4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/ram_addr.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/event_notifier.h"
40 #include "hw/boards.h"
42 /* This check must be after config-host.h is included */
44 #include <sys/eventfd.h>
47 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
50 #define PAGE_SIZE getpagesize()
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 #define KVM_MSI_HASHTAB_SIZE 256
64 struct KVMParkedVcpu
{
65 unsigned long vcpu_id
;
67 QLIST_ENTRY(KVMParkedVcpu
) node
;
72 AccelState parent_obj
;
78 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
79 bool coalesced_flush_in_progress
;
80 int broken_set_mem_region
;
82 int robust_singlestep
;
84 #ifdef KVM_CAP_SET_GUEST_DEBUG
85 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
89 /* The man page (and posix) say ioctl numbers are signed int, but
90 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
91 * unsigned, and treating them as signed here can break things */
92 unsigned irq_set_ioctl
;
93 unsigned int sigmask_len
;
95 #ifdef KVM_CAP_IRQ_ROUTING
96 struct kvm_irq_routing
*irq_routes
;
97 int nr_allocated_irq_routes
;
98 unsigned long *used_gsi_bitmap
;
99 unsigned int gsi_count
;
100 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
102 KVMMemoryListener memory_listener
;
103 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
107 bool kvm_kernel_irqchip
;
108 bool kvm_split_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_halt_in_kernel_allowed
;
111 bool kvm_eventfds_allowed
;
112 bool kvm_irqfds_allowed
;
113 bool kvm_resamplefds_allowed
;
114 bool kvm_msi_via_irqfd_allowed
;
115 bool kvm_gsi_routing_allowed
;
116 bool kvm_gsi_direct_mapping
;
118 bool kvm_readonly_mem_allowed
;
119 bool kvm_vm_attributes_allowed
;
120 bool kvm_direct_msi_allowed
;
121 bool kvm_ioeventfd_any_length_allowed
;
123 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
124 KVM_CAP_INFO(USER_MEMORY
),
125 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
129 int kvm_get_max_memslots(void)
131 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
136 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
138 KVMState
*s
= kvm_state
;
141 for (i
= 0; i
< s
->nr_slots
; i
++) {
142 if (kml
->slots
[i
].memory_size
== 0) {
143 return &kml
->slots
[i
];
150 bool kvm_has_free_slot(MachineState
*ms
)
152 KVMState
*s
= KVM_STATE(ms
->accelerator
);
154 return kvm_get_free_slot(&s
->memory_listener
);
157 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
159 KVMSlot
*slot
= kvm_get_free_slot(kml
);
165 fprintf(stderr
, "%s: no free slot available\n", __func__
);
169 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
173 KVMState
*s
= kvm_state
;
176 for (i
= 0; i
< s
->nr_slots
; i
++) {
177 KVMSlot
*mem
= &kml
->slots
[i
];
179 if (start_addr
== mem
->start_addr
&&
180 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
189 * Find overlapping slot with lowest start address
191 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
195 KVMState
*s
= kvm_state
;
196 KVMSlot
*found
= NULL
;
199 for (i
= 0; i
< s
->nr_slots
; i
++) {
200 KVMSlot
*mem
= &kml
->slots
[i
];
202 if (mem
->memory_size
== 0 ||
203 (found
&& found
->start_addr
< mem
->start_addr
)) {
207 if (end_addr
> mem
->start_addr
&&
208 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
216 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
219 KVMMemoryListener
*kml
= &s
->memory_listener
;
222 for (i
= 0; i
< s
->nr_slots
; i
++) {
223 KVMSlot
*mem
= &kml
->slots
[i
];
225 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
226 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
234 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
236 KVMState
*s
= kvm_state
;
237 struct kvm_userspace_memory_region mem
;
239 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
240 mem
.guest_phys_addr
= slot
->start_addr
;
241 mem
.userspace_addr
= (unsigned long)slot
->ram
;
242 mem
.flags
= slot
->flags
;
244 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
245 /* Set the slot size to 0 before setting the slot to the desired
246 * value. This is needed based on KVM commit 75d61fbc. */
248 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
250 mem
.memory_size
= slot
->memory_size
;
251 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
254 int kvm_destroy_vcpu(CPUState
*cpu
)
256 KVMState
*s
= kvm_state
;
258 struct KVMParkedVcpu
*vcpu
= NULL
;
261 DPRINTF("kvm_destroy_vcpu\n");
263 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
266 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
270 ret
= munmap(cpu
->kvm_run
, mmap_size
);
275 vcpu
= g_malloc0(sizeof(*vcpu
));
276 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
277 vcpu
->kvm_fd
= cpu
->kvm_fd
;
278 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
283 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
285 struct KVMParkedVcpu
*cpu
;
287 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
288 if (cpu
->vcpu_id
== vcpu_id
) {
291 QLIST_REMOVE(cpu
, node
);
292 kvm_fd
= cpu
->kvm_fd
;
298 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
301 int kvm_init_vcpu(CPUState
*cpu
)
303 KVMState
*s
= kvm_state
;
307 DPRINTF("kvm_init_vcpu\n");
309 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
311 DPRINTF("kvm_create_vcpu failed\n");
317 cpu
->kvm_vcpu_dirty
= true;
319 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
322 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
326 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
328 if (cpu
->kvm_run
== MAP_FAILED
) {
330 DPRINTF("mmap'ing vcpu state failed\n");
334 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
335 s
->coalesced_mmio_ring
=
336 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
339 ret
= kvm_arch_init_vcpu(cpu
);
345 * dirty pages logging control
348 static int kvm_mem_flags(MemoryRegion
*mr
)
350 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
353 if (memory_region_get_dirty_log_mask(mr
) != 0) {
354 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
356 if (readonly
&& kvm_readonly_mem_allowed
) {
357 flags
|= KVM_MEM_READONLY
;
362 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
367 old_flags
= mem
->flags
;
368 mem
->flags
= kvm_mem_flags(mr
);
370 /* If nothing changed effectively, no need to issue ioctl */
371 if (mem
->flags
== old_flags
) {
375 return kvm_set_user_memory_region(kml
, mem
);
378 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
379 MemoryRegionSection
*section
)
381 hwaddr phys_addr
= section
->offset_within_address_space
;
382 ram_addr_t size
= int128_get64(section
->size
);
383 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
388 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
392 static void kvm_log_start(MemoryListener
*listener
,
393 MemoryRegionSection
*section
,
396 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
403 r
= kvm_section_update_flags(kml
, section
);
409 static void kvm_log_stop(MemoryListener
*listener
,
410 MemoryRegionSection
*section
,
413 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
420 r
= kvm_section_update_flags(kml
, section
);
426 /* get kvm's dirty pages bitmap and update qemu's */
427 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
428 unsigned long *bitmap
)
430 ram_addr_t start
= section
->offset_within_region
+
431 memory_region_get_ram_addr(section
->mr
);
432 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
434 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
438 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
441 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
442 * This function updates qemu's dirty bitmap using
443 * memory_region_set_dirty(). This means all bits are set
446 * @start_add: start of logged region.
447 * @end_addr: end of logged region.
449 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
450 MemoryRegionSection
*section
)
452 KVMState
*s
= kvm_state
;
453 unsigned long size
, allocated_size
= 0;
454 struct kvm_dirty_log d
= {};
457 hwaddr start_addr
= section
->offset_within_address_space
;
458 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
460 d
.dirty_bitmap
= NULL
;
461 while (start_addr
< end_addr
) {
462 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
467 /* XXX bad kernel interface alert
468 * For dirty bitmap, kernel allocates array of size aligned to
469 * bits-per-long. But for case when the kernel is 64bits and
470 * the userspace is 32bits, userspace can't align to the same
471 * bits-per-long, since sizeof(long) is different between kernel
472 * and user space. This way, userspace will provide buffer which
473 * may be 4 bytes less than the kernel will use, resulting in
474 * userspace memory corruption (which is not detectable by valgrind
475 * too, in most cases).
476 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
477 * a hope that sizeof(long) won't become >8 any time soon.
479 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
480 /*HOST_LONG_BITS*/ 64) / 8;
481 if (!d
.dirty_bitmap
) {
482 d
.dirty_bitmap
= g_malloc(size
);
483 } else if (size
> allocated_size
) {
484 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
486 allocated_size
= size
;
487 memset(d
.dirty_bitmap
, 0, allocated_size
);
489 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
490 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
491 DPRINTF("ioctl failed %d\n", errno
);
496 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
497 start_addr
= mem
->start_addr
+ mem
->memory_size
;
499 g_free(d
.dirty_bitmap
);
504 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
505 MemoryRegionSection
*secion
,
506 hwaddr start
, hwaddr size
)
508 KVMState
*s
= kvm_state
;
510 if (s
->coalesced_mmio
) {
511 struct kvm_coalesced_mmio_zone zone
;
517 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
521 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
522 MemoryRegionSection
*secion
,
523 hwaddr start
, hwaddr size
)
525 KVMState
*s
= kvm_state
;
527 if (s
->coalesced_mmio
) {
528 struct kvm_coalesced_mmio_zone zone
;
534 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
538 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
542 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
550 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
554 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
556 /* VM wide version not implemented, use global one instead */
557 ret
= kvm_check_extension(s
, extension
);
563 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
565 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
566 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
567 * endianness, but the memory core hands them in target endianness.
568 * For example, PPC is always treated as big-endian even if running
569 * on KVM and on PPC64LE. Correct here.
583 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
584 bool assign
, uint32_t size
, bool datamatch
)
587 struct kvm_ioeventfd iofd
= {
588 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
595 if (!kvm_enabled()) {
600 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
603 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
606 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
615 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
616 bool assign
, uint32_t size
, bool datamatch
)
618 struct kvm_ioeventfd kick
= {
619 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
621 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
626 if (!kvm_enabled()) {
630 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
633 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
635 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
643 static int kvm_check_many_ioeventfds(void)
645 /* Userspace can use ioeventfd for io notification. This requires a host
646 * that supports eventfd(2) and an I/O thread; since eventfd does not
647 * support SIGIO it cannot interrupt the vcpu.
649 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
650 * can avoid creating too many ioeventfds.
652 #if defined(CONFIG_EVENTFD)
655 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
656 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
657 if (ioeventfds
[i
] < 0) {
660 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
662 close(ioeventfds
[i
]);
667 /* Decide whether many devices are supported or not */
668 ret
= i
== ARRAY_SIZE(ioeventfds
);
671 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
672 close(ioeventfds
[i
]);
680 static const KVMCapabilityInfo
*
681 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
684 if (!kvm_check_extension(s
, list
->value
)) {
692 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
693 MemoryRegionSection
*section
, bool add
)
695 KVMState
*s
= kvm_state
;
698 MemoryRegion
*mr
= section
->mr
;
699 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
700 hwaddr start_addr
= section
->offset_within_address_space
;
701 ram_addr_t size
= int128_get64(section
->size
);
705 /* kvm works in page size chunks, but the function may be called
706 with sub-page size and unaligned start address. Pad the start
707 address to next and truncate size to previous page boundary. */
708 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
709 delta
&= ~qemu_real_host_page_mask
;
715 size
&= qemu_real_host_page_mask
;
716 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
720 if (!memory_region_is_ram(mr
)) {
721 if (writeable
|| !kvm_readonly_mem_allowed
) {
723 } else if (!mr
->romd_mode
) {
724 /* If the memory device is not in romd_mode, then we actually want
725 * to remove the kvm memory slot so all accesses will trap. */
730 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
733 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
738 if (add
&& start_addr
>= mem
->start_addr
&&
739 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
740 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
741 /* The new slot fits into the existing one and comes with
742 * identical parameters - update flags and done. */
743 kvm_slot_update_flags(kml
, mem
, mr
);
749 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
750 kvm_physical_sync_dirty_bitmap(kml
, section
);
753 /* unregister the overlapping slot */
754 mem
->memory_size
= 0;
755 err
= kvm_set_user_memory_region(kml
, mem
);
757 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
758 __func__
, strerror(-err
));
762 /* Workaround for older KVM versions: we can't join slots, even not by
763 * unregistering the previous ones and then registering the larger
764 * slot. We have to maintain the existing fragmentation. Sigh.
766 * This workaround assumes that the new slot starts at the same
767 * address as the first existing one. If not or if some overlapping
768 * slot comes around later, we will fail (not seen in practice so far)
769 * - and actually require a recent KVM version. */
770 if (s
->broken_set_mem_region
&&
771 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
772 mem
= kvm_alloc_slot(kml
);
773 mem
->memory_size
= old
.memory_size
;
774 mem
->start_addr
= old
.start_addr
;
776 mem
->flags
= kvm_mem_flags(mr
);
778 err
= kvm_set_user_memory_region(kml
, mem
);
780 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
785 start_addr
+= old
.memory_size
;
786 ram
+= old
.memory_size
;
787 size
-= old
.memory_size
;
791 /* register prefix slot */
792 if (old
.start_addr
< start_addr
) {
793 mem
= kvm_alloc_slot(kml
);
794 mem
->memory_size
= start_addr
- old
.start_addr
;
795 mem
->start_addr
= old
.start_addr
;
797 mem
->flags
= kvm_mem_flags(mr
);
799 err
= kvm_set_user_memory_region(kml
, mem
);
801 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
802 __func__
, strerror(-err
));
804 fprintf(stderr
, "%s: This is probably because your kernel's " \
805 "PAGE_SIZE is too big. Please try to use 4k " \
806 "PAGE_SIZE!\n", __func__
);
812 /* register suffix slot */
813 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
814 ram_addr_t size_delta
;
816 mem
= kvm_alloc_slot(kml
);
817 mem
->start_addr
= start_addr
+ size
;
818 size_delta
= mem
->start_addr
- old
.start_addr
;
819 mem
->memory_size
= old
.memory_size
- size_delta
;
820 mem
->ram
= old
.ram
+ size_delta
;
821 mem
->flags
= kvm_mem_flags(mr
);
823 err
= kvm_set_user_memory_region(kml
, mem
);
825 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
826 __func__
, strerror(-err
));
832 /* in case the KVM bug workaround already "consumed" the new slot */
839 mem
= kvm_alloc_slot(kml
);
840 mem
->memory_size
= size
;
841 mem
->start_addr
= start_addr
;
843 mem
->flags
= kvm_mem_flags(mr
);
845 err
= kvm_set_user_memory_region(kml
, mem
);
847 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
853 static void kvm_region_add(MemoryListener
*listener
,
854 MemoryRegionSection
*section
)
856 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
858 memory_region_ref(section
->mr
);
859 kvm_set_phys_mem(kml
, section
, true);
862 static void kvm_region_del(MemoryListener
*listener
,
863 MemoryRegionSection
*section
)
865 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
867 kvm_set_phys_mem(kml
, section
, false);
868 memory_region_unref(section
->mr
);
871 static void kvm_log_sync(MemoryListener
*listener
,
872 MemoryRegionSection
*section
)
874 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
877 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
883 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
884 MemoryRegionSection
*section
,
885 bool match_data
, uint64_t data
,
888 int fd
= event_notifier_get_fd(e
);
891 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
892 data
, true, int128_get64(section
->size
),
895 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
896 __func__
, strerror(-r
));
901 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
902 MemoryRegionSection
*section
,
903 bool match_data
, uint64_t data
,
906 int fd
= event_notifier_get_fd(e
);
909 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
910 data
, false, int128_get64(section
->size
),
917 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
918 MemoryRegionSection
*section
,
919 bool match_data
, uint64_t data
,
922 int fd
= event_notifier_get_fd(e
);
925 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
926 data
, true, int128_get64(section
->size
),
929 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
930 __func__
, strerror(-r
));
935 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
936 MemoryRegionSection
*section
,
937 bool match_data
, uint64_t data
,
941 int fd
= event_notifier_get_fd(e
);
944 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
945 data
, false, int128_get64(section
->size
),
952 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
953 AddressSpace
*as
, int as_id
)
957 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
960 for (i
= 0; i
< s
->nr_slots
; i
++) {
961 kml
->slots
[i
].slot
= i
;
964 kml
->listener
.region_add
= kvm_region_add
;
965 kml
->listener
.region_del
= kvm_region_del
;
966 kml
->listener
.log_start
= kvm_log_start
;
967 kml
->listener
.log_stop
= kvm_log_stop
;
968 kml
->listener
.log_sync
= kvm_log_sync
;
969 kml
->listener
.priority
= 10;
971 memory_listener_register(&kml
->listener
, as
);
974 static MemoryListener kvm_io_listener
= {
975 .eventfd_add
= kvm_io_ioeventfd_add
,
976 .eventfd_del
= kvm_io_ioeventfd_del
,
980 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
982 cpu
->interrupt_request
|= mask
;
984 if (!qemu_cpu_is_self(cpu
)) {
989 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
991 struct kvm_irq_level event
;
994 assert(kvm_async_interrupts_enabled());
998 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1000 perror("kvm_set_irq");
1004 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1007 #ifdef KVM_CAP_IRQ_ROUTING
1008 typedef struct KVMMSIRoute
{
1009 struct kvm_irq_routing_entry kroute
;
1010 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1013 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1015 set_bit(gsi
, s
->used_gsi_bitmap
);
1018 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1020 clear_bit(gsi
, s
->used_gsi_bitmap
);
1023 void kvm_init_irq_routing(KVMState
*s
)
1027 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1028 if (gsi_count
> 0) {
1029 /* Round up so we can search ints using ffs */
1030 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1031 s
->gsi_count
= gsi_count
;
1034 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1035 s
->nr_allocated_irq_routes
= 0;
1037 if (!kvm_direct_msi_allowed
) {
1038 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1039 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1043 kvm_arch_init_irq_routing(s
);
1046 void kvm_irqchip_commit_routes(KVMState
*s
)
1050 s
->irq_routes
->flags
= 0;
1051 trace_kvm_irqchip_commit_routes();
1052 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1056 static void kvm_add_routing_entry(KVMState
*s
,
1057 struct kvm_irq_routing_entry
*entry
)
1059 struct kvm_irq_routing_entry
*new;
1062 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1063 n
= s
->nr_allocated_irq_routes
* 2;
1067 size
= sizeof(struct kvm_irq_routing
);
1068 size
+= n
* sizeof(*new);
1069 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1070 s
->nr_allocated_irq_routes
= n
;
1072 n
= s
->irq_routes
->nr
++;
1073 new = &s
->irq_routes
->entries
[n
];
1077 set_gsi(s
, entry
->gsi
);
1080 static int kvm_update_routing_entry(KVMState
*s
,
1081 struct kvm_irq_routing_entry
*new_entry
)
1083 struct kvm_irq_routing_entry
*entry
;
1086 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1087 entry
= &s
->irq_routes
->entries
[n
];
1088 if (entry
->gsi
!= new_entry
->gsi
) {
1092 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1096 *entry
= *new_entry
;
1104 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1106 struct kvm_irq_routing_entry e
= {};
1108 assert(pin
< s
->gsi_count
);
1111 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1113 e
.u
.irqchip
.irqchip
= irqchip
;
1114 e
.u
.irqchip
.pin
= pin
;
1115 kvm_add_routing_entry(s
, &e
);
1118 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1120 struct kvm_irq_routing_entry
*e
;
1123 if (kvm_gsi_direct_mapping()) {
1127 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1128 e
= &s
->irq_routes
->entries
[i
];
1129 if (e
->gsi
== virq
) {
1130 s
->irq_routes
->nr
--;
1131 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1135 kvm_arch_release_virq_post(virq
);
1138 static unsigned int kvm_hash_msi(uint32_t data
)
1140 /* This is optimized for IA32 MSI layout. However, no other arch shall
1141 * repeat the mistake of not providing a direct MSI injection API. */
1145 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1147 KVMMSIRoute
*route
, *next
;
1150 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1151 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1152 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1153 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1159 static int kvm_irqchip_get_virq(KVMState
*s
)
1164 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1165 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1166 * number can succeed even though a new route entry cannot be added.
1167 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1169 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1170 kvm_flush_dynamic_msi_routes(s
);
1173 /* Return the lowest unused GSI in the bitmap */
1174 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1175 if (next_virq
>= s
->gsi_count
) {
1182 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1184 unsigned int hash
= kvm_hash_msi(msg
.data
);
1187 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1188 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1189 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1190 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1197 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1202 if (kvm_direct_msi_allowed
) {
1203 msi
.address_lo
= (uint32_t)msg
.address
;
1204 msi
.address_hi
= msg
.address
>> 32;
1205 msi
.data
= le32_to_cpu(msg
.data
);
1207 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1209 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1212 route
= kvm_lookup_msi_route(s
, msg
);
1216 virq
= kvm_irqchip_get_virq(s
);
1221 route
= g_malloc0(sizeof(KVMMSIRoute
));
1222 route
->kroute
.gsi
= virq
;
1223 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1224 route
->kroute
.flags
= 0;
1225 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1226 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1227 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1229 kvm_add_routing_entry(s
, &route
->kroute
);
1230 kvm_irqchip_commit_routes(s
);
1232 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1236 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1238 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1241 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1243 struct kvm_irq_routing_entry kroute
= {};
1245 MSIMessage msg
= {0, 0};
1248 msg
= pci_get_msi_message(dev
, vector
);
1251 if (kvm_gsi_direct_mapping()) {
1252 return kvm_arch_msi_data_to_gsi(msg
.data
);
1255 if (!kvm_gsi_routing_enabled()) {
1259 virq
= kvm_irqchip_get_virq(s
);
1265 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1267 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1268 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1269 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1270 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1271 kvm_irqchip_release_virq(s
, virq
);
1275 trace_kvm_irqchip_add_msi_route(virq
);
1277 kvm_add_routing_entry(s
, &kroute
);
1278 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1279 kvm_irqchip_commit_routes(s
);
1284 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1287 struct kvm_irq_routing_entry kroute
= {};
1289 if (kvm_gsi_direct_mapping()) {
1293 if (!kvm_irqchip_in_kernel()) {
1298 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1300 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1301 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1302 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1303 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1307 trace_kvm_irqchip_update_msi_route(virq
);
1309 return kvm_update_routing_entry(s
, &kroute
);
1312 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1315 struct kvm_irqfd irqfd
= {
1318 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1322 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1323 irqfd
.resamplefd
= rfd
;
1326 if (!kvm_irqfds_enabled()) {
1330 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1333 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1335 struct kvm_irq_routing_entry kroute
= {};
1338 if (!kvm_gsi_routing_enabled()) {
1342 virq
= kvm_irqchip_get_virq(s
);
1348 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1350 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1351 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1352 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1353 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1354 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1356 kvm_add_routing_entry(s
, &kroute
);
1361 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1363 struct kvm_irq_routing_entry kroute
= {};
1366 if (!kvm_gsi_routing_enabled()) {
1369 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1372 virq
= kvm_irqchip_get_virq(s
);
1378 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1380 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1381 kroute
.u
.hv_sint
.sint
= sint
;
1383 kvm_add_routing_entry(s
, &kroute
);
1384 kvm_irqchip_commit_routes(s
);
1389 #else /* !KVM_CAP_IRQ_ROUTING */
1391 void kvm_init_irq_routing(KVMState
*s
)
1395 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1399 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1404 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1409 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1414 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1419 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1424 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1428 #endif /* !KVM_CAP_IRQ_ROUTING */
1430 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1431 EventNotifier
*rn
, int virq
)
1433 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1434 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1437 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1440 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1444 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1445 EventNotifier
*rn
, qemu_irq irq
)
1448 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1453 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1456 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1460 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1465 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1468 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1470 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1473 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1477 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1479 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1480 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1482 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1489 /* First probe and see if there's a arch-specific hook to create the
1490 * in-kernel irqchip for us */
1491 ret
= kvm_arch_irqchip_create(machine
, s
);
1493 if (machine_kernel_irqchip_split(machine
)) {
1494 perror("Split IRQ chip mode not supported.");
1497 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1501 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1505 kvm_kernel_irqchip
= true;
1506 /* If we have an in-kernel IRQ chip then we must have asynchronous
1507 * interrupt delivery (though the reverse is not necessarily true)
1509 kvm_async_interrupts_allowed
= true;
1510 kvm_halt_in_kernel_allowed
= true;
1512 kvm_init_irq_routing(s
);
1514 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1517 /* Find number of supported CPUs using the recommended
1518 * procedure from the kernel API documentation to cope with
1519 * older kernels that may be missing capabilities.
1521 static int kvm_recommended_vcpus(KVMState
*s
)
1523 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1524 return (ret
) ? ret
: 4;
1527 static int kvm_max_vcpus(KVMState
*s
)
1529 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1530 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1533 static int kvm_max_vcpu_id(KVMState
*s
)
1535 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1536 return (ret
) ? ret
: kvm_max_vcpus(s
);
1539 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1541 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1542 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1545 static int kvm_init(MachineState
*ms
)
1547 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1548 static const char upgrade_note
[] =
1549 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1550 "(see http://sourceforge.net/projects/kvm).\n";
1555 { "SMP", smp_cpus
},
1556 { "hotpluggable", max_cpus
},
1559 int soft_vcpus_limit
, hard_vcpus_limit
;
1561 const KVMCapabilityInfo
*missing_cap
;
1564 const char *kvm_type
;
1566 s
= KVM_STATE(ms
->accelerator
);
1569 * On systems where the kernel can support different base page
1570 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1571 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1572 * page size for the system though.
1574 assert(TARGET_PAGE_SIZE
<= getpagesize());
1578 #ifdef KVM_CAP_SET_GUEST_DEBUG
1579 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1581 QLIST_INIT(&s
->kvm_parked_vcpus
);
1583 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1585 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1590 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1591 if (ret
< KVM_API_VERSION
) {
1595 fprintf(stderr
, "kvm version too old\n");
1599 if (ret
> KVM_API_VERSION
) {
1601 fprintf(stderr
, "kvm version not supported\n");
1605 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1607 /* If unspecified, use the default value */
1612 /* check the vcpu limits */
1613 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1614 hard_vcpus_limit
= kvm_max_vcpus(s
);
1617 if (nc
->num
> soft_vcpus_limit
) {
1619 "Warning: Number of %s cpus requested (%d) exceeds "
1620 "the recommended cpus supported by KVM (%d)\n",
1621 nc
->name
, nc
->num
, soft_vcpus_limit
);
1623 if (nc
->num
> hard_vcpus_limit
) {
1624 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1625 "the maximum cpus supported by KVM (%d)\n",
1626 nc
->name
, nc
->num
, hard_vcpus_limit
);
1633 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1635 type
= mc
->kvm_type(kvm_type
);
1636 } else if (kvm_type
) {
1638 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1643 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1644 } while (ret
== -EINTR
);
1647 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1651 if (ret
== -EINVAL
) {
1653 "Host kernel setup problem detected. Please verify:\n");
1654 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1655 " user_mode parameters, whether\n");
1657 " user space is running in primary address space\n");
1659 "- for kernels supporting the vm.allocate_pgste sysctl, "
1660 "whether it is enabled\n");
1667 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1670 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1674 fprintf(stderr
, "kvm does not support %s\n%s",
1675 missing_cap
->name
, upgrade_note
);
1679 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1681 s
->broken_set_mem_region
= 1;
1682 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1684 s
->broken_set_mem_region
= 0;
1687 #ifdef KVM_CAP_VCPU_EVENTS
1688 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1691 s
->robust_singlestep
=
1692 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1694 #ifdef KVM_CAP_DEBUGREGS
1695 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1698 #ifdef KVM_CAP_IRQ_ROUTING
1699 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1702 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1704 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1705 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1706 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1709 #ifdef KVM_CAP_READONLY_MEM
1710 kvm_readonly_mem_allowed
=
1711 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1714 kvm_eventfds_allowed
=
1715 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1717 kvm_irqfds_allowed
=
1718 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1720 kvm_resamplefds_allowed
=
1721 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1723 kvm_vm_attributes_allowed
=
1724 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1726 kvm_ioeventfd_any_length_allowed
=
1727 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1729 ret
= kvm_arch_init(ms
, s
);
1734 if (machine_kernel_irqchip_allowed(ms
)) {
1735 kvm_irqchip_create(ms
, s
);
1740 if (kvm_eventfds_allowed
) {
1741 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1742 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1744 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1745 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1747 kvm_memory_listener_register(s
, &s
->memory_listener
,
1748 &address_space_memory
, 0);
1749 memory_listener_register(&kvm_io_listener
,
1752 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1754 cpu_interrupt_handler
= kvm_handle_interrupt
;
1766 g_free(s
->memory_listener
.slots
);
1771 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1773 s
->sigmask_len
= sigmask_len
;
1776 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1777 int size
, uint32_t count
)
1780 uint8_t *ptr
= data
;
1782 for (i
= 0; i
< count
; i
++) {
1783 address_space_rw(&address_space_io
, port
, attrs
,
1785 direction
== KVM_EXIT_IO_OUT
);
1790 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1792 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1793 run
->internal
.suberror
);
1795 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1798 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1799 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1800 i
, (uint64_t)run
->internal
.data
[i
]);
1803 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1804 fprintf(stderr
, "emulation failure\n");
1805 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1806 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1807 return EXCP_INTERRUPT
;
1810 /* FIXME: Should trigger a qmp message to let management know
1811 * something went wrong.
1816 void kvm_flush_coalesced_mmio_buffer(void)
1818 KVMState
*s
= kvm_state
;
1820 if (s
->coalesced_flush_in_progress
) {
1824 s
->coalesced_flush_in_progress
= true;
1826 if (s
->coalesced_mmio_ring
) {
1827 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1828 while (ring
->first
!= ring
->last
) {
1829 struct kvm_coalesced_mmio
*ent
;
1831 ent
= &ring
->coalesced_mmio
[ring
->first
];
1833 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1835 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1839 s
->coalesced_flush_in_progress
= false;
1842 static void do_kvm_cpu_synchronize_state(void *arg
)
1844 CPUState
*cpu
= arg
;
1846 if (!cpu
->kvm_vcpu_dirty
) {
1847 kvm_arch_get_registers(cpu
);
1848 cpu
->kvm_vcpu_dirty
= true;
1852 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1854 if (!cpu
->kvm_vcpu_dirty
) {
1855 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1859 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1861 CPUState
*cpu
= arg
;
1863 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1864 cpu
->kvm_vcpu_dirty
= false;
1867 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1869 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1872 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1874 CPUState
*cpu
= arg
;
1876 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1877 cpu
->kvm_vcpu_dirty
= false;
1880 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1882 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1885 int kvm_cpu_exec(CPUState
*cpu
)
1887 struct kvm_run
*run
= cpu
->kvm_run
;
1890 DPRINTF("kvm_cpu_exec()\n");
1892 if (kvm_arch_process_async_events(cpu
)) {
1893 cpu
->exit_request
= 0;
1897 qemu_mutex_unlock_iothread();
1902 if (cpu
->kvm_vcpu_dirty
) {
1903 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1904 cpu
->kvm_vcpu_dirty
= false;
1907 kvm_arch_pre_run(cpu
, run
);
1908 if (cpu
->exit_request
) {
1909 DPRINTF("interrupt exit requested\n");
1911 * KVM requires us to reenter the kernel after IO exits to complete
1912 * instruction emulation. This self-signal will ensure that we
1915 qemu_cpu_kick_self();
1918 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1920 attrs
= kvm_arch_post_run(cpu
, run
);
1923 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1924 DPRINTF("io window exit\n");
1925 ret
= EXCP_INTERRUPT
;
1928 fprintf(stderr
, "error: kvm run failed %s\n",
1929 strerror(-run_ret
));
1931 if (run_ret
== -EBUSY
) {
1933 "This is probably because your SMT is enabled.\n"
1934 "VCPU can only run on primary threads with all "
1935 "secondary threads offline.\n");
1942 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1943 switch (run
->exit_reason
) {
1945 DPRINTF("handle_io\n");
1946 /* Called outside BQL */
1947 kvm_handle_io(run
->io
.port
, attrs
,
1948 (uint8_t *)run
+ run
->io
.data_offset
,
1955 DPRINTF("handle_mmio\n");
1956 /* Called outside BQL */
1957 address_space_rw(&address_space_memory
,
1958 run
->mmio
.phys_addr
, attrs
,
1961 run
->mmio
.is_write
);
1964 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1965 DPRINTF("irq_window_open\n");
1966 ret
= EXCP_INTERRUPT
;
1968 case KVM_EXIT_SHUTDOWN
:
1969 DPRINTF("shutdown\n");
1970 qemu_system_reset_request();
1971 ret
= EXCP_INTERRUPT
;
1973 case KVM_EXIT_UNKNOWN
:
1974 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1975 (uint64_t)run
->hw
.hardware_exit_reason
);
1978 case KVM_EXIT_INTERNAL_ERROR
:
1979 ret
= kvm_handle_internal_error(cpu
, run
);
1981 case KVM_EXIT_SYSTEM_EVENT
:
1982 switch (run
->system_event
.type
) {
1983 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1984 qemu_system_shutdown_request();
1985 ret
= EXCP_INTERRUPT
;
1987 case KVM_SYSTEM_EVENT_RESET
:
1988 qemu_system_reset_request();
1989 ret
= EXCP_INTERRUPT
;
1991 case KVM_SYSTEM_EVENT_CRASH
:
1992 qemu_mutex_lock_iothread();
1993 qemu_system_guest_panicked();
1994 qemu_mutex_unlock_iothread();
1998 DPRINTF("kvm_arch_handle_exit\n");
1999 ret
= kvm_arch_handle_exit(cpu
, run
);
2004 DPRINTF("kvm_arch_handle_exit\n");
2005 ret
= kvm_arch_handle_exit(cpu
, run
);
2010 qemu_mutex_lock_iothread();
2013 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
2014 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2017 cpu
->exit_request
= 0;
2021 int kvm_ioctl(KVMState
*s
, int type
, ...)
2028 arg
= va_arg(ap
, void *);
2031 trace_kvm_ioctl(type
, arg
);
2032 ret
= ioctl(s
->fd
, type
, arg
);
2039 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2046 arg
= va_arg(ap
, void *);
2049 trace_kvm_vm_ioctl(type
, arg
);
2050 ret
= ioctl(s
->vmfd
, type
, arg
);
2057 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2064 arg
= va_arg(ap
, void *);
2067 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2068 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2075 int kvm_device_ioctl(int fd
, int type
, ...)
2082 arg
= va_arg(ap
, void *);
2085 trace_kvm_device_ioctl(fd
, type
, arg
);
2086 ret
= ioctl(fd
, type
, arg
);
2093 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2096 struct kvm_device_attr attribute
= {
2101 if (!kvm_vm_attributes_allowed
) {
2105 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2106 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2110 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2112 struct kvm_device_attr attribute
= {
2118 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2121 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2122 void *val
, bool write
)
2124 struct kvm_device_attr kvmattr
;
2128 kvmattr
.group
= group
;
2129 kvmattr
.attr
= attr
;
2130 kvmattr
.addr
= (uintptr_t)val
;
2132 err
= kvm_device_ioctl(fd
,
2133 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2136 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2137 write
? "SET" : "GET", strerror(-err
));
2138 error_printf("Group %d attr 0x%016" PRIx64
, group
, attr
);
2143 int kvm_has_sync_mmu(void)
2145 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2148 int kvm_has_vcpu_events(void)
2150 return kvm_state
->vcpu_events
;
2153 int kvm_has_robust_singlestep(void)
2155 return kvm_state
->robust_singlestep
;
2158 int kvm_has_debugregs(void)
2160 return kvm_state
->debugregs
;
2163 int kvm_has_many_ioeventfds(void)
2165 if (!kvm_enabled()) {
2168 return kvm_state
->many_ioeventfds
;
2171 int kvm_has_gsi_routing(void)
2173 #ifdef KVM_CAP_IRQ_ROUTING
2174 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2180 int kvm_has_intx_set_mask(void)
2182 return kvm_state
->intx_set_mask
;
2185 void kvm_setup_guest_memory(void *start
, size_t size
)
2187 if (!kvm_has_sync_mmu()) {
2188 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2191 perror("qemu_madvise");
2193 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2199 #ifdef KVM_CAP_SET_GUEST_DEBUG
2200 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2203 struct kvm_sw_breakpoint
*bp
;
2205 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2213 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2215 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2218 struct kvm_set_guest_debug_data
{
2219 struct kvm_guest_debug dbg
;
2224 static void kvm_invoke_set_guest_debug(void *data
)
2226 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2228 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2232 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2234 struct kvm_set_guest_debug_data data
;
2236 data
.dbg
.control
= reinject_trap
;
2238 if (cpu
->singlestep_enabled
) {
2239 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2241 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2244 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2248 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2249 target_ulong len
, int type
)
2251 struct kvm_sw_breakpoint
*bp
;
2254 if (type
== GDB_BREAKPOINT_SW
) {
2255 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2261 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2264 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2270 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2272 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2279 err
= kvm_update_guest_debug(cpu
, 0);
2287 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2288 target_ulong len
, int type
)
2290 struct kvm_sw_breakpoint
*bp
;
2293 if (type
== GDB_BREAKPOINT_SW
) {
2294 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2299 if (bp
->use_count
> 1) {
2304 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2309 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2312 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2319 err
= kvm_update_guest_debug(cpu
, 0);
2327 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2329 struct kvm_sw_breakpoint
*bp
, *next
;
2330 KVMState
*s
= cpu
->kvm_state
;
2333 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2334 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2335 /* Try harder to find a CPU that currently sees the breakpoint. */
2336 CPU_FOREACH(tmpcpu
) {
2337 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2342 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2345 kvm_arch_remove_all_hw_breakpoints();
2348 kvm_update_guest_debug(cpu
, 0);
2352 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2354 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2359 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2360 target_ulong len
, int type
)
2365 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2366 target_ulong len
, int type
)
2371 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2374 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2376 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2378 KVMState
*s
= kvm_state
;
2379 struct kvm_signal_mask
*sigmask
;
2383 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2386 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2388 sigmask
->len
= s
->sigmask_len
;
2389 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2390 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2395 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2397 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2400 int kvm_on_sigbus(int code
, void *addr
)
2402 return kvm_arch_on_sigbus(code
, addr
);
2405 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2408 struct kvm_create_device create_dev
;
2410 create_dev
.type
= type
;
2412 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2414 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2418 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2423 return test
? 0 : create_dev
.fd
;
2426 bool kvm_device_supported(int vmfd
, uint64_t type
)
2428 struct kvm_create_device create_dev
= {
2431 .flags
= KVM_CREATE_DEVICE_TEST
,
2434 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2438 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2441 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2443 struct kvm_one_reg reg
;
2447 reg
.addr
= (uintptr_t) source
;
2448 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2450 trace_kvm_failed_reg_set(id
, strerror(-r
));
2455 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2457 struct kvm_one_reg reg
;
2461 reg
.addr
= (uintptr_t) target
;
2462 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2464 trace_kvm_failed_reg_get(id
, strerror(-r
));
2469 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2471 AccelClass
*ac
= ACCEL_CLASS(oc
);
2473 ac
->init_machine
= kvm_init
;
2474 ac
->allowed
= &kvm_allowed
;
2477 static const TypeInfo kvm_accel_type
= {
2478 .name
= TYPE_KVM_ACCEL
,
2479 .parent
= TYPE_ACCEL
,
2480 .class_init
= kvm_accel_class_init
,
2481 .instance_size
= sizeof(KVMState
),
2484 static void kvm_type_init(void)
2486 type_register_static(&kvm_accel_type
);
2489 type_init(kvm_type_init
);