target-ppc: expose cpu capability flags
[qemu.git] / exec.c
blobc5c92809eb084586b013f19d7b5f15312ab1f407
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 uint8_t *phys_ram_dirty;
112 static int in_migration;
114 typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119 } RAMBlock;
121 static RAMBlock *ram_blocks;
122 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longer assume contiguous ram offsets, and external uses
124 of this variable will break. */
125 ram_addr_t last_ram_offset;
126 #endif
128 CPUState *first_cpu;
129 /* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
131 CPUState *cpu_single_env;
132 /* 0 = Do not count executed instructions.
133 1 = Precise instruction counting.
134 2 = Adaptive rate instruction counting. */
135 int use_icount = 0;
136 /* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138 int64_t qemu_icount;
140 typedef struct PageDesc {
141 /* list of TBs intersecting this ram page */
142 TranslationBlock *first_tb;
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147 #if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149 #endif
150 } PageDesc;
152 typedef struct PhysPageDesc {
153 /* offset in host memory of the page + io_index in the low bits */
154 ram_addr_t phys_offset;
155 ram_addr_t region_offset;
156 } PhysPageDesc;
158 #define L2_BITS 10
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165 #else
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
167 #endif
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
172 unsigned long qemu_real_host_page_size;
173 unsigned long qemu_host_page_bits;
174 unsigned long qemu_host_page_size;
175 unsigned long qemu_host_page_mask;
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc *l1_map[L1_SIZE];
179 static PhysPageDesc **l1_phys_map;
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
184 /* io memory support */
185 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
187 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
188 static char io_mem_used[IO_MEM_NB_ENTRIES];
189 static int io_mem_watch;
190 #endif
192 /* log support */
193 static const char *logfilename = "/tmp/qemu.log";
194 FILE *logfile;
195 int loglevel;
196 static int log_append = 0;
198 /* statistics */
199 static int tlb_flush_count;
200 static int tb_flush_count;
201 static int tb_phys_invalidate_count;
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t {
205 target_phys_addr_t base;
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
210 } subpage_t;
212 #ifdef _WIN32
213 static void map_exec(void *addr, long size)
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
220 #else
221 static void map_exec(void *addr, long size)
223 unsigned long start, end, page_size;
225 page_size = getpagesize();
226 start = (unsigned long)addr;
227 start &= ~(page_size - 1);
229 end = (unsigned long)addr + size;
230 end += page_size - 1;
231 end &= ~(page_size - 1);
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
236 #endif
238 static void page_init(void)
240 /* NOTE: we can always suppose that qemu_host_page_size >=
241 TARGET_PAGE_SIZE */
242 #ifdef _WIN32
244 SYSTEM_INFO system_info;
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
249 #else
250 qemu_real_host_page_size = getpagesize();
251 #endif
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
269 mmap_lock();
270 last_brk = (unsigned long)sbrk(0);
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 page_set_flags(startaddr & TARGET_PAGE_MASK,
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
284 } while (!feof(f));
285 fclose(f);
287 mmap_unlock();
289 #endif
292 static inline PageDesc **page_l1_map(target_ulong index)
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
298 return NULL;
299 #endif
300 return &l1_map[index >> L2_BITS];
303 static inline PageDesc *page_find_alloc(target_ulong index)
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
318 *lp = p;
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
325 #else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328 #endif
330 return p + (index & (L2_SIZE - 1));
333 static inline PageDesc *page_find(target_ulong index)
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
340 p = *lp;
341 if (!p)
342 return 0;
343 return p + (index & (L2_SIZE - 1));
346 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
348 void **lp, **p;
349 PhysPageDesc *pd;
351 p = (void **)l1_phys_map;
352 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
354 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356 #endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
367 #endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
369 pd = *lp;
370 if (!pd) {
371 int i;
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
377 for (i = 0; i < L2_SIZE; i++) {
378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
385 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
387 return phys_page_find_alloc(index, 0);
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr);
392 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
393 target_ulong vaddr);
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
396 #endif
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommended to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
404 #endif
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408 #endif
410 static void code_gen_alloc(unsigned long tb_size)
412 #ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416 #else
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
419 #if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 #else
423 /* XXX: needs adjustments */
424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
425 #endif
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431 #if defined(__linux__)
433 int flags;
434 void *start = NULL;
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437 #if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
442 #elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
448 #elif defined(__arm__)
449 /* Map the buffer below 32M, so we can use direct calls and branches */
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
454 #endif
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
463 #elif defined(__FreeBSD__) || defined(__DragonFly__)
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 #if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476 #endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
485 #else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488 #endif
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500 void cpu_exec_init_all(unsigned long tb_size)
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
505 page_init();
506 #if !defined(CONFIG_USER_ONLY)
507 io_mem_init();
508 #endif
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
513 #define CPU_COMMON_SAVE_VERSION 1
515 static void cpu_common_save(QEMUFile *f, void *opaque)
517 CPUState *env = opaque;
519 qemu_put_be32s(f, &env->halted);
520 qemu_put_be32s(f, &env->interrupt_request);
523 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
525 CPUState *env = opaque;
527 if (version_id != CPU_COMMON_SAVE_VERSION)
528 return -EINVAL;
530 qemu_get_be32s(f, &env->halted);
531 qemu_get_be32s(f, &env->interrupt_request);
532 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
533 version_id is increased. */
534 env->interrupt_request &= ~0x01;
535 tlb_flush(env, 1);
537 return 0;
539 #endif
541 void cpu_exec_init(CPUState *env)
543 CPUState **penv;
544 int cpu_index;
546 #if defined(CONFIG_USER_ONLY)
547 cpu_list_lock();
548 #endif
549 env->next_cpu = NULL;
550 penv = &first_cpu;
551 cpu_index = 0;
552 while (*penv != NULL) {
553 penv = (CPUState **)&(*penv)->next_cpu;
554 cpu_index++;
556 env->cpu_index = cpu_index;
557 env->numa_node = 0;
558 TAILQ_INIT(&env->breakpoints);
559 TAILQ_INIT(&env->watchpoints);
560 *penv = env;
561 #if defined(CONFIG_USER_ONLY)
562 cpu_list_unlock();
563 #endif
564 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
565 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
566 cpu_common_save, cpu_common_load, env);
567 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
568 cpu_save, cpu_load, env);
569 #endif
572 static inline void invalidate_page_bitmap(PageDesc *p)
574 if (p->code_bitmap) {
575 qemu_free(p->code_bitmap);
576 p->code_bitmap = NULL;
578 p->code_write_count = 0;
581 /* set to NULL all the 'first_tb' fields in all PageDescs */
582 static void page_flush_tb(void)
584 int i, j;
585 PageDesc *p;
587 for(i = 0; i < L1_SIZE; i++) {
588 p = l1_map[i];
589 if (p) {
590 for(j = 0; j < L2_SIZE; j++) {
591 p->first_tb = NULL;
592 invalidate_page_bitmap(p);
593 p++;
599 /* flush all the translation blocks */
600 /* XXX: tb_flush is currently not thread safe */
601 void tb_flush(CPUState *env1)
603 CPUState *env;
604 #if defined(DEBUG_FLUSH)
605 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
606 (unsigned long)(code_gen_ptr - code_gen_buffer),
607 nb_tbs, nb_tbs > 0 ?
608 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
609 #endif
610 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
611 cpu_abort(env1, "Internal error: code buffer overflow\n");
613 nb_tbs = 0;
615 for(env = first_cpu; env != NULL; env = env->next_cpu) {
616 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
619 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
620 page_flush_tb();
622 code_gen_ptr = code_gen_buffer;
623 /* XXX: flush processor icache at this point if cache flush is
624 expensive */
625 tb_flush_count++;
628 #ifdef DEBUG_TB_CHECK
630 static void tb_invalidate_check(target_ulong address)
632 TranslationBlock *tb;
633 int i;
634 address &= TARGET_PAGE_MASK;
635 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
636 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
637 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
638 address >= tb->pc + tb->size)) {
639 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
640 address, (long)tb->pc, tb->size);
646 /* verify that all the pages have correct rights for code */
647 static void tb_page_check(void)
649 TranslationBlock *tb;
650 int i, flags1, flags2;
652 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
653 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
654 flags1 = page_get_flags(tb->pc);
655 flags2 = page_get_flags(tb->pc + tb->size - 1);
656 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
657 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
658 (long)tb->pc, tb->size, flags1, flags2);
664 static void tb_jmp_check(TranslationBlock *tb)
666 TranslationBlock *tb1;
667 unsigned int n1;
669 /* suppress any remaining jumps to this TB */
670 tb1 = tb->jmp_first;
671 for(;;) {
672 n1 = (long)tb1 & 3;
673 tb1 = (TranslationBlock *)((long)tb1 & ~3);
674 if (n1 == 2)
675 break;
676 tb1 = tb1->jmp_next[n1];
678 /* check end of list */
679 if (tb1 != tb) {
680 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
684 #endif
686 /* invalidate one TB */
687 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
701 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703 TranslationBlock *tb1;
704 unsigned int n1;
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
714 ptb = &tb1->page_next[n1];
718 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
742 tb->jmp_next[n] = NULL;
746 /* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748 static inline void tb_reset_jump(TranslationBlock *tb, int n)
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
753 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
755 CPUState *env;
756 PageDesc *p;
757 unsigned int h, n1;
758 target_phys_addr_t phys_pc;
759 TranslationBlock *tb1, *tb2;
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
764 tb_remove(&tb_phys_hash[h], tb,
765 offsetof(TranslationBlock, phys_hash_next));
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
779 tb_invalidated_flag = 1;
781 /* remove the TB from the hash list */
782 h = tb_jmp_cache_hash_func(tb->pc);
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
806 tb_phys_invalidate_count++;
809 static inline void set_bits(uint8_t *tab, int start, int len)
811 int end, mask, end1;
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
836 static void build_page_bitmap(PageDesc *p)
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
864 TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
879 tb = tb_alloc(pc);
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
888 cpu_gen_code(env, tb, &code_gen_size);
889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
891 /* check next page if needed */
892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
893 phys_page2 = -1;
894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
895 phys_page2 = get_phys_addr_code(env, virt_page2);
897 tb_link_phys(tb, phys_pc, phys_page2);
898 return tb;
901 /* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
906 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
907 int is_cpu_write_access)
909 TranslationBlock *tb, *tb_next, *saved_tb;
910 CPUState *env = cpu_single_env;
911 target_ulong tb_start, tb_end;
912 PageDesc *p;
913 int n;
914 #ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921 #endif /* TARGET_HAS_PRECISE_SMC */
923 p = page_find(start >> TARGET_PAGE_BITS);
924 if (!p)
925 return;
926 if (!p->code_bitmap &&
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
929 /* build code bitmap */
930 build_page_bitmap(p);
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950 if (!(tb_end <= start || tb_start >= end)) {
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
955 if (env->mem_io_pc) {
956 /* now we have a real cpu fault */
957 current_tb = tb_find_pc(env->mem_io_pc);
960 if (current_tb == tb &&
961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
968 current_tb_modified = 1;
969 cpu_restore_state(current_tb, env,
970 env->mem_io_pc, NULL);
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
974 #endif /* TARGET_HAS_PRECISE_SMC */
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
982 tb_phys_invalidate(tb, -1);
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
989 tb = tb_next;
991 #if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
995 if (is_cpu_write_access) {
996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
999 #endif
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
1005 env->current_tb = NULL;
1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1007 cpu_resume_from_signal(env, NULL);
1009 #endif
1012 /* len must be <= 8 and start must be a multiple of len */
1013 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1015 PageDesc *p;
1016 int offset, b;
1017 #if 0
1018 if (1) {
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1024 #endif
1025 p = page_find(start >> TARGET_PAGE_BITS);
1026 if (!p)
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
1035 tb_invalidate_phys_page_range(start, start + len, 1);
1039 #if !defined(CONFIG_SOFTMMU)
1040 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1041 unsigned long pc, void *puc)
1043 TranslationBlock *tb;
1044 PageDesc *p;
1045 int n;
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 TranslationBlock *current_tb = NULL;
1048 CPUState *env = cpu_single_env;
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
1053 #endif
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
1057 if (!p)
1058 return;
1059 tb = p->first_tb;
1060 #ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1064 #endif
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1086 p->first_tb = NULL;
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
1092 env->current_tb = NULL;
1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1094 cpu_resume_from_signal(env, puc);
1096 #endif
1098 #endif
1100 /* add the tb in the target page and protect it if necessary */
1101 static inline void tb_alloc_page(TranslationBlock *tb,
1102 unsigned int n, target_ulong page_addr)
1104 PageDesc *p;
1105 TranslationBlock *last_first_tb;
1107 tb->page_addr[n] = page_addr;
1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
1114 #if defined(TARGET_HAS_SMC) || 1
1116 #if defined(CONFIG_USER_ONLY)
1117 if (p->flags & PAGE_WRITE) {
1118 target_ulong addr;
1119 PageDesc *p2;
1120 int prot;
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
1124 page_addr &= qemu_host_page_mask;
1125 prot = 0;
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1136 mprotect(g2h(page_addr), qemu_host_page_size,
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138 #ifdef DEBUG_TB_INVALIDATE
1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1140 page_addr);
1141 #endif
1143 #else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
1148 tlb_protect_code(page_addr);
1150 #endif
1152 #endif /* TARGET_HAS_SMC */
1155 /* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
1157 TranslationBlock *tb_alloc(target_ulong pc)
1159 TranslationBlock *tb;
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1163 return NULL;
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
1166 tb->cflags = 0;
1167 return tb;
1170 void tb_free(TranslationBlock *tb)
1172 /* In practice this is mostly used for single use temporary TB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1181 /* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
1183 void tb_link_phys(TranslationBlock *tb,
1184 target_ulong phys_pc, target_ulong phys_page2)
1186 unsigned int h;
1187 TranslationBlock **ptb;
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
1198 /* add in the page list */
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
1215 #ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217 #endif
1218 mmap_unlock();
1221 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1249 return &tbs[m_max];
1252 static void tb_reset_jump_recursive(TranslationBlock *tb);
1254 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1288 /* suppress jumps in the tb on which we could have jumped */
1289 tb_reset_jump_recursive(tb_next);
1293 static void tb_reset_jump_recursive(TranslationBlock *tb)
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1299 #if defined(TARGET_HAS_ICE)
1300 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302 target_phys_addr_t addr;
1303 target_ulong pd;
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1317 #endif
1319 /* Add a watchpoint. */
1320 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
1323 target_ulong len_mask = ~(len - 1);
1324 CPUWatchpoint *wp;
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1332 wp = qemu_malloc(sizeof(*wp));
1334 wp->vaddr = addr;
1335 wp->len_mask = len_mask;
1336 wp->flags = flags;
1338 /* keep all GDB-injected watchpoints in front */
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1344 tlb_flush_page(env, addr);
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
1351 /* Remove a specific watchpoint. */
1352 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
1355 target_ulong len_mask = ~(len - 1);
1356 CPUWatchpoint *wp;
1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1359 if (addr == wp->vaddr && len_mask == wp->len_mask
1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1361 cpu_watchpoint_remove_by_ref(env, wp);
1362 return 0;
1365 return -ENOENT;
1368 /* Remove a specific watchpoint by reference. */
1369 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1373 tlb_flush_page(env, watchpoint->vaddr);
1375 qemu_free(watchpoint);
1378 /* Remove all matching watchpoints. */
1379 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1381 CPUWatchpoint *wp, *next;
1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
1389 /* Add a breakpoint. */
1390 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
1393 #if defined(TARGET_HAS_ICE)
1394 CPUBreakpoint *bp;
1396 bp = qemu_malloc(sizeof(*bp));
1398 bp->pc = pc;
1399 bp->flags = flags;
1401 /* keep all GDB-injected breakpoints in front */
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1407 breakpoint_invalidate(env, pc);
1409 if (breakpoint)
1410 *breakpoint = bp;
1411 return 0;
1412 #else
1413 return -ENOSYS;
1414 #endif
1417 /* Remove a specific breakpoint. */
1418 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1420 #if defined(TARGET_HAS_ICE)
1421 CPUBreakpoint *bp;
1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1429 return -ENOENT;
1430 #else
1431 return -ENOSYS;
1432 #endif
1435 /* Remove a specific breakpoint by reference. */
1436 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1438 #if defined(TARGET_HAS_ICE)
1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1441 breakpoint_invalidate(env, breakpoint->pc);
1443 qemu_free(breakpoint);
1444 #endif
1447 /* Remove all matching breakpoints. */
1448 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint *bp, *next;
1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
1457 #endif
1460 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462 void cpu_single_step(CPUState *env, int enabled)
1464 #if defined(TARGET_HAS_ICE)
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
1470 /* must flush all the translated code to avoid inconsistencies */
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1475 #endif
1478 /* enable or disable low levels log */
1479 void cpu_set_log(int log_flags)
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
1483 logfile = fopen(logfilename, log_append ? "a" : "w");
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1488 #if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 static char logfile_buf[4096];
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494 #else
1495 setvbuf(logfile, NULL, _IOLBF, 0);
1496 #endif
1497 log_append = 1;
1499 if (!loglevel && logfile) {
1500 fclose(logfile);
1501 logfile = NULL;
1505 void cpu_set_log_filename(const char *filename)
1507 logfilename = strdup(filename);
1508 if (logfile) {
1509 fclose(logfile);
1510 logfile = NULL;
1512 cpu_set_log(loglevel);
1515 static void cpu_unlink_tb(CPUState *env)
1517 #if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522 #else
1523 TranslationBlock *tb;
1524 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1526 tb = env->current_tb;
1527 /* if the cpu is currently executing code, we must unlink it and
1528 all the potentially executing TB */
1529 if (tb && !testandset(&interrupt_lock)) {
1530 env->current_tb = NULL;
1531 tb_reset_jump_recursive(tb);
1532 resetlock(&interrupt_lock);
1534 #endif
1537 /* mask must never be zero, except for A20 change call */
1538 void cpu_interrupt(CPUState *env, int mask)
1540 int old_mask;
1542 old_mask = env->interrupt_request;
1543 env->interrupt_request |= mask;
1545 #ifndef CONFIG_USER_ONLY
1547 * If called from iothread context, wake the target cpu in
1548 * case its halted.
1550 if (!qemu_cpu_self(env)) {
1551 qemu_cpu_kick(env);
1552 return;
1554 #endif
1556 if (use_icount) {
1557 env->icount_decr.u16.high = 0xffff;
1558 #ifndef CONFIG_USER_ONLY
1559 if (!can_do_io(env)
1560 && (mask & ~old_mask) != 0) {
1561 cpu_abort(env, "Raised interrupt while not in I/O function");
1563 #endif
1564 } else {
1565 cpu_unlink_tb(env);
1569 void cpu_reset_interrupt(CPUState *env, int mask)
1571 env->interrupt_request &= ~mask;
1574 void cpu_exit(CPUState *env)
1576 env->exit_request = 1;
1577 cpu_unlink_tb(env);
1580 const CPULogItem cpu_log_items[] = {
1581 { CPU_LOG_TB_OUT_ASM, "out_asm",
1582 "show generated host assembly code for each compiled TB" },
1583 { CPU_LOG_TB_IN_ASM, "in_asm",
1584 "show target assembly code for each compiled TB" },
1585 { CPU_LOG_TB_OP, "op",
1586 "show micro ops for each compiled TB" },
1587 { CPU_LOG_TB_OP_OPT, "op_opt",
1588 "show micro ops "
1589 #ifdef TARGET_I386
1590 "before eflags optimization and "
1591 #endif
1592 "after liveness analysis" },
1593 { CPU_LOG_INT, "int",
1594 "show interrupts/exceptions in short format" },
1595 { CPU_LOG_EXEC, "exec",
1596 "show trace before each executed TB (lots of logs)" },
1597 { CPU_LOG_TB_CPU, "cpu",
1598 "show CPU state before block translation" },
1599 #ifdef TARGET_I386
1600 { CPU_LOG_PCALL, "pcall",
1601 "show protected mode far calls/returns/exceptions" },
1602 { CPU_LOG_RESET, "cpu_reset",
1603 "show CPU state before CPU resets" },
1604 #endif
1605 #ifdef DEBUG_IOPORT
1606 { CPU_LOG_IOPORT, "ioport",
1607 "show all i/o ports accesses" },
1608 #endif
1609 { 0, NULL, NULL },
1612 static int cmp1(const char *s1, int n, const char *s2)
1614 if (strlen(s2) != n)
1615 return 0;
1616 return memcmp(s1, s2, n) == 0;
1619 /* takes a comma separated list of log masks. Return 0 if error. */
1620 int cpu_str_to_log_mask(const char *str)
1622 const CPULogItem *item;
1623 int mask;
1624 const char *p, *p1;
1626 p = str;
1627 mask = 0;
1628 for(;;) {
1629 p1 = strchr(p, ',');
1630 if (!p1)
1631 p1 = p + strlen(p);
1632 if(cmp1(p,p1-p,"all")) {
1633 for(item = cpu_log_items; item->mask != 0; item++) {
1634 mask |= item->mask;
1636 } else {
1637 for(item = cpu_log_items; item->mask != 0; item++) {
1638 if (cmp1(p, p1 - p, item->name))
1639 goto found;
1641 return 0;
1643 found:
1644 mask |= item->mask;
1645 if (*p1 != ',')
1646 break;
1647 p = p1 + 1;
1649 return mask;
1652 void cpu_abort(CPUState *env, const char *fmt, ...)
1654 va_list ap;
1655 va_list ap2;
1657 va_start(ap, fmt);
1658 va_copy(ap2, ap);
1659 fprintf(stderr, "qemu: fatal: ");
1660 vfprintf(stderr, fmt, ap);
1661 fprintf(stderr, "\n");
1662 #ifdef TARGET_I386
1663 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1664 #else
1665 cpu_dump_state(env, stderr, fprintf, 0);
1666 #endif
1667 if (qemu_log_enabled()) {
1668 qemu_log("qemu: fatal: ");
1669 qemu_log_vprintf(fmt, ap2);
1670 qemu_log("\n");
1671 #ifdef TARGET_I386
1672 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1673 #else
1674 log_cpu_state(env, 0);
1675 #endif
1676 qemu_log_flush();
1677 qemu_log_close();
1679 va_end(ap2);
1680 va_end(ap);
1681 abort();
1684 CPUState *cpu_copy(CPUState *env)
1686 CPUState *new_env = cpu_init(env->cpu_model_str);
1687 CPUState *next_cpu = new_env->next_cpu;
1688 int cpu_index = new_env->cpu_index;
1689 #if defined(TARGET_HAS_ICE)
1690 CPUBreakpoint *bp;
1691 CPUWatchpoint *wp;
1692 #endif
1694 memcpy(new_env, env, sizeof(CPUState));
1696 /* Preserve chaining and index. */
1697 new_env->next_cpu = next_cpu;
1698 new_env->cpu_index = cpu_index;
1700 /* Clone all break/watchpoints.
1701 Note: Once we support ptrace with hw-debug register access, make sure
1702 BP_CPU break/watchpoints are handled correctly on clone. */
1703 TAILQ_INIT(&env->breakpoints);
1704 TAILQ_INIT(&env->watchpoints);
1705 #if defined(TARGET_HAS_ICE)
1706 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1707 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1710 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1711 wp->flags, NULL);
1713 #endif
1715 return new_env;
1718 #if !defined(CONFIG_USER_ONLY)
1720 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722 unsigned int i;
1724 /* Discard jump cache entries for any tb which might potentially
1725 overlap the flushed page. */
1726 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1727 memset (&env->tb_jmp_cache[i], 0,
1728 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730 i = tb_jmp_cache_hash_page(addr);
1731 memset (&env->tb_jmp_cache[i], 0,
1732 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1735 /* NOTE: if flush_global is true, also flush global entries (not
1736 implemented yet) */
1737 void tlb_flush(CPUState *env, int flush_global)
1739 int i;
1741 #if defined(DEBUG_TLB)
1742 printf("tlb_flush:\n");
1743 #endif
1744 /* must reset current TB so that interrupts cannot modify the
1745 links while we are modifying them */
1746 env->current_tb = NULL;
1748 for(i = 0; i < CPU_TLB_SIZE; i++) {
1749 env->tlb_table[0][i].addr_read = -1;
1750 env->tlb_table[0][i].addr_write = -1;
1751 env->tlb_table[0][i].addr_code = -1;
1752 env->tlb_table[1][i].addr_read = -1;
1753 env->tlb_table[1][i].addr_write = -1;
1754 env->tlb_table[1][i].addr_code = -1;
1755 #if (NB_MMU_MODES >= 3)
1756 env->tlb_table[2][i].addr_read = -1;
1757 env->tlb_table[2][i].addr_write = -1;
1758 env->tlb_table[2][i].addr_code = -1;
1759 #endif
1760 #if (NB_MMU_MODES >= 4)
1761 env->tlb_table[3][i].addr_read = -1;
1762 env->tlb_table[3][i].addr_write = -1;
1763 env->tlb_table[3][i].addr_code = -1;
1764 #endif
1765 #if (NB_MMU_MODES >= 5)
1766 env->tlb_table[4][i].addr_read = -1;
1767 env->tlb_table[4][i].addr_write = -1;
1768 env->tlb_table[4][i].addr_code = -1;
1769 #endif
1773 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1775 #ifdef CONFIG_KQEMU
1776 if (env->kqemu_enabled) {
1777 kqemu_flush(env, flush_global);
1779 #endif
1780 tlb_flush_count++;
1783 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1785 if (addr == (tlb_entry->addr_read &
1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1787 addr == (tlb_entry->addr_write &
1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1789 addr == (tlb_entry->addr_code &
1790 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1791 tlb_entry->addr_read = -1;
1792 tlb_entry->addr_write = -1;
1793 tlb_entry->addr_code = -1;
1797 void tlb_flush_page(CPUState *env, target_ulong addr)
1799 int i;
1801 #if defined(DEBUG_TLB)
1802 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1803 #endif
1804 /* must reset current TB so that interrupts cannot modify the
1805 links while we are modifying them */
1806 env->current_tb = NULL;
1808 addr &= TARGET_PAGE_MASK;
1809 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1810 tlb_flush_entry(&env->tlb_table[0][i], addr);
1811 tlb_flush_entry(&env->tlb_table[1][i], addr);
1812 #if (NB_MMU_MODES >= 3)
1813 tlb_flush_entry(&env->tlb_table[2][i], addr);
1814 #endif
1815 #if (NB_MMU_MODES >= 4)
1816 tlb_flush_entry(&env->tlb_table[3][i], addr);
1817 #endif
1818 #if (NB_MMU_MODES >= 5)
1819 tlb_flush_entry(&env->tlb_table[4][i], addr);
1820 #endif
1822 tlb_flush_jmp_cache(env, addr);
1824 #ifdef CONFIG_KQEMU
1825 if (env->kqemu_enabled) {
1826 kqemu_flush_page(env, addr);
1828 #endif
1831 /* update the TLBs so that writes to code in the virtual page 'addr'
1832 can be detected */
1833 static void tlb_protect_code(ram_addr_t ram_addr)
1835 cpu_physical_memory_reset_dirty(ram_addr,
1836 ram_addr + TARGET_PAGE_SIZE,
1837 CODE_DIRTY_FLAG);
1840 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1841 tested for self modifying code */
1842 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1843 target_ulong vaddr)
1845 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1848 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1849 unsigned long start, unsigned long length)
1851 unsigned long addr;
1852 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1853 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1854 if ((addr - start) < length) {
1855 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1860 /* Note: start and end must be within the same ram block. */
1861 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1862 int dirty_flags)
1864 CPUState *env;
1865 unsigned long length, start1;
1866 int i, mask, len;
1867 uint8_t *p;
1869 start &= TARGET_PAGE_MASK;
1870 end = TARGET_PAGE_ALIGN(end);
1872 length = end - start;
1873 if (length == 0)
1874 return;
1875 len = length >> TARGET_PAGE_BITS;
1876 #ifdef CONFIG_KQEMU
1877 /* XXX: should not depend on cpu context */
1878 env = first_cpu;
1879 if (env->kqemu_enabled) {
1880 ram_addr_t addr;
1881 addr = start;
1882 for(i = 0; i < len; i++) {
1883 kqemu_set_notdirty(env, addr);
1884 addr += TARGET_PAGE_SIZE;
1887 #endif
1888 mask = ~dirty_flags;
1889 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1890 for(i = 0; i < len; i++)
1891 p[i] &= mask;
1893 /* we modify the TLB cache so that the dirty bit will be set again
1894 when accessing the range */
1895 start1 = (unsigned long)qemu_get_ram_ptr(start);
1896 /* Chek that we don't span multiple blocks - this breaks the
1897 address comparisons below. */
1898 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1899 != (end - 1) - start) {
1900 abort();
1903 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1904 for(i = 0; i < CPU_TLB_SIZE; i++)
1905 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1906 for(i = 0; i < CPU_TLB_SIZE; i++)
1907 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1908 #if (NB_MMU_MODES >= 3)
1909 for(i = 0; i < CPU_TLB_SIZE; i++)
1910 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1911 #endif
1912 #if (NB_MMU_MODES >= 4)
1913 for(i = 0; i < CPU_TLB_SIZE; i++)
1914 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1915 #endif
1916 #if (NB_MMU_MODES >= 5)
1917 for(i = 0; i < CPU_TLB_SIZE; i++)
1918 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1919 #endif
1923 int cpu_physical_memory_set_dirty_tracking(int enable)
1925 in_migration = enable;
1926 return 0;
1929 int cpu_physical_memory_get_dirty_tracking(void)
1931 return in_migration;
1934 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1936 if (kvm_enabled())
1937 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1940 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1942 ram_addr_t ram_addr;
1943 void *p;
1945 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1946 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1947 + tlb_entry->addend);
1948 ram_addr = qemu_ram_addr_from_host(p);
1949 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1950 tlb_entry->addr_write |= TLB_NOTDIRTY;
1955 /* update the TLB according to the current state of the dirty bits */
1956 void cpu_tlb_update_dirty(CPUState *env)
1958 int i;
1959 for(i = 0; i < CPU_TLB_SIZE; i++)
1960 tlb_update_dirty(&env->tlb_table[0][i]);
1961 for(i = 0; i < CPU_TLB_SIZE; i++)
1962 tlb_update_dirty(&env->tlb_table[1][i]);
1963 #if (NB_MMU_MODES >= 3)
1964 for(i = 0; i < CPU_TLB_SIZE; i++)
1965 tlb_update_dirty(&env->tlb_table[2][i]);
1966 #endif
1967 #if (NB_MMU_MODES >= 4)
1968 for(i = 0; i < CPU_TLB_SIZE; i++)
1969 tlb_update_dirty(&env->tlb_table[3][i]);
1970 #endif
1971 #if (NB_MMU_MODES >= 5)
1972 for(i = 0; i < CPU_TLB_SIZE; i++)
1973 tlb_update_dirty(&env->tlb_table[4][i]);
1974 #endif
1977 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1979 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1980 tlb_entry->addr_write = vaddr;
1983 /* update the TLB corresponding to virtual page vaddr
1984 so that it is no longer dirty */
1985 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1987 int i;
1989 vaddr &= TARGET_PAGE_MASK;
1990 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1991 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1992 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1993 #if (NB_MMU_MODES >= 3)
1994 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1995 #endif
1996 #if (NB_MMU_MODES >= 4)
1997 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1998 #endif
1999 #if (NB_MMU_MODES >= 5)
2000 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
2001 #endif
2004 /* add a new TLB entry. At most one entry for a given virtual address
2005 is permitted. Return 0 if OK or 2 if the page could not be mapped
2006 (can only happen in non SOFTMMU mode for I/O pages or pages
2007 conflicting with the host address space). */
2008 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2009 target_phys_addr_t paddr, int prot,
2010 int mmu_idx, int is_softmmu)
2012 PhysPageDesc *p;
2013 unsigned long pd;
2014 unsigned int index;
2015 target_ulong address;
2016 target_ulong code_address;
2017 target_phys_addr_t addend;
2018 int ret;
2019 CPUTLBEntry *te;
2020 CPUWatchpoint *wp;
2021 target_phys_addr_t iotlb;
2023 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2024 if (!p) {
2025 pd = IO_MEM_UNASSIGNED;
2026 } else {
2027 pd = p->phys_offset;
2029 #if defined(DEBUG_TLB)
2030 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2031 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2032 #endif
2034 ret = 0;
2035 address = vaddr;
2036 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2037 /* IO memory case (romd handled later) */
2038 address |= TLB_MMIO;
2040 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2041 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2042 /* Normal RAM. */
2043 iotlb = pd & TARGET_PAGE_MASK;
2044 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2045 iotlb |= IO_MEM_NOTDIRTY;
2046 else
2047 iotlb |= IO_MEM_ROM;
2048 } else {
2049 /* IO handlers are currently passed a physical address.
2050 It would be nice to pass an offset from the base address
2051 of that region. This would avoid having to special case RAM,
2052 and avoid full address decoding in every device.
2053 We can't use the high bits of pd for this because
2054 IO_MEM_ROMD uses these as a ram address. */
2055 iotlb = (pd & ~TARGET_PAGE_MASK);
2056 if (p) {
2057 iotlb += p->region_offset;
2058 } else {
2059 iotlb += paddr;
2063 code_address = address;
2064 /* Make accesses to pages with watchpoints go via the
2065 watchpoint trap routines. */
2066 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2067 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2068 iotlb = io_mem_watch + paddr;
2069 /* TODO: The memory case can be optimized by not trapping
2070 reads of pages with a write breakpoint. */
2071 address |= TLB_MMIO;
2075 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2076 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2077 te = &env->tlb_table[mmu_idx][index];
2078 te->addend = addend - vaddr;
2079 if (prot & PAGE_READ) {
2080 te->addr_read = address;
2081 } else {
2082 te->addr_read = -1;
2085 if (prot & PAGE_EXEC) {
2086 te->addr_code = code_address;
2087 } else {
2088 te->addr_code = -1;
2090 if (prot & PAGE_WRITE) {
2091 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2092 (pd & IO_MEM_ROMD)) {
2093 /* Write access calls the I/O callback. */
2094 te->addr_write = address | TLB_MMIO;
2095 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2096 !cpu_physical_memory_is_dirty(pd)) {
2097 te->addr_write = address | TLB_NOTDIRTY;
2098 } else {
2099 te->addr_write = address;
2101 } else {
2102 te->addr_write = -1;
2104 return ret;
2107 #else
2109 void tlb_flush(CPUState *env, int flush_global)
2113 void tlb_flush_page(CPUState *env, target_ulong addr)
2117 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2118 target_phys_addr_t paddr, int prot,
2119 int mmu_idx, int is_softmmu)
2121 return 0;
2124 /* dump memory mappings */
2125 void page_dump(FILE *f)
2127 unsigned long start, end;
2128 int i, j, prot, prot1;
2129 PageDesc *p;
2131 fprintf(f, "%-8s %-8s %-8s %s\n",
2132 "start", "end", "size", "prot");
2133 start = -1;
2134 end = -1;
2135 prot = 0;
2136 for(i = 0; i <= L1_SIZE; i++) {
2137 if (i < L1_SIZE)
2138 p = l1_map[i];
2139 else
2140 p = NULL;
2141 for(j = 0;j < L2_SIZE; j++) {
2142 if (!p)
2143 prot1 = 0;
2144 else
2145 prot1 = p[j].flags;
2146 if (prot1 != prot) {
2147 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2148 if (start != -1) {
2149 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2150 start, end, end - start,
2151 prot & PAGE_READ ? 'r' : '-',
2152 prot & PAGE_WRITE ? 'w' : '-',
2153 prot & PAGE_EXEC ? 'x' : '-');
2155 if (prot1 != 0)
2156 start = end;
2157 else
2158 start = -1;
2159 prot = prot1;
2161 if (!p)
2162 break;
2167 int page_get_flags(target_ulong address)
2169 PageDesc *p;
2171 p = page_find(address >> TARGET_PAGE_BITS);
2172 if (!p)
2173 return 0;
2174 return p->flags;
2177 /* modify the flags of a page and invalidate the code if
2178 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2179 depending on PAGE_WRITE */
2180 void page_set_flags(target_ulong start, target_ulong end, int flags)
2182 PageDesc *p;
2183 target_ulong addr;
2185 /* mmap_lock should already be held. */
2186 start = start & TARGET_PAGE_MASK;
2187 end = TARGET_PAGE_ALIGN(end);
2188 if (flags & PAGE_WRITE)
2189 flags |= PAGE_WRITE_ORG;
2190 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2191 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2192 /* We may be called for host regions that are outside guest
2193 address space. */
2194 if (!p)
2195 return;
2196 /* if the write protection is set, then we invalidate the code
2197 inside */
2198 if (!(p->flags & PAGE_WRITE) &&
2199 (flags & PAGE_WRITE) &&
2200 p->first_tb) {
2201 tb_invalidate_phys_page(addr, 0, NULL);
2203 p->flags = flags;
2207 int page_check_range(target_ulong start, target_ulong len, int flags)
2209 PageDesc *p;
2210 target_ulong end;
2211 target_ulong addr;
2213 if (start + len < start)
2214 /* we've wrapped around */
2215 return -1;
2217 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2218 start = start & TARGET_PAGE_MASK;
2220 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2221 p = page_find(addr >> TARGET_PAGE_BITS);
2222 if( !p )
2223 return -1;
2224 if( !(p->flags & PAGE_VALID) )
2225 return -1;
2227 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2228 return -1;
2229 if (flags & PAGE_WRITE) {
2230 if (!(p->flags & PAGE_WRITE_ORG))
2231 return -1;
2232 /* unprotect the page if it was put read-only because it
2233 contains translated code */
2234 if (!(p->flags & PAGE_WRITE)) {
2235 if (!page_unprotect(addr, 0, NULL))
2236 return -1;
2238 return 0;
2241 return 0;
2244 /* called from signal handler: invalidate the code and unprotect the
2245 page. Return TRUE if the fault was successfully handled. */
2246 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2248 unsigned int page_index, prot, pindex;
2249 PageDesc *p, *p1;
2250 target_ulong host_start, host_end, addr;
2252 /* Technically this isn't safe inside a signal handler. However we
2253 know this only ever happens in a synchronous SEGV handler, so in
2254 practice it seems to be ok. */
2255 mmap_lock();
2257 host_start = address & qemu_host_page_mask;
2258 page_index = host_start >> TARGET_PAGE_BITS;
2259 p1 = page_find(page_index);
2260 if (!p1) {
2261 mmap_unlock();
2262 return 0;
2264 host_end = host_start + qemu_host_page_size;
2265 p = p1;
2266 prot = 0;
2267 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2268 prot |= p->flags;
2269 p++;
2271 /* if the page was really writable, then we change its
2272 protection back to writable */
2273 if (prot & PAGE_WRITE_ORG) {
2274 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2275 if (!(p1[pindex].flags & PAGE_WRITE)) {
2276 mprotect((void *)g2h(host_start), qemu_host_page_size,
2277 (prot & PAGE_BITS) | PAGE_WRITE);
2278 p1[pindex].flags |= PAGE_WRITE;
2279 /* and since the content will be modified, we must invalidate
2280 the corresponding translated code. */
2281 tb_invalidate_phys_page(address, pc, puc);
2282 #ifdef DEBUG_TB_CHECK
2283 tb_invalidate_check(address);
2284 #endif
2285 mmap_unlock();
2286 return 1;
2289 mmap_unlock();
2290 return 0;
2293 static inline void tlb_set_dirty(CPUState *env,
2294 unsigned long addr, target_ulong vaddr)
2297 #endif /* defined(CONFIG_USER_ONLY) */
2299 #if !defined(CONFIG_USER_ONLY)
2301 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2302 ram_addr_t memory, ram_addr_t region_offset);
2303 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2304 ram_addr_t orig_memory, ram_addr_t region_offset);
2305 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2306 need_subpage) \
2307 do { \
2308 if (addr > start_addr) \
2309 start_addr2 = 0; \
2310 else { \
2311 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2312 if (start_addr2 > 0) \
2313 need_subpage = 1; \
2316 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2317 end_addr2 = TARGET_PAGE_SIZE - 1; \
2318 else { \
2319 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2320 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2321 need_subpage = 1; \
2323 } while (0)
2325 /* register physical memory. 'size' must be a multiple of the target
2326 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2327 io memory page. The address used when calling the IO function is
2328 the offset from the start of the region, plus region_offset. Both
2329 start_addr and region_offset are rounded down to a page boundary
2330 before calculating this offset. This should not be a problem unless
2331 the low bits of start_addr and region_offset differ. */
2332 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2333 ram_addr_t size,
2334 ram_addr_t phys_offset,
2335 ram_addr_t region_offset)
2337 target_phys_addr_t addr, end_addr;
2338 PhysPageDesc *p;
2339 CPUState *env;
2340 ram_addr_t orig_size = size;
2341 void *subpage;
2343 #ifdef CONFIG_KQEMU
2344 /* XXX: should not depend on cpu context */
2345 env = first_cpu;
2346 if (env->kqemu_enabled) {
2347 kqemu_set_phys_mem(start_addr, size, phys_offset);
2349 #endif
2350 if (kvm_enabled())
2351 kvm_set_phys_mem(start_addr, size, phys_offset);
2353 if (phys_offset == IO_MEM_UNASSIGNED) {
2354 region_offset = start_addr;
2356 region_offset &= TARGET_PAGE_MASK;
2357 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2358 end_addr = start_addr + (target_phys_addr_t)size;
2359 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2360 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2361 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2362 ram_addr_t orig_memory = p->phys_offset;
2363 target_phys_addr_t start_addr2, end_addr2;
2364 int need_subpage = 0;
2366 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2367 need_subpage);
2368 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2369 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2370 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2371 &p->phys_offset, orig_memory,
2372 p->region_offset);
2373 } else {
2374 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2375 >> IO_MEM_SHIFT];
2377 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2378 region_offset);
2379 p->region_offset = 0;
2380 } else {
2381 p->phys_offset = phys_offset;
2382 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2383 (phys_offset & IO_MEM_ROMD))
2384 phys_offset += TARGET_PAGE_SIZE;
2386 } else {
2387 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2388 p->phys_offset = phys_offset;
2389 p->region_offset = region_offset;
2390 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2391 (phys_offset & IO_MEM_ROMD)) {
2392 phys_offset += TARGET_PAGE_SIZE;
2393 } else {
2394 target_phys_addr_t start_addr2, end_addr2;
2395 int need_subpage = 0;
2397 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2398 end_addr2, need_subpage);
2400 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2401 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2402 &p->phys_offset, IO_MEM_UNASSIGNED,
2403 addr & TARGET_PAGE_MASK);
2404 subpage_register(subpage, start_addr2, end_addr2,
2405 phys_offset, region_offset);
2406 p->region_offset = 0;
2410 region_offset += TARGET_PAGE_SIZE;
2413 /* since each CPU stores ram addresses in its TLB cache, we must
2414 reset the modified entries */
2415 /* XXX: slow ! */
2416 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2417 tlb_flush(env, 1);
2421 /* XXX: temporary until new memory mapping API */
2422 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2424 PhysPageDesc *p;
2426 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2427 if (!p)
2428 return IO_MEM_UNASSIGNED;
2429 return p->phys_offset;
2432 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2434 if (kvm_enabled())
2435 kvm_coalesce_mmio_region(addr, size);
2438 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2440 if (kvm_enabled())
2441 kvm_uncoalesce_mmio_region(addr, size);
2444 #ifdef CONFIG_KQEMU
2445 /* XXX: better than nothing */
2446 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2448 ram_addr_t addr;
2449 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2450 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2451 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2452 abort();
2454 addr = last_ram_offset;
2455 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2456 return addr;
2458 #endif
2460 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2462 RAMBlock *new_block;
2464 #ifdef CONFIG_KQEMU
2465 if (kqemu_phys_ram_base) {
2466 return kqemu_ram_alloc(size);
2468 #endif
2470 size = TARGET_PAGE_ALIGN(size);
2471 new_block = qemu_malloc(sizeof(*new_block));
2473 new_block->host = qemu_vmalloc(size);
2474 new_block->offset = last_ram_offset;
2475 new_block->length = size;
2477 new_block->next = ram_blocks;
2478 ram_blocks = new_block;
2480 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2481 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2482 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2483 0xff, size >> TARGET_PAGE_BITS);
2485 last_ram_offset += size;
2487 if (kvm_enabled())
2488 kvm_setup_guest_memory(new_block->host, size);
2490 return new_block->offset;
2493 void qemu_ram_free(ram_addr_t addr)
2495 /* TODO: implement this. */
2498 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2499 With the exception of the softmmu code in this file, this should
2500 only be used for local memory (e.g. video ram) that the device owns,
2501 and knows it isn't going to access beyond the end of the block.
2503 It should not be used for general purpose DMA.
2504 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2506 void *qemu_get_ram_ptr(ram_addr_t addr)
2508 RAMBlock *prev;
2509 RAMBlock **prevp;
2510 RAMBlock *block;
2512 #ifdef CONFIG_KQEMU
2513 if (kqemu_phys_ram_base) {
2514 return kqemu_phys_ram_base + addr;
2516 #endif
2518 prev = NULL;
2519 prevp = &ram_blocks;
2520 block = ram_blocks;
2521 while (block && (block->offset > addr
2522 || block->offset + block->length <= addr)) {
2523 if (prev)
2524 prevp = &prev->next;
2525 prev = block;
2526 block = block->next;
2528 if (!block) {
2529 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2530 abort();
2532 /* Move this entry to to start of the list. */
2533 if (prev) {
2534 prev->next = block->next;
2535 block->next = *prevp;
2536 *prevp = block;
2538 return block->host + (addr - block->offset);
2541 /* Some of the softmmu routines need to translate from a host pointer
2542 (typically a TLB entry) back to a ram offset. */
2543 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2545 RAMBlock *prev;
2546 RAMBlock **prevp;
2547 RAMBlock *block;
2548 uint8_t *host = ptr;
2550 #ifdef CONFIG_KQEMU
2551 if (kqemu_phys_ram_base) {
2552 return host - kqemu_phys_ram_base;
2554 #endif
2556 prev = NULL;
2557 prevp = &ram_blocks;
2558 block = ram_blocks;
2559 while (block && (block->host > host
2560 || block->host + block->length <= host)) {
2561 if (prev)
2562 prevp = &prev->next;
2563 prev = block;
2564 block = block->next;
2566 if (!block) {
2567 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2568 abort();
2570 return block->offset + (host - block->host);
2573 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2575 #ifdef DEBUG_UNASSIGNED
2576 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2577 #endif
2578 #if defined(TARGET_SPARC)
2579 do_unassigned_access(addr, 0, 0, 0, 1);
2580 #endif
2581 return 0;
2584 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2586 #ifdef DEBUG_UNASSIGNED
2587 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2588 #endif
2589 #if defined(TARGET_SPARC)
2590 do_unassigned_access(addr, 0, 0, 0, 2);
2591 #endif
2592 return 0;
2595 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2597 #ifdef DEBUG_UNASSIGNED
2598 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2599 #endif
2600 #if defined(TARGET_SPARC)
2601 do_unassigned_access(addr, 0, 0, 0, 4);
2602 #endif
2603 return 0;
2606 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2608 #ifdef DEBUG_UNASSIGNED
2609 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2610 #endif
2611 #if defined(TARGET_SPARC)
2612 do_unassigned_access(addr, 1, 0, 0, 1);
2613 #endif
2616 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2618 #ifdef DEBUG_UNASSIGNED
2619 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2620 #endif
2621 #if defined(TARGET_SPARC)
2622 do_unassigned_access(addr, 1, 0, 0, 2);
2623 #endif
2626 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2628 #ifdef DEBUG_UNASSIGNED
2629 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2630 #endif
2631 #if defined(TARGET_SPARC)
2632 do_unassigned_access(addr, 1, 0, 0, 4);
2633 #endif
2636 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2637 unassigned_mem_readb,
2638 unassigned_mem_readw,
2639 unassigned_mem_readl,
2642 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2643 unassigned_mem_writeb,
2644 unassigned_mem_writew,
2645 unassigned_mem_writel,
2648 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2649 uint32_t val)
2651 int dirty_flags;
2652 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2653 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2654 #if !defined(CONFIG_USER_ONLY)
2655 tb_invalidate_phys_page_fast(ram_addr, 1);
2656 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2657 #endif
2659 stb_p(qemu_get_ram_ptr(ram_addr), val);
2660 #ifdef CONFIG_KQEMU
2661 if (cpu_single_env->kqemu_enabled &&
2662 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2663 kqemu_modify_page(cpu_single_env, ram_addr);
2664 #endif
2665 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2666 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2667 /* we remove the notdirty callback only if the code has been
2668 flushed */
2669 if (dirty_flags == 0xff)
2670 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2673 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2674 uint32_t val)
2676 int dirty_flags;
2677 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2678 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2679 #if !defined(CONFIG_USER_ONLY)
2680 tb_invalidate_phys_page_fast(ram_addr, 2);
2681 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2682 #endif
2684 stw_p(qemu_get_ram_ptr(ram_addr), val);
2685 #ifdef CONFIG_KQEMU
2686 if (cpu_single_env->kqemu_enabled &&
2687 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2688 kqemu_modify_page(cpu_single_env, ram_addr);
2689 #endif
2690 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2691 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2692 /* we remove the notdirty callback only if the code has been
2693 flushed */
2694 if (dirty_flags == 0xff)
2695 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2698 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2699 uint32_t val)
2701 int dirty_flags;
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2703 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2704 #if !defined(CONFIG_USER_ONLY)
2705 tb_invalidate_phys_page_fast(ram_addr, 4);
2706 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2707 #endif
2709 stl_p(qemu_get_ram_ptr(ram_addr), val);
2710 #ifdef CONFIG_KQEMU
2711 if (cpu_single_env->kqemu_enabled &&
2712 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2713 kqemu_modify_page(cpu_single_env, ram_addr);
2714 #endif
2715 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2716 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2717 /* we remove the notdirty callback only if the code has been
2718 flushed */
2719 if (dirty_flags == 0xff)
2720 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2723 static CPUReadMemoryFunc *error_mem_read[3] = {
2724 NULL, /* never used */
2725 NULL, /* never used */
2726 NULL, /* never used */
2729 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2730 notdirty_mem_writeb,
2731 notdirty_mem_writew,
2732 notdirty_mem_writel,
2735 /* Generate a debug exception if a watchpoint has been hit. */
2736 static void check_watchpoint(int offset, int len_mask, int flags)
2738 CPUState *env = cpu_single_env;
2739 target_ulong pc, cs_base;
2740 TranslationBlock *tb;
2741 target_ulong vaddr;
2742 CPUWatchpoint *wp;
2743 int cpu_flags;
2745 if (env->watchpoint_hit) {
2746 /* We re-entered the check after replacing the TB. Now raise
2747 * the debug interrupt so that is will trigger after the
2748 * current instruction. */
2749 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2750 return;
2752 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2753 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2754 if ((vaddr == (wp->vaddr & len_mask) ||
2755 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2756 wp->flags |= BP_WATCHPOINT_HIT;
2757 if (!env->watchpoint_hit) {
2758 env->watchpoint_hit = wp;
2759 tb = tb_find_pc(env->mem_io_pc);
2760 if (!tb) {
2761 cpu_abort(env, "check_watchpoint: could not find TB for "
2762 "pc=%p", (void *)env->mem_io_pc);
2764 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2765 tb_phys_invalidate(tb, -1);
2766 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2767 env->exception_index = EXCP_DEBUG;
2768 } else {
2769 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2770 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2772 cpu_resume_from_signal(env, NULL);
2774 } else {
2775 wp->flags &= ~BP_WATCHPOINT_HIT;
2780 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2781 so these check for a hit then pass through to the normal out-of-line
2782 phys routines. */
2783 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2785 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2786 return ldub_phys(addr);
2789 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2791 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2792 return lduw_phys(addr);
2795 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2797 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2798 return ldl_phys(addr);
2801 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2802 uint32_t val)
2804 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2805 stb_phys(addr, val);
2808 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2809 uint32_t val)
2811 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2812 stw_phys(addr, val);
2815 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2816 uint32_t val)
2818 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2819 stl_phys(addr, val);
2822 static CPUReadMemoryFunc *watch_mem_read[3] = {
2823 watch_mem_readb,
2824 watch_mem_readw,
2825 watch_mem_readl,
2828 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2829 watch_mem_writeb,
2830 watch_mem_writew,
2831 watch_mem_writel,
2834 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2835 unsigned int len)
2837 uint32_t ret;
2838 unsigned int idx;
2840 idx = SUBPAGE_IDX(addr);
2841 #if defined(DEBUG_SUBPAGE)
2842 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2843 mmio, len, addr, idx);
2844 #endif
2845 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2846 addr + mmio->region_offset[idx][0][len]);
2848 return ret;
2851 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2852 uint32_t value, unsigned int len)
2854 unsigned int idx;
2856 idx = SUBPAGE_IDX(addr);
2857 #if defined(DEBUG_SUBPAGE)
2858 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2859 mmio, len, addr, idx, value);
2860 #endif
2861 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2862 addr + mmio->region_offset[idx][1][len],
2863 value);
2866 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2868 #if defined(DEBUG_SUBPAGE)
2869 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2870 #endif
2872 return subpage_readlen(opaque, addr, 0);
2875 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2876 uint32_t value)
2878 #if defined(DEBUG_SUBPAGE)
2879 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2880 #endif
2881 subpage_writelen(opaque, addr, value, 0);
2884 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2886 #if defined(DEBUG_SUBPAGE)
2887 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2888 #endif
2890 return subpage_readlen(opaque, addr, 1);
2893 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2894 uint32_t value)
2896 #if defined(DEBUG_SUBPAGE)
2897 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2898 #endif
2899 subpage_writelen(opaque, addr, value, 1);
2902 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2904 #if defined(DEBUG_SUBPAGE)
2905 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2906 #endif
2908 return subpage_readlen(opaque, addr, 2);
2911 static void subpage_writel (void *opaque,
2912 target_phys_addr_t addr, uint32_t value)
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2916 #endif
2917 subpage_writelen(opaque, addr, value, 2);
2920 static CPUReadMemoryFunc *subpage_read[] = {
2921 &subpage_readb,
2922 &subpage_readw,
2923 &subpage_readl,
2926 static CPUWriteMemoryFunc *subpage_write[] = {
2927 &subpage_writeb,
2928 &subpage_writew,
2929 &subpage_writel,
2932 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2933 ram_addr_t memory, ram_addr_t region_offset)
2935 int idx, eidx;
2936 unsigned int i;
2938 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2939 return -1;
2940 idx = SUBPAGE_IDX(start);
2941 eidx = SUBPAGE_IDX(end);
2942 #if defined(DEBUG_SUBPAGE)
2943 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2944 mmio, start, end, idx, eidx, memory);
2945 #endif
2946 memory >>= IO_MEM_SHIFT;
2947 for (; idx <= eidx; idx++) {
2948 for (i = 0; i < 4; i++) {
2949 if (io_mem_read[memory][i]) {
2950 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2951 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2952 mmio->region_offset[idx][0][i] = region_offset;
2954 if (io_mem_write[memory][i]) {
2955 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2956 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2957 mmio->region_offset[idx][1][i] = region_offset;
2962 return 0;
2965 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2966 ram_addr_t orig_memory, ram_addr_t region_offset)
2968 subpage_t *mmio;
2969 int subpage_memory;
2971 mmio = qemu_mallocz(sizeof(subpage_t));
2973 mmio->base = base;
2974 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2975 #if defined(DEBUG_SUBPAGE)
2976 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2977 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2978 #endif
2979 *phys = subpage_memory | IO_MEM_SUBPAGE;
2980 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2981 region_offset);
2983 return mmio;
2986 static int get_free_io_mem_idx(void)
2988 int i;
2990 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2991 if (!io_mem_used[i]) {
2992 io_mem_used[i] = 1;
2993 return i;
2996 return -1;
2999 static void io_mem_init(void)
3001 int i;
3003 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
3004 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3005 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
3006 for (i=0; i<5; i++)
3007 io_mem_used[i] = 1;
3009 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
3010 watch_mem_write, NULL);
3011 #ifdef CONFIG_KQEMU
3012 if (kqemu_phys_ram_base) {
3013 /* alloc dirty bits array */
3014 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3015 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3017 #endif
3020 /* mem_read and mem_write are arrays of functions containing the
3021 function to access byte (index 0), word (index 1) and dword (index
3022 2). Functions can be omitted with a NULL function pointer.
3023 If io_index is non zero, the corresponding io zone is
3024 modified. If it is zero, a new io zone is allocated. The return
3025 value can be used with cpu_register_physical_memory(). (-1) is
3026 returned if error. */
3027 int cpu_register_io_memory(int io_index,
3028 CPUReadMemoryFunc **mem_read,
3029 CPUWriteMemoryFunc **mem_write,
3030 void *opaque)
3032 int i, subwidth = 0;
3034 if (io_index <= 0) {
3035 io_index = get_free_io_mem_idx();
3036 if (io_index == -1)
3037 return io_index;
3038 } else {
3039 if (io_index >= IO_MEM_NB_ENTRIES)
3040 return -1;
3043 for(i = 0;i < 3; i++) {
3044 if (!mem_read[i] || !mem_write[i])
3045 subwidth = IO_MEM_SUBWIDTH;
3046 io_mem_read[io_index][i] = mem_read[i];
3047 io_mem_write[io_index][i] = mem_write[i];
3049 io_mem_opaque[io_index] = opaque;
3050 return (io_index << IO_MEM_SHIFT) | subwidth;
3053 void cpu_unregister_io_memory(int io_table_address)
3055 int i;
3056 int io_index = io_table_address >> IO_MEM_SHIFT;
3058 for (i=0;i < 3; i++) {
3059 io_mem_read[io_index][i] = unassigned_mem_read[i];
3060 io_mem_write[io_index][i] = unassigned_mem_write[i];
3062 io_mem_opaque[io_index] = NULL;
3063 io_mem_used[io_index] = 0;
3066 #endif /* !defined(CONFIG_USER_ONLY) */
3068 /* physical memory access (slow version, mainly for debug) */
3069 #if defined(CONFIG_USER_ONLY)
3070 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3071 int len, int is_write)
3073 int l, flags;
3074 target_ulong page;
3075 void * p;
3077 while (len > 0) {
3078 page = addr & TARGET_PAGE_MASK;
3079 l = (page + TARGET_PAGE_SIZE) - addr;
3080 if (l > len)
3081 l = len;
3082 flags = page_get_flags(page);
3083 if (!(flags & PAGE_VALID))
3084 return;
3085 if (is_write) {
3086 if (!(flags & PAGE_WRITE))
3087 return;
3088 /* XXX: this code should not depend on lock_user */
3089 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3090 /* FIXME - should this return an error rather than just fail? */
3091 return;
3092 memcpy(p, buf, l);
3093 unlock_user(p, addr, l);
3094 } else {
3095 if (!(flags & PAGE_READ))
3096 return;
3097 /* XXX: this code should not depend on lock_user */
3098 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3099 /* FIXME - should this return an error rather than just fail? */
3100 return;
3101 memcpy(buf, p, l);
3102 unlock_user(p, addr, 0);
3104 len -= l;
3105 buf += l;
3106 addr += l;
3110 #else
3111 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3112 int len, int is_write)
3114 int l, io_index;
3115 uint8_t *ptr;
3116 uint32_t val;
3117 target_phys_addr_t page;
3118 unsigned long pd;
3119 PhysPageDesc *p;
3121 while (len > 0) {
3122 page = addr & TARGET_PAGE_MASK;
3123 l = (page + TARGET_PAGE_SIZE) - addr;
3124 if (l > len)
3125 l = len;
3126 p = phys_page_find(page >> TARGET_PAGE_BITS);
3127 if (!p) {
3128 pd = IO_MEM_UNASSIGNED;
3129 } else {
3130 pd = p->phys_offset;
3133 if (is_write) {
3134 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3135 target_phys_addr_t addr1 = addr;
3136 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3137 if (p)
3138 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3139 /* XXX: could force cpu_single_env to NULL to avoid
3140 potential bugs */
3141 if (l >= 4 && ((addr1 & 3) == 0)) {
3142 /* 32 bit write access */
3143 val = ldl_p(buf);
3144 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3145 l = 4;
3146 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3147 /* 16 bit write access */
3148 val = lduw_p(buf);
3149 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3150 l = 2;
3151 } else {
3152 /* 8 bit write access */
3153 val = ldub_p(buf);
3154 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3155 l = 1;
3157 } else {
3158 unsigned long addr1;
3159 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3160 /* RAM case */
3161 ptr = qemu_get_ram_ptr(addr1);
3162 memcpy(ptr, buf, l);
3163 if (!cpu_physical_memory_is_dirty(addr1)) {
3164 /* invalidate code */
3165 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3166 /* set dirty bit */
3167 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3168 (0xff & ~CODE_DIRTY_FLAG);
3171 } else {
3172 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3173 !(pd & IO_MEM_ROMD)) {
3174 target_phys_addr_t addr1 = addr;
3175 /* I/O case */
3176 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3177 if (p)
3178 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3179 if (l >= 4 && ((addr1 & 3) == 0)) {
3180 /* 32 bit read access */
3181 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3182 stl_p(buf, val);
3183 l = 4;
3184 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3185 /* 16 bit read access */
3186 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3187 stw_p(buf, val);
3188 l = 2;
3189 } else {
3190 /* 8 bit read access */
3191 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3192 stb_p(buf, val);
3193 l = 1;
3195 } else {
3196 /* RAM case */
3197 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3198 (addr & ~TARGET_PAGE_MASK);
3199 memcpy(buf, ptr, l);
3202 len -= l;
3203 buf += l;
3204 addr += l;
3208 /* used for ROM loading : can write in RAM and ROM */
3209 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3210 const uint8_t *buf, int len)
3212 int l;
3213 uint8_t *ptr;
3214 target_phys_addr_t page;
3215 unsigned long pd;
3216 PhysPageDesc *p;
3218 while (len > 0) {
3219 page = addr & TARGET_PAGE_MASK;
3220 l = (page + TARGET_PAGE_SIZE) - addr;
3221 if (l > len)
3222 l = len;
3223 p = phys_page_find(page >> TARGET_PAGE_BITS);
3224 if (!p) {
3225 pd = IO_MEM_UNASSIGNED;
3226 } else {
3227 pd = p->phys_offset;
3230 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3231 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3232 !(pd & IO_MEM_ROMD)) {
3233 /* do nothing */
3234 } else {
3235 unsigned long addr1;
3236 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3237 /* ROM/RAM case */
3238 ptr = qemu_get_ram_ptr(addr1);
3239 memcpy(ptr, buf, l);
3241 len -= l;
3242 buf += l;
3243 addr += l;
3247 typedef struct {
3248 void *buffer;
3249 target_phys_addr_t addr;
3250 target_phys_addr_t len;
3251 } BounceBuffer;
3253 static BounceBuffer bounce;
3255 typedef struct MapClient {
3256 void *opaque;
3257 void (*callback)(void *opaque);
3258 LIST_ENTRY(MapClient) link;
3259 } MapClient;
3261 static LIST_HEAD(map_client_list, MapClient) map_client_list
3262 = LIST_HEAD_INITIALIZER(map_client_list);
3264 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3266 MapClient *client = qemu_malloc(sizeof(*client));
3268 client->opaque = opaque;
3269 client->callback = callback;
3270 LIST_INSERT_HEAD(&map_client_list, client, link);
3271 return client;
3274 void cpu_unregister_map_client(void *_client)
3276 MapClient *client = (MapClient *)_client;
3278 LIST_REMOVE(client, link);
3281 static void cpu_notify_map_clients(void)
3283 MapClient *client;
3285 while (!LIST_EMPTY(&map_client_list)) {
3286 client = LIST_FIRST(&map_client_list);
3287 client->callback(client->opaque);
3288 LIST_REMOVE(client, link);
3292 /* Map a physical memory region into a host virtual address.
3293 * May map a subset of the requested range, given by and returned in *plen.
3294 * May return NULL if resources needed to perform the mapping are exhausted.
3295 * Use only for reads OR writes - not for read-modify-write operations.
3296 * Use cpu_register_map_client() to know when retrying the map operation is
3297 * likely to succeed.
3299 void *cpu_physical_memory_map(target_phys_addr_t addr,
3300 target_phys_addr_t *plen,
3301 int is_write)
3303 target_phys_addr_t len = *plen;
3304 target_phys_addr_t done = 0;
3305 int l;
3306 uint8_t *ret = NULL;
3307 uint8_t *ptr;
3308 target_phys_addr_t page;
3309 unsigned long pd;
3310 PhysPageDesc *p;
3311 unsigned long addr1;
3313 while (len > 0) {
3314 page = addr & TARGET_PAGE_MASK;
3315 l = (page + TARGET_PAGE_SIZE) - addr;
3316 if (l > len)
3317 l = len;
3318 p = phys_page_find(page >> TARGET_PAGE_BITS);
3319 if (!p) {
3320 pd = IO_MEM_UNASSIGNED;
3321 } else {
3322 pd = p->phys_offset;
3325 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3326 if (done || bounce.buffer) {
3327 break;
3329 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3330 bounce.addr = addr;
3331 bounce.len = l;
3332 if (!is_write) {
3333 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3335 ptr = bounce.buffer;
3336 } else {
3337 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3338 ptr = qemu_get_ram_ptr(addr1);
3340 if (!done) {
3341 ret = ptr;
3342 } else if (ret + done != ptr) {
3343 break;
3346 len -= l;
3347 addr += l;
3348 done += l;
3350 *plen = done;
3351 return ret;
3354 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3355 * Will also mark the memory as dirty if is_write == 1. access_len gives
3356 * the amount of memory that was actually read or written by the caller.
3358 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3359 int is_write, target_phys_addr_t access_len)
3361 if (buffer != bounce.buffer) {
3362 if (is_write) {
3363 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3364 while (access_len) {
3365 unsigned l;
3366 l = TARGET_PAGE_SIZE;
3367 if (l > access_len)
3368 l = access_len;
3369 if (!cpu_physical_memory_is_dirty(addr1)) {
3370 /* invalidate code */
3371 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3372 /* set dirty bit */
3373 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3374 (0xff & ~CODE_DIRTY_FLAG);
3376 addr1 += l;
3377 access_len -= l;
3380 return;
3382 if (is_write) {
3383 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3385 qemu_free(bounce.buffer);
3386 bounce.buffer = NULL;
3387 cpu_notify_map_clients();
3390 /* warning: addr must be aligned */
3391 uint32_t ldl_phys(target_phys_addr_t addr)
3393 int io_index;
3394 uint8_t *ptr;
3395 uint32_t val;
3396 unsigned long pd;
3397 PhysPageDesc *p;
3399 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3400 if (!p) {
3401 pd = IO_MEM_UNASSIGNED;
3402 } else {
3403 pd = p->phys_offset;
3406 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3407 !(pd & IO_MEM_ROMD)) {
3408 /* I/O case */
3409 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3410 if (p)
3411 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3412 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3413 } else {
3414 /* RAM case */
3415 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3416 (addr & ~TARGET_PAGE_MASK);
3417 val = ldl_p(ptr);
3419 return val;
3422 /* warning: addr must be aligned */
3423 uint64_t ldq_phys(target_phys_addr_t addr)
3425 int io_index;
3426 uint8_t *ptr;
3427 uint64_t val;
3428 unsigned long pd;
3429 PhysPageDesc *p;
3431 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3432 if (!p) {
3433 pd = IO_MEM_UNASSIGNED;
3434 } else {
3435 pd = p->phys_offset;
3438 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3439 !(pd & IO_MEM_ROMD)) {
3440 /* I/O case */
3441 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3442 if (p)
3443 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3444 #ifdef TARGET_WORDS_BIGENDIAN
3445 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3446 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3447 #else
3448 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3449 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3450 #endif
3451 } else {
3452 /* RAM case */
3453 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3454 (addr & ~TARGET_PAGE_MASK);
3455 val = ldq_p(ptr);
3457 return val;
3460 /* XXX: optimize */
3461 uint32_t ldub_phys(target_phys_addr_t addr)
3463 uint8_t val;
3464 cpu_physical_memory_read(addr, &val, 1);
3465 return val;
3468 /* XXX: optimize */
3469 uint32_t lduw_phys(target_phys_addr_t addr)
3471 uint16_t val;
3472 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3473 return tswap16(val);
3476 /* warning: addr must be aligned. The ram page is not masked as dirty
3477 and the code inside is not invalidated. It is useful if the dirty
3478 bits are used to track modified PTEs */
3479 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3481 int io_index;
3482 uint8_t *ptr;
3483 unsigned long pd;
3484 PhysPageDesc *p;
3486 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3487 if (!p) {
3488 pd = IO_MEM_UNASSIGNED;
3489 } else {
3490 pd = p->phys_offset;
3493 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3494 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3495 if (p)
3496 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3497 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3498 } else {
3499 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3500 ptr = qemu_get_ram_ptr(addr1);
3501 stl_p(ptr, val);
3503 if (unlikely(in_migration)) {
3504 if (!cpu_physical_memory_is_dirty(addr1)) {
3505 /* invalidate code */
3506 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3507 /* set dirty bit */
3508 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3509 (0xff & ~CODE_DIRTY_FLAG);
3515 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3517 int io_index;
3518 uint8_t *ptr;
3519 unsigned long pd;
3520 PhysPageDesc *p;
3522 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3523 if (!p) {
3524 pd = IO_MEM_UNASSIGNED;
3525 } else {
3526 pd = p->phys_offset;
3529 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3530 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3531 if (p)
3532 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3533 #ifdef TARGET_WORDS_BIGENDIAN
3534 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3535 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3536 #else
3537 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3538 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3539 #endif
3540 } else {
3541 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3542 (addr & ~TARGET_PAGE_MASK);
3543 stq_p(ptr, val);
3547 /* warning: addr must be aligned */
3548 void stl_phys(target_phys_addr_t addr, uint32_t val)
3550 int io_index;
3551 uint8_t *ptr;
3552 unsigned long pd;
3553 PhysPageDesc *p;
3555 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3556 if (!p) {
3557 pd = IO_MEM_UNASSIGNED;
3558 } else {
3559 pd = p->phys_offset;
3562 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3563 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3564 if (p)
3565 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3566 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3567 } else {
3568 unsigned long addr1;
3569 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3570 /* RAM case */
3571 ptr = qemu_get_ram_ptr(addr1);
3572 stl_p(ptr, val);
3573 if (!cpu_physical_memory_is_dirty(addr1)) {
3574 /* invalidate code */
3575 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3576 /* set dirty bit */
3577 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3578 (0xff & ~CODE_DIRTY_FLAG);
3583 /* XXX: optimize */
3584 void stb_phys(target_phys_addr_t addr, uint32_t val)
3586 uint8_t v = val;
3587 cpu_physical_memory_write(addr, &v, 1);
3590 /* XXX: optimize */
3591 void stw_phys(target_phys_addr_t addr, uint32_t val)
3593 uint16_t v = tswap16(val);
3594 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3597 /* XXX: optimize */
3598 void stq_phys(target_phys_addr_t addr, uint64_t val)
3600 val = tswap64(val);
3601 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3604 #endif
3606 /* virtual memory access for debug (includes writing to ROM) */
3607 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3608 uint8_t *buf, int len, int is_write)
3610 int l;
3611 target_phys_addr_t phys_addr;
3612 target_ulong page;
3614 while (len > 0) {
3615 page = addr & TARGET_PAGE_MASK;
3616 phys_addr = cpu_get_phys_page_debug(env, page);
3617 /* if no physical page mapped, return an error */
3618 if (phys_addr == -1)
3619 return -1;
3620 l = (page + TARGET_PAGE_SIZE) - addr;
3621 if (l > len)
3622 l = len;
3623 phys_addr += (addr & ~TARGET_PAGE_MASK);
3624 #if !defined(CONFIG_USER_ONLY)
3625 if (is_write)
3626 cpu_physical_memory_write_rom(phys_addr, buf, l);
3627 else
3628 #endif
3629 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3630 len -= l;
3631 buf += l;
3632 addr += l;
3634 return 0;
3637 /* in deterministic execution mode, instructions doing device I/Os
3638 must be at the end of the TB */
3639 void cpu_io_recompile(CPUState *env, void *retaddr)
3641 TranslationBlock *tb;
3642 uint32_t n, cflags;
3643 target_ulong pc, cs_base;
3644 uint64_t flags;
3646 tb = tb_find_pc((unsigned long)retaddr);
3647 if (!tb) {
3648 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3649 retaddr);
3651 n = env->icount_decr.u16.low + tb->icount;
3652 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3653 /* Calculate how many instructions had been executed before the fault
3654 occurred. */
3655 n = n - env->icount_decr.u16.low;
3656 /* Generate a new TB ending on the I/O insn. */
3657 n++;
3658 /* On MIPS and SH, delay slot instructions can only be restarted if
3659 they were already the first instruction in the TB. If this is not
3660 the first instruction in a TB then re-execute the preceding
3661 branch. */
3662 #if defined(TARGET_MIPS)
3663 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3664 env->active_tc.PC -= 4;
3665 env->icount_decr.u16.low++;
3666 env->hflags &= ~MIPS_HFLAG_BMASK;
3668 #elif defined(TARGET_SH4)
3669 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3670 && n > 1) {
3671 env->pc -= 2;
3672 env->icount_decr.u16.low++;
3673 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3675 #endif
3676 /* This should never happen. */
3677 if (n > CF_COUNT_MASK)
3678 cpu_abort(env, "TB too big during recompile");
3680 cflags = n | CF_LAST_IO;
3681 pc = tb->pc;
3682 cs_base = tb->cs_base;
3683 flags = tb->flags;
3684 tb_phys_invalidate(tb, -1);
3685 /* FIXME: In theory this could raise an exception. In practice
3686 we have already translated the block once so it's probably ok. */
3687 tb_gen_code(env, pc, cs_base, flags, cflags);
3688 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3689 the first in the TB) then we end up generating a whole new TB and
3690 repeating the fault, which is horribly inefficient.
3691 Better would be to execute just this insn uncached, or generate a
3692 second new TB. */
3693 cpu_resume_from_signal(env, NULL);
3696 void dump_exec_info(FILE *f,
3697 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3699 int i, target_code_size, max_target_code_size;
3700 int direct_jmp_count, direct_jmp2_count, cross_page;
3701 TranslationBlock *tb;
3703 target_code_size = 0;
3704 max_target_code_size = 0;
3705 cross_page = 0;
3706 direct_jmp_count = 0;
3707 direct_jmp2_count = 0;
3708 for(i = 0; i < nb_tbs; i++) {
3709 tb = &tbs[i];
3710 target_code_size += tb->size;
3711 if (tb->size > max_target_code_size)
3712 max_target_code_size = tb->size;
3713 if (tb->page_addr[1] != -1)
3714 cross_page++;
3715 if (tb->tb_next_offset[0] != 0xffff) {
3716 direct_jmp_count++;
3717 if (tb->tb_next_offset[1] != 0xffff) {
3718 direct_jmp2_count++;
3722 /* XXX: avoid using doubles ? */
3723 cpu_fprintf(f, "Translation buffer state:\n");
3724 cpu_fprintf(f, "gen code size %ld/%ld\n",
3725 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3726 cpu_fprintf(f, "TB count %d/%d\n",
3727 nb_tbs, code_gen_max_blocks);
3728 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3729 nb_tbs ? target_code_size / nb_tbs : 0,
3730 max_target_code_size);
3731 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3732 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3733 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3734 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3735 cross_page,
3736 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3737 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3738 direct_jmp_count,
3739 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3740 direct_jmp2_count,
3741 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3742 cpu_fprintf(f, "\nStatistics:\n");
3743 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3744 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3745 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3746 tcg_dump_info(f, cpu_fprintf);
3749 #if !defined(CONFIG_USER_ONLY)
3751 #define MMUSUFFIX _cmmu
3752 #define GETPC() NULL
3753 #define env cpu_single_env
3754 #define SOFTMMU_CODE_ACCESS
3756 #define SHIFT 0
3757 #include "softmmu_template.h"
3759 #define SHIFT 1
3760 #include "softmmu_template.h"
3762 #define SHIFT 2
3763 #include "softmmu_template.h"
3765 #define SHIFT 3
3766 #include "softmmu_template.h"
3768 #undef env
3770 #endif