target/ppc: Implemented xvf*ger*
[qemu.git] / hw / core / loader.c
blobedde657ac33be91d67dfa8031f0f0ac0a9f46b25
1 /*
2 * QEMU Executable loader
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * Gunzip functionality in this file is derived from u-boot:
26 * (C) Copyright 2008 Semihalf
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
65 #include <zlib.h>
67 static int roms_loaded;
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
72 int fd;
73 int64_t size;
74 fd = open(filename, O_RDONLY | O_BINARY);
75 if (fd < 0)
76 return -1;
77 size = lseek(fd, 0, SEEK_END);
78 close(fd);
79 return size;
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 int fd;
86 ssize_t actsize, l = 0;
88 fd = open(filename, O_RDONLY | O_BINARY);
89 if (fd < 0) {
90 return -1;
93 while ((actsize = read(fd, addr + l, size - l)) > 0) {
94 l += actsize;
97 close(fd);
99 return actsize < 0 ? -1 : l;
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104 int fd, hwaddr dst_addr, size_t nbytes)
106 uint8_t *buf;
107 ssize_t did;
109 buf = g_malloc(nbytes);
110 did = read(fd, buf, nbytes);
111 if (did > 0)
112 rom_add_blob_fixed("read", buf, did, dst_addr);
113 g_free(buf);
114 return did;
117 int load_image_targphys(const char *filename,
118 hwaddr addr, uint64_t max_sz)
120 return load_image_targphys_as(filename, addr, max_sz, NULL);
123 /* return the size or -1 if error */
124 int load_image_targphys_as(const char *filename,
125 hwaddr addr, uint64_t max_sz, AddressSpace *as)
127 int size;
129 size = get_image_size(filename);
130 if (size < 0 || size > max_sz) {
131 return -1;
133 if (size > 0) {
134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135 return -1;
138 return size;
141 int load_image_mr(const char *filename, MemoryRegion *mr)
143 int size;
145 if (!memory_access_is_direct(mr, false)) {
146 /* Can only load an image into RAM or ROM */
147 return -1;
150 size = get_image_size(filename);
152 if (size < 0 || size > memory_region_size(mr)) {
153 return -1;
155 if (size > 0) {
156 if (rom_add_file_mr(filename, mr, -1) < 0) {
157 return -1;
160 return size;
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164 const char *source)
166 const char *nulp;
167 char *ptr;
169 if (buf_size <= 0) return;
170 nulp = memchr(source, 0, buf_size);
171 if (nulp) {
172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 } else {
174 rom_add_blob_fixed(name, source, buf_size, dest);
175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176 *ptr = 0;
180 /* A.OUT loader */
182 struct exec
184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
185 uint32_t a_text; /* length of text, in bytes */
186 uint32_t a_data; /* length of data, in bytes */
187 uint32_t a_bss; /* length of uninitialized data area, in bytes */
188 uint32_t a_syms; /* length of symbol table data in file, in bytes */
189 uint32_t a_entry; /* start address */
190 uint32_t a_trsize; /* length of relocation info for text, in bytes */
191 uint32_t a_drsize; /* length of relocation info for data, in bytes */
194 static void bswap_ahdr(struct exec *e)
196 bswap32s(&e->a_info);
197 bswap32s(&e->a_text);
198 bswap32s(&e->a_data);
199 bswap32s(&e->a_bss);
200 bswap32s(&e->a_syms);
201 bswap32s(&e->a_entry);
202 bswap32s(&e->a_trsize);
203 bswap32s(&e->a_drsize);
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x) \
213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
220 #define N_DATADDR(x, target_page_size) \
221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
225 int load_aout(const char *filename, hwaddr addr, int max_sz,
226 int bswap_needed, hwaddr target_page_size)
228 int fd;
229 ssize_t size, ret;
230 struct exec e;
231 uint32_t magic;
233 fd = open(filename, O_RDONLY | O_BINARY);
234 if (fd < 0)
235 return -1;
237 size = read(fd, &e, sizeof(e));
238 if (size < 0)
239 goto fail;
241 if (bswap_needed) {
242 bswap_ahdr(&e);
245 magic = N_MAGIC(e);
246 switch (magic) {
247 case ZMAGIC:
248 case QMAGIC:
249 case OMAGIC:
250 if (e.a_text + e.a_data > max_sz)
251 goto fail;
252 lseek(fd, N_TXTOFF(e), SEEK_SET);
253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254 if (size < 0)
255 goto fail;
256 break;
257 case NMAGIC:
258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 goto fail;
260 lseek(fd, N_TXTOFF(e), SEEK_SET);
261 size = read_targphys(filename, fd, addr, e.a_text);
262 if (size < 0)
263 goto fail;
264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265 e.a_data);
266 if (ret < 0)
267 goto fail;
268 size += ret;
269 break;
270 default:
271 goto fail;
273 close(fd);
274 return size;
275 fail:
276 close(fd);
277 return -1;
280 /* ELF loader */
282 static void *load_at(int fd, off_t offset, size_t size)
284 void *ptr;
285 if (lseek(fd, offset, SEEK_SET) < 0)
286 return NULL;
287 ptr = g_malloc(size);
288 if (read(fd, ptr, size) != size) {
289 g_free(ptr);
290 return NULL;
292 return ptr;
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
299 #define ELF_CLASS ELFCLASS32
300 #include "elf.h"
302 #define SZ 32
303 #define elf_word uint32_t
304 #define elf_sword int32_t
305 #define bswapSZs bswap32s
306 #include "hw/elf_ops.h"
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr elf64_hdr
319 #define elf_phdr elf64_phdr
320 #define elf_note elf64_note
321 #define elf_shdr elf64_shdr
322 #define elf_sym elf64_sym
323 #define elf_rela elf64_rela
324 #define elf_word uint64_t
325 #define elf_sword int64_t
326 #define bswapSZs bswap64s
327 #define SZ 64
328 #include "hw/elf_ops.h"
330 const char *load_elf_strerror(ssize_t error)
332 switch (error) {
333 case 0:
334 return "No error";
335 case ELF_LOAD_FAILED:
336 return "Failed to load ELF";
337 case ELF_LOAD_NOT_ELF:
338 return "The image is not ELF";
339 case ELF_LOAD_WRONG_ARCH:
340 return "The image is from incompatible architecture";
341 case ELF_LOAD_WRONG_ENDIAN:
342 return "The image has incorrect endianness";
343 case ELF_LOAD_TOO_BIG:
344 return "The image segments are too big to load";
345 default:
346 return "Unknown error";
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 int fd;
353 uint8_t e_ident_local[EI_NIDENT];
354 uint8_t *e_ident;
355 size_t hdr_size, off;
356 bool is64l;
358 if (!hdr) {
359 hdr = e_ident_local;
361 e_ident = hdr;
363 fd = open(filename, O_RDONLY | O_BINARY);
364 if (fd < 0) {
365 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366 return;
368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370 goto fail;
372 if (e_ident[0] != ELFMAG0 ||
373 e_ident[1] != ELFMAG1 ||
374 e_ident[2] != ELFMAG2 ||
375 e_ident[3] != ELFMAG3) {
376 error_setg(errp, "Bad ELF magic");
377 goto fail;
380 is64l = e_ident[EI_CLASS] == ELFCLASS64;
381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382 if (is64) {
383 *is64 = is64l;
386 off = EI_NIDENT;
387 while (hdr != e_ident_local && off < hdr_size) {
388 size_t br = read(fd, hdr + off, hdr_size - off);
389 switch (br) {
390 case 0:
391 error_setg(errp, "File too short: %s", filename);
392 goto fail;
393 case -1:
394 error_setg_errno(errp, errno, "Failed to read file: %s",
395 filename);
396 goto fail;
398 off += br;
401 fail:
402 close(fd);
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 ssize_t load_elf(const char *filename,
407 uint64_t (*elf_note_fn)(void *, void *, bool),
408 uint64_t (*translate_fn)(void *, uint64_t),
409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410 uint64_t *highaddr, uint32_t *pflags, int big_endian,
411 int elf_machine, int clear_lsb, int data_swab)
413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414 pentry, lowaddr, highaddr, pflags, big_endian,
415 elf_machine, clear_lsb, data_swab, NULL);
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 ssize_t load_elf_as(const char *filename,
420 uint64_t (*elf_note_fn)(void *, void *, bool),
421 uint64_t (*translate_fn)(void *, uint64_t),
422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423 uint64_t *highaddr, uint32_t *pflags, int big_endian,
424 int elf_machine, int clear_lsb, int data_swab,
425 AddressSpace *as)
427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
428 pentry, lowaddr, highaddr, pflags, big_endian,
429 elf_machine, clear_lsb, data_swab, as, true);
432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
433 ssize_t load_elf_ram(const char *filename,
434 uint64_t (*elf_note_fn)(void *, void *, bool),
435 uint64_t (*translate_fn)(void *, uint64_t),
436 void *translate_opaque, uint64_t *pentry,
437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
438 int big_endian, int elf_machine, int clear_lsb,
439 int data_swab, AddressSpace *as, bool load_rom)
441 return load_elf_ram_sym(filename, elf_note_fn,
442 translate_fn, translate_opaque,
443 pentry, lowaddr, highaddr, pflags, big_endian,
444 elf_machine, clear_lsb, data_swab, as,
445 load_rom, NULL);
448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
449 ssize_t load_elf_ram_sym(const char *filename,
450 uint64_t (*elf_note_fn)(void *, void *, bool),
451 uint64_t (*translate_fn)(void *, uint64_t),
452 void *translate_opaque, uint64_t *pentry,
453 uint64_t *lowaddr, uint64_t *highaddr,
454 uint32_t *pflags, int big_endian, int elf_machine,
455 int clear_lsb, int data_swab,
456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
458 int fd, data_order, target_data_order, must_swab;
459 ssize_t ret = ELF_LOAD_FAILED;
460 uint8_t e_ident[EI_NIDENT];
462 fd = open(filename, O_RDONLY | O_BINARY);
463 if (fd < 0) {
464 perror(filename);
465 return -1;
467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
468 goto fail;
469 if (e_ident[0] != ELFMAG0 ||
470 e_ident[1] != ELFMAG1 ||
471 e_ident[2] != ELFMAG2 ||
472 e_ident[3] != ELFMAG3) {
473 ret = ELF_LOAD_NOT_ELF;
474 goto fail;
476 #if HOST_BIG_ENDIAN
477 data_order = ELFDATA2MSB;
478 #else
479 data_order = ELFDATA2LSB;
480 #endif
481 must_swab = data_order != e_ident[EI_DATA];
482 if (big_endian) {
483 target_data_order = ELFDATA2MSB;
484 } else {
485 target_data_order = ELFDATA2LSB;
488 if (target_data_order != e_ident[EI_DATA]) {
489 ret = ELF_LOAD_WRONG_ENDIAN;
490 goto fail;
493 lseek(fd, 0, SEEK_SET);
494 if (e_ident[EI_CLASS] == ELFCLASS64) {
495 ret = load_elf64(filename, fd, elf_note_fn,
496 translate_fn, translate_opaque, must_swab,
497 pentry, lowaddr, highaddr, pflags, elf_machine,
498 clear_lsb, data_swab, as, load_rom, sym_cb);
499 } else {
500 ret = load_elf32(filename, fd, elf_note_fn,
501 translate_fn, translate_opaque, must_swab,
502 pentry, lowaddr, highaddr, pflags, elf_machine,
503 clear_lsb, data_swab, as, load_rom, sym_cb);
506 fail:
507 close(fd);
508 return ret;
511 static void bswap_uboot_header(uboot_image_header_t *hdr)
513 #if !HOST_BIG_ENDIAN
514 bswap32s(&hdr->ih_magic);
515 bswap32s(&hdr->ih_hcrc);
516 bswap32s(&hdr->ih_time);
517 bswap32s(&hdr->ih_size);
518 bswap32s(&hdr->ih_load);
519 bswap32s(&hdr->ih_ep);
520 bswap32s(&hdr->ih_dcrc);
521 #endif
525 #define ZALLOC_ALIGNMENT 16
527 static void *zalloc(void *x, unsigned items, unsigned size)
529 void *p;
531 size *= items;
532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
534 p = g_malloc(size);
536 return (p);
539 static void zfree(void *x, void *addr)
541 g_free(addr);
545 #define HEAD_CRC 2
546 #define EXTRA_FIELD 4
547 #define ORIG_NAME 8
548 #define COMMENT 0x10
549 #define RESERVED 0xe0
551 #define DEFLATED 8
553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
555 z_stream s;
556 ssize_t dstbytes;
557 int r, i, flags;
559 /* skip header */
560 i = 10;
561 if (srclen < 4) {
562 goto toosmall;
564 flags = src[3];
565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
566 puts ("Error: Bad gzipped data\n");
567 return -1;
569 if ((flags & EXTRA_FIELD) != 0) {
570 if (srclen < 12) {
571 goto toosmall;
573 i = 12 + src[10] + (src[11] << 8);
575 if ((flags & ORIG_NAME) != 0) {
576 while (i < srclen && src[i++] != 0) {
577 /* do nothing */
580 if ((flags & COMMENT) != 0) {
581 while (i < srclen && src[i++] != 0) {
582 /* do nothing */
585 if ((flags & HEAD_CRC) != 0) {
586 i += 2;
588 if (i >= srclen) {
589 goto toosmall;
592 s.zalloc = zalloc;
593 s.zfree = zfree;
595 r = inflateInit2(&s, -MAX_WBITS);
596 if (r != Z_OK) {
597 printf ("Error: inflateInit2() returned %d\n", r);
598 return (-1);
600 s.next_in = src + i;
601 s.avail_in = srclen - i;
602 s.next_out = dst;
603 s.avail_out = dstlen;
604 r = inflate(&s, Z_FINISH);
605 if (r != Z_OK && r != Z_STREAM_END) {
606 printf ("Error: inflate() returned %d\n", r);
607 return -1;
609 dstbytes = s.next_out - (unsigned char *) dst;
610 inflateEnd(&s);
612 return dstbytes;
614 toosmall:
615 puts("Error: gunzip out of data in header\n");
616 return -1;
619 /* Load a U-Boot image. */
620 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
621 int *is_linux, uint8_t image_type,
622 uint64_t (*translate_fn)(void *, uint64_t),
623 void *translate_opaque, AddressSpace *as)
625 int fd;
626 int size;
627 hwaddr address;
628 uboot_image_header_t h;
629 uboot_image_header_t *hdr = &h;
630 uint8_t *data = NULL;
631 int ret = -1;
632 int do_uncompress = 0;
634 fd = open(filename, O_RDONLY | O_BINARY);
635 if (fd < 0)
636 return -1;
638 size = read(fd, hdr, sizeof(uboot_image_header_t));
639 if (size < sizeof(uboot_image_header_t)) {
640 goto out;
643 bswap_uboot_header(hdr);
645 if (hdr->ih_magic != IH_MAGIC)
646 goto out;
648 if (hdr->ih_type != image_type) {
649 if (!(image_type == IH_TYPE_KERNEL &&
650 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
651 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
652 image_type);
653 goto out;
657 /* TODO: Implement other image types. */
658 switch (hdr->ih_type) {
659 case IH_TYPE_KERNEL_NOLOAD:
660 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
661 fprintf(stderr, "this image format (kernel_noload) cannot be "
662 "loaded on this machine type");
663 goto out;
666 hdr->ih_load = *loadaddr + sizeof(*hdr);
667 hdr->ih_ep += hdr->ih_load;
668 /* fall through */
669 case IH_TYPE_KERNEL:
670 address = hdr->ih_load;
671 if (translate_fn) {
672 address = translate_fn(translate_opaque, address);
674 if (loadaddr) {
675 *loadaddr = hdr->ih_load;
678 switch (hdr->ih_comp) {
679 case IH_COMP_NONE:
680 break;
681 case IH_COMP_GZIP:
682 do_uncompress = 1;
683 break;
684 default:
685 fprintf(stderr,
686 "Unable to load u-boot images with compression type %d\n",
687 hdr->ih_comp);
688 goto out;
691 if (ep) {
692 *ep = hdr->ih_ep;
695 /* TODO: Check CPU type. */
696 if (is_linux) {
697 if (hdr->ih_os == IH_OS_LINUX) {
698 *is_linux = 1;
699 } else if (hdr->ih_os == IH_OS_VXWORKS) {
701 * VxWorks 7 uses the same boot interface as the Linux kernel
702 * on Arm (64-bit only), PowerPC and RISC-V architectures.
704 switch (hdr->ih_arch) {
705 case IH_ARCH_ARM64:
706 case IH_ARCH_PPC:
707 case IH_ARCH_RISCV:
708 *is_linux = 1;
709 break;
710 default:
711 *is_linux = 0;
712 break;
714 } else {
715 *is_linux = 0;
719 break;
720 case IH_TYPE_RAMDISK:
721 address = *loadaddr;
722 break;
723 default:
724 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
725 goto out;
728 data = g_malloc(hdr->ih_size);
730 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
731 fprintf(stderr, "Error reading file\n");
732 goto out;
735 if (do_uncompress) {
736 uint8_t *compressed_data;
737 size_t max_bytes;
738 ssize_t bytes;
740 compressed_data = data;
741 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
742 data = g_malloc(max_bytes);
744 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
745 g_free(compressed_data);
746 if (bytes < 0) {
747 fprintf(stderr, "Unable to decompress gzipped image!\n");
748 goto out;
750 hdr->ih_size = bytes;
753 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
755 ret = hdr->ih_size;
757 out:
758 g_free(data);
759 close(fd);
760 return ret;
763 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
764 int *is_linux,
765 uint64_t (*translate_fn)(void *, uint64_t),
766 void *translate_opaque)
768 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
769 translate_fn, translate_opaque, NULL);
772 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
773 int *is_linux,
774 uint64_t (*translate_fn)(void *, uint64_t),
775 void *translate_opaque, AddressSpace *as)
777 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
778 translate_fn, translate_opaque, as);
781 /* Load a ramdisk. */
782 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
784 return load_ramdisk_as(filename, addr, max_sz, NULL);
787 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
788 AddressSpace *as)
790 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
791 NULL, NULL, as);
794 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
795 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
796 uint8_t **buffer)
798 uint8_t *compressed_data = NULL;
799 uint8_t *data = NULL;
800 gsize len;
801 ssize_t bytes;
802 int ret = -1;
804 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
805 NULL)) {
806 goto out;
809 /* Is it a gzip-compressed file? */
810 if (len < 2 ||
811 compressed_data[0] != 0x1f ||
812 compressed_data[1] != 0x8b) {
813 goto out;
816 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
817 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
820 data = g_malloc(max_sz);
821 bytes = gunzip(data, max_sz, compressed_data, len);
822 if (bytes < 0) {
823 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
824 filename);
825 goto out;
828 /* trim to actual size and return to caller */
829 *buffer = g_realloc(data, bytes);
830 ret = bytes;
831 /* ownership has been transferred to caller */
832 data = NULL;
834 out:
835 g_free(compressed_data);
836 g_free(data);
837 return ret;
840 /* Load a gzip-compressed kernel. */
841 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
843 int bytes;
844 uint8_t *data;
846 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
847 if (bytes != -1) {
848 rom_add_blob_fixed(filename, data, bytes, addr);
849 g_free(data);
851 return bytes;
855 * Functions for reboot-persistent memory regions.
856 * - used for vga bios and option roms.
857 * - also linux kernel (-kernel / -initrd).
860 typedef struct Rom Rom;
862 struct Rom {
863 char *name;
864 char *path;
866 /* datasize is the amount of memory allocated in "data". If datasize is less
867 * than romsize, it means that the area from datasize to romsize is filled
868 * with zeros.
870 size_t romsize;
871 size_t datasize;
873 uint8_t *data;
874 MemoryRegion *mr;
875 AddressSpace *as;
876 int isrom;
877 char *fw_dir;
878 char *fw_file;
879 GMappedFile *mapped_file;
881 bool committed;
883 hwaddr addr;
884 QTAILQ_ENTRY(Rom) next;
887 static FWCfgState *fw_cfg;
888 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
891 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
892 * rom_add_elf_program())
894 static void rom_free_data(Rom *rom)
896 if (rom->mapped_file) {
897 g_mapped_file_unref(rom->mapped_file);
898 rom->mapped_file = NULL;
899 } else {
900 g_free(rom->data);
903 rom->data = NULL;
906 static void rom_free(Rom *rom)
908 rom_free_data(rom);
909 g_free(rom->path);
910 g_free(rom->name);
911 g_free(rom->fw_dir);
912 g_free(rom->fw_file);
913 g_free(rom);
916 static inline bool rom_order_compare(Rom *rom, Rom *item)
918 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
919 (rom->as == item->as && rom->addr >= item->addr);
922 static void rom_insert(Rom *rom)
924 Rom *item;
926 if (roms_loaded) {
927 hw_error ("ROM images must be loaded at startup\n");
930 /* The user didn't specify an address space, this is the default */
931 if (!rom->as) {
932 rom->as = &address_space_memory;
935 rom->committed = false;
937 /* List is ordered by load address in the same address space */
938 QTAILQ_FOREACH(item, &roms, next) {
939 if (rom_order_compare(rom, item)) {
940 continue;
942 QTAILQ_INSERT_BEFORE(item, rom, next);
943 return;
945 QTAILQ_INSERT_TAIL(&roms, rom, next);
948 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
950 if (fw_cfg) {
951 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
955 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
957 void *data;
959 rom->mr = g_malloc(sizeof(*rom->mr));
960 memory_region_init_resizeable_ram(rom->mr, owner, name,
961 rom->datasize, rom->romsize,
962 fw_cfg_resized,
963 &error_fatal);
964 memory_region_set_readonly(rom->mr, ro);
965 vmstate_register_ram_global(rom->mr);
967 data = memory_region_get_ram_ptr(rom->mr);
968 memcpy(data, rom->data, rom->datasize);
970 return data;
973 int rom_add_file(const char *file, const char *fw_dir,
974 hwaddr addr, int32_t bootindex,
975 bool option_rom, MemoryRegion *mr,
976 AddressSpace *as)
978 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
979 Rom *rom;
980 int rc, fd = -1;
981 char devpath[100];
983 if (as && mr) {
984 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
985 "not valid when loading a rom\n");
986 /* We haven't allocated anything so we don't need any cleanup */
987 return -1;
990 rom = g_malloc0(sizeof(*rom));
991 rom->name = g_strdup(file);
992 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
993 rom->as = as;
994 if (rom->path == NULL) {
995 rom->path = g_strdup(file);
998 fd = open(rom->path, O_RDONLY | O_BINARY);
999 if (fd == -1) {
1000 fprintf(stderr, "Could not open option rom '%s': %s\n",
1001 rom->path, strerror(errno));
1002 goto err;
1005 if (fw_dir) {
1006 rom->fw_dir = g_strdup(fw_dir);
1007 rom->fw_file = g_strdup(file);
1009 rom->addr = addr;
1010 rom->romsize = lseek(fd, 0, SEEK_END);
1011 if (rom->romsize == -1) {
1012 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1013 rom->name, strerror(errno));
1014 goto err;
1017 rom->datasize = rom->romsize;
1018 rom->data = g_malloc0(rom->datasize);
1019 lseek(fd, 0, SEEK_SET);
1020 rc = read(fd, rom->data, rom->datasize);
1021 if (rc != rom->datasize) {
1022 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1023 rom->name, rc, rom->datasize);
1024 goto err;
1026 close(fd);
1027 rom_insert(rom);
1028 if (rom->fw_file && fw_cfg) {
1029 const char *basename;
1030 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1031 void *data;
1033 basename = strrchr(rom->fw_file, '/');
1034 if (basename) {
1035 basename++;
1036 } else {
1037 basename = rom->fw_file;
1039 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1040 basename);
1041 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1043 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1044 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1045 } else {
1046 data = rom->data;
1049 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1050 } else {
1051 if (mr) {
1052 rom->mr = mr;
1053 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1054 } else {
1055 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1059 add_boot_device_path(bootindex, NULL, devpath);
1060 return 0;
1062 err:
1063 if (fd != -1)
1064 close(fd);
1066 rom_free(rom);
1067 return -1;
1070 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1071 size_t max_len, hwaddr addr, const char *fw_file_name,
1072 FWCfgCallback fw_callback, void *callback_opaque,
1073 AddressSpace *as, bool read_only)
1075 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1076 Rom *rom;
1077 MemoryRegion *mr = NULL;
1079 rom = g_malloc0(sizeof(*rom));
1080 rom->name = g_strdup(name);
1081 rom->as = as;
1082 rom->addr = addr;
1083 rom->romsize = max_len ? max_len : len;
1084 rom->datasize = len;
1085 g_assert(rom->romsize >= rom->datasize);
1086 rom->data = g_malloc0(rom->datasize);
1087 memcpy(rom->data, blob, len);
1088 rom_insert(rom);
1089 if (fw_file_name && fw_cfg) {
1090 char devpath[100];
1091 void *data;
1093 if (read_only) {
1094 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1095 } else {
1096 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1099 if (mc->rom_file_has_mr) {
1100 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1101 mr = rom->mr;
1102 } else {
1103 data = rom->data;
1106 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1107 fw_callback, NULL, callback_opaque,
1108 data, rom->datasize, read_only);
1110 return mr;
1113 /* This function is specific for elf program because we don't need to allocate
1114 * all the rom. We just allocate the first part and the rest is just zeros. This
1115 * is why romsize and datasize are different. Also, this function takes its own
1116 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1118 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1119 size_t datasize, size_t romsize, hwaddr addr,
1120 AddressSpace *as)
1122 Rom *rom;
1124 rom = g_malloc0(sizeof(*rom));
1125 rom->name = g_strdup(name);
1126 rom->addr = addr;
1127 rom->datasize = datasize;
1128 rom->romsize = romsize;
1129 rom->data = data;
1130 rom->as = as;
1132 if (mapped_file && data) {
1133 g_mapped_file_ref(mapped_file);
1134 rom->mapped_file = mapped_file;
1137 rom_insert(rom);
1138 return 0;
1141 int rom_add_vga(const char *file)
1143 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1146 int rom_add_option(const char *file, int32_t bootindex)
1148 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1151 static void rom_reset(void *unused)
1153 Rom *rom;
1155 QTAILQ_FOREACH(rom, &roms, next) {
1156 if (rom->fw_file) {
1157 continue;
1160 * We don't need to fill in the RAM with ROM data because we'll fill
1161 * the data in during the next incoming migration in all cases. Note
1162 * that some of those RAMs can actually be modified by the guest.
1164 if (runstate_check(RUN_STATE_INMIGRATE)) {
1165 if (rom->data && rom->isrom) {
1167 * Free it so that a rom_reset after migration doesn't
1168 * overwrite a potentially modified 'rom'.
1170 rom_free_data(rom);
1172 continue;
1175 if (rom->data == NULL) {
1176 continue;
1178 if (rom->mr) {
1179 void *host = memory_region_get_ram_ptr(rom->mr);
1180 memcpy(host, rom->data, rom->datasize);
1181 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1182 } else {
1183 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1184 rom->data, rom->datasize);
1185 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1186 rom->romsize - rom->datasize,
1187 MEMTXATTRS_UNSPECIFIED);
1189 if (rom->isrom) {
1190 /* rom needs to be written only once */
1191 rom_free_data(rom);
1194 * The rom loader is really on the same level as firmware in the guest
1195 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1196 * that the instruction cache for that new region is clear, so that the
1197 * CPU definitely fetches its instructions from the just written data.
1199 cpu_flush_icache_range(rom->addr, rom->datasize);
1201 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1205 /* Return true if two consecutive ROMs in the ROM list overlap */
1206 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1208 if (!last_rom) {
1209 return false;
1211 return last_rom->as == this_rom->as &&
1212 last_rom->addr + last_rom->romsize > this_rom->addr;
1215 static const char *rom_as_name(Rom *rom)
1217 const char *name = rom->as ? rom->as->name : NULL;
1218 return name ?: "anonymous";
1221 static void rom_print_overlap_error_header(void)
1223 error_report("Some ROM regions are overlapping");
1224 error_printf(
1225 "These ROM regions might have been loaded by "
1226 "direct user request or by default.\n"
1227 "They could be BIOS/firmware images, a guest kernel, "
1228 "initrd or some other file loaded into guest memory.\n"
1229 "Check whether you intended to load all this guest code, and "
1230 "whether it has been built to load to the correct addresses.\n");
1233 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1235 error_printf(
1236 "\nThe following two regions overlap (in the %s address space):\n",
1237 rom_as_name(rom));
1238 error_printf(
1239 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1240 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1241 error_printf(
1242 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1243 rom->name, rom->addr, rom->addr + rom->romsize);
1246 int rom_check_and_register_reset(void)
1248 MemoryRegionSection section;
1249 Rom *rom, *last_rom = NULL;
1250 bool found_overlap = false;
1252 QTAILQ_FOREACH(rom, &roms, next) {
1253 if (rom->fw_file) {
1254 continue;
1256 if (!rom->mr) {
1257 if (roms_overlap(last_rom, rom)) {
1258 if (!found_overlap) {
1259 found_overlap = true;
1260 rom_print_overlap_error_header();
1262 rom_print_one_overlap_error(last_rom, rom);
1263 /* Keep going through the list so we report all overlaps */
1265 last_rom = rom;
1267 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1268 rom->addr, 1);
1269 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1270 memory_region_unref(section.mr);
1272 if (found_overlap) {
1273 return -1;
1276 qemu_register_reset(rom_reset, NULL);
1277 roms_loaded = 1;
1278 return 0;
1281 void rom_set_fw(FWCfgState *f)
1283 fw_cfg = f;
1286 void rom_set_order_override(int order)
1288 if (!fw_cfg)
1289 return;
1290 fw_cfg_set_order_override(fw_cfg, order);
1293 void rom_reset_order_override(void)
1295 if (!fw_cfg)
1296 return;
1297 fw_cfg_reset_order_override(fw_cfg);
1300 void rom_transaction_begin(void)
1302 Rom *rom;
1304 /* Ignore ROMs added without the transaction API */
1305 QTAILQ_FOREACH(rom, &roms, next) {
1306 rom->committed = true;
1310 void rom_transaction_end(bool commit)
1312 Rom *rom;
1313 Rom *tmp;
1315 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1316 if (rom->committed) {
1317 continue;
1319 if (commit) {
1320 rom->committed = true;
1321 } else {
1322 QTAILQ_REMOVE(&roms, rom, next);
1323 rom_free(rom);
1328 static Rom *find_rom(hwaddr addr, size_t size)
1330 Rom *rom;
1332 QTAILQ_FOREACH(rom, &roms, next) {
1333 if (rom->fw_file) {
1334 continue;
1336 if (rom->mr) {
1337 continue;
1339 if (rom->addr > addr) {
1340 continue;
1342 if (rom->addr + rom->romsize < addr + size) {
1343 continue;
1345 return rom;
1347 return NULL;
1350 typedef struct RomSec {
1351 hwaddr base;
1352 int se; /* start/end flag */
1353 } RomSec;
1357 * Sort into address order. We break ties between rom-startpoints
1358 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1359 * transition before the 1->0 transition. Either way round would
1360 * work, but this way saves a little work later by avoiding
1361 * dealing with "gaps" of 0 length.
1363 static gint sort_secs(gconstpointer a, gconstpointer b)
1365 RomSec *ra = (RomSec *) a;
1366 RomSec *rb = (RomSec *) b;
1368 if (ra->base == rb->base) {
1369 return ra->se - rb->se;
1371 return ra->base > rb->base ? 1 : -1;
1374 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1376 RomSec *cand = g_new(RomSec, 1);
1377 cand->base = base;
1378 cand->se = se;
1379 return g_list_prepend(secs, cand);
1382 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1384 Rom *rom;
1385 RomSec *cand;
1386 RomGap res = {0, 0};
1387 hwaddr gapstart = base;
1388 GList *it, *secs = NULL;
1389 int count = 0;
1391 QTAILQ_FOREACH(rom, &roms, next) {
1392 /* Ignore blobs being loaded to special places */
1393 if (rom->mr || rom->fw_file) {
1394 continue;
1396 /* ignore anything finishing bellow base */
1397 if (rom->addr + rom->romsize <= base) {
1398 continue;
1400 /* ignore anything starting above the region */
1401 if (rom->addr >= base + size) {
1402 continue;
1405 /* Save the start and end of each relevant ROM */
1406 secs = add_romsec_to_list(secs, rom->addr, 1);
1408 if (rom->addr + rom->romsize < base + size) {
1409 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1413 /* sentinel */
1414 secs = add_romsec_to_list(secs, base + size, 1);
1416 secs = g_list_sort(secs, sort_secs);
1418 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1419 cand = (RomSec *) it->data;
1420 if (count == 0 && count + cand->se == 1) {
1421 size_t gap = cand->base - gapstart;
1422 if (gap > res.size) {
1423 res.base = gapstart;
1424 res.size = gap;
1426 } else if (count == 1 && count + cand->se == 0) {
1427 gapstart = cand->base;
1429 count += cand->se;
1432 g_list_free_full(secs, g_free);
1433 return res;
1437 * Copies memory from registered ROMs to dest. Any memory that is contained in
1438 * a ROM between addr and addr + size is copied. Note that this can involve
1439 * multiple ROMs, which need not start at addr and need not end at addr + size.
1441 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1443 hwaddr end = addr + size;
1444 uint8_t *s, *d = dest;
1445 size_t l = 0;
1446 Rom *rom;
1448 QTAILQ_FOREACH(rom, &roms, next) {
1449 if (rom->fw_file) {
1450 continue;
1452 if (rom->mr) {
1453 continue;
1455 if (rom->addr + rom->romsize < addr) {
1456 continue;
1458 if (rom->addr > end || rom->addr < addr) {
1459 break;
1462 d = dest + (rom->addr - addr);
1463 s = rom->data;
1464 l = rom->datasize;
1466 if ((d + l) > (dest + size)) {
1467 l = dest - d;
1470 if (l > 0) {
1471 memcpy(d, s, l);
1474 if (rom->romsize > rom->datasize) {
1475 /* If datasize is less than romsize, it means that we didn't
1476 * allocate all the ROM because the trailing data are only zeros.
1479 d += l;
1480 l = rom->romsize - rom->datasize;
1482 if ((d + l) > (dest + size)) {
1483 /* Rom size doesn't fit in the destination area. Adjust to avoid
1484 * overflow.
1486 l = dest - d;
1489 if (l > 0) {
1490 memset(d, 0x0, l);
1495 return (d + l) - dest;
1498 void *rom_ptr(hwaddr addr, size_t size)
1500 Rom *rom;
1502 rom = find_rom(addr, size);
1503 if (!rom || !rom->data)
1504 return NULL;
1505 return rom->data + (addr - rom->addr);
1508 typedef struct FindRomCBData {
1509 size_t size; /* Amount of data we want from ROM, in bytes */
1510 MemoryRegion *mr; /* MR at the unaliased guest addr */
1511 hwaddr xlat; /* Offset of addr within mr */
1512 void *rom; /* Output: rom data pointer, if found */
1513 } FindRomCBData;
1515 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1516 hwaddr offset_in_region, void *opaque)
1518 FindRomCBData *cbdata = opaque;
1519 hwaddr alias_addr;
1521 if (mr != cbdata->mr) {
1522 return false;
1525 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1526 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1527 if (!cbdata->rom) {
1528 return false;
1530 /* Found a match, stop iterating */
1531 return true;
1534 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1537 * Find any ROM data for the given guest address range. If there
1538 * is a ROM blob then return a pointer to the host memory
1539 * corresponding to 'addr'; otherwise return NULL.
1541 * We look not only for ROM blobs that were loaded directly to
1542 * addr, but also for ROM blobs that were loaded to aliases of
1543 * that memory at other addresses within the AddressSpace.
1545 * Note that we do not check @as against the 'as' member in the
1546 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1547 * AddressSpace which the rom blob should be written to, whereas
1548 * our @as argument is the AddressSpace which we are (effectively)
1549 * reading from, and the same underlying RAM will often be visible
1550 * in multiple AddressSpaces. (A common example is a ROM blob
1551 * written to the 'system' address space but then read back via a
1552 * CPU's cpu->as pointer.) This does mean we might potentially
1553 * return a false-positive match if a ROM blob was loaded into an
1554 * AS which is entirely separate and distinct from the one we're
1555 * querying, but this issue exists also for rom_ptr() and hasn't
1556 * caused any problems in practice.
1558 FlatView *fv;
1559 void *rom;
1560 hwaddr len_unused;
1561 FindRomCBData cbdata = {};
1563 /* Easy case: there's data at the actual address */
1564 rom = rom_ptr(addr, size);
1565 if (rom) {
1566 return rom;
1569 RCU_READ_LOCK_GUARD();
1571 fv = address_space_to_flatview(as);
1572 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1573 false, MEMTXATTRS_UNSPECIFIED);
1574 if (!cbdata.mr) {
1575 /* Nothing at this address, so there can't be any aliasing */
1576 return NULL;
1578 cbdata.size = size;
1579 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1580 return cbdata.rom;
1583 HumanReadableText *qmp_x_query_roms(Error **errp)
1585 Rom *rom;
1586 g_autoptr(GString) buf = g_string_new("");
1588 QTAILQ_FOREACH(rom, &roms, next) {
1589 if (rom->mr) {
1590 g_string_append_printf(buf, "%s"
1591 " size=0x%06zx name=\"%s\"\n",
1592 memory_region_name(rom->mr),
1593 rom->romsize,
1594 rom->name);
1595 } else if (!rom->fw_file) {
1596 g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1597 " size=0x%06zx mem=%s name=\"%s\"\n",
1598 rom->addr, rom->romsize,
1599 rom->isrom ? "rom" : "ram",
1600 rom->name);
1601 } else {
1602 g_string_append_printf(buf, "fw=%s/%s"
1603 " size=0x%06zx name=\"%s\"\n",
1604 rom->fw_dir,
1605 rom->fw_file,
1606 rom->romsize,
1607 rom->name);
1611 return human_readable_text_from_str(buf);
1614 typedef enum HexRecord HexRecord;
1615 enum HexRecord {
1616 DATA_RECORD = 0,
1617 EOF_RECORD,
1618 EXT_SEG_ADDR_RECORD,
1619 START_SEG_ADDR_RECORD,
1620 EXT_LINEAR_ADDR_RECORD,
1621 START_LINEAR_ADDR_RECORD,
1624 /* Each record contains a 16-bit address which is combined with the upper 16
1625 * bits of the implicit "next address" to form a 32-bit address.
1627 #define NEXT_ADDR_MASK 0xffff0000
1629 #define DATA_FIELD_MAX_LEN 0xff
1630 #define LEN_EXCEPT_DATA 0x5
1631 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1632 * sizeof(checksum) */
1633 typedef struct {
1634 uint8_t byte_count;
1635 uint16_t address;
1636 uint8_t record_type;
1637 uint8_t data[DATA_FIELD_MAX_LEN];
1638 uint8_t checksum;
1639 } HexLine;
1641 /* return 0 or -1 if error */
1642 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1643 uint32_t *index, const bool in_process)
1645 /* +-------+---------------+-------+---------------------+--------+
1646 * | byte | |record | | |
1647 * | count | address | type | data |checksum|
1648 * +-------+---------------+-------+---------------------+--------+
1649 * ^ ^ ^ ^ ^ ^
1650 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1652 uint8_t value = 0;
1653 uint32_t idx = *index;
1654 /* ignore space */
1655 if (g_ascii_isspace(c)) {
1656 return true;
1658 if (!g_ascii_isxdigit(c) || !in_process) {
1659 return false;
1661 value = g_ascii_xdigit_value(c);
1662 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1663 if (idx < 2) {
1664 line->byte_count |= value;
1665 } else if (2 <= idx && idx < 6) {
1666 line->address <<= 4;
1667 line->address += g_ascii_xdigit_value(c);
1668 } else if (6 <= idx && idx < 8) {
1669 line->record_type |= value;
1670 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1671 line->data[(idx - 8) >> 1] |= value;
1672 } else if (8 + 2 * line->byte_count <= idx &&
1673 idx < 10 + 2 * line->byte_count) {
1674 line->checksum |= value;
1675 } else {
1676 return false;
1678 *our_checksum += value;
1679 ++(*index);
1680 return true;
1683 typedef struct {
1684 const char *filename;
1685 HexLine line;
1686 uint8_t *bin_buf;
1687 hwaddr *start_addr;
1688 int total_size;
1689 uint32_t next_address_to_write;
1690 uint32_t current_address;
1691 uint32_t current_rom_index;
1692 uint32_t rom_start_address;
1693 AddressSpace *as;
1694 bool complete;
1695 } HexParser;
1697 /* return size or -1 if error */
1698 static int handle_record_type(HexParser *parser)
1700 HexLine *line = &(parser->line);
1701 switch (line->record_type) {
1702 case DATA_RECORD:
1703 parser->current_address =
1704 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1705 /* verify this is a contiguous block of memory */
1706 if (parser->current_address != parser->next_address_to_write) {
1707 if (parser->current_rom_index != 0) {
1708 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1709 parser->current_rom_index,
1710 parser->rom_start_address, parser->as);
1712 parser->rom_start_address = parser->current_address;
1713 parser->current_rom_index = 0;
1716 /* copy from line buffer to output bin_buf */
1717 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1718 line->byte_count);
1719 parser->current_rom_index += line->byte_count;
1720 parser->total_size += line->byte_count;
1721 /* save next address to write */
1722 parser->next_address_to_write =
1723 parser->current_address + line->byte_count;
1724 break;
1726 case EOF_RECORD:
1727 if (parser->current_rom_index != 0) {
1728 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1729 parser->current_rom_index,
1730 parser->rom_start_address, parser->as);
1732 parser->complete = true;
1733 return parser->total_size;
1734 case EXT_SEG_ADDR_RECORD:
1735 case EXT_LINEAR_ADDR_RECORD:
1736 if (line->byte_count != 2 && line->address != 0) {
1737 return -1;
1740 if (parser->current_rom_index != 0) {
1741 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1742 parser->current_rom_index,
1743 parser->rom_start_address, parser->as);
1746 /* save next address to write,
1747 * in case of non-contiguous block of memory */
1748 parser->next_address_to_write = (line->data[0] << 12) |
1749 (line->data[1] << 4);
1750 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1751 parser->next_address_to_write <<= 12;
1754 parser->rom_start_address = parser->next_address_to_write;
1755 parser->current_rom_index = 0;
1756 break;
1758 case START_SEG_ADDR_RECORD:
1759 if (line->byte_count != 4 && line->address != 0) {
1760 return -1;
1763 /* x86 16-bit CS:IP segmented addressing */
1764 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1765 ((line->data[2] << 8) | line->data[3]);
1766 break;
1768 case START_LINEAR_ADDR_RECORD:
1769 if (line->byte_count != 4 && line->address != 0) {
1770 return -1;
1773 *(parser->start_addr) = ldl_be_p(line->data);
1774 break;
1776 default:
1777 return -1;
1780 return parser->total_size;
1783 /* return size or -1 if error */
1784 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1785 size_t hex_blob_size, AddressSpace *as)
1787 bool in_process = false; /* avoid re-enter and
1788 * check whether record begin with ':' */
1789 uint8_t *end = hex_blob + hex_blob_size;
1790 uint8_t our_checksum = 0;
1791 uint32_t record_index = 0;
1792 HexParser parser = {
1793 .filename = filename,
1794 .bin_buf = g_malloc(hex_blob_size),
1795 .start_addr = addr,
1796 .as = as,
1797 .complete = false
1800 rom_transaction_begin();
1802 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1803 switch (*hex_blob) {
1804 case '\r':
1805 case '\n':
1806 if (!in_process) {
1807 break;
1810 in_process = false;
1811 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1812 record_index ||
1813 our_checksum != 0) {
1814 parser.total_size = -1;
1815 goto out;
1818 if (handle_record_type(&parser) == -1) {
1819 parser.total_size = -1;
1820 goto out;
1822 break;
1824 /* start of a new record. */
1825 case ':':
1826 memset(&parser.line, 0, sizeof(HexLine));
1827 in_process = true;
1828 record_index = 0;
1829 break;
1831 /* decoding lines */
1832 default:
1833 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1834 &record_index, in_process)) {
1835 parser.total_size = -1;
1836 goto out;
1838 break;
1842 out:
1843 g_free(parser.bin_buf);
1844 rom_transaction_end(parser.total_size != -1);
1845 return parser.total_size;
1848 /* return size or -1 if error */
1849 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1851 gsize hex_blob_size;
1852 gchar *hex_blob;
1853 int total_size = 0;
1855 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1856 return -1;
1859 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1860 hex_blob_size, as);
1862 g_free(hex_blob);
1863 return total_size;