target/arm: Use MO_128 for 16 byte atomics
[qemu.git] / hw / ppc / spapr_numa.c
blob582293844887c622c825d5ab8dffd2d9e26bc276
1 /*
2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
4 * Copyright IBM Corp. 2020
6 * Authors:
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
23 * Retrieves max_dist_ref_points of the current NUMA affinity.
25 static int get_max_dist_ref_points(SpaprMachineState *spapr)
27 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
28 return FORM2_DIST_REF_POINTS;
31 return FORM1_DIST_REF_POINTS;
35 * Retrieves numa_assoc_size of the current NUMA affinity.
37 static int get_numa_assoc_size(SpaprMachineState *spapr)
39 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
40 return FORM2_NUMA_ASSOC_SIZE;
43 return FORM1_NUMA_ASSOC_SIZE;
47 * Retrieves vcpu_assoc_size of the current NUMA affinity.
49 * vcpu_assoc_size is the size of ibm,associativity array
50 * for CPUs, which has an extra element (vcpu_id) in the end.
52 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
54 return get_numa_assoc_size(spapr) + 1;
58 * Retrieves the ibm,associativity array of NUMA node 'node_id'
59 * for the current NUMA affinity.
61 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
63 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
64 return spapr->FORM2_assoc_array[node_id];
66 return spapr->FORM1_assoc_array[node_id];
69 static bool spapr_numa_is_symmetrical(MachineState *ms)
71 int src, dst;
72 int nb_numa_nodes = ms->numa_state->num_nodes;
73 NodeInfo *numa_info = ms->numa_state->nodes;
75 for (src = 0; src < nb_numa_nodes; src++) {
76 for (dst = src; dst < nb_numa_nodes; dst++) {
77 if (numa_info[src].distance[dst] !=
78 numa_info[dst].distance[src]) {
79 return false;
84 return true;
88 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
89 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
90 * called from vPHB reset handler so we initialize the counter here.
91 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
92 * must be equally distant from any other node.
93 * The final value of spapr->gpu_numa_id is going to be written to
94 * max-associativity-domains in spapr_build_fdt().
96 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
98 return MAX(1, machine->numa_state->num_nodes);
102 * This function will translate the user distances into
103 * what the kernel understand as possible values: 10
104 * (local distance), 20, 40, 80 and 160, and return the equivalent
105 * NUMA level for each. Current heuristic is:
106 * - local distance (10) returns numa_level = 0x4, meaning there is
107 * no rounding for local distance
108 * - distances between 11 and 30 inclusive -> rounded to 20,
109 * numa_level = 0x3
110 * - distances between 31 and 60 inclusive -> rounded to 40,
111 * numa_level = 0x2
112 * - distances between 61 and 120 inclusive -> rounded to 80,
113 * numa_level = 0x1
114 * - everything above 120 returns numa_level = 0 to indicate that
115 * there is no match. This will be calculated as disntace = 160
116 * by the kernel (as of v5.9)
118 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
120 if (distance == 10) {
121 return 0x4;
122 } else if (distance > 11 && distance <= 30) {
123 return 0x3;
124 } else if (distance > 31 && distance <= 60) {
125 return 0x2;
126 } else if (distance > 61 && distance <= 120) {
127 return 0x1;
130 return 0;
133 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
135 MachineState *ms = MACHINE(spapr);
136 NodeInfo *numa_info = ms->numa_state->nodes;
137 int nb_numa_nodes = ms->numa_state->num_nodes;
138 int src, dst, i, j;
141 * Fill all associativity domains of non-zero NUMA nodes with
142 * node_id. This is required because the default value (0) is
143 * considered a match with associativity domains of node 0.
145 for (i = 1; i < nb_numa_nodes; i++) {
146 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
147 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
151 for (src = 0; src < nb_numa_nodes; src++) {
152 for (dst = src; dst < nb_numa_nodes; dst++) {
154 * This is how the associativity domain between A and B
155 * is calculated:
157 * - get the distance D between them
158 * - get the correspondent NUMA level 'n_level' for D
159 * - all associativity arrays were initialized with their own
160 * numa_ids, and we're calculating the distance in node_id
161 * ascending order, starting from node id 0 (the first node
162 * retrieved by numa_state). This will have a cascade effect in
163 * the algorithm because the associativity domains that node 0
164 * defines will be carried over to other nodes, and node 1
165 * associativities will be carried over after taking node 0
166 * associativities into account, and so on. This happens because
167 * we'll assign assoc_src as the associativity domain of dst
168 * as well, for all NUMA levels beyond and including n_level.
170 * The PPC kernel expects the associativity domains of node 0 to
171 * be always 0, and this algorithm will grant that by default.
173 uint8_t distance = numa_info[src].distance[dst];
174 uint8_t n_level = spapr_numa_get_numa_level(distance);
175 uint32_t assoc_src;
178 * n_level = 0 means that the distance is greater than our last
179 * rounded value (120). In this case there is no NUMA level match
180 * between src and dst and we can skip the remaining of the loop.
182 * The Linux kernel will assume that the distance between src and
183 * dst, in this case of no match, is 10 (local distance) doubled
184 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
185 * levels (4), so this gives us 10*2*2*2*2 = 160.
187 * This logic can be seen in the Linux kernel source code, as of
188 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
190 if (n_level == 0) {
191 continue;
195 * We must assign all assoc_src to dst, starting from n_level
196 * and going up to 0x1.
198 for (i = n_level; i > 0; i--) {
199 assoc_src = spapr->FORM1_assoc_array[src][i];
200 spapr->FORM1_assoc_array[dst][i] = assoc_src;
207 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
209 int i;
212 * Check we don't have a memory-less/cpu-less NUMA node
213 * Firmware relies on the existing memory/cpu topology to provide the
214 * NUMA topology to the kernel.
215 * And the linux kernel needs to know the NUMA topology at start
216 * to be able to hotplug CPUs later.
218 if (machine->numa_state->num_nodes) {
219 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
220 /* check for memory-less node */
221 if (machine->numa_state->nodes[i].node_mem == 0) {
222 CPUState *cs;
223 int found = 0;
224 /* check for cpu-less node */
225 CPU_FOREACH(cs) {
226 PowerPCCPU *cpu = POWERPC_CPU(cs);
227 if (cpu->node_id == i) {
228 found = 1;
229 break;
232 /* memory-less and cpu-less node */
233 if (!found) {
234 error_report(
235 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
236 exit(EXIT_FAILURE);
242 if (!spapr_numa_is_symmetrical(machine)) {
243 error_report(
244 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
245 exit(EXIT_FAILURE);
250 * Set NUMA machine state data based on FORM1 affinity semantics.
252 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
253 MachineState *machine)
255 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
256 int nb_numa_nodes = machine->numa_state->num_nodes;
257 int i, j, max_nodes_with_gpus;
260 * For all associativity arrays: first position is the size,
261 * position FORM1_DIST_REF_POINTS is always the numa_id,
262 * represented by the index 'i'.
264 * This will break on sparse NUMA setups, when/if QEMU starts
265 * to support it, because there will be no more guarantee that
266 * 'i' will be a valid node_id set by the user.
268 for (i = 0; i < nb_numa_nodes; i++) {
269 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
270 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
274 * Initialize NVLink GPU associativity arrays. We know that
275 * the first GPU will take the first available NUMA id, and
276 * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
277 * At this point we're not sure if there are GPUs or not, but
278 * let's initialize the associativity arrays and allow NVLink
279 * GPUs to be handled like regular NUMA nodes later on.
281 max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
283 for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
284 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
286 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
287 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
288 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
289 spapr->FORM1_assoc_array[i][j] = gpu_assoc;
292 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
296 * Guests pseries-5.1 and older uses zeroed associativity domains,
297 * i.e. no domain definition based on NUMA distance input.
299 * Same thing with guests that have only one NUMA node.
301 if (smc->pre_5_2_numa_associativity ||
302 machine->numa_state->num_nodes <= 1) {
303 return;
306 spapr_numa_define_FORM1_domains(spapr);
310 * Init NUMA FORM2 machine state data
312 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
314 int i;
317 * For all resources but CPUs, FORM2 associativity arrays will
318 * be a size 2 array with the following format:
320 * ibm,associativity = {1, numa_id}
322 * CPUs will write an additional 'vcpu_id' on top of the arrays
323 * being initialized here. 'numa_id' is represented by the
324 * index 'i' of the loop.
326 * Given that this initialization is also valid for GPU associativity
327 * arrays, handle everything in one single step by populating the
328 * arrays up to NUMA_NODES_MAX_NUM.
330 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
331 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
332 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
336 void spapr_numa_associativity_init(SpaprMachineState *spapr,
337 MachineState *machine)
339 spapr_numa_FORM1_affinity_init(spapr, machine);
340 spapr_numa_FORM2_affinity_init(spapr);
343 void spapr_numa_associativity_check(SpaprMachineState *spapr)
346 * FORM2 does not have any restrictions we need to handle
347 * at CAS time, for now.
349 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
350 return;
353 spapr_numa_FORM1_affinity_check(MACHINE(spapr));
356 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
357 int offset, int nodeid)
359 const uint32_t *associativity = get_associativity(spapr, nodeid);
361 _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
362 associativity,
363 get_numa_assoc_size(spapr) * sizeof(uint32_t))));
366 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
367 PowerPCCPU *cpu)
369 const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
370 int max_distance_ref_points = get_max_dist_ref_points(spapr);
371 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
372 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
373 int index = spapr_get_vcpu_id(cpu);
376 * VCPUs have an extra 'cpu_id' value in ibm,associativity
377 * compared to other resources. Increment the size at index
378 * 0, put cpu_id last, then copy the remaining associativity
379 * domains.
381 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
382 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
383 memcpy(vcpu_assoc + 1, associativity + 1,
384 (vcpu_assoc_size - 2) * sizeof(uint32_t));
386 return vcpu_assoc;
389 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
390 int offset, PowerPCCPU *cpu)
392 g_autofree uint32_t *vcpu_assoc = NULL;
393 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
395 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
397 /* Advertise NUMA via ibm,associativity */
398 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
399 vcpu_assoc_size * sizeof(uint32_t));
403 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
404 int offset)
406 MachineState *machine = MACHINE(spapr);
407 int max_distance_ref_points = get_max_dist_ref_points(spapr);
408 int nb_numa_nodes = machine->numa_state->num_nodes;
409 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
410 uint32_t *int_buf, *cur_index, buf_len;
411 int ret, i;
413 /* ibm,associativity-lookup-arrays */
414 buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
415 cur_index = int_buf = g_malloc0(buf_len);
416 int_buf[0] = cpu_to_be32(nr_nodes);
417 /* Number of entries per associativity list */
418 int_buf[1] = cpu_to_be32(max_distance_ref_points);
419 cur_index += 2;
420 for (i = 0; i < nr_nodes; i++) {
422 * For the lookup-array we use the ibm,associativity array of the
423 * current NUMA affinity, without the first element (size).
425 const uint32_t *associativity = get_associativity(spapr, i);
426 memcpy(cur_index, ++associativity,
427 sizeof(uint32_t) * max_distance_ref_points);
428 cur_index += max_distance_ref_points;
430 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
431 (cur_index - int_buf) * sizeof(uint32_t));
432 g_free(int_buf);
434 return ret;
437 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
438 void *fdt, int rtas)
440 MachineState *ms = MACHINE(spapr);
441 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
442 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
443 spapr_numa_initial_nvgpu_numa_id(ms);
444 uint32_t refpoints[] = {
445 cpu_to_be32(0x4),
446 cpu_to_be32(0x3),
447 cpu_to_be32(0x2),
448 cpu_to_be32(0x1),
450 uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
451 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
452 uint32_t maxdomains[] = {
453 cpu_to_be32(4),
454 cpu_to_be32(maxdomain),
455 cpu_to_be32(maxdomain),
456 cpu_to_be32(maxdomain),
457 cpu_to_be32(maxdomain)
460 if (smc->pre_5_2_numa_associativity ||
461 ms->numa_state->num_nodes <= 1) {
462 uint32_t legacy_refpoints[] = {
463 cpu_to_be32(0x4),
464 cpu_to_be32(0x4),
465 cpu_to_be32(0x2),
467 uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
468 uint32_t legacy_maxdomains[] = {
469 cpu_to_be32(4),
470 cpu_to_be32(legacy_maxdomain),
471 cpu_to_be32(legacy_maxdomain),
472 cpu_to_be32(legacy_maxdomain),
473 cpu_to_be32(spapr->gpu_numa_id),
476 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
477 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
479 nr_refpoints = 3;
481 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
482 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
484 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
485 if (smc->pre_5_1_assoc_refpoints) {
486 nr_refpoints = 2;
490 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
491 refpoints, nr_refpoints * sizeof(refpoints[0])));
493 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
494 maxdomains, sizeof(maxdomains)));
497 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
498 void *fdt, int rtas)
500 MachineState *ms = MACHINE(spapr);
501 NodeInfo *numa_info = ms->numa_state->nodes;
502 int nb_numa_nodes = ms->numa_state->num_nodes;
503 int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
504 g_autofree uint32_t *lookup_index_table = NULL;
505 g_autofree uint8_t *distance_table = NULL;
506 int src, dst, i, distance_table_size;
509 * ibm,numa-lookup-index-table: array with length and a
510 * list of NUMA ids present in the guest.
512 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
513 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
515 for (i = 0; i < nb_numa_nodes; i++) {
516 lookup_index_table[i + 1] = cpu_to_be32(i);
519 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
520 lookup_index_table,
521 (nb_numa_nodes + 1) * sizeof(uint32_t)));
524 * ibm,numa-distance-table: contains all node distances. First
525 * element is the size of the table as uint32, followed up
526 * by all the uint8 distances from the first NUMA node, then all
527 * distances from the second NUMA node and so on.
529 * ibm,numa-lookup-index-table is used by guest to navigate this
530 * array because NUMA ids can be sparse (node 0 is the first,
531 * node 8 is the second ...).
533 distance_table_size = distance_table_entries * sizeof(uint8_t) +
534 sizeof(uint32_t);
535 distance_table = g_new0(uint8_t, distance_table_size);
536 stl_be_p(distance_table, distance_table_entries);
538 /* Skip the uint32_t array length at the start */
539 i = sizeof(uint32_t);
541 for (src = 0; src < nb_numa_nodes; src++) {
542 for (dst = 0; dst < nb_numa_nodes; dst++) {
544 * We need to be explicit with the local distance
545 * value to cover the case where the user didn't added any
546 * NUMA nodes, but QEMU adds the default NUMA node without
547 * adding the numa_info to retrieve distance info from.
549 if (src == dst) {
550 distance_table[i++] = NUMA_DISTANCE_MIN;
551 continue;
554 distance_table[i++] = numa_info[src].distance[dst];
558 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
559 distance_table, distance_table_size));
563 * This helper could be compressed in a single function with
564 * FORM1 logic since we're setting the same DT values, with the
565 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
566 * in the end. The separation was made to avoid clogging FORM1 code
567 * which already has to deal with compat modes from previous
568 * QEMU machine types.
570 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
571 void *fdt, int rtas)
573 MachineState *ms = MACHINE(spapr);
574 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
575 spapr_numa_initial_nvgpu_numa_id(ms);
578 * In FORM2, ibm,associativity-reference-points will point to
579 * the element in the ibm,associativity array that contains the
580 * primary domain index (for FORM2, the first element).
582 * This value (in our case, the numa-id) is then used as an index
583 * to retrieve all other attributes of the node (distance,
584 * bandwidth, latency) via ibm,numa-lookup-index-table and other
585 * ibm,numa-*-table properties.
587 uint32_t refpoints[] = { cpu_to_be32(1) };
589 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
590 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
592 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
593 refpoints, sizeof(refpoints)));
595 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
596 maxdomains, sizeof(maxdomains)));
598 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
602 * Helper that writes ibm,associativity-reference-points and
603 * max-associativity-domains in the RTAS pointed by @rtas
604 * in the DT @fdt.
606 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
608 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
609 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
610 return;
613 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
616 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
617 SpaprMachineState *spapr,
618 target_ulong opcode,
619 target_ulong *args)
621 g_autofree uint32_t *vcpu_assoc = NULL;
622 target_ulong flags = args[0];
623 target_ulong procno = args[1];
624 PowerPCCPU *tcpu;
625 int idx, assoc_idx;
626 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
628 /* only support procno from H_REGISTER_VPA */
629 if (flags != 0x1) {
630 return H_FUNCTION;
633 tcpu = spapr_find_cpu(procno);
634 if (tcpu == NULL) {
635 return H_P2;
639 * Given that we want to be flexible with the sizes and indexes,
640 * we must consider that there is a hard limit of how many
641 * associativities domain we can fit in R4 up to R9, which would be
642 * 12 associativity domains for vcpus. Assert and bail if that's
643 * not the case.
645 g_assert((vcpu_assoc_size - 1) <= 12);
647 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
648 /* assoc_idx starts at 1 to skip associativity size */
649 assoc_idx = 1;
651 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
652 ((uint64_t)(b) & 0xffffffff))
654 for (idx = 0; idx < 6; idx++) {
655 int32_t a, b;
658 * vcpu_assoc[] will contain the associativity domains for tcpu,
659 * including tcpu->node_id and procno, meaning that we don't
660 * need to use these variables here.
662 * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
663 * macro. The ternary will fill the remaining registers with -1
664 * after we went through vcpu_assoc[].
666 a = assoc_idx < vcpu_assoc_size ?
667 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
668 b = assoc_idx < vcpu_assoc_size ?
669 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
671 args[idx] = ASSOCIATIVITY(a, b);
673 #undef ASSOCIATIVITY
675 return H_SUCCESS;
678 static void spapr_numa_register_types(void)
680 /* Virtual Processor Home Node */
681 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
682 h_home_node_associativity);
685 type_init(spapr_numa_register_types)