_all_breakpoints(CPUState *cpu)
2291 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2293 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2295 KVMState *s = kvm_state;
2296 struct kvm_signal_mask *sigmask;
2297 int r;
2299 if (!sigset) {
2300 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2303 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2305 sigmask->len = s->sigmask_len;
2306 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2307 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2308 g_free(sigmask);
2310 return r;
2312 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2314 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2317 int kvm_on_sigbus(int code, void *addr)
2319 return kvm_arch_on_sigbus(code, addr);
2322 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2324 int ret;
2325 struct kvm_create_device create_dev;
2327 create_dev.type = type;
2328 create_dev.fd = -1;
2329 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2331 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2332 return -ENOTSUP;
2335 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2336 if (ret) {
2337 return ret;
2340 return test ? 0 : create_dev.fd;
2343 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2345 struct kvm_one_reg reg;
2346 int r;
2348 reg.id = id;
2349 reg.addr = (uintptr_t) source;
2350 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2351 if (r) {
2352 trace_kvm_failed_reg_set(id, strerror(r));
2354 return r;
2357 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2359 struct kvm_one_reg reg;
2360 int r;
2362 reg.id = id;
2363 reg.addr = (uintptr_t) target;
2364 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2365 if (r) {
2366 trace_kvm_failed_reg_get(id, strerror(r));
2368 return r;
2371 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2373 AccelClass *ac = ACCEL_CLASS(oc);
2374 ac->name = "KVM";
2375 ac->init_machine = kvm_init;
2376 ac->allowed = &kvm_allowed;
2379 static const TypeInfo kvm_accel_type = {
2380 .name = TYPE_KVM_ACCEL,
2381 .parent = TYPE_ACCEL,
2382 .class_init = kvm_accel_class_init,
2383 .instance_size = sizeof(KVMState),
2386 static void kvm_type_init(void)
2388 type_register_static(&kvm_accel_type);
2391 type_init(kvm_type_init);