target-arm: Define correct mmu_idx values and pass them in TB flags
[qemu.git] / fpu / softfloat-specialize.h
blob23d73788edfd0de527e7d3e454bfe52f93a4484c
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* Does the target distinguish signaling NaNs from non-signaling NaNs
83 * by setting the most significant bit of the mantissa for a signaling NaN?
84 * (The more common choice is to have it be zero for SNaN and one for QNaN.)
86 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
87 #define SNAN_BIT_IS_ONE 1
88 #else
89 #define SNAN_BIT_IS_ONE 0
90 #endif
92 #if defined(TARGET_XTENSA)
93 /* Define for architectures which deviate from IEEE in not supporting
94 * signaling NaNs (so all NaNs are treated as quiet).
96 #define NO_SIGNALING_NANS 1
97 #endif
99 /*----------------------------------------------------------------------------
100 | The pattern for a default generated half-precision NaN.
101 *----------------------------------------------------------------------------*/
102 #if defined(TARGET_ARM)
103 const float16 float16_default_nan = const_float16(0x7E00);
104 #elif SNAN_BIT_IS_ONE
105 const float16 float16_default_nan = const_float16(0x7DFF);
106 #else
107 const float16 float16_default_nan = const_float16(0xFE00);
108 #endif
110 /*----------------------------------------------------------------------------
111 | The pattern for a default generated single-precision NaN.
112 *----------------------------------------------------------------------------*/
113 #if defined(TARGET_SPARC)
114 const float32 float32_default_nan = const_float32(0x7FFFFFFF);
115 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
116 defined(TARGET_XTENSA)
117 const float32 float32_default_nan = const_float32(0x7FC00000);
118 #elif SNAN_BIT_IS_ONE
119 const float32 float32_default_nan = const_float32(0x7FBFFFFF);
120 #else
121 const float32 float32_default_nan = const_float32(0xFFC00000);
122 #endif
124 /*----------------------------------------------------------------------------
125 | The pattern for a default generated double-precision NaN.
126 *----------------------------------------------------------------------------*/
127 #if defined(TARGET_SPARC)
128 const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
129 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
130 const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
131 #elif SNAN_BIT_IS_ONE
132 const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
133 #else
134 const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
135 #endif
137 /*----------------------------------------------------------------------------
138 | The pattern for a default generated extended double-precision NaN.
139 *----------------------------------------------------------------------------*/
140 #if SNAN_BIT_IS_ONE
141 #define floatx80_default_nan_high 0x7FFF
142 #define floatx80_default_nan_low LIT64(0xBFFFFFFFFFFFFFFF)
143 #else
144 #define floatx80_default_nan_high 0xFFFF
145 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
146 #endif
148 const floatx80 floatx80_default_nan
149 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
151 /*----------------------------------------------------------------------------
152 | The pattern for a default generated quadruple-precision NaN. The `high' and
153 | `low' values hold the most- and least-significant bits, respectively.
154 *----------------------------------------------------------------------------*/
155 #if SNAN_BIT_IS_ONE
156 #define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
157 #define float128_default_nan_low LIT64(0xFFFFFFFFFFFFFFFF)
158 #else
159 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
160 #define float128_default_nan_low LIT64( 0x0000000000000000 )
161 #endif
163 const float128 float128_default_nan
164 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
166 /*----------------------------------------------------------------------------
167 | Raises the exceptions specified by `flags'. Floating-point traps can be
168 | defined here if desired. It is currently not possible for such a trap
169 | to substitute a result value. If traps are not implemented, this routine
170 | should be simply `float_exception_flags |= flags;'.
171 *----------------------------------------------------------------------------*/
173 void float_raise( int8 flags STATUS_PARAM )
175 STATUS(float_exception_flags) |= flags;
178 /*----------------------------------------------------------------------------
179 | Internal canonical NaN format.
180 *----------------------------------------------------------------------------*/
181 typedef struct {
182 flag sign;
183 uint64_t high, low;
184 } commonNaNT;
186 #ifdef NO_SIGNALING_NANS
187 int float16_is_quiet_nan(float16 a_)
189 return float16_is_any_nan(a_);
192 int float16_is_signaling_nan(float16 a_)
194 return 0;
196 #else
197 /*----------------------------------------------------------------------------
198 | Returns 1 if the half-precision floating-point value `a' is a quiet
199 | NaN; otherwise returns 0.
200 *----------------------------------------------------------------------------*/
202 int float16_is_quiet_nan(float16 a_)
204 uint16_t a = float16_val(a_);
205 #if SNAN_BIT_IS_ONE
206 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
207 #else
208 return ((a & ~0x8000) >= 0x7c80);
209 #endif
212 /*----------------------------------------------------------------------------
213 | Returns 1 if the half-precision floating-point value `a' is a signaling
214 | NaN; otherwise returns 0.
215 *----------------------------------------------------------------------------*/
217 int float16_is_signaling_nan(float16 a_)
219 uint16_t a = float16_val(a_);
220 #if SNAN_BIT_IS_ONE
221 return ((a & ~0x8000) >= 0x7c80);
222 #else
223 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
224 #endif
226 #endif
228 /*----------------------------------------------------------------------------
229 | Returns a quiet NaN if the half-precision floating point value `a' is a
230 | signaling NaN; otherwise returns `a'.
231 *----------------------------------------------------------------------------*/
232 float16 float16_maybe_silence_nan(float16 a_)
234 if (float16_is_signaling_nan(a_)) {
235 #if SNAN_BIT_IS_ONE
236 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
237 return float16_default_nan;
238 # else
239 # error Rules for silencing a signaling NaN are target-specific
240 # endif
241 #else
242 uint16_t a = float16_val(a_);
243 a |= (1 << 9);
244 return make_float16(a);
245 #endif
247 return a_;
250 /*----------------------------------------------------------------------------
251 | Returns the result of converting the half-precision floating-point NaN
252 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
253 | exception is raised.
254 *----------------------------------------------------------------------------*/
256 static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
258 commonNaNT z;
260 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
261 z.sign = float16_val(a) >> 15;
262 z.low = 0;
263 z.high = ((uint64_t) float16_val(a))<<54;
264 return z;
267 /*----------------------------------------------------------------------------
268 | Returns the result of converting the canonical NaN `a' to the half-
269 | precision floating-point format.
270 *----------------------------------------------------------------------------*/
272 static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
274 uint16_t mantissa = a.high>>54;
276 if (STATUS(default_nan_mode)) {
277 return float16_default_nan;
280 if (mantissa) {
281 return make_float16(((((uint16_t) a.sign) << 15)
282 | (0x1F << 10) | mantissa));
283 } else {
284 return float16_default_nan;
288 #ifdef NO_SIGNALING_NANS
289 int float32_is_quiet_nan(float32 a_)
291 return float32_is_any_nan(a_);
294 int float32_is_signaling_nan(float32 a_)
296 return 0;
298 #else
299 /*----------------------------------------------------------------------------
300 | Returns 1 if the single-precision floating-point value `a' is a quiet
301 | NaN; otherwise returns 0.
302 *----------------------------------------------------------------------------*/
304 int float32_is_quiet_nan( float32 a_ )
306 uint32_t a = float32_val(a_);
307 #if SNAN_BIT_IS_ONE
308 return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
309 #else
310 return ((uint32_t)(a << 1) >= 0xff800000);
311 #endif
314 /*----------------------------------------------------------------------------
315 | Returns 1 if the single-precision floating-point value `a' is a signaling
316 | NaN; otherwise returns 0.
317 *----------------------------------------------------------------------------*/
319 int float32_is_signaling_nan( float32 a_ )
321 uint32_t a = float32_val(a_);
322 #if SNAN_BIT_IS_ONE
323 return ((uint32_t)(a << 1) >= 0xff800000);
324 #else
325 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
326 #endif
328 #endif
330 /*----------------------------------------------------------------------------
331 | Returns a quiet NaN if the single-precision floating point value `a' is a
332 | signaling NaN; otherwise returns `a'.
333 *----------------------------------------------------------------------------*/
335 float32 float32_maybe_silence_nan( float32 a_ )
337 if (float32_is_signaling_nan(a_)) {
338 #if SNAN_BIT_IS_ONE
339 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
340 return float32_default_nan;
341 # else
342 # error Rules for silencing a signaling NaN are target-specific
343 # endif
344 #else
345 uint32_t a = float32_val(a_);
346 a |= (1 << 22);
347 return make_float32(a);
348 #endif
350 return a_;
353 /*----------------------------------------------------------------------------
354 | Returns the result of converting the single-precision floating-point NaN
355 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
356 | exception is raised.
357 *----------------------------------------------------------------------------*/
359 static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
361 commonNaNT z;
363 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
364 z.sign = float32_val(a)>>31;
365 z.low = 0;
366 z.high = ( (uint64_t) float32_val(a) )<<41;
367 return z;
370 /*----------------------------------------------------------------------------
371 | Returns the result of converting the canonical NaN `a' to the single-
372 | precision floating-point format.
373 *----------------------------------------------------------------------------*/
375 static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
377 uint32_t mantissa = a.high>>41;
379 if ( STATUS(default_nan_mode) ) {
380 return float32_default_nan;
383 if ( mantissa )
384 return make_float32(
385 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
386 else
387 return float32_default_nan;
390 /*----------------------------------------------------------------------------
391 | Select which NaN to propagate for a two-input operation.
392 | IEEE754 doesn't specify all the details of this, so the
393 | algorithm is target-specific.
394 | The routine is passed various bits of information about the
395 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
396 | Note that signalling NaNs are always squashed to quiet NaNs
397 | by the caller, by calling floatXX_maybe_silence_nan() before
398 | returning them.
400 | aIsLargerSignificand is only valid if both a and b are NaNs
401 | of some kind, and is true if a has the larger significand,
402 | or if both a and b have the same significand but a is
403 | positive but b is negative. It is only needed for the x87
404 | tie-break rule.
405 *----------------------------------------------------------------------------*/
407 #if defined(TARGET_ARM)
408 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
409 flag aIsLargerSignificand)
411 /* ARM mandated NaN propagation rules: take the first of:
412 * 1. A if it is signaling
413 * 2. B if it is signaling
414 * 3. A (quiet)
415 * 4. B (quiet)
416 * A signaling NaN is always quietened before returning it.
418 if (aIsSNaN) {
419 return 0;
420 } else if (bIsSNaN) {
421 return 1;
422 } else if (aIsQNaN) {
423 return 0;
424 } else {
425 return 1;
428 #elif defined(TARGET_MIPS)
429 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
430 flag aIsLargerSignificand)
432 /* According to MIPS specifications, if one of the two operands is
433 * a sNaN, a new qNaN has to be generated. This is done in
434 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
435 * says: "When possible, this QNaN result is one of the operand QNaN
436 * values." In practice it seems that most implementations choose
437 * the first operand if both operands are qNaN. In short this gives
438 * the following rules:
439 * 1. A if it is signaling
440 * 2. B if it is signaling
441 * 3. A (quiet)
442 * 4. B (quiet)
443 * A signaling NaN is always silenced before returning it.
445 if (aIsSNaN) {
446 return 0;
447 } else if (bIsSNaN) {
448 return 1;
449 } else if (aIsQNaN) {
450 return 0;
451 } else {
452 return 1;
455 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
456 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
457 flag aIsLargerSignificand)
459 /* PowerPC propagation rules:
460 * 1. A if it sNaN or qNaN
461 * 2. B if it sNaN or qNaN
462 * A signaling NaN is always silenced before returning it.
464 if (aIsSNaN || aIsQNaN) {
465 return 0;
466 } else {
467 return 1;
470 #else
471 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
472 flag aIsLargerSignificand)
474 /* This implements x87 NaN propagation rules:
475 * SNaN + QNaN => return the QNaN
476 * two SNaNs => return the one with the larger significand, silenced
477 * two QNaNs => return the one with the larger significand
478 * SNaN and a non-NaN => return the SNaN, silenced
479 * QNaN and a non-NaN => return the QNaN
481 * If we get down to comparing significands and they are the same,
482 * return the NaN with the positive sign bit (if any).
484 if (aIsSNaN) {
485 if (bIsSNaN) {
486 return aIsLargerSignificand ? 0 : 1;
488 return bIsQNaN ? 1 : 0;
490 else if (aIsQNaN) {
491 if (bIsSNaN || !bIsQNaN)
492 return 0;
493 else {
494 return aIsLargerSignificand ? 0 : 1;
496 } else {
497 return 1;
500 #endif
502 /*----------------------------------------------------------------------------
503 | Select which NaN to propagate for a three-input operation.
504 | For the moment we assume that no CPU needs the 'larger significand'
505 | information.
506 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
507 *----------------------------------------------------------------------------*/
508 #if defined(TARGET_ARM)
509 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
510 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
512 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
513 * the default NaN
515 if (infzero && cIsQNaN) {
516 float_raise(float_flag_invalid STATUS_VAR);
517 return 3;
520 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
521 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
523 if (cIsSNaN) {
524 return 2;
525 } else if (aIsSNaN) {
526 return 0;
527 } else if (bIsSNaN) {
528 return 1;
529 } else if (cIsQNaN) {
530 return 2;
531 } else if (aIsQNaN) {
532 return 0;
533 } else {
534 return 1;
537 #elif defined(TARGET_MIPS)
538 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
539 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
541 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
542 * the default NaN
544 if (infzero) {
545 float_raise(float_flag_invalid STATUS_VAR);
546 return 3;
549 /* Prefer sNaN over qNaN, in the a, b, c order. */
550 if (aIsSNaN) {
551 return 0;
552 } else if (bIsSNaN) {
553 return 1;
554 } else if (cIsSNaN) {
555 return 2;
556 } else if (aIsQNaN) {
557 return 0;
558 } else if (bIsQNaN) {
559 return 1;
560 } else {
561 return 2;
564 #elif defined(TARGET_PPC)
565 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
566 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
568 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
569 * to return an input NaN if we have one (ie c) rather than generating
570 * a default NaN
572 if (infzero) {
573 float_raise(float_flag_invalid STATUS_VAR);
574 return 2;
577 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
578 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
580 if (aIsSNaN || aIsQNaN) {
581 return 0;
582 } else if (cIsSNaN || cIsQNaN) {
583 return 2;
584 } else {
585 return 1;
588 #else
589 /* A default implementation: prefer a to b to c.
590 * This is unlikely to actually match any real implementation.
592 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
593 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
595 if (aIsSNaN || aIsQNaN) {
596 return 0;
597 } else if (bIsSNaN || bIsQNaN) {
598 return 1;
599 } else {
600 return 2;
603 #endif
605 /*----------------------------------------------------------------------------
606 | Takes two single-precision floating-point values `a' and `b', one of which
607 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
608 | signaling NaN, the invalid exception is raised.
609 *----------------------------------------------------------------------------*/
611 static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
613 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
614 flag aIsLargerSignificand;
615 uint32_t av, bv;
617 aIsQuietNaN = float32_is_quiet_nan( a );
618 aIsSignalingNaN = float32_is_signaling_nan( a );
619 bIsQuietNaN = float32_is_quiet_nan( b );
620 bIsSignalingNaN = float32_is_signaling_nan( b );
621 av = float32_val(a);
622 bv = float32_val(b);
624 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
626 if ( STATUS(default_nan_mode) )
627 return float32_default_nan;
629 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
630 aIsLargerSignificand = 0;
631 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
632 aIsLargerSignificand = 1;
633 } else {
634 aIsLargerSignificand = (av < bv) ? 1 : 0;
637 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
638 aIsLargerSignificand)) {
639 return float32_maybe_silence_nan(b);
640 } else {
641 return float32_maybe_silence_nan(a);
645 /*----------------------------------------------------------------------------
646 | Takes three single-precision floating-point values `a', `b' and `c', one of
647 | which is a NaN, and returns the appropriate NaN result. If any of `a',
648 | `b' or `c' is a signaling NaN, the invalid exception is raised.
649 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
650 | obviously c is a NaN, and whether to propagate c or some other NaN is
651 | implementation defined).
652 *----------------------------------------------------------------------------*/
654 static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
655 float32 c, flag infzero STATUS_PARAM)
657 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
658 cIsQuietNaN, cIsSignalingNaN;
659 int which;
661 aIsQuietNaN = float32_is_quiet_nan(a);
662 aIsSignalingNaN = float32_is_signaling_nan(a);
663 bIsQuietNaN = float32_is_quiet_nan(b);
664 bIsSignalingNaN = float32_is_signaling_nan(b);
665 cIsQuietNaN = float32_is_quiet_nan(c);
666 cIsSignalingNaN = float32_is_signaling_nan(c);
668 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
669 float_raise(float_flag_invalid STATUS_VAR);
672 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
673 bIsQuietNaN, bIsSignalingNaN,
674 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
676 if (STATUS(default_nan_mode)) {
677 /* Note that this check is after pickNaNMulAdd so that function
678 * has an opportunity to set the Invalid flag.
680 return float32_default_nan;
683 switch (which) {
684 case 0:
685 return float32_maybe_silence_nan(a);
686 case 1:
687 return float32_maybe_silence_nan(b);
688 case 2:
689 return float32_maybe_silence_nan(c);
690 case 3:
691 default:
692 return float32_default_nan;
696 #ifdef NO_SIGNALING_NANS
697 int float64_is_quiet_nan(float64 a_)
699 return float64_is_any_nan(a_);
702 int float64_is_signaling_nan(float64 a_)
704 return 0;
706 #else
707 /*----------------------------------------------------------------------------
708 | Returns 1 if the double-precision floating-point value `a' is a quiet
709 | NaN; otherwise returns 0.
710 *----------------------------------------------------------------------------*/
712 int float64_is_quiet_nan( float64 a_ )
714 uint64_t a = float64_val(a_);
715 #if SNAN_BIT_IS_ONE
716 return (((a >> 51) & 0xfff) == 0xffe)
717 && (a & 0x0007ffffffffffffULL);
718 #else
719 return ((a << 1) >= 0xfff0000000000000ULL);
720 #endif
723 /*----------------------------------------------------------------------------
724 | Returns 1 if the double-precision floating-point value `a' is a signaling
725 | NaN; otherwise returns 0.
726 *----------------------------------------------------------------------------*/
728 int float64_is_signaling_nan( float64 a_ )
730 uint64_t a = float64_val(a_);
731 #if SNAN_BIT_IS_ONE
732 return ((a << 1) >= 0xfff0000000000000ULL);
733 #else
734 return
735 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
736 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
737 #endif
739 #endif
741 /*----------------------------------------------------------------------------
742 | Returns a quiet NaN if the double-precision floating point value `a' is a
743 | signaling NaN; otherwise returns `a'.
744 *----------------------------------------------------------------------------*/
746 float64 float64_maybe_silence_nan( float64 a_ )
748 if (float64_is_signaling_nan(a_)) {
749 #if SNAN_BIT_IS_ONE
750 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
751 return float64_default_nan;
752 # else
753 # error Rules for silencing a signaling NaN are target-specific
754 # endif
755 #else
756 uint64_t a = float64_val(a_);
757 a |= LIT64( 0x0008000000000000 );
758 return make_float64(a);
759 #endif
761 return a_;
764 /*----------------------------------------------------------------------------
765 | Returns the result of converting the double-precision floating-point NaN
766 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
767 | exception is raised.
768 *----------------------------------------------------------------------------*/
770 static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
772 commonNaNT z;
774 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
775 z.sign = float64_val(a)>>63;
776 z.low = 0;
777 z.high = float64_val(a)<<12;
778 return z;
781 /*----------------------------------------------------------------------------
782 | Returns the result of converting the canonical NaN `a' to the double-
783 | precision floating-point format.
784 *----------------------------------------------------------------------------*/
786 static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
788 uint64_t mantissa = a.high>>12;
790 if ( STATUS(default_nan_mode) ) {
791 return float64_default_nan;
794 if ( mantissa )
795 return make_float64(
796 ( ( (uint64_t) a.sign )<<63 )
797 | LIT64( 0x7FF0000000000000 )
798 | ( a.high>>12 ));
799 else
800 return float64_default_nan;
803 /*----------------------------------------------------------------------------
804 | Takes two double-precision floating-point values `a' and `b', one of which
805 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
806 | signaling NaN, the invalid exception is raised.
807 *----------------------------------------------------------------------------*/
809 static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
811 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
812 flag aIsLargerSignificand;
813 uint64_t av, bv;
815 aIsQuietNaN = float64_is_quiet_nan( a );
816 aIsSignalingNaN = float64_is_signaling_nan( a );
817 bIsQuietNaN = float64_is_quiet_nan( b );
818 bIsSignalingNaN = float64_is_signaling_nan( b );
819 av = float64_val(a);
820 bv = float64_val(b);
822 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
824 if ( STATUS(default_nan_mode) )
825 return float64_default_nan;
827 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
828 aIsLargerSignificand = 0;
829 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
830 aIsLargerSignificand = 1;
831 } else {
832 aIsLargerSignificand = (av < bv) ? 1 : 0;
835 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
836 aIsLargerSignificand)) {
837 return float64_maybe_silence_nan(b);
838 } else {
839 return float64_maybe_silence_nan(a);
843 /*----------------------------------------------------------------------------
844 | Takes three double-precision floating-point values `a', `b' and `c', one of
845 | which is a NaN, and returns the appropriate NaN result. If any of `a',
846 | `b' or `c' is a signaling NaN, the invalid exception is raised.
847 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
848 | obviously c is a NaN, and whether to propagate c or some other NaN is
849 | implementation defined).
850 *----------------------------------------------------------------------------*/
852 static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
853 float64 c, flag infzero STATUS_PARAM)
855 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
856 cIsQuietNaN, cIsSignalingNaN;
857 int which;
859 aIsQuietNaN = float64_is_quiet_nan(a);
860 aIsSignalingNaN = float64_is_signaling_nan(a);
861 bIsQuietNaN = float64_is_quiet_nan(b);
862 bIsSignalingNaN = float64_is_signaling_nan(b);
863 cIsQuietNaN = float64_is_quiet_nan(c);
864 cIsSignalingNaN = float64_is_signaling_nan(c);
866 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
867 float_raise(float_flag_invalid STATUS_VAR);
870 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
871 bIsQuietNaN, bIsSignalingNaN,
872 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
874 if (STATUS(default_nan_mode)) {
875 /* Note that this check is after pickNaNMulAdd so that function
876 * has an opportunity to set the Invalid flag.
878 return float64_default_nan;
881 switch (which) {
882 case 0:
883 return float64_maybe_silence_nan(a);
884 case 1:
885 return float64_maybe_silence_nan(b);
886 case 2:
887 return float64_maybe_silence_nan(c);
888 case 3:
889 default:
890 return float64_default_nan;
894 #ifdef NO_SIGNALING_NANS
895 int floatx80_is_quiet_nan(floatx80 a_)
897 return floatx80_is_any_nan(a_);
900 int floatx80_is_signaling_nan(floatx80 a_)
902 return 0;
904 #else
905 /*----------------------------------------------------------------------------
906 | Returns 1 if the extended double-precision floating-point value `a' is a
907 | quiet NaN; otherwise returns 0. This slightly differs from the same
908 | function for other types as floatx80 has an explicit bit.
909 *----------------------------------------------------------------------------*/
911 int floatx80_is_quiet_nan( floatx80 a )
913 #if SNAN_BIT_IS_ONE
914 uint64_t aLow;
916 aLow = a.low & ~0x4000000000000000ULL;
917 return ((a.high & 0x7fff) == 0x7fff)
918 && (aLow << 1)
919 && (a.low == aLow);
920 #else
921 return ( ( a.high & 0x7FFF ) == 0x7FFF )
922 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
923 #endif
926 /*----------------------------------------------------------------------------
927 | Returns 1 if the extended double-precision floating-point value `a' is a
928 | signaling NaN; otherwise returns 0. This slightly differs from the same
929 | function for other types as floatx80 has an explicit bit.
930 *----------------------------------------------------------------------------*/
932 int floatx80_is_signaling_nan( floatx80 a )
934 #if SNAN_BIT_IS_ONE
935 return ((a.high & 0x7fff) == 0x7fff)
936 && ((a.low << 1) >= 0x8000000000000000ULL);
937 #else
938 uint64_t aLow;
940 aLow = a.low & ~ LIT64( 0x4000000000000000 );
941 return
942 ( ( a.high & 0x7FFF ) == 0x7FFF )
943 && (uint64_t) ( aLow<<1 )
944 && ( a.low == aLow );
945 #endif
947 #endif
949 /*----------------------------------------------------------------------------
950 | Returns a quiet NaN if the extended double-precision floating point value
951 | `a' is a signaling NaN; otherwise returns `a'.
952 *----------------------------------------------------------------------------*/
954 floatx80 floatx80_maybe_silence_nan( floatx80 a )
956 if (floatx80_is_signaling_nan(a)) {
957 #if SNAN_BIT_IS_ONE
958 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
959 a.low = floatx80_default_nan_low;
960 a.high = floatx80_default_nan_high;
961 # else
962 # error Rules for silencing a signaling NaN are target-specific
963 # endif
964 #else
965 a.low |= LIT64( 0xC000000000000000 );
966 return a;
967 #endif
969 return a;
972 /*----------------------------------------------------------------------------
973 | Returns the result of converting the extended double-precision floating-
974 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
975 | invalid exception is raised.
976 *----------------------------------------------------------------------------*/
978 static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
980 commonNaNT z;
982 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
983 if ( a.low >> 63 ) {
984 z.sign = a.high >> 15;
985 z.low = 0;
986 z.high = a.low << 1;
987 } else {
988 z.sign = floatx80_default_nan_high >> 15;
989 z.low = 0;
990 z.high = floatx80_default_nan_low << 1;
992 return z;
995 /*----------------------------------------------------------------------------
996 | Returns the result of converting the canonical NaN `a' to the extended
997 | double-precision floating-point format.
998 *----------------------------------------------------------------------------*/
1000 static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
1002 floatx80 z;
1004 if ( STATUS(default_nan_mode) ) {
1005 z.low = floatx80_default_nan_low;
1006 z.high = floatx80_default_nan_high;
1007 return z;
1010 if (a.high >> 1) {
1011 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
1012 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
1013 } else {
1014 z.low = floatx80_default_nan_low;
1015 z.high = floatx80_default_nan_high;
1018 return z;
1021 /*----------------------------------------------------------------------------
1022 | Takes two extended double-precision floating-point values `a' and `b', one
1023 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
1024 | `b' is a signaling NaN, the invalid exception is raised.
1025 *----------------------------------------------------------------------------*/
1027 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
1029 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1030 flag aIsLargerSignificand;
1032 aIsQuietNaN = floatx80_is_quiet_nan( a );
1033 aIsSignalingNaN = floatx80_is_signaling_nan( a );
1034 bIsQuietNaN = floatx80_is_quiet_nan( b );
1035 bIsSignalingNaN = floatx80_is_signaling_nan( b );
1037 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
1039 if ( STATUS(default_nan_mode) ) {
1040 a.low = floatx80_default_nan_low;
1041 a.high = floatx80_default_nan_high;
1042 return a;
1045 if (a.low < b.low) {
1046 aIsLargerSignificand = 0;
1047 } else if (b.low < a.low) {
1048 aIsLargerSignificand = 1;
1049 } else {
1050 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1053 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1054 aIsLargerSignificand)) {
1055 return floatx80_maybe_silence_nan(b);
1056 } else {
1057 return floatx80_maybe_silence_nan(a);
1061 #ifdef NO_SIGNALING_NANS
1062 int float128_is_quiet_nan(float128 a_)
1064 return float128_is_any_nan(a_);
1067 int float128_is_signaling_nan(float128 a_)
1069 return 0;
1071 #else
1072 /*----------------------------------------------------------------------------
1073 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1074 | NaN; otherwise returns 0.
1075 *----------------------------------------------------------------------------*/
1077 int float128_is_quiet_nan( float128 a )
1079 #if SNAN_BIT_IS_ONE
1080 return (((a.high >> 47) & 0xffff) == 0xfffe)
1081 && (a.low || (a.high & 0x00007fffffffffffULL));
1082 #else
1083 return
1084 ((a.high << 1) >= 0xffff000000000000ULL)
1085 && (a.low || (a.high & 0x0000ffffffffffffULL));
1086 #endif
1089 /*----------------------------------------------------------------------------
1090 | Returns 1 if the quadruple-precision floating-point value `a' is a
1091 | signaling NaN; otherwise returns 0.
1092 *----------------------------------------------------------------------------*/
1094 int float128_is_signaling_nan( float128 a )
1096 #if SNAN_BIT_IS_ONE
1097 return
1098 ((a.high << 1) >= 0xffff000000000000ULL)
1099 && (a.low || (a.high & 0x0000ffffffffffffULL));
1100 #else
1101 return
1102 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1103 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
1104 #endif
1106 #endif
1108 /*----------------------------------------------------------------------------
1109 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
1110 | a signaling NaN; otherwise returns `a'.
1111 *----------------------------------------------------------------------------*/
1113 float128 float128_maybe_silence_nan( float128 a )
1115 if (float128_is_signaling_nan(a)) {
1116 #if SNAN_BIT_IS_ONE
1117 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
1118 a.low = float128_default_nan_low;
1119 a.high = float128_default_nan_high;
1120 # else
1121 # error Rules for silencing a signaling NaN are target-specific
1122 # endif
1123 #else
1124 a.high |= LIT64( 0x0000800000000000 );
1125 return a;
1126 #endif
1128 return a;
1131 /*----------------------------------------------------------------------------
1132 | Returns the result of converting the quadruple-precision floating-point NaN
1133 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1134 | exception is raised.
1135 *----------------------------------------------------------------------------*/
1137 static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
1139 commonNaNT z;
1141 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
1142 z.sign = a.high>>63;
1143 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1144 return z;
1147 /*----------------------------------------------------------------------------
1148 | Returns the result of converting the canonical NaN `a' to the quadruple-
1149 | precision floating-point format.
1150 *----------------------------------------------------------------------------*/
1152 static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
1154 float128 z;
1156 if ( STATUS(default_nan_mode) ) {
1157 z.low = float128_default_nan_low;
1158 z.high = float128_default_nan_high;
1159 return z;
1162 shift128Right( a.high, a.low, 16, &z.high, &z.low );
1163 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
1164 return z;
1167 /*----------------------------------------------------------------------------
1168 | Takes two quadruple-precision floating-point values `a' and `b', one of
1169 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1170 | `b' is a signaling NaN, the invalid exception is raised.
1171 *----------------------------------------------------------------------------*/
1173 static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
1175 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1176 flag aIsLargerSignificand;
1178 aIsQuietNaN = float128_is_quiet_nan( a );
1179 aIsSignalingNaN = float128_is_signaling_nan( a );
1180 bIsQuietNaN = float128_is_quiet_nan( b );
1181 bIsSignalingNaN = float128_is_signaling_nan( b );
1183 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
1185 if ( STATUS(default_nan_mode) ) {
1186 a.low = float128_default_nan_low;
1187 a.high = float128_default_nan_high;
1188 return a;
1191 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1192 aIsLargerSignificand = 0;
1193 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1194 aIsLargerSignificand = 1;
1195 } else {
1196 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1199 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1200 aIsLargerSignificand)) {
1201 return float128_maybe_silence_nan(b);
1202 } else {
1203 return float128_maybe_silence_nan(a);