2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
36 #include "qemu-common.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
52 #include <machine/profile.h>
62 //#define DEBUG_TB_INVALIDATE
65 //#define DEBUG_UNASSIGNED
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
79 #define SMC_BITMAP_USE_THRESHOLD 10
81 static TranslationBlock
*tbs
;
82 int code_gen_max_blocks
;
83 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 static int in_migration
;
115 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
) };
119 /* current CPU in the current thread. It is only valid inside
121 CPUState
*cpu_single_env
;
122 /* 0 = Do not count executed instructions.
123 1 = Precise instruction counting.
124 2 = Adaptive rate instruction counting. */
126 /* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
130 typedef struct PageDesc
{
131 /* list of TBs intersecting this ram page */
132 TranslationBlock
*first_tb
;
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count
;
136 uint8_t *code_bitmap
;
137 #if defined(CONFIG_USER_ONLY)
142 /* In system mode we want L1_MAP to be based on ram offsets,
143 while in user mode we want it to be based on virtual addresses. */
144 #if !defined(CONFIG_USER_ONLY)
145 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
146 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
148 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
154 /* Size of the L2 (and L3, etc) page tables. */
156 #define L2_SIZE (1 << L2_BITS)
158 /* The bits remaining after N lower levels of page tables. */
159 #define P_L1_BITS_REM \
160 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161 #define V_L1_BITS_REM \
162 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
164 /* Size of the L1 page table. Avoid silly small sizes. */
165 #if P_L1_BITS_REM < 4
166 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
168 #define P_L1_BITS P_L1_BITS_REM
171 #if V_L1_BITS_REM < 4
172 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174 #define V_L1_BITS V_L1_BITS_REM
177 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
178 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
180 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
181 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
183 unsigned long qemu_real_host_page_size
;
184 unsigned long qemu_host_page_bits
;
185 unsigned long qemu_host_page_size
;
186 unsigned long qemu_host_page_mask
;
188 /* This is a multi-level map on the virtual address space.
189 The bottom level has pointers to PageDesc. */
190 static void *l1_map
[V_L1_SIZE
];
192 #if !defined(CONFIG_USER_ONLY)
193 typedef struct PhysPageDesc
{
194 /* offset in host memory of the page + io_index in the low bits */
195 ram_addr_t phys_offset
;
196 ram_addr_t region_offset
;
199 /* This is a multi-level map on the physical address space.
200 The bottom level has pointers to PhysPageDesc. */
201 static void *l1_phys_map
[P_L1_SIZE
];
203 static void io_mem_init(void);
205 /* io memory support */
206 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
207 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
208 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
209 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
210 static int io_mem_watch
;
215 static const char *logfilename
= "qemu.log";
217 static const char *logfilename
= "/tmp/qemu.log";
221 static int log_append
= 0;
224 #if !defined(CONFIG_USER_ONLY)
225 static int tlb_flush_count
;
227 static int tb_flush_count
;
228 static int tb_phys_invalidate_count
;
231 static void map_exec(void *addr
, long size
)
234 VirtualProtect(addr
, size
,
235 PAGE_EXECUTE_READWRITE
, &old_protect
);
239 static void map_exec(void *addr
, long size
)
241 unsigned long start
, end
, page_size
;
243 page_size
= getpagesize();
244 start
= (unsigned long)addr
;
245 start
&= ~(page_size
- 1);
247 end
= (unsigned long)addr
+ size
;
248 end
+= page_size
- 1;
249 end
&= ~(page_size
- 1);
251 mprotect((void *)start
, end
- start
,
252 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
256 static void page_init(void)
258 /* NOTE: we can always suppose that qemu_host_page_size >=
262 SYSTEM_INFO system_info
;
264 GetSystemInfo(&system_info
);
265 qemu_real_host_page_size
= system_info
.dwPageSize
;
268 qemu_real_host_page_size
= getpagesize();
270 if (qemu_host_page_size
== 0)
271 qemu_host_page_size
= qemu_real_host_page_size
;
272 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
273 qemu_host_page_size
= TARGET_PAGE_SIZE
;
274 qemu_host_page_bits
= 0;
275 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
276 qemu_host_page_bits
++;
277 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
279 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
281 #ifdef HAVE_KINFO_GETVMMAP
282 struct kinfo_vmentry
*freep
;
285 freep
= kinfo_getvmmap(getpid(), &cnt
);
288 for (i
= 0; i
< cnt
; i
++) {
289 unsigned long startaddr
, endaddr
;
291 startaddr
= freep
[i
].kve_start
;
292 endaddr
= freep
[i
].kve_end
;
293 if (h2g_valid(startaddr
)) {
294 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
296 if (h2g_valid(endaddr
)) {
297 endaddr
= h2g(endaddr
);
298 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
300 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
302 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
313 last_brk
= (unsigned long)sbrk(0);
315 f
= fopen("/compat/linux/proc/self/maps", "r");
320 unsigned long startaddr
, endaddr
;
323 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
325 if (n
== 2 && h2g_valid(startaddr
)) {
326 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
328 if (h2g_valid(endaddr
)) {
329 endaddr
= h2g(endaddr
);
333 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
345 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
351 #if defined(CONFIG_USER_ONLY)
352 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
353 # define ALLOC(P, SIZE) \
355 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
356 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
359 # define ALLOC(P, SIZE) \
360 do { P = qemu_mallocz(SIZE); } while (0)
363 /* Level 1. Always allocated. */
364 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
367 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
374 ALLOC(p
, sizeof(void *) * L2_SIZE
);
378 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
386 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
392 return pd
+ (index
& (L2_SIZE
- 1));
395 static inline PageDesc
*page_find(tb_page_addr_t index
)
397 return page_find_alloc(index
, 0);
400 #if !defined(CONFIG_USER_ONLY)
401 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
407 /* Level 1. Always allocated. */
408 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
411 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
417 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
419 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
430 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
432 for (i
= 0; i
< L2_SIZE
; i
++) {
433 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
434 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
438 return pd
+ (index
& (L2_SIZE
- 1));
441 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
443 return phys_page_find_alloc(index
, 0);
446 static void tlb_protect_code(ram_addr_t ram_addr
);
447 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
449 #define mmap_lock() do { } while(0)
450 #define mmap_unlock() do { } while(0)
453 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
455 #if defined(CONFIG_USER_ONLY)
456 /* Currently it is not recommended to allocate big chunks of data in
457 user mode. It will change when a dedicated libc will be used */
458 #define USE_STATIC_CODE_GEN_BUFFER
461 #ifdef USE_STATIC_CODE_GEN_BUFFER
462 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
463 __attribute__((aligned (CODE_GEN_ALIGN
)));
466 static void code_gen_alloc(unsigned long tb_size
)
468 #ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer
= static_code_gen_buffer
;
470 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
471 map_exec(code_gen_buffer
, code_gen_buffer_size
);
473 code_gen_buffer_size
= tb_size
;
474 if (code_gen_buffer_size
== 0) {
475 #if defined(CONFIG_USER_ONLY)
476 /* in user mode, phys_ram_size is not meaningful */
477 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
479 /* XXX: needs adjustments */
480 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
483 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
484 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
485 /* The code gen buffer location may have constraints depending on
486 the host cpu and OS */
487 #if defined(__linux__)
492 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
493 #if defined(__x86_64__)
495 /* Cannot map more than that */
496 if (code_gen_buffer_size
> (800 * 1024 * 1024))
497 code_gen_buffer_size
= (800 * 1024 * 1024);
498 #elif defined(__sparc_v9__)
499 // Map the buffer below 2G, so we can use direct calls and branches
501 start
= (void *) 0x60000000UL
;
502 if (code_gen_buffer_size
> (512 * 1024 * 1024))
503 code_gen_buffer_size
= (512 * 1024 * 1024);
504 #elif defined(__arm__)
505 /* Map the buffer below 32M, so we can use direct calls and branches */
507 start
= (void *) 0x01000000UL
;
508 if (code_gen_buffer_size
> 16 * 1024 * 1024)
509 code_gen_buffer_size
= 16 * 1024 * 1024;
510 #elif defined(__s390x__)
511 /* Map the buffer so that we can use direct calls and branches. */
512 /* We have a +- 4GB range on the branches; leave some slop. */
513 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
514 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
516 start
= (void *)0x90000000UL
;
518 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
519 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
521 if (code_gen_buffer
== MAP_FAILED
) {
522 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
526 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
530 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
531 #if defined(__x86_64__)
532 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
533 * 0x40000000 is free */
535 addr
= (void *)0x40000000;
536 /* Cannot map more than that */
537 if (code_gen_buffer_size
> (800 * 1024 * 1024))
538 code_gen_buffer_size
= (800 * 1024 * 1024);
540 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
541 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
543 if (code_gen_buffer
== MAP_FAILED
) {
544 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
549 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
550 map_exec(code_gen_buffer
, code_gen_buffer_size
);
552 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
553 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
554 code_gen_buffer_max_size
= code_gen_buffer_size
-
555 (TCG_MAX_OP_SIZE
* OPC_MAX_SIZE
);
556 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
557 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
560 /* Must be called before using the QEMU cpus. 'tb_size' is the size
561 (in bytes) allocated to the translation buffer. Zero means default
563 void cpu_exec_init_all(unsigned long tb_size
)
566 code_gen_alloc(tb_size
);
567 code_gen_ptr
= code_gen_buffer
;
569 #if !defined(CONFIG_USER_ONLY)
572 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx
);
579 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581 static int cpu_common_post_load(void *opaque
, int version_id
)
583 CPUState
*env
= opaque
;
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env
->interrupt_request
&= ~0x01;
593 static const VMStateDescription vmstate_cpu_common
= {
594 .name
= "cpu_common",
596 .minimum_version_id
= 1,
597 .minimum_version_id_old
= 1,
598 .post_load
= cpu_common_post_load
,
599 .fields
= (VMStateField
[]) {
600 VMSTATE_UINT32(halted
, CPUState
),
601 VMSTATE_UINT32(interrupt_request
, CPUState
),
602 VMSTATE_END_OF_LIST()
607 CPUState
*qemu_get_cpu(int cpu
)
609 CPUState
*env
= first_cpu
;
612 if (env
->cpu_index
== cpu
)
620 void cpu_exec_init(CPUState
*env
)
625 #if defined(CONFIG_USER_ONLY)
628 env
->next_cpu
= NULL
;
631 while (*penv
!= NULL
) {
632 penv
= &(*penv
)->next_cpu
;
635 env
->cpu_index
= cpu_index
;
637 QTAILQ_INIT(&env
->breakpoints
);
638 QTAILQ_INIT(&env
->watchpoints
);
640 #if defined(CONFIG_USER_ONLY)
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644 vmstate_register(cpu_index
, &vmstate_cpu_common
, env
);
645 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
646 cpu_save
, cpu_load
, env
);
650 static inline void invalidate_page_bitmap(PageDesc
*p
)
652 if (p
->code_bitmap
) {
653 qemu_free(p
->code_bitmap
);
654 p
->code_bitmap
= NULL
;
656 p
->code_write_count
= 0;
659 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
661 static void page_flush_tb_1 (int level
, void **lp
)
670 for (i
= 0; i
< L2_SIZE
; ++i
) {
671 pd
[i
].first_tb
= NULL
;
672 invalidate_page_bitmap(pd
+ i
);
676 for (i
= 0; i
< L2_SIZE
; ++i
) {
677 page_flush_tb_1 (level
- 1, pp
+ i
);
682 static void page_flush_tb(void)
685 for (i
= 0; i
< V_L1_SIZE
; i
++) {
686 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
690 /* flush all the translation blocks */
691 /* XXX: tb_flush is currently not thread safe */
692 void tb_flush(CPUState
*env1
)
695 #if defined(DEBUG_FLUSH)
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
699 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
701 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
702 cpu_abort(env1
, "Internal error: code buffer overflow\n");
706 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
707 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
710 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
713 code_gen_ptr
= code_gen_buffer
;
714 /* XXX: flush processor icache at this point if cache flush is
719 #ifdef DEBUG_TB_CHECK
721 static void tb_invalidate_check(target_ulong address
)
723 TranslationBlock
*tb
;
725 address
&= TARGET_PAGE_MASK
;
726 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
727 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
728 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
729 address
>= tb
->pc
+ tb
->size
)) {
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
732 address
, (long)tb
->pc
, tb
->size
);
738 /* verify that all the pages have correct rights for code */
739 static void tb_page_check(void)
741 TranslationBlock
*tb
;
742 int i
, flags1
, flags2
;
744 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
745 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
746 flags1
= page_get_flags(tb
->pc
);
747 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
748 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
750 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
758 /* invalidate one TB */
759 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
762 TranslationBlock
*tb1
;
766 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
769 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
773 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
775 TranslationBlock
*tb1
;
781 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
783 *ptb
= tb1
->page_next
[n1
];
786 ptb
= &tb1
->page_next
[n1
];
790 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
792 TranslationBlock
*tb1
, **ptb
;
795 ptb
= &tb
->jmp_next
[n
];
798 /* find tb(n) in circular list */
802 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
803 if (n1
== n
&& tb1
== tb
)
806 ptb
= &tb1
->jmp_first
;
808 ptb
= &tb1
->jmp_next
[n1
];
811 /* now we can suppress tb(n) from the list */
812 *ptb
= tb
->jmp_next
[n
];
814 tb
->jmp_next
[n
] = NULL
;
818 /* reset the jump entry 'n' of a TB so that it is not chained to
820 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
822 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
825 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
830 tb_page_addr_t phys_pc
;
831 TranslationBlock
*tb1
, *tb2
;
833 /* remove the TB from the hash list */
834 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
835 h
= tb_phys_hash_func(phys_pc
);
836 tb_remove(&tb_phys_hash
[h
], tb
,
837 offsetof(TranslationBlock
, phys_hash_next
));
839 /* remove the TB from the page list */
840 if (tb
->page_addr
[0] != page_addr
) {
841 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
842 tb_page_remove(&p
->first_tb
, tb
);
843 invalidate_page_bitmap(p
);
845 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
846 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
847 tb_page_remove(&p
->first_tb
, tb
);
848 invalidate_page_bitmap(p
);
851 tb_invalidated_flag
= 1;
853 /* remove the TB from the hash list */
854 h
= tb_jmp_cache_hash_func(tb
->pc
);
855 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
856 if (env
->tb_jmp_cache
[h
] == tb
)
857 env
->tb_jmp_cache
[h
] = NULL
;
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb
, 0);
862 tb_jmp_remove(tb
, 1);
864 /* suppress any remaining jumps to this TB */
870 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
871 tb2
= tb1
->jmp_next
[n1
];
872 tb_reset_jump(tb1
, n1
);
873 tb1
->jmp_next
[n1
] = NULL
;
876 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
878 tb_phys_invalidate_count
++;
881 static inline void set_bits(uint8_t *tab
, int start
, int len
)
887 mask
= 0xff << (start
& 7);
888 if ((start
& ~7) == (end
& ~7)) {
890 mask
&= ~(0xff << (end
& 7));
895 start
= (start
+ 8) & ~7;
897 while (start
< end1
) {
902 mask
= ~(0xff << (end
& 7));
908 static void build_page_bitmap(PageDesc
*p
)
910 int n
, tb_start
, tb_end
;
911 TranslationBlock
*tb
;
913 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
918 tb
= (TranslationBlock
*)((long)tb
& ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
924 tb_end
= tb_start
+ tb
->size
;
925 if (tb_end
> TARGET_PAGE_SIZE
)
926 tb_end
= TARGET_PAGE_SIZE
;
929 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
931 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
932 tb
= tb
->page_next
[n
];
936 TranslationBlock
*tb_gen_code(CPUState
*env
,
937 target_ulong pc
, target_ulong cs_base
,
938 int flags
, int cflags
)
940 TranslationBlock
*tb
;
942 tb_page_addr_t phys_pc
, phys_page2
;
943 target_ulong virt_page2
;
946 phys_pc
= get_page_addr_code(env
, pc
);
949 /* flush must be done */
951 /* cannot fail at this point */
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag
= 1;
956 tc_ptr
= code_gen_ptr
;
958 tb
->cs_base
= cs_base
;
961 cpu_gen_code(env
, tb
, &code_gen_size
);
962 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
964 /* check next page if needed */
965 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
967 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
968 phys_page2
= get_page_addr_code(env
, virt_page2
);
970 tb_link_page(tb
, phys_pc
, phys_page2
);
974 /* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
979 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
980 int is_cpu_write_access
)
982 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
983 CPUState
*env
= cpu_single_env
;
984 tb_page_addr_t tb_start
, tb_end
;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found
= is_cpu_write_access
;
989 TranslationBlock
*current_tb
= NULL
;
990 int current_tb_modified
= 0;
991 target_ulong current_pc
= 0;
992 target_ulong current_cs_base
= 0;
993 int current_flags
= 0;
994 #endif /* TARGET_HAS_PRECISE_SMC */
996 p
= page_find(start
>> TARGET_PAGE_BITS
);
999 if (!p
->code_bitmap
&&
1000 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1001 is_cpu_write_access
) {
1002 /* build code bitmap */
1003 build_page_bitmap(p
);
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1009 while (tb
!= NULL
) {
1011 tb
= (TranslationBlock
*)((long)tb
& ~3);
1012 tb_next
= tb
->page_next
[n
];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1018 tb_end
= tb_start
+ tb
->size
;
1020 tb_start
= tb
->page_addr
[1];
1021 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1023 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1024 #ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found
) {
1026 current_tb_not_found
= 0;
1028 if (env
->mem_io_pc
) {
1029 /* now we have a real cpu fault */
1030 current_tb
= tb_find_pc(env
->mem_io_pc
);
1033 if (current_tb
== tb
&&
1034 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
1041 current_tb_modified
= 1;
1042 cpu_restore_state(current_tb
, env
,
1043 env
->mem_io_pc
, NULL
);
1044 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1047 #endif /* TARGET_HAS_PRECISE_SMC */
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1052 saved_tb
= env
->current_tb
;
1053 env
->current_tb
= NULL
;
1055 tb_phys_invalidate(tb
, -1);
1057 env
->current_tb
= saved_tb
;
1058 if (env
->interrupt_request
&& env
->current_tb
)
1059 cpu_interrupt(env
, env
->interrupt_request
);
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1067 invalidate_page_bitmap(p
);
1068 if (is_cpu_write_access
) {
1069 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified
) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1078 env
->current_tb
= NULL
;
1079 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1080 cpu_resume_from_signal(env
, NULL
);
1085 /* len must be <= 8 and start must be a multiple of len */
1086 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env
->mem_io_vaddr
, len
,
1094 cpu_single_env
->eip
,
1095 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1098 p
= page_find(start
>> TARGET_PAGE_BITS
);
1101 if (p
->code_bitmap
) {
1102 offset
= start
& ~TARGET_PAGE_MASK
;
1103 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1104 if (b
& ((1 << len
) - 1))
1108 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1112 #if !defined(CONFIG_SOFTMMU)
1113 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1114 unsigned long pc
, void *puc
)
1116 TranslationBlock
*tb
;
1119 #ifdef TARGET_HAS_PRECISE_SMC
1120 TranslationBlock
*current_tb
= NULL
;
1121 CPUState
*env
= cpu_single_env
;
1122 int current_tb_modified
= 0;
1123 target_ulong current_pc
= 0;
1124 target_ulong current_cs_base
= 0;
1125 int current_flags
= 0;
1128 addr
&= TARGET_PAGE_MASK
;
1129 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1133 #ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb
&& pc
!= 0) {
1135 current_tb
= tb_find_pc(pc
);
1138 while (tb
!= NULL
) {
1140 tb
= (TranslationBlock
*)((long)tb
& ~3);
1141 #ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb
== tb
&&
1143 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
1150 current_tb_modified
= 1;
1151 cpu_restore_state(current_tb
, env
, pc
, puc
);
1152 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1155 #endif /* TARGET_HAS_PRECISE_SMC */
1156 tb_phys_invalidate(tb
, addr
);
1157 tb
= tb
->page_next
[n
];
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified
) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1165 env
->current_tb
= NULL
;
1166 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1167 cpu_resume_from_signal(env
, puc
);
1173 /* add the tb in the target page and protect it if necessary */
1174 static inline void tb_alloc_page(TranslationBlock
*tb
,
1175 unsigned int n
, tb_page_addr_t page_addr
)
1178 TranslationBlock
*last_first_tb
;
1180 tb
->page_addr
[n
] = page_addr
;
1181 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1182 tb
->page_next
[n
] = p
->first_tb
;
1183 last_first_tb
= p
->first_tb
;
1184 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1185 invalidate_page_bitmap(p
);
1187 #if defined(TARGET_HAS_SMC) || 1
1189 #if defined(CONFIG_USER_ONLY)
1190 if (p
->flags
& PAGE_WRITE
) {
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
1197 page_addr
&= qemu_host_page_mask
;
1199 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1200 addr
+= TARGET_PAGE_SIZE
) {
1202 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1206 p2
->flags
&= ~PAGE_WRITE
;
1208 mprotect(g2h(page_addr
), qemu_host_page_size
,
1209 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1210 #ifdef DEBUG_TB_INVALIDATE
1211 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb
) {
1220 tlb_protect_code(page_addr
);
1224 #endif /* TARGET_HAS_SMC */
1227 /* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
1229 TranslationBlock
*tb_alloc(target_ulong pc
)
1231 TranslationBlock
*tb
;
1233 if (nb_tbs
>= code_gen_max_blocks
||
1234 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1236 tb
= &tbs
[nb_tbs
++];
1242 void tb_free(TranslationBlock
*tb
)
1244 /* In practice this is mostly used for single use temporary TB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1248 code_gen_ptr
= tb
->tc_ptr
;
1253 /* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
1255 void tb_link_page(TranslationBlock
*tb
,
1256 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1259 TranslationBlock
**ptb
;
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1264 /* add in the physical hash table */
1265 h
= tb_phys_hash_func(phys_pc
);
1266 ptb
= &tb_phys_hash
[h
];
1267 tb
->phys_hash_next
= *ptb
;
1270 /* add in the page list */
1271 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1272 if (phys_page2
!= -1)
1273 tb_alloc_page(tb
, 1, phys_page2
);
1275 tb
->page_addr
[1] = -1;
1277 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1278 tb
->jmp_next
[0] = NULL
;
1279 tb
->jmp_next
[1] = NULL
;
1281 /* init original jump addresses */
1282 if (tb
->tb_next_offset
[0] != 0xffff)
1283 tb_reset_jump(tb
, 0);
1284 if (tb
->tb_next_offset
[1] != 0xffff)
1285 tb_reset_jump(tb
, 1);
1287 #ifdef DEBUG_TB_CHECK
1293 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1297 int m_min
, m_max
, m
;
1299 TranslationBlock
*tb
;
1303 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1304 tc_ptr
>= (unsigned long)code_gen_ptr
)
1306 /* binary search (cf Knuth) */
1309 while (m_min
<= m_max
) {
1310 m
= (m_min
+ m_max
) >> 1;
1312 v
= (unsigned long)tb
->tc_ptr
;
1315 else if (tc_ptr
< v
) {
1324 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1326 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1328 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1331 tb1
= tb
->jmp_next
[n
];
1333 /* find head of list */
1336 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1339 tb1
= tb1
->jmp_next
[n1
];
1341 /* we are now sure now that tb jumps to tb1 */
1344 /* remove tb from the jmp_first list */
1345 ptb
= &tb_next
->jmp_first
;
1349 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1350 if (n1
== n
&& tb1
== tb
)
1352 ptb
= &tb1
->jmp_next
[n1
];
1354 *ptb
= tb
->jmp_next
[n
];
1355 tb
->jmp_next
[n
] = NULL
;
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb
, n
);
1360 /* suppress jumps in the tb on which we could have jumped */
1361 tb_reset_jump_recursive(tb_next
);
1365 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1367 tb_reset_jump_recursive2(tb
, 0);
1368 tb_reset_jump_recursive2(tb
, 1);
1371 #if defined(TARGET_HAS_ICE)
1372 #if defined(CONFIG_USER_ONLY)
1373 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1375 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1378 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1380 target_phys_addr_t addr
;
1382 ram_addr_t ram_addr
;
1385 addr
= cpu_get_phys_page_debug(env
, pc
);
1386 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1388 pd
= IO_MEM_UNASSIGNED
;
1390 pd
= p
->phys_offset
;
1392 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1393 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1396 #endif /* TARGET_HAS_ICE */
1398 #if defined(CONFIG_USER_ONLY)
1399 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1404 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1405 int flags
, CPUWatchpoint
**watchpoint
)
1410 /* Add a watchpoint. */
1411 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1412 int flags
, CPUWatchpoint
**watchpoint
)
1414 target_ulong len_mask
= ~(len
- 1);
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1419 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1423 wp
= qemu_malloc(sizeof(*wp
));
1426 wp
->len_mask
= len_mask
;
1429 /* keep all GDB-injected watchpoints in front */
1431 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1433 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1435 tlb_flush_page(env
, addr
);
1442 /* Remove a specific watchpoint. */
1443 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1446 target_ulong len_mask
= ~(len
- 1);
1449 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1450 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1451 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1452 cpu_watchpoint_remove_by_ref(env
, wp
);
1459 /* Remove a specific watchpoint by reference. */
1460 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1462 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1464 tlb_flush_page(env
, watchpoint
->vaddr
);
1466 qemu_free(watchpoint
);
1469 /* Remove all matching watchpoints. */
1470 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1472 CPUWatchpoint
*wp
, *next
;
1474 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1475 if (wp
->flags
& mask
)
1476 cpu_watchpoint_remove_by_ref(env
, wp
);
1481 /* Add a breakpoint. */
1482 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1483 CPUBreakpoint
**breakpoint
)
1485 #if defined(TARGET_HAS_ICE)
1488 bp
= qemu_malloc(sizeof(*bp
));
1493 /* keep all GDB-injected breakpoints in front */
1495 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1497 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1499 breakpoint_invalidate(env
, pc
);
1509 /* Remove a specific breakpoint. */
1510 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1512 #if defined(TARGET_HAS_ICE)
1515 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1516 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1517 cpu_breakpoint_remove_by_ref(env
, bp
);
1527 /* Remove a specific breakpoint by reference. */
1528 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1530 #if defined(TARGET_HAS_ICE)
1531 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1533 breakpoint_invalidate(env
, breakpoint
->pc
);
1535 qemu_free(breakpoint
);
1539 /* Remove all matching breakpoints. */
1540 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1542 #if defined(TARGET_HAS_ICE)
1543 CPUBreakpoint
*bp
, *next
;
1545 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1546 if (bp
->flags
& mask
)
1547 cpu_breakpoint_remove_by_ref(env
, bp
);
1552 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554 void cpu_single_step(CPUState
*env
, int enabled
)
1556 #if defined(TARGET_HAS_ICE)
1557 if (env
->singlestep_enabled
!= enabled
) {
1558 env
->singlestep_enabled
= enabled
;
1560 kvm_update_guest_debug(env
, 0);
1562 /* must flush all the translated code to avoid inconsistencies */
1563 /* XXX: only flush what is necessary */
1570 /* enable or disable low levels log */
1571 void cpu_set_log(int log_flags
)
1573 loglevel
= log_flags
;
1574 if (loglevel
&& !logfile
) {
1575 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1577 perror(logfilename
);
1580 #if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1583 static char logfile_buf
[4096];
1584 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1586 #elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
1588 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1592 if (!loglevel
&& logfile
) {
1598 void cpu_set_log_filename(const char *filename
)
1600 logfilename
= strdup(filename
);
1605 cpu_set_log(loglevel
);
1608 static void cpu_unlink_tb(CPUState
*env
)
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
1614 TranslationBlock
*tb
;
1615 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1617 spin_lock(&interrupt_lock
);
1618 tb
= env
->current_tb
;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
1622 env
->current_tb
= NULL
;
1623 tb_reset_jump_recursive(tb
);
1625 spin_unlock(&interrupt_lock
);
1628 /* mask must never be zero, except for A20 change call */
1629 void cpu_interrupt(CPUState
*env
, int mask
)
1633 old_mask
= env
->interrupt_request
;
1634 env
->interrupt_request
|= mask
;
1636 #ifndef CONFIG_USER_ONLY
1638 * If called from iothread context, wake the target cpu in
1641 if (!qemu_cpu_self(env
)) {
1648 env
->icount_decr
.u16
.high
= 0xffff;
1649 #ifndef CONFIG_USER_ONLY
1651 && (mask
& ~old_mask
) != 0) {
1652 cpu_abort(env
, "Raised interrupt while not in I/O function");
1660 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1662 env
->interrupt_request
&= ~mask
;
1665 void cpu_exit(CPUState
*env
)
1667 env
->exit_request
= 1;
1671 const CPULogItem cpu_log_items
[] = {
1672 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM
, "in_asm",
1675 "show target assembly code for each compiled TB" },
1676 { CPU_LOG_TB_OP
, "op",
1677 "show micro ops for each compiled TB" },
1678 { CPU_LOG_TB_OP_OPT
, "op_opt",
1681 "before eflags optimization and "
1683 "after liveness analysis" },
1684 { CPU_LOG_INT
, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC
, "exec",
1687 "show trace before each executed TB (lots of logs)" },
1688 { CPU_LOG_TB_CPU
, "cpu",
1689 "show CPU state before block translation" },
1691 { CPU_LOG_PCALL
, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
1693 { CPU_LOG_RESET
, "cpu_reset",
1694 "show CPU state before CPU resets" },
1697 { CPU_LOG_IOPORT
, "ioport",
1698 "show all i/o ports accesses" },
1703 #ifndef CONFIG_USER_ONLY
1704 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1707 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1709 ram_addr_t phys_offset
)
1711 CPUPhysMemoryClient
*client
;
1712 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1713 client
->set_memory(client
, start_addr
, size
, phys_offset
);
1717 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1718 target_phys_addr_t end
)
1720 CPUPhysMemoryClient
*client
;
1721 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1722 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1729 static int cpu_notify_migration_log(int enable
)
1731 CPUPhysMemoryClient
*client
;
1732 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1733 int r
= client
->migration_log(client
, enable
);
1740 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1741 int level
, void **lp
)
1749 PhysPageDesc
*pd
= *lp
;
1750 for (i
= 0; i
< L2_SIZE
; ++i
) {
1751 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1752 client
->set_memory(client
, pd
[i
].region_offset
,
1753 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
);
1758 for (i
= 0; i
< L2_SIZE
; ++i
) {
1759 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1764 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1767 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1768 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1773 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1775 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1776 phys_page_for_each(client
);
1779 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1781 QLIST_REMOVE(client
, list
);
1785 static int cmp1(const char *s1
, int n
, const char *s2
)
1787 if (strlen(s2
) != n
)
1789 return memcmp(s1
, s2
, n
) == 0;
1792 /* takes a comma separated list of log masks. Return 0 if error. */
1793 int cpu_str_to_log_mask(const char *str
)
1795 const CPULogItem
*item
;
1802 p1
= strchr(p
, ',');
1805 if(cmp1(p
,p1
-p
,"all")) {
1806 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1810 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1811 if (cmp1(p
, p1
- p
, item
->name
))
1825 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1832 fprintf(stderr
, "qemu: fatal: ");
1833 vfprintf(stderr
, fmt
, ap
);
1834 fprintf(stderr
, "\n");
1836 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1838 cpu_dump_state(env
, stderr
, fprintf
, 0);
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt
, ap2
);
1845 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1847 log_cpu_state(env
, 0);
1854 #if defined(CONFIG_USER_ONLY)
1856 struct sigaction act
;
1857 sigfillset(&act
.sa_mask
);
1858 act
.sa_handler
= SIG_DFL
;
1859 sigaction(SIGABRT
, &act
, NULL
);
1865 CPUState
*cpu_copy(CPUState
*env
)
1867 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1868 CPUState
*next_cpu
= new_env
->next_cpu
;
1869 int cpu_index
= new_env
->cpu_index
;
1870 #if defined(TARGET_HAS_ICE)
1875 memcpy(new_env
, env
, sizeof(CPUState
));
1877 /* Preserve chaining and index. */
1878 new_env
->next_cpu
= next_cpu
;
1879 new_env
->cpu_index
= cpu_index
;
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
1884 QTAILQ_INIT(&env
->breakpoints
);
1885 QTAILQ_INIT(&env
->watchpoints
);
1886 #if defined(TARGET_HAS_ICE)
1887 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1888 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1890 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1891 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1899 #if !defined(CONFIG_USER_ONLY)
1901 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1908 memset (&env
->tb_jmp_cache
[i
], 0,
1909 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1911 i
= tb_jmp_cache_hash_page(addr
);
1912 memset (&env
->tb_jmp_cache
[i
], 0,
1913 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1916 static CPUTLBEntry s_cputlb_empty_entry
= {
1923 /* NOTE: if flush_global is true, also flush global entries (not
1925 void tlb_flush(CPUState
*env
, int flush_global
)
1929 #if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env
->current_tb
= NULL
;
1936 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1938 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1939 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1943 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1945 env
->tlb_flush_addr
= -1;
1946 env
->tlb_flush_mask
= 0;
1950 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1952 if (addr
== (tlb_entry
->addr_read
&
1953 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1954 addr
== (tlb_entry
->addr_write
&
1955 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1956 addr
== (tlb_entry
->addr_code
&
1957 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1958 *tlb_entry
= s_cputlb_empty_entry
;
1962 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
1975 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env
->current_tb
= NULL
;
1984 addr
&= TARGET_PAGE_MASK
;
1985 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1986 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
1987 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
1989 tlb_flush_jmp_cache(env
, addr
);
1992 /* update the TLBs so that writes to code in the virtual page 'addr'
1994 static void tlb_protect_code(ram_addr_t ram_addr
)
1996 cpu_physical_memory_reset_dirty(ram_addr
,
1997 ram_addr
+ TARGET_PAGE_SIZE
,
2001 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2002 tested for self modifying code */
2003 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2006 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2009 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2010 unsigned long start
, unsigned long length
)
2013 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2014 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2015 if ((addr
- start
) < length
) {
2016 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2021 /* Note: start and end must be within the same ram block. */
2022 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2026 unsigned long length
, start1
;
2029 start
&= TARGET_PAGE_MASK
;
2030 end
= TARGET_PAGE_ALIGN(end
);
2032 length
= end
- start
;
2035 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
2039 start1
= (unsigned long)qemu_get_ram_ptr(start
);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
2043 != (end
- 1) - start
) {
2047 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2049 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2050 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2051 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2057 int cpu_physical_memory_set_dirty_tracking(int enable
)
2060 in_migration
= enable
;
2061 ret
= cpu_notify_migration_log(!!enable
);
2065 int cpu_physical_memory_get_dirty_tracking(void)
2067 return in_migration
;
2070 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2071 target_phys_addr_t end_addr
)
2075 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2079 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2081 ram_addr_t ram_addr
;
2084 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2085 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2086 + tlb_entry
->addend
);
2087 ram_addr
= qemu_ram_addr_from_host(p
);
2088 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2089 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2094 /* update the TLB according to the current state of the dirty bits */
2095 void cpu_tlb_update_dirty(CPUState
*env
)
2099 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2100 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2101 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2105 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2107 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2108 tlb_entry
->addr_write
= vaddr
;
2111 /* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2118 vaddr
&= TARGET_PAGE_MASK
;
2119 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2120 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2121 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2124 /* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2129 target_ulong mask
= ~(size
- 1);
2131 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2132 env
->tlb_flush_addr
= vaddr
& mask
;
2133 env
->tlb_flush_mask
= mask
;
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask
&= env
->tlb_flush_mask
;
2140 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2143 env
->tlb_flush_addr
&= mask
;
2144 env
->tlb_flush_mask
= mask
;
2147 /* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2151 target_phys_addr_t paddr
, int prot
,
2152 int mmu_idx
, target_ulong size
)
2157 target_ulong address
;
2158 target_ulong code_address
;
2159 unsigned long addend
;
2162 target_phys_addr_t iotlb
;
2164 assert(size
>= TARGET_PAGE_SIZE
);
2165 if (size
!= TARGET_PAGE_SIZE
) {
2166 tlb_add_large_page(env
, vaddr
, size
);
2168 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2170 pd
= IO_MEM_UNASSIGNED
;
2172 pd
= p
->phys_offset
;
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
2180 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2181 /* IO memory case (romd handled later) */
2182 address
|= TLB_MMIO
;
2184 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2185 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2187 iotlb
= pd
& TARGET_PAGE_MASK
;
2188 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2189 iotlb
|= IO_MEM_NOTDIRTY
;
2191 iotlb
|= IO_MEM_ROM
;
2193 /* IO handlers are currently passed a physical address.
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
2199 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2201 iotlb
+= p
->region_offset
;
2207 code_address
= address
;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
2210 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2211 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2212 /* Avoid trapping reads of pages with a write breakpoint. */
2213 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2214 iotlb
= io_mem_watch
+ paddr
;
2215 address
|= TLB_MMIO
;
2221 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2222 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2223 te
= &env
->tlb_table
[mmu_idx
][index
];
2224 te
->addend
= addend
- vaddr
;
2225 if (prot
& PAGE_READ
) {
2226 te
->addr_read
= address
;
2231 if (prot
& PAGE_EXEC
) {
2232 te
->addr_code
= code_address
;
2236 if (prot
& PAGE_WRITE
) {
2237 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2238 (pd
& IO_MEM_ROMD
)) {
2239 /* Write access calls the I/O callback. */
2240 te
->addr_write
= address
| TLB_MMIO
;
2241 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2242 !cpu_physical_memory_is_dirty(pd
)) {
2243 te
->addr_write
= address
| TLB_NOTDIRTY
;
2245 te
->addr_write
= address
;
2248 te
->addr_write
= -1;
2254 void tlb_flush(CPUState
*env
, int flush_global
)
2258 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2263 * Walks guest process memory "regions" one by one
2264 * and calls callback function 'fn' for each region.
2267 struct walk_memory_regions_data
2269 walk_memory_regions_fn fn
;
2271 unsigned long start
;
2275 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2276 abi_ulong end
, int new_prot
)
2278 if (data
->start
!= -1ul) {
2279 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2285 data
->start
= (new_prot
? end
: -1ul);
2286 data
->prot
= new_prot
;
2291 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2292 abi_ulong base
, int level
, void **lp
)
2298 return walk_memory_regions_end(data
, base
, 0);
2303 for (i
= 0; i
< L2_SIZE
; ++i
) {
2304 int prot
= pd
[i
].flags
;
2306 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2307 if (prot
!= data
->prot
) {
2308 rc
= walk_memory_regions_end(data
, pa
, prot
);
2316 for (i
= 0; i
< L2_SIZE
; ++i
) {
2317 pa
= base
| ((abi_ulong
)i
<<
2318 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2319 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2329 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2331 struct walk_memory_regions_data data
;
2339 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2340 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2341 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2347 return walk_memory_regions_end(&data
, 0, 0);
2350 static int dump_region(void *priv
, abi_ulong start
,
2351 abi_ulong end
, unsigned long prot
)
2353 FILE *f
= (FILE *)priv
;
2355 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2356 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2357 start
, end
, end
- start
,
2358 ((prot
& PAGE_READ
) ? 'r' : '-'),
2359 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2360 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2365 /* dump memory mappings */
2366 void page_dump(FILE *f
)
2368 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2369 "start", "end", "size", "prot");
2370 walk_memory_regions(f
, dump_region
);
2373 int page_get_flags(target_ulong address
)
2377 p
= page_find(address
>> TARGET_PAGE_BITS
);
2383 /* Modify the flags of a page and invalidate the code if necessary.
2384 The flag PAGE_WRITE_ORG is positioned automatically depending
2385 on PAGE_WRITE. The mmap_lock should already be held. */
2386 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2388 target_ulong addr
, len
;
2390 /* This function should never be called with addresses outside the
2391 guest address space. If this assert fires, it probably indicates
2392 a missing call to h2g_valid. */
2393 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2394 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2396 assert(start
< end
);
2398 start
= start
& TARGET_PAGE_MASK
;
2399 end
= TARGET_PAGE_ALIGN(end
);
2401 if (flags
& PAGE_WRITE
) {
2402 flags
|= PAGE_WRITE_ORG
;
2405 for (addr
= start
, len
= end
- start
;
2407 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2408 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2410 /* If the write protection bit is set, then we invalidate
2412 if (!(p
->flags
& PAGE_WRITE
) &&
2413 (flags
& PAGE_WRITE
) &&
2415 tb_invalidate_phys_page(addr
, 0, NULL
);
2421 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2427 /* This function should never be called with addresses outside the
2428 guest address space. If this assert fires, it probably indicates
2429 a missing call to h2g_valid. */
2430 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2431 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2437 if (start
+ len
- 1 < start
) {
2438 /* We've wrapped around. */
2442 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2443 start
= start
& TARGET_PAGE_MASK
;
2445 for (addr
= start
, len
= end
- start
;
2447 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2448 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2451 if( !(p
->flags
& PAGE_VALID
) )
2454 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2456 if (flags
& PAGE_WRITE
) {
2457 if (!(p
->flags
& PAGE_WRITE_ORG
))
2459 /* unprotect the page if it was put read-only because it
2460 contains translated code */
2461 if (!(p
->flags
& PAGE_WRITE
)) {
2462 if (!page_unprotect(addr
, 0, NULL
))
2471 /* called from signal handler: invalidate the code and unprotect the
2472 page. Return TRUE if the fault was successfully handled. */
2473 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2477 target_ulong host_start
, host_end
, addr
;
2479 /* Technically this isn't safe inside a signal handler. However we
2480 know this only ever happens in a synchronous SEGV handler, so in
2481 practice it seems to be ok. */
2484 p
= page_find(address
>> TARGET_PAGE_BITS
);
2490 /* if the page was really writable, then we change its
2491 protection back to writable */
2492 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2493 host_start
= address
& qemu_host_page_mask
;
2494 host_end
= host_start
+ qemu_host_page_size
;
2497 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2498 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2499 p
->flags
|= PAGE_WRITE
;
2502 /* and since the content will be modified, we must invalidate
2503 the corresponding translated code. */
2504 tb_invalidate_phys_page(addr
, pc
, puc
);
2505 #ifdef DEBUG_TB_CHECK
2506 tb_invalidate_check(addr
);
2509 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2519 static inline void tlb_set_dirty(CPUState
*env
,
2520 unsigned long addr
, target_ulong vaddr
)
2523 #endif /* defined(CONFIG_USER_ONLY) */
2525 #if !defined(CONFIG_USER_ONLY)
2527 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2528 typedef struct subpage_t
{
2529 target_phys_addr_t base
;
2530 ram_addr_t sub_io_index
[TARGET_PAGE_SIZE
];
2531 ram_addr_t region_offset
[TARGET_PAGE_SIZE
];
2534 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2535 ram_addr_t memory
, ram_addr_t region_offset
);
2536 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2537 ram_addr_t orig_memory
,
2538 ram_addr_t region_offset
);
2539 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2542 if (addr > start_addr) \
2545 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2546 if (start_addr2 > 0) \
2550 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2551 end_addr2 = TARGET_PAGE_SIZE - 1; \
2553 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2554 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2559 /* register physical memory.
2560 For RAM, 'size' must be a multiple of the target page size.
2561 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2562 io memory page. The address used when calling the IO function is
2563 the offset from the start of the region, plus region_offset. Both
2564 start_addr and region_offset are rounded down to a page boundary
2565 before calculating this offset. This should not be a problem unless
2566 the low bits of start_addr and region_offset differ. */
2567 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2569 ram_addr_t phys_offset
,
2570 ram_addr_t region_offset
)
2572 target_phys_addr_t addr
, end_addr
;
2575 ram_addr_t orig_size
= size
;
2578 cpu_notify_set_memory(start_addr
, size
, phys_offset
);
2580 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2581 region_offset
= start_addr
;
2583 region_offset
&= TARGET_PAGE_MASK
;
2584 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2585 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2586 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2587 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2588 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2589 ram_addr_t orig_memory
= p
->phys_offset
;
2590 target_phys_addr_t start_addr2
, end_addr2
;
2591 int need_subpage
= 0;
2593 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2596 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2597 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2598 &p
->phys_offset
, orig_memory
,
2601 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2604 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2606 p
->region_offset
= 0;
2608 p
->phys_offset
= phys_offset
;
2609 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2610 (phys_offset
& IO_MEM_ROMD
))
2611 phys_offset
+= TARGET_PAGE_SIZE
;
2614 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2615 p
->phys_offset
= phys_offset
;
2616 p
->region_offset
= region_offset
;
2617 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2618 (phys_offset
& IO_MEM_ROMD
)) {
2619 phys_offset
+= TARGET_PAGE_SIZE
;
2621 target_phys_addr_t start_addr2
, end_addr2
;
2622 int need_subpage
= 0;
2624 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2625 end_addr2
, need_subpage
);
2628 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2629 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2630 addr
& TARGET_PAGE_MASK
);
2631 subpage_register(subpage
, start_addr2
, end_addr2
,
2632 phys_offset
, region_offset
);
2633 p
->region_offset
= 0;
2637 region_offset
+= TARGET_PAGE_SIZE
;
2640 /* since each CPU stores ram addresses in its TLB cache, we must
2641 reset the modified entries */
2643 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2648 /* XXX: temporary until new memory mapping API */
2649 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2653 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2655 return IO_MEM_UNASSIGNED
;
2656 return p
->phys_offset
;
2659 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2662 kvm_coalesce_mmio_region(addr
, size
);
2665 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2668 kvm_uncoalesce_mmio_region(addr
, size
);
2671 void qemu_flush_coalesced_mmio_buffer(void)
2674 kvm_flush_coalesced_mmio_buffer();
2677 #if defined(__linux__) && !defined(TARGET_S390X)
2679 #include <sys/vfs.h>
2681 #define HUGETLBFS_MAGIC 0x958458f6
2683 static long gethugepagesize(const char *path
)
2689 ret
= statfs(path
, &fs
);
2690 } while (ret
!= 0 && errno
== EINTR
);
2697 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2698 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2703 static void *file_ram_alloc(ram_addr_t memory
, const char *path
)
2711 unsigned long hpagesize
;
2713 hpagesize
= gethugepagesize(path
);
2718 if (memory
< hpagesize
) {
2722 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2723 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2727 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2731 fd
= mkstemp(filename
);
2733 perror("unable to create backing store for hugepages");
2740 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2743 * ftruncate is not supported by hugetlbfs in older
2744 * hosts, so don't bother bailing out on errors.
2745 * If anything goes wrong with it under other filesystems,
2748 if (ftruncate(fd
, memory
))
2749 perror("ftruncate");
2752 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2753 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2754 * to sidestep this quirk.
2756 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2757 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2759 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2761 if (area
== MAP_FAILED
) {
2762 perror("file_ram_alloc: can't mmap RAM pages");
2770 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2772 RAMBlock
*new_block
;
2774 size
= TARGET_PAGE_ALIGN(size
);
2775 new_block
= qemu_malloc(sizeof(*new_block
));
2778 #if defined (__linux__) && !defined(TARGET_S390X)
2779 new_block
->host
= file_ram_alloc(size
, mem_path
);
2780 if (!new_block
->host
) {
2781 new_block
->host
= qemu_vmalloc(size
);
2782 #ifdef MADV_MERGEABLE
2783 madvise(new_block
->host
, size
, MADV_MERGEABLE
);
2787 fprintf(stderr
, "-mem-path option unsupported\n");
2791 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2792 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2793 new_block
->host
= mmap((void*)0x1000000, size
,
2794 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2795 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2797 new_block
->host
= qemu_vmalloc(size
);
2799 #ifdef MADV_MERGEABLE
2800 madvise(new_block
->host
, size
, MADV_MERGEABLE
);
2803 new_block
->offset
= ram_list
.last_offset
;
2804 new_block
->length
= size
;
2806 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2808 ram_list
.phys_dirty
= qemu_realloc(ram_list
.phys_dirty
,
2809 (ram_list
.last_offset
+ size
) >> TARGET_PAGE_BITS
);
2810 memset(ram_list
.phys_dirty
+ (ram_list
.last_offset
>> TARGET_PAGE_BITS
),
2811 0xff, size
>> TARGET_PAGE_BITS
);
2813 ram_list
.last_offset
+= size
;
2816 kvm_setup_guest_memory(new_block
->host
, size
);
2818 return new_block
->offset
;
2821 void qemu_ram_free(ram_addr_t addr
)
2823 /* TODO: implement this. */
2826 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2827 With the exception of the softmmu code in this file, this should
2828 only be used for local memory (e.g. video ram) that the device owns,
2829 and knows it isn't going to access beyond the end of the block.
2831 It should not be used for general purpose DMA.
2832 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2834 void *qemu_get_ram_ptr(ram_addr_t addr
)
2838 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2839 if (addr
- block
->offset
< block
->length
) {
2840 QLIST_REMOVE(block
, next
);
2841 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
2842 return block
->host
+ (addr
- block
->offset
);
2846 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2852 /* Some of the softmmu routines need to translate from a host pointer
2853 (typically a TLB entry) back to a ram offset. */
2854 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2857 uint8_t *host
= ptr
;
2859 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2860 if (host
- block
->host
< block
->length
) {
2861 return block
->offset
+ (host
- block
->host
);
2865 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2871 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2873 #ifdef DEBUG_UNASSIGNED
2874 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2876 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2877 do_unassigned_access(addr
, 0, 0, 0, 1);
2882 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2884 #ifdef DEBUG_UNASSIGNED
2885 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2887 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2888 do_unassigned_access(addr
, 0, 0, 0, 2);
2893 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2895 #ifdef DEBUG_UNASSIGNED
2896 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2898 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2899 do_unassigned_access(addr
, 0, 0, 0, 4);
2904 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2906 #ifdef DEBUG_UNASSIGNED
2907 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2909 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2910 do_unassigned_access(addr
, 1, 0, 0, 1);
2914 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2916 #ifdef DEBUG_UNASSIGNED
2917 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2919 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2920 do_unassigned_access(addr
, 1, 0, 0, 2);
2924 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2926 #ifdef DEBUG_UNASSIGNED
2927 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2929 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2930 do_unassigned_access(addr
, 1, 0, 0, 4);
2934 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
2935 unassigned_mem_readb
,
2936 unassigned_mem_readw
,
2937 unassigned_mem_readl
,
2940 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
2941 unassigned_mem_writeb
,
2942 unassigned_mem_writew
,
2943 unassigned_mem_writel
,
2946 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2950 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2951 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2952 #if !defined(CONFIG_USER_ONLY)
2953 tb_invalidate_phys_page_fast(ram_addr
, 1);
2954 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2957 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2958 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2959 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
2960 /* we remove the notdirty callback only if the code has been
2962 if (dirty_flags
== 0xff)
2963 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2966 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2970 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2971 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2972 #if !defined(CONFIG_USER_ONLY)
2973 tb_invalidate_phys_page_fast(ram_addr
, 2);
2974 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2977 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2978 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2979 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
2980 /* we remove the notdirty callback only if the code has been
2982 if (dirty_flags
== 0xff)
2983 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2986 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2990 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2991 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2992 #if !defined(CONFIG_USER_ONLY)
2993 tb_invalidate_phys_page_fast(ram_addr
, 4);
2994 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2997 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2998 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2999 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3000 /* we remove the notdirty callback only if the code has been
3002 if (dirty_flags
== 0xff)
3003 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3006 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3007 NULL
, /* never used */
3008 NULL
, /* never used */
3009 NULL
, /* never used */
3012 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3013 notdirty_mem_writeb
,
3014 notdirty_mem_writew
,
3015 notdirty_mem_writel
,
3018 /* Generate a debug exception if a watchpoint has been hit. */
3019 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3021 CPUState
*env
= cpu_single_env
;
3022 target_ulong pc
, cs_base
;
3023 TranslationBlock
*tb
;
3028 if (env
->watchpoint_hit
) {
3029 /* We re-entered the check after replacing the TB. Now raise
3030 * the debug interrupt so that is will trigger after the
3031 * current instruction. */
3032 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3035 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3036 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3037 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3038 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3039 wp
->flags
|= BP_WATCHPOINT_HIT
;
3040 if (!env
->watchpoint_hit
) {
3041 env
->watchpoint_hit
= wp
;
3042 tb
= tb_find_pc(env
->mem_io_pc
);
3044 cpu_abort(env
, "check_watchpoint: could not find TB for "
3045 "pc=%p", (void *)env
->mem_io_pc
);
3047 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
3048 tb_phys_invalidate(tb
, -1);
3049 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3050 env
->exception_index
= EXCP_DEBUG
;
3052 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3053 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3055 cpu_resume_from_signal(env
, NULL
);
3058 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3063 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3064 so these check for a hit then pass through to the normal out-of-line
3066 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3068 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3069 return ldub_phys(addr
);
3072 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3074 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3075 return lduw_phys(addr
);
3078 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3080 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3081 return ldl_phys(addr
);
3084 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3087 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3088 stb_phys(addr
, val
);
3091 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3094 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3095 stw_phys(addr
, val
);
3098 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3101 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3102 stl_phys(addr
, val
);
3105 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3111 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3117 static inline uint32_t subpage_readlen (subpage_t
*mmio
,
3118 target_phys_addr_t addr
,
3121 unsigned int idx
= SUBPAGE_IDX(addr
);
3122 #if defined(DEBUG_SUBPAGE)
3123 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3124 mmio
, len
, addr
, idx
);
3127 addr
+= mmio
->region_offset
[idx
];
3128 idx
= mmio
->sub_io_index
[idx
];
3129 return io_mem_read
[idx
][len
](io_mem_opaque
[idx
], addr
);
3132 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3133 uint32_t value
, unsigned int len
)
3135 unsigned int idx
= SUBPAGE_IDX(addr
);
3136 #if defined(DEBUG_SUBPAGE)
3137 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n",
3138 __func__
, mmio
, len
, addr
, idx
, value
);
3141 addr
+= mmio
->region_offset
[idx
];
3142 idx
= mmio
->sub_io_index
[idx
];
3143 io_mem_write
[idx
][len
](io_mem_opaque
[idx
], addr
, value
);
3146 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3148 return subpage_readlen(opaque
, addr
, 0);
3151 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3154 subpage_writelen(opaque
, addr
, value
, 0);
3157 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3159 return subpage_readlen(opaque
, addr
, 1);
3162 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3165 subpage_writelen(opaque
, addr
, value
, 1);
3168 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3170 return subpage_readlen(opaque
, addr
, 2);
3173 static void subpage_writel (void *opaque
, target_phys_addr_t addr
,
3176 subpage_writelen(opaque
, addr
, value
, 2);
3179 static CPUReadMemoryFunc
* const subpage_read
[] = {
3185 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3191 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3192 ram_addr_t memory
, ram_addr_t region_offset
)
3196 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3198 idx
= SUBPAGE_IDX(start
);
3199 eidx
= SUBPAGE_IDX(end
);
3200 #if defined(DEBUG_SUBPAGE)
3201 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3202 mmio
, start
, end
, idx
, eidx
, memory
);
3204 memory
= (memory
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3205 for (; idx
<= eidx
; idx
++) {
3206 mmio
->sub_io_index
[idx
] = memory
;
3207 mmio
->region_offset
[idx
] = region_offset
;
3213 static subpage_t
*subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3214 ram_addr_t orig_memory
,
3215 ram_addr_t region_offset
)
3220 mmio
= qemu_mallocz(sizeof(subpage_t
));
3223 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
3224 #if defined(DEBUG_SUBPAGE)
3225 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3226 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3228 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3229 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, orig_memory
, region_offset
);
3234 static int get_free_io_mem_idx(void)
3238 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3239 if (!io_mem_used
[i
]) {
3243 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3247 /* mem_read and mem_write are arrays of functions containing the
3248 function to access byte (index 0), word (index 1) and dword (index
3249 2). Functions can be omitted with a NULL function pointer.
3250 If io_index is non zero, the corresponding io zone is
3251 modified. If it is zero, a new io zone is allocated. The return
3252 value can be used with cpu_register_physical_memory(). (-1) is
3253 returned if error. */
3254 static int cpu_register_io_memory_fixed(int io_index
,
3255 CPUReadMemoryFunc
* const *mem_read
,
3256 CPUWriteMemoryFunc
* const *mem_write
,
3261 if (io_index
<= 0) {
3262 io_index
= get_free_io_mem_idx();
3266 io_index
>>= IO_MEM_SHIFT
;
3267 if (io_index
>= IO_MEM_NB_ENTRIES
)
3271 for (i
= 0; i
< 3; ++i
) {
3272 io_mem_read
[io_index
][i
]
3273 = (mem_read
[i
] ? mem_read
[i
] : unassigned_mem_read
[i
]);
3275 for (i
= 0; i
< 3; ++i
) {
3276 io_mem_write
[io_index
][i
]
3277 = (mem_write
[i
] ? mem_write
[i
] : unassigned_mem_write
[i
]);
3279 io_mem_opaque
[io_index
] = opaque
;
3281 return (io_index
<< IO_MEM_SHIFT
);
3284 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3285 CPUWriteMemoryFunc
* const *mem_write
,
3288 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
3291 void cpu_unregister_io_memory(int io_table_address
)
3294 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3296 for (i
=0;i
< 3; i
++) {
3297 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3298 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3300 io_mem_opaque
[io_index
] = NULL
;
3301 io_mem_used
[io_index
] = 0;
3304 static void io_mem_init(void)
3308 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
3309 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
3310 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
3314 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3315 watch_mem_write
, NULL
);
3318 #endif /* !defined(CONFIG_USER_ONLY) */
3320 /* physical memory access (slow version, mainly for debug) */
3321 #if defined(CONFIG_USER_ONLY)
3322 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3323 uint8_t *buf
, int len
, int is_write
)
3330 page
= addr
& TARGET_PAGE_MASK
;
3331 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3334 flags
= page_get_flags(page
);
3335 if (!(flags
& PAGE_VALID
))
3338 if (!(flags
& PAGE_WRITE
))
3340 /* XXX: this code should not depend on lock_user */
3341 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3344 unlock_user(p
, addr
, l
);
3346 if (!(flags
& PAGE_READ
))
3348 /* XXX: this code should not depend on lock_user */
3349 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3352 unlock_user(p
, addr
, 0);
3362 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3363 int len
, int is_write
)
3368 target_phys_addr_t page
;
3373 page
= addr
& TARGET_PAGE_MASK
;
3374 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3377 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3379 pd
= IO_MEM_UNASSIGNED
;
3381 pd
= p
->phys_offset
;
3385 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3386 target_phys_addr_t addr1
= addr
;
3387 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3389 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3390 /* XXX: could force cpu_single_env to NULL to avoid
3392 if (l
>= 4 && ((addr1
& 3) == 0)) {
3393 /* 32 bit write access */
3395 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3397 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3398 /* 16 bit write access */
3400 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3403 /* 8 bit write access */
3405 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3409 unsigned long addr1
;
3410 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3412 ptr
= qemu_get_ram_ptr(addr1
);
3413 memcpy(ptr
, buf
, l
);
3414 if (!cpu_physical_memory_is_dirty(addr1
)) {
3415 /* invalidate code */
3416 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3418 cpu_physical_memory_set_dirty_flags(
3419 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3423 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3424 !(pd
& IO_MEM_ROMD
)) {
3425 target_phys_addr_t addr1
= addr
;
3427 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3429 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3430 if (l
>= 4 && ((addr1
& 3) == 0)) {
3431 /* 32 bit read access */
3432 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3435 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3436 /* 16 bit read access */
3437 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3441 /* 8 bit read access */
3442 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3448 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3449 (addr
& ~TARGET_PAGE_MASK
);
3450 memcpy(buf
, ptr
, l
);
3459 /* used for ROM loading : can write in RAM and ROM */
3460 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3461 const uint8_t *buf
, int len
)
3465 target_phys_addr_t page
;
3470 page
= addr
& TARGET_PAGE_MASK
;
3471 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3474 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3476 pd
= IO_MEM_UNASSIGNED
;
3478 pd
= p
->phys_offset
;
3481 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3482 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3483 !(pd
& IO_MEM_ROMD
)) {
3486 unsigned long addr1
;
3487 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3489 ptr
= qemu_get_ram_ptr(addr1
);
3490 memcpy(ptr
, buf
, l
);
3500 target_phys_addr_t addr
;
3501 target_phys_addr_t len
;
3504 static BounceBuffer bounce
;
3506 typedef struct MapClient
{
3508 void (*callback
)(void *opaque
);
3509 QLIST_ENTRY(MapClient
) link
;
3512 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3513 = QLIST_HEAD_INITIALIZER(map_client_list
);
3515 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3517 MapClient
*client
= qemu_malloc(sizeof(*client
));
3519 client
->opaque
= opaque
;
3520 client
->callback
= callback
;
3521 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3525 void cpu_unregister_map_client(void *_client
)
3527 MapClient
*client
= (MapClient
*)_client
;
3529 QLIST_REMOVE(client
, link
);
3533 static void cpu_notify_map_clients(void)
3537 while (!QLIST_EMPTY(&map_client_list
)) {
3538 client
= QLIST_FIRST(&map_client_list
);
3539 client
->callback(client
->opaque
);
3540 cpu_unregister_map_client(client
);
3544 /* Map a physical memory region into a host virtual address.
3545 * May map a subset of the requested range, given by and returned in *plen.
3546 * May return NULL if resources needed to perform the mapping are exhausted.
3547 * Use only for reads OR writes - not for read-modify-write operations.
3548 * Use cpu_register_map_client() to know when retrying the map operation is
3549 * likely to succeed.
3551 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3552 target_phys_addr_t
*plen
,
3555 target_phys_addr_t len
= *plen
;
3556 target_phys_addr_t done
= 0;
3558 uint8_t *ret
= NULL
;
3560 target_phys_addr_t page
;
3563 unsigned long addr1
;
3566 page
= addr
& TARGET_PAGE_MASK
;
3567 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3570 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3572 pd
= IO_MEM_UNASSIGNED
;
3574 pd
= p
->phys_offset
;
3577 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3578 if (done
|| bounce
.buffer
) {
3581 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3585 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3587 ptr
= bounce
.buffer
;
3589 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3590 ptr
= qemu_get_ram_ptr(addr1
);
3594 } else if (ret
+ done
!= ptr
) {
3606 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3607 * Will also mark the memory as dirty if is_write == 1. access_len gives
3608 * the amount of memory that was actually read or written by the caller.
3610 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3611 int is_write
, target_phys_addr_t access_len
)
3613 if (buffer
!= bounce
.buffer
) {
3615 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3616 while (access_len
) {
3618 l
= TARGET_PAGE_SIZE
;
3621 if (!cpu_physical_memory_is_dirty(addr1
)) {
3622 /* invalidate code */
3623 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3625 cpu_physical_memory_set_dirty_flags(
3626 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3635 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3637 qemu_vfree(bounce
.buffer
);
3638 bounce
.buffer
= NULL
;
3639 cpu_notify_map_clients();
3642 /* warning: addr must be aligned */
3643 uint32_t ldl_phys(target_phys_addr_t addr
)
3651 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3653 pd
= IO_MEM_UNASSIGNED
;
3655 pd
= p
->phys_offset
;
3658 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3659 !(pd
& IO_MEM_ROMD
)) {
3661 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3663 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3664 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3667 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3668 (addr
& ~TARGET_PAGE_MASK
);
3674 /* warning: addr must be aligned */
3675 uint64_t ldq_phys(target_phys_addr_t addr
)
3683 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3685 pd
= IO_MEM_UNASSIGNED
;
3687 pd
= p
->phys_offset
;
3690 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3691 !(pd
& IO_MEM_ROMD
)) {
3693 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3695 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3696 #ifdef TARGET_WORDS_BIGENDIAN
3697 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3698 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3700 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3701 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3705 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3706 (addr
& ~TARGET_PAGE_MASK
);
3713 uint32_t ldub_phys(target_phys_addr_t addr
)
3716 cpu_physical_memory_read(addr
, &val
, 1);
3720 /* warning: addr must be aligned */
3721 uint32_t lduw_phys(target_phys_addr_t addr
)
3729 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3731 pd
= IO_MEM_UNASSIGNED
;
3733 pd
= p
->phys_offset
;
3736 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3737 !(pd
& IO_MEM_ROMD
)) {
3739 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3741 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3742 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
3745 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3746 (addr
& ~TARGET_PAGE_MASK
);
3752 /* warning: addr must be aligned. The ram page is not masked as dirty
3753 and the code inside is not invalidated. It is useful if the dirty
3754 bits are used to track modified PTEs */
3755 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3762 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3764 pd
= IO_MEM_UNASSIGNED
;
3766 pd
= p
->phys_offset
;
3769 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3770 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3772 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3773 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3775 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3776 ptr
= qemu_get_ram_ptr(addr1
);
3779 if (unlikely(in_migration
)) {
3780 if (!cpu_physical_memory_is_dirty(addr1
)) {
3781 /* invalidate code */
3782 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3784 cpu_physical_memory_set_dirty_flags(
3785 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3791 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3798 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3800 pd
= IO_MEM_UNASSIGNED
;
3802 pd
= p
->phys_offset
;
3805 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3806 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3808 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3809 #ifdef TARGET_WORDS_BIGENDIAN
3810 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3811 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3813 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3814 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3817 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3818 (addr
& ~TARGET_PAGE_MASK
);
3823 /* warning: addr must be aligned */
3824 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3831 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3833 pd
= IO_MEM_UNASSIGNED
;
3835 pd
= p
->phys_offset
;
3838 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3839 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3841 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3842 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3844 unsigned long addr1
;
3845 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3847 ptr
= qemu_get_ram_ptr(addr1
);
3849 if (!cpu_physical_memory_is_dirty(addr1
)) {
3850 /* invalidate code */
3851 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3853 cpu_physical_memory_set_dirty_flags(addr1
,
3854 (0xff & ~CODE_DIRTY_FLAG
));
3860 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3863 cpu_physical_memory_write(addr
, &v
, 1);
3866 /* warning: addr must be aligned */
3867 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3874 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3876 pd
= IO_MEM_UNASSIGNED
;
3878 pd
= p
->phys_offset
;
3881 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3882 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3884 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3885 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
3887 unsigned long addr1
;
3888 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3890 ptr
= qemu_get_ram_ptr(addr1
);
3892 if (!cpu_physical_memory_is_dirty(addr1
)) {
3893 /* invalidate code */
3894 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
3896 cpu_physical_memory_set_dirty_flags(addr1
,
3897 (0xff & ~CODE_DIRTY_FLAG
));
3903 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3906 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3909 /* virtual memory access for debug (includes writing to ROM) */
3910 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3911 uint8_t *buf
, int len
, int is_write
)
3914 target_phys_addr_t phys_addr
;
3918 page
= addr
& TARGET_PAGE_MASK
;
3919 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3920 /* if no physical page mapped, return an error */
3921 if (phys_addr
== -1)
3923 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3926 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3928 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3930 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3939 /* in deterministic execution mode, instructions doing device I/Os
3940 must be at the end of the TB */
3941 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3943 TranslationBlock
*tb
;
3945 target_ulong pc
, cs_base
;
3948 tb
= tb_find_pc((unsigned long)retaddr
);
3950 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3953 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3954 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3955 /* Calculate how many instructions had been executed before the fault
3957 n
= n
- env
->icount_decr
.u16
.low
;
3958 /* Generate a new TB ending on the I/O insn. */
3960 /* On MIPS and SH, delay slot instructions can only be restarted if
3961 they were already the first instruction in the TB. If this is not
3962 the first instruction in a TB then re-execute the preceding
3964 #if defined(TARGET_MIPS)
3965 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3966 env
->active_tc
.PC
-= 4;
3967 env
->icount_decr
.u16
.low
++;
3968 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3970 #elif defined(TARGET_SH4)
3971 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3974 env
->icount_decr
.u16
.low
++;
3975 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3978 /* This should never happen. */
3979 if (n
> CF_COUNT_MASK
)
3980 cpu_abort(env
, "TB too big during recompile");
3982 cflags
= n
| CF_LAST_IO
;
3984 cs_base
= tb
->cs_base
;
3986 tb_phys_invalidate(tb
, -1);
3987 /* FIXME: In theory this could raise an exception. In practice
3988 we have already translated the block once so it's probably ok. */
3989 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3990 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3991 the first in the TB) then we end up generating a whole new TB and
3992 repeating the fault, which is horribly inefficient.
3993 Better would be to execute just this insn uncached, or generate a
3995 cpu_resume_from_signal(env
, NULL
);
3998 #if !defined(CONFIG_USER_ONLY)
4000 void dump_exec_info(FILE *f
,
4001 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
4003 int i
, target_code_size
, max_target_code_size
;
4004 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4005 TranslationBlock
*tb
;
4007 target_code_size
= 0;
4008 max_target_code_size
= 0;
4010 direct_jmp_count
= 0;
4011 direct_jmp2_count
= 0;
4012 for(i
= 0; i
< nb_tbs
; i
++) {
4014 target_code_size
+= tb
->size
;
4015 if (tb
->size
> max_target_code_size
)
4016 max_target_code_size
= tb
->size
;
4017 if (tb
->page_addr
[1] != -1)
4019 if (tb
->tb_next_offset
[0] != 0xffff) {
4021 if (tb
->tb_next_offset
[1] != 0xffff) {
4022 direct_jmp2_count
++;
4026 /* XXX: avoid using doubles ? */
4027 cpu_fprintf(f
, "Translation buffer state:\n");
4028 cpu_fprintf(f
, "gen code size %ld/%ld\n",
4029 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4030 cpu_fprintf(f
, "TB count %d/%d\n",
4031 nb_tbs
, code_gen_max_blocks
);
4032 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4033 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4034 max_target_code_size
);
4035 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4036 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4037 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4038 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4040 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4041 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4043 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4045 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4046 cpu_fprintf(f
, "\nStatistics:\n");
4047 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4048 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4049 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4050 tcg_dump_info(f
, cpu_fprintf
);
4053 #define MMUSUFFIX _cmmu
4054 #define GETPC() NULL
4055 #define env cpu_single_env
4056 #define SOFTMMU_CODE_ACCESS
4059 #include "softmmu_template.h"
4062 #include "softmmu_template.h"
4065 #include "softmmu_template.h"
4068 #include "softmmu_template.h"