qemu-img: avoid calling exit(1) to release resources properly
[qemu.git] / cpu-exec.c
blob026980a552f298f3e514288b71d6598b163cf86d
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
47 int tb_invalidated_flag;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState *env)
54 return cpu_has_work(env);
57 void cpu_loop_exit(void)
59 env->current_tb = NULL;
60 longjmp(env->jmp_env, 1);
63 /* exit the current TB from a signal handler. The host registers are
64 restored in a state compatible with the CPU emulator
66 void cpu_resume_from_signal(CPUState *env1, void *puc)
68 #if !defined(CONFIG_SOFTMMU)
69 #ifdef __linux__
70 struct ucontext *uc = puc;
71 #elif defined(__OpenBSD__)
72 struct sigcontext *uc = puc;
73 #endif
74 #endif
76 env = env1;
78 /* XXX: restore cpu registers saved in host registers */
80 #if !defined(CONFIG_SOFTMMU)
81 if (puc) {
82 /* XXX: use siglongjmp ? */
83 #ifdef __linux__
84 #ifdef __ia64
85 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
86 #else
87 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
88 #endif
89 #elif defined(__OpenBSD__)
90 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
91 #endif
93 #endif
94 env->exception_index = -1;
95 longjmp(env->jmp_env, 1);
98 /* Execute the code without caching the generated code. An interpreter
99 could be used if available. */
100 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
102 unsigned long next_tb;
103 TranslationBlock *tb;
105 /* Should never happen.
106 We only end up here when an existing TB is too long. */
107 if (max_cycles > CF_COUNT_MASK)
108 max_cycles = CF_COUNT_MASK;
110 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
111 max_cycles);
112 env->current_tb = tb;
113 /* execute the generated code */
114 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
115 env->current_tb = NULL;
117 if ((next_tb & 3) == 2) {
118 /* Restore PC. This may happen if async event occurs before
119 the TB starts executing. */
120 cpu_pc_from_tb(env, tb);
122 tb_phys_invalidate(tb, -1);
123 tb_free(tb);
126 static TranslationBlock *tb_find_slow(target_ulong pc,
127 target_ulong cs_base,
128 uint64_t flags)
130 TranslationBlock *tb, **ptb1;
131 unsigned int h;
132 tb_page_addr_t phys_pc, phys_page1, phys_page2;
133 target_ulong virt_page2;
135 tb_invalidated_flag = 0;
137 /* find translated block using physical mappings */
138 phys_pc = get_page_addr_code(env, pc);
139 phys_page1 = phys_pc & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 h = tb_phys_hash_func(phys_pc);
142 ptb1 = &tb_phys_hash[h];
143 for(;;) {
144 tb = *ptb1;
145 if (!tb)
146 goto not_found;
147 if (tb->pc == pc &&
148 tb->page_addr[0] == phys_page1 &&
149 tb->cs_base == cs_base &&
150 tb->flags == flags) {
151 /* check next page if needed */
152 if (tb->page_addr[1] != -1) {
153 virt_page2 = (pc & TARGET_PAGE_MASK) +
154 TARGET_PAGE_SIZE;
155 phys_page2 = get_page_addr_code(env, virt_page2);
156 if (tb->page_addr[1] == phys_page2)
157 goto found;
158 } else {
159 goto found;
162 ptb1 = &tb->phys_hash_next;
164 not_found:
165 /* if no translated code available, then translate it now */
166 tb = tb_gen_code(env, pc, cs_base, flags, 0);
168 found:
169 /* we add the TB in the virtual pc hash table */
170 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
171 return tb;
174 static inline TranslationBlock *tb_find_fast(void)
176 TranslationBlock *tb;
177 target_ulong cs_base, pc;
178 int flags;
180 /* we record a subset of the CPU state. It will
181 always be the same before a given translated block
182 is executed. */
183 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
184 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
185 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
186 tb->flags != flags)) {
187 tb = tb_find_slow(pc, cs_base, flags);
189 return tb;
192 static CPUDebugExcpHandler *debug_excp_handler;
194 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
196 CPUDebugExcpHandler *old_handler = debug_excp_handler;
198 debug_excp_handler = handler;
199 return old_handler;
202 static void cpu_handle_debug_exception(CPUState *env)
204 CPUWatchpoint *wp;
206 if (!env->watchpoint_hit)
207 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
208 wp->flags &= ~BP_WATCHPOINT_HIT;
210 if (debug_excp_handler)
211 debug_excp_handler(env);
214 /* main execution loop */
216 volatile sig_atomic_t exit_request;
218 int cpu_exec(CPUState *env1)
220 volatile host_reg_t saved_env_reg;
221 int ret, interrupt_request;
222 TranslationBlock *tb;
223 uint8_t *tc_ptr;
224 unsigned long next_tb;
226 if (cpu_halted(env1) == EXCP_HALTED)
227 return EXCP_HALTED;
229 cpu_single_env = env1;
231 /* the access to env below is actually saving the global register's
232 value, so that files not including target-xyz/exec.h are free to
233 use it. */
234 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
235 saved_env_reg = (host_reg_t) env;
236 asm("");
237 env = env1;
239 if (exit_request) {
240 env->exit_request = 1;
241 exit_request = 0;
244 #if defined(TARGET_I386)
245 if (!kvm_enabled()) {
246 /* put eflags in CPU temporary format */
247 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
248 DF = 1 - (2 * ((env->eflags >> 10) & 1));
249 CC_OP = CC_OP_EFLAGS;
250 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
252 #elif defined(TARGET_SPARC)
253 #elif defined(TARGET_M68K)
254 env->cc_op = CC_OP_FLAGS;
255 env->cc_dest = env->sr & 0xf;
256 env->cc_x = (env->sr >> 4) & 1;
257 #elif defined(TARGET_ALPHA)
258 #elif defined(TARGET_ARM)
259 #elif defined(TARGET_PPC)
260 #elif defined(TARGET_MICROBLAZE)
261 #elif defined(TARGET_MIPS)
262 #elif defined(TARGET_SH4)
263 #elif defined(TARGET_CRIS)
264 #elif defined(TARGET_S390X)
265 /* XXXXX */
266 #else
267 #error unsupported target CPU
268 #endif
269 env->exception_index = -1;
271 /* prepare setjmp context for exception handling */
272 for(;;) {
273 if (setjmp(env->jmp_env) == 0) {
274 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
275 #undef env
276 env = cpu_single_env;
277 #define env cpu_single_env
278 #endif
279 /* if an exception is pending, we execute it here */
280 if (env->exception_index >= 0) {
281 if (env->exception_index >= EXCP_INTERRUPT) {
282 /* exit request from the cpu execution loop */
283 ret = env->exception_index;
284 if (ret == EXCP_DEBUG)
285 cpu_handle_debug_exception(env);
286 break;
287 } else {
288 #if defined(CONFIG_USER_ONLY)
289 /* if user mode only, we simulate a fake exception
290 which will be handled outside the cpu execution
291 loop */
292 #if defined(TARGET_I386)
293 do_interrupt_user(env->exception_index,
294 env->exception_is_int,
295 env->error_code,
296 env->exception_next_eip);
297 /* successfully delivered */
298 env->old_exception = -1;
299 #endif
300 ret = env->exception_index;
301 break;
302 #else
303 #if defined(TARGET_I386)
304 /* simulate a real cpu exception. On i386, it can
305 trigger new exceptions, but we do not handle
306 double or triple faults yet. */
307 do_interrupt(env->exception_index,
308 env->exception_is_int,
309 env->error_code,
310 env->exception_next_eip, 0);
311 /* successfully delivered */
312 env->old_exception = -1;
313 #elif defined(TARGET_PPC)
314 do_interrupt(env);
315 #elif defined(TARGET_MICROBLAZE)
316 do_interrupt(env);
317 #elif defined(TARGET_MIPS)
318 do_interrupt(env);
319 #elif defined(TARGET_SPARC)
320 do_interrupt(env);
321 #elif defined(TARGET_ARM)
322 do_interrupt(env);
323 #elif defined(TARGET_SH4)
324 do_interrupt(env);
325 #elif defined(TARGET_ALPHA)
326 do_interrupt(env);
327 #elif defined(TARGET_CRIS)
328 do_interrupt(env);
329 #elif defined(TARGET_M68K)
330 do_interrupt(0);
331 #endif
332 env->exception_index = -1;
333 #endif
337 if (kvm_enabled()) {
338 kvm_cpu_exec(env);
339 longjmp(env->jmp_env, 1);
342 next_tb = 0; /* force lookup of first TB */
343 for(;;) {
344 interrupt_request = env->interrupt_request;
345 if (unlikely(interrupt_request)) {
346 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
347 /* Mask out external interrupts for this step. */
348 interrupt_request &= ~(CPU_INTERRUPT_HARD |
349 CPU_INTERRUPT_FIQ |
350 CPU_INTERRUPT_SMI |
351 CPU_INTERRUPT_NMI);
353 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
354 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
355 env->exception_index = EXCP_DEBUG;
356 cpu_loop_exit();
358 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
359 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
360 defined(TARGET_MICROBLAZE)
361 if (interrupt_request & CPU_INTERRUPT_HALT) {
362 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
363 env->halted = 1;
364 env->exception_index = EXCP_HLT;
365 cpu_loop_exit();
367 #endif
368 #if defined(TARGET_I386)
369 if (interrupt_request & CPU_INTERRUPT_INIT) {
370 svm_check_intercept(SVM_EXIT_INIT);
371 do_cpu_init(env);
372 env->exception_index = EXCP_HALTED;
373 cpu_loop_exit();
374 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
375 do_cpu_sipi(env);
376 } else if (env->hflags2 & HF2_GIF_MASK) {
377 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
378 !(env->hflags & HF_SMM_MASK)) {
379 svm_check_intercept(SVM_EXIT_SMI);
380 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
381 do_smm_enter();
382 next_tb = 0;
383 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
384 !(env->hflags2 & HF2_NMI_MASK)) {
385 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
386 env->hflags2 |= HF2_NMI_MASK;
387 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
388 next_tb = 0;
389 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
390 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
391 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
392 next_tb = 0;
393 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
394 (((env->hflags2 & HF2_VINTR_MASK) &&
395 (env->hflags2 & HF2_HIF_MASK)) ||
396 (!(env->hflags2 & HF2_VINTR_MASK) &&
397 (env->eflags & IF_MASK &&
398 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
399 int intno;
400 svm_check_intercept(SVM_EXIT_INTR);
401 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
402 intno = cpu_get_pic_interrupt(env);
403 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
404 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
405 #undef env
406 env = cpu_single_env;
407 #define env cpu_single_env
408 #endif
409 do_interrupt(intno, 0, 0, 0, 1);
410 /* ensure that no TB jump will be modified as
411 the program flow was changed */
412 next_tb = 0;
413 #if !defined(CONFIG_USER_ONLY)
414 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
415 (env->eflags & IF_MASK) &&
416 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
417 int intno;
418 /* FIXME: this should respect TPR */
419 svm_check_intercept(SVM_EXIT_VINTR);
420 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
421 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
422 do_interrupt(intno, 0, 0, 0, 1);
423 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
424 next_tb = 0;
425 #endif
428 #elif defined(TARGET_PPC)
429 #if 0
430 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
431 cpu_reset(env);
433 #endif
434 if (interrupt_request & CPU_INTERRUPT_HARD) {
435 ppc_hw_interrupt(env);
436 if (env->pending_interrupts == 0)
437 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
438 next_tb = 0;
440 #elif defined(TARGET_MICROBLAZE)
441 if ((interrupt_request & CPU_INTERRUPT_HARD)
442 && (env->sregs[SR_MSR] & MSR_IE)
443 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
444 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
445 env->exception_index = EXCP_IRQ;
446 do_interrupt(env);
447 next_tb = 0;
449 #elif defined(TARGET_MIPS)
450 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
451 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
452 (env->CP0_Status & (1 << CP0St_IE)) &&
453 !(env->CP0_Status & (1 << CP0St_EXL)) &&
454 !(env->CP0_Status & (1 << CP0St_ERL)) &&
455 !(env->hflags & MIPS_HFLAG_DM)) {
456 /* Raise it */
457 env->exception_index = EXCP_EXT_INTERRUPT;
458 env->error_code = 0;
459 do_interrupt(env);
460 next_tb = 0;
462 #elif defined(TARGET_SPARC)
463 if (interrupt_request & CPU_INTERRUPT_HARD) {
464 if (cpu_interrupts_enabled(env) &&
465 env->interrupt_index > 0) {
466 int pil = env->interrupt_index & 0xf;
467 int type = env->interrupt_index & 0xf0;
469 if (((type == TT_EXTINT) &&
470 cpu_pil_allowed(env, pil)) ||
471 type != TT_EXTINT) {
472 env->exception_index = env->interrupt_index;
473 do_interrupt(env);
474 next_tb = 0;
477 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
478 //do_interrupt(0, 0, 0, 0, 0);
479 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
481 #elif defined(TARGET_ARM)
482 if (interrupt_request & CPU_INTERRUPT_FIQ
483 && !(env->uncached_cpsr & CPSR_F)) {
484 env->exception_index = EXCP_FIQ;
485 do_interrupt(env);
486 next_tb = 0;
488 /* ARMv7-M interrupt return works by loading a magic value
489 into the PC. On real hardware the load causes the
490 return to occur. The qemu implementation performs the
491 jump normally, then does the exception return when the
492 CPU tries to execute code at the magic address.
493 This will cause the magic PC value to be pushed to
494 the stack if an interrupt occured at the wrong time.
495 We avoid this by disabling interrupts when
496 pc contains a magic address. */
497 if (interrupt_request & CPU_INTERRUPT_HARD
498 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
499 || !(env->uncached_cpsr & CPSR_I))) {
500 env->exception_index = EXCP_IRQ;
501 do_interrupt(env);
502 next_tb = 0;
504 #elif defined(TARGET_SH4)
505 if (interrupt_request & CPU_INTERRUPT_HARD) {
506 do_interrupt(env);
507 next_tb = 0;
509 #elif defined(TARGET_ALPHA)
510 if (interrupt_request & CPU_INTERRUPT_HARD) {
511 do_interrupt(env);
512 next_tb = 0;
514 #elif defined(TARGET_CRIS)
515 if (interrupt_request & CPU_INTERRUPT_HARD
516 && (env->pregs[PR_CCS] & I_FLAG)
517 && !env->locked_irq) {
518 env->exception_index = EXCP_IRQ;
519 do_interrupt(env);
520 next_tb = 0;
522 if (interrupt_request & CPU_INTERRUPT_NMI
523 && (env->pregs[PR_CCS] & M_FLAG)) {
524 env->exception_index = EXCP_NMI;
525 do_interrupt(env);
526 next_tb = 0;
528 #elif defined(TARGET_M68K)
529 if (interrupt_request & CPU_INTERRUPT_HARD
530 && ((env->sr & SR_I) >> SR_I_SHIFT)
531 < env->pending_level) {
532 /* Real hardware gets the interrupt vector via an
533 IACK cycle at this point. Current emulated
534 hardware doesn't rely on this, so we
535 provide/save the vector when the interrupt is
536 first signalled. */
537 env->exception_index = env->pending_vector;
538 do_interrupt(1);
539 next_tb = 0;
541 #endif
542 /* Don't use the cached interupt_request value,
543 do_interrupt may have updated the EXITTB flag. */
544 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
545 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
546 /* ensure that no TB jump will be modified as
547 the program flow was changed */
548 next_tb = 0;
551 if (unlikely(env->exit_request)) {
552 env->exit_request = 0;
553 env->exception_index = EXCP_INTERRUPT;
554 cpu_loop_exit();
556 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
557 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
558 /* restore flags in standard format */
559 #if defined(TARGET_I386)
560 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
561 log_cpu_state(env, X86_DUMP_CCOP);
562 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
563 #elif defined(TARGET_M68K)
564 cpu_m68k_flush_flags(env, env->cc_op);
565 env->cc_op = CC_OP_FLAGS;
566 env->sr = (env->sr & 0xffe0)
567 | env->cc_dest | (env->cc_x << 4);
568 log_cpu_state(env, 0);
569 #else
570 log_cpu_state(env, 0);
571 #endif
573 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
574 spin_lock(&tb_lock);
575 tb = tb_find_fast();
576 /* Note: we do it here to avoid a gcc bug on Mac OS X when
577 doing it in tb_find_slow */
578 if (tb_invalidated_flag) {
579 /* as some TB could have been invalidated because
580 of memory exceptions while generating the code, we
581 must recompute the hash index here */
582 next_tb = 0;
583 tb_invalidated_flag = 0;
585 #ifdef CONFIG_DEBUG_EXEC
586 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
587 (long)tb->tc_ptr, tb->pc,
588 lookup_symbol(tb->pc));
589 #endif
590 /* see if we can patch the calling TB. When the TB
591 spans two pages, we cannot safely do a direct
592 jump. */
593 if (next_tb != 0 && tb->page_addr[1] == -1) {
594 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
596 spin_unlock(&tb_lock);
598 /* cpu_interrupt might be called while translating the
599 TB, but before it is linked into a potentially
600 infinite loop and becomes env->current_tb. Avoid
601 starting execution if there is a pending interrupt. */
602 if (!unlikely (env->exit_request)) {
603 env->current_tb = tb;
604 tc_ptr = tb->tc_ptr;
605 /* execute the generated code */
606 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
607 #undef env
608 env = cpu_single_env;
609 #define env cpu_single_env
610 #endif
611 next_tb = tcg_qemu_tb_exec(tc_ptr);
612 env->current_tb = NULL;
613 if ((next_tb & 3) == 2) {
614 /* Instruction counter expired. */
615 int insns_left;
616 tb = (TranslationBlock *)(long)(next_tb & ~3);
617 /* Restore PC. */
618 cpu_pc_from_tb(env, tb);
619 insns_left = env->icount_decr.u32;
620 if (env->icount_extra && insns_left >= 0) {
621 /* Refill decrementer and continue execution. */
622 env->icount_extra += insns_left;
623 if (env->icount_extra > 0xffff) {
624 insns_left = 0xffff;
625 } else {
626 insns_left = env->icount_extra;
628 env->icount_extra -= insns_left;
629 env->icount_decr.u16.low = insns_left;
630 } else {
631 if (insns_left > 0) {
632 /* Execute remaining instructions. */
633 cpu_exec_nocache(insns_left, tb);
635 env->exception_index = EXCP_INTERRUPT;
636 next_tb = 0;
637 cpu_loop_exit();
641 /* reset soft MMU for next block (it can currently
642 only be set by a memory fault) */
643 } /* for(;;) */
645 } /* for(;;) */
648 #if defined(TARGET_I386)
649 /* restore flags in standard format */
650 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
651 #elif defined(TARGET_ARM)
652 /* XXX: Save/restore host fpu exception state?. */
653 #elif defined(TARGET_SPARC)
654 #elif defined(TARGET_PPC)
655 #elif defined(TARGET_M68K)
656 cpu_m68k_flush_flags(env, env->cc_op);
657 env->cc_op = CC_OP_FLAGS;
658 env->sr = (env->sr & 0xffe0)
659 | env->cc_dest | (env->cc_x << 4);
660 #elif defined(TARGET_MICROBLAZE)
661 #elif defined(TARGET_MIPS)
662 #elif defined(TARGET_SH4)
663 #elif defined(TARGET_ALPHA)
664 #elif defined(TARGET_CRIS)
665 #elif defined(TARGET_S390X)
666 /* XXXXX */
667 #else
668 #error unsupported target CPU
669 #endif
671 /* restore global registers */
672 asm("");
673 env = (void *) saved_env_reg;
675 /* fail safe : never use cpu_single_env outside cpu_exec() */
676 cpu_single_env = NULL;
677 return ret;
680 /* must only be called from the generated code as an exception can be
681 generated */
682 void tb_invalidate_page_range(target_ulong start, target_ulong end)
684 /* XXX: cannot enable it yet because it yields to MMU exception
685 where NIP != read address on PowerPC */
686 #if 0
687 target_ulong phys_addr;
688 phys_addr = get_phys_addr_code(env, start);
689 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
690 #endif
693 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
695 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
697 CPUX86State *saved_env;
699 saved_env = env;
700 env = s;
701 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
702 selector &= 0xffff;
703 cpu_x86_load_seg_cache(env, seg_reg, selector,
704 (selector << 4), 0xffff, 0);
705 } else {
706 helper_load_seg(seg_reg, selector);
708 env = saved_env;
711 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
713 CPUX86State *saved_env;
715 saved_env = env;
716 env = s;
718 helper_fsave(ptr, data32);
720 env = saved_env;
723 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
725 CPUX86State *saved_env;
727 saved_env = env;
728 env = s;
730 helper_frstor(ptr, data32);
732 env = saved_env;
735 #endif /* TARGET_I386 */
737 #if !defined(CONFIG_SOFTMMU)
739 #if defined(TARGET_I386)
740 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
741 #else
742 #define EXCEPTION_ACTION cpu_loop_exit()
743 #endif
745 /* 'pc' is the host PC at which the exception was raised. 'address' is
746 the effective address of the memory exception. 'is_write' is 1 if a
747 write caused the exception and otherwise 0'. 'old_set' is the
748 signal set which should be restored */
749 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
750 int is_write, sigset_t *old_set,
751 void *puc)
753 TranslationBlock *tb;
754 int ret;
756 if (cpu_single_env)
757 env = cpu_single_env; /* XXX: find a correct solution for multithread */
758 #if defined(DEBUG_SIGNAL)
759 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
760 pc, address, is_write, *(unsigned long *)old_set);
761 #endif
762 /* XXX: locking issue */
763 if (is_write && page_unprotect(h2g(address), pc, puc)) {
764 return 1;
767 /* see if it is an MMU fault */
768 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
769 if (ret < 0)
770 return 0; /* not an MMU fault */
771 if (ret == 0)
772 return 1; /* the MMU fault was handled without causing real CPU fault */
773 /* now we have a real cpu fault */
774 tb = tb_find_pc(pc);
775 if (tb) {
776 /* the PC is inside the translated code. It means that we have
777 a virtual CPU fault */
778 cpu_restore_state(tb, env, pc, puc);
781 /* we restore the process signal mask as the sigreturn should
782 do it (XXX: use sigsetjmp) */
783 sigprocmask(SIG_SETMASK, old_set, NULL);
784 EXCEPTION_ACTION;
786 /* never comes here */
787 return 1;
790 #if defined(__i386__)
792 #if defined(__APPLE__)
793 # include <sys/ucontext.h>
795 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
796 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
797 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
798 # define MASK_sig(context) ((context)->uc_sigmask)
799 #elif defined (__NetBSD__)
800 # include <ucontext.h>
802 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
803 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
804 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
805 # define MASK_sig(context) ((context)->uc_sigmask)
806 #elif defined (__FreeBSD__) || defined(__DragonFly__)
807 # include <ucontext.h>
809 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
810 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
811 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
812 # define MASK_sig(context) ((context)->uc_sigmask)
813 #elif defined(__OpenBSD__)
814 # define EIP_sig(context) ((context)->sc_eip)
815 # define TRAP_sig(context) ((context)->sc_trapno)
816 # define ERROR_sig(context) ((context)->sc_err)
817 # define MASK_sig(context) ((context)->sc_mask)
818 #else
819 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
820 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
821 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
822 # define MASK_sig(context) ((context)->uc_sigmask)
823 #endif
825 int cpu_signal_handler(int host_signum, void *pinfo,
826 void *puc)
828 siginfo_t *info = pinfo;
829 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
830 ucontext_t *uc = puc;
831 #elif defined(__OpenBSD__)
832 struct sigcontext *uc = puc;
833 #else
834 struct ucontext *uc = puc;
835 #endif
836 unsigned long pc;
837 int trapno;
839 #ifndef REG_EIP
840 /* for glibc 2.1 */
841 #define REG_EIP EIP
842 #define REG_ERR ERR
843 #define REG_TRAPNO TRAPNO
844 #endif
845 pc = EIP_sig(uc);
846 trapno = TRAP_sig(uc);
847 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
848 trapno == 0xe ?
849 (ERROR_sig(uc) >> 1) & 1 : 0,
850 &MASK_sig(uc), puc);
853 #elif defined(__x86_64__)
855 #ifdef __NetBSD__
856 #define PC_sig(context) _UC_MACHINE_PC(context)
857 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
858 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
859 #define MASK_sig(context) ((context)->uc_sigmask)
860 #elif defined(__OpenBSD__)
861 #define PC_sig(context) ((context)->sc_rip)
862 #define TRAP_sig(context) ((context)->sc_trapno)
863 #define ERROR_sig(context) ((context)->sc_err)
864 #define MASK_sig(context) ((context)->sc_mask)
865 #elif defined (__FreeBSD__) || defined(__DragonFly__)
866 #include <ucontext.h>
868 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
869 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
870 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
871 #define MASK_sig(context) ((context)->uc_sigmask)
872 #else
873 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
874 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
875 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
876 #define MASK_sig(context) ((context)->uc_sigmask)
877 #endif
879 int cpu_signal_handler(int host_signum, void *pinfo,
880 void *puc)
882 siginfo_t *info = pinfo;
883 unsigned long pc;
884 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
885 ucontext_t *uc = puc;
886 #elif defined(__OpenBSD__)
887 struct sigcontext *uc = puc;
888 #else
889 struct ucontext *uc = puc;
890 #endif
892 pc = PC_sig(uc);
893 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
894 TRAP_sig(uc) == 0xe ?
895 (ERROR_sig(uc) >> 1) & 1 : 0,
896 &MASK_sig(uc), puc);
899 #elif defined(_ARCH_PPC)
901 /***********************************************************************
902 * signal context platform-specific definitions
903 * From Wine
905 #ifdef linux
906 /* All Registers access - only for local access */
907 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
908 /* Gpr Registers access */
909 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
910 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
911 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
912 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
913 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
914 # define LR_sig(context) REG_sig(link, context) /* Link register */
915 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
916 /* Float Registers access */
917 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
918 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
919 /* Exception Registers access */
920 # define DAR_sig(context) REG_sig(dar, context)
921 # define DSISR_sig(context) REG_sig(dsisr, context)
922 # define TRAP_sig(context) REG_sig(trap, context)
923 #endif /* linux */
925 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
926 #include <ucontext.h>
927 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
928 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
929 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
930 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
931 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
932 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
933 /* Exception Registers access */
934 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
935 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
936 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
937 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
939 #ifdef __APPLE__
940 # include <sys/ucontext.h>
941 typedef struct ucontext SIGCONTEXT;
942 /* All Registers access - only for local access */
943 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
944 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
945 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
946 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
947 /* Gpr Registers access */
948 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
949 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
950 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
951 # define CTR_sig(context) REG_sig(ctr, context)
952 # define XER_sig(context) REG_sig(xer, context) /* Link register */
953 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
954 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
955 /* Float Registers access */
956 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
957 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
958 /* Exception Registers access */
959 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
960 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
961 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
962 #endif /* __APPLE__ */
964 int cpu_signal_handler(int host_signum, void *pinfo,
965 void *puc)
967 siginfo_t *info = pinfo;
968 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
969 ucontext_t *uc = puc;
970 #else
971 struct ucontext *uc = puc;
972 #endif
973 unsigned long pc;
974 int is_write;
976 pc = IAR_sig(uc);
977 is_write = 0;
978 #if 0
979 /* ppc 4xx case */
980 if (DSISR_sig(uc) & 0x00800000)
981 is_write = 1;
982 #else
983 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
984 is_write = 1;
985 #endif
986 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
987 is_write, &uc->uc_sigmask, puc);
990 #elif defined(__alpha__)
992 int cpu_signal_handler(int host_signum, void *pinfo,
993 void *puc)
995 siginfo_t *info = pinfo;
996 struct ucontext *uc = puc;
997 uint32_t *pc = uc->uc_mcontext.sc_pc;
998 uint32_t insn = *pc;
999 int is_write = 0;
1001 /* XXX: need kernel patch to get write flag faster */
1002 switch (insn >> 26) {
1003 case 0x0d: // stw
1004 case 0x0e: // stb
1005 case 0x0f: // stq_u
1006 case 0x24: // stf
1007 case 0x25: // stg
1008 case 0x26: // sts
1009 case 0x27: // stt
1010 case 0x2c: // stl
1011 case 0x2d: // stq
1012 case 0x2e: // stl_c
1013 case 0x2f: // stq_c
1014 is_write = 1;
1017 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1018 is_write, &uc->uc_sigmask, puc);
1020 #elif defined(__sparc__)
1022 int cpu_signal_handler(int host_signum, void *pinfo,
1023 void *puc)
1025 siginfo_t *info = pinfo;
1026 int is_write;
1027 uint32_t insn;
1028 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1029 uint32_t *regs = (uint32_t *)(info + 1);
1030 void *sigmask = (regs + 20);
1031 /* XXX: is there a standard glibc define ? */
1032 unsigned long pc = regs[1];
1033 #else
1034 #ifdef __linux__
1035 struct sigcontext *sc = puc;
1036 unsigned long pc = sc->sigc_regs.tpc;
1037 void *sigmask = (void *)sc->sigc_mask;
1038 #elif defined(__OpenBSD__)
1039 struct sigcontext *uc = puc;
1040 unsigned long pc = uc->sc_pc;
1041 void *sigmask = (void *)(long)uc->sc_mask;
1042 #endif
1043 #endif
1045 /* XXX: need kernel patch to get write flag faster */
1046 is_write = 0;
1047 insn = *(uint32_t *)pc;
1048 if ((insn >> 30) == 3) {
1049 switch((insn >> 19) & 0x3f) {
1050 case 0x05: // stb
1051 case 0x15: // stba
1052 case 0x06: // sth
1053 case 0x16: // stha
1054 case 0x04: // st
1055 case 0x14: // sta
1056 case 0x07: // std
1057 case 0x17: // stda
1058 case 0x0e: // stx
1059 case 0x1e: // stxa
1060 case 0x24: // stf
1061 case 0x34: // stfa
1062 case 0x27: // stdf
1063 case 0x37: // stdfa
1064 case 0x26: // stqf
1065 case 0x36: // stqfa
1066 case 0x25: // stfsr
1067 case 0x3c: // casa
1068 case 0x3e: // casxa
1069 is_write = 1;
1070 break;
1073 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1074 is_write, sigmask, NULL);
1077 #elif defined(__arm__)
1079 int cpu_signal_handler(int host_signum, void *pinfo,
1080 void *puc)
1082 siginfo_t *info = pinfo;
1083 struct ucontext *uc = puc;
1084 unsigned long pc;
1085 int is_write;
1087 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1088 pc = uc->uc_mcontext.gregs[R15];
1089 #else
1090 pc = uc->uc_mcontext.arm_pc;
1091 #endif
1092 /* XXX: compute is_write */
1093 is_write = 0;
1094 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1095 is_write,
1096 &uc->uc_sigmask, puc);
1099 #elif defined(__mc68000)
1101 int cpu_signal_handler(int host_signum, void *pinfo,
1102 void *puc)
1104 siginfo_t *info = pinfo;
1105 struct ucontext *uc = puc;
1106 unsigned long pc;
1107 int is_write;
1109 pc = uc->uc_mcontext.gregs[16];
1110 /* XXX: compute is_write */
1111 is_write = 0;
1112 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1113 is_write,
1114 &uc->uc_sigmask, puc);
1117 #elif defined(__ia64)
1119 #ifndef __ISR_VALID
1120 /* This ought to be in <bits/siginfo.h>... */
1121 # define __ISR_VALID 1
1122 #endif
1124 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1126 siginfo_t *info = pinfo;
1127 struct ucontext *uc = puc;
1128 unsigned long ip;
1129 int is_write = 0;
1131 ip = uc->uc_mcontext.sc_ip;
1132 switch (host_signum) {
1133 case SIGILL:
1134 case SIGFPE:
1135 case SIGSEGV:
1136 case SIGBUS:
1137 case SIGTRAP:
1138 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1139 /* ISR.W (write-access) is bit 33: */
1140 is_write = (info->si_isr >> 33) & 1;
1141 break;
1143 default:
1144 break;
1146 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1147 is_write,
1148 (sigset_t *)&uc->uc_sigmask, puc);
1151 #elif defined(__s390__)
1153 int cpu_signal_handler(int host_signum, void *pinfo,
1154 void *puc)
1156 siginfo_t *info = pinfo;
1157 struct ucontext *uc = puc;
1158 unsigned long pc;
1159 uint16_t *pinsn;
1160 int is_write = 0;
1162 pc = uc->uc_mcontext.psw.addr;
1164 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1165 of the normal 2 arguments. The 3rd argument contains the "int_code"
1166 from the hardware which does in fact contain the is_write value.
1167 The rt signal handler, as far as I can tell, does not give this value
1168 at all. Not that we could get to it from here even if it were. */
1169 /* ??? This is not even close to complete, since it ignores all
1170 of the read-modify-write instructions. */
1171 pinsn = (uint16_t *)pc;
1172 switch (pinsn[0] >> 8) {
1173 case 0x50: /* ST */
1174 case 0x42: /* STC */
1175 case 0x40: /* STH */
1176 is_write = 1;
1177 break;
1178 case 0xc4: /* RIL format insns */
1179 switch (pinsn[0] & 0xf) {
1180 case 0xf: /* STRL */
1181 case 0xb: /* STGRL */
1182 case 0x7: /* STHRL */
1183 is_write = 1;
1185 break;
1186 case 0xe3: /* RXY format insns */
1187 switch (pinsn[2] & 0xff) {
1188 case 0x50: /* STY */
1189 case 0x24: /* STG */
1190 case 0x72: /* STCY */
1191 case 0x70: /* STHY */
1192 case 0x8e: /* STPQ */
1193 case 0x3f: /* STRVH */
1194 case 0x3e: /* STRV */
1195 case 0x2f: /* STRVG */
1196 is_write = 1;
1198 break;
1200 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1201 is_write, &uc->uc_sigmask, puc);
1204 #elif defined(__mips__)
1206 int cpu_signal_handler(int host_signum, void *pinfo,
1207 void *puc)
1209 siginfo_t *info = pinfo;
1210 struct ucontext *uc = puc;
1211 greg_t pc = uc->uc_mcontext.pc;
1212 int is_write;
1214 /* XXX: compute is_write */
1215 is_write = 0;
1216 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1217 is_write, &uc->uc_sigmask, puc);
1220 #elif defined(__hppa__)
1222 int cpu_signal_handler(int host_signum, void *pinfo,
1223 void *puc)
1225 struct siginfo *info = pinfo;
1226 struct ucontext *uc = puc;
1227 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1228 uint32_t insn = *(uint32_t *)pc;
1229 int is_write = 0;
1231 /* XXX: need kernel patch to get write flag faster. */
1232 switch (insn >> 26) {
1233 case 0x1a: /* STW */
1234 case 0x19: /* STH */
1235 case 0x18: /* STB */
1236 case 0x1b: /* STWM */
1237 is_write = 1;
1238 break;
1240 case 0x09: /* CSTWX, FSTWX, FSTWS */
1241 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1242 /* Distinguish from coprocessor load ... */
1243 is_write = (insn >> 9) & 1;
1244 break;
1246 case 0x03:
1247 switch ((insn >> 6) & 15) {
1248 case 0xa: /* STWS */
1249 case 0x9: /* STHS */
1250 case 0x8: /* STBS */
1251 case 0xe: /* STWAS */
1252 case 0xc: /* STBYS */
1253 is_write = 1;
1255 break;
1258 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1259 is_write, &uc->uc_sigmask, puc);
1262 #else
1264 #error host CPU specific signal handler needed
1266 #endif
1268 #endif /* !defined(CONFIG_SOFTMMU) */