4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #define dprintf(fmt, ...) \
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr
;
45 ram_addr_t memory_size
;
46 ram_addr_t phys_offset
;
51 typedef struct kvm_dirty_log KVMDirtyLog
;
61 int broken_set_mem_region
;
63 #ifdef KVM_CAP_SET_GUEST_DEBUG
64 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
68 static KVMState
*kvm_state
;
70 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
74 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
75 /* KVM private memory slots */
78 if (s
->slots
[i
].memory_size
== 0)
82 fprintf(stderr
, "%s: no free slot available\n", __func__
);
86 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
87 target_phys_addr_t start_addr
,
88 target_phys_addr_t end_addr
)
92 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
93 KVMSlot
*mem
= &s
->slots
[i
];
95 if (start_addr
== mem
->start_addr
&&
96 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
105 * Find overlapping slot with lowest start address
107 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
108 target_phys_addr_t start_addr
,
109 target_phys_addr_t end_addr
)
111 KVMSlot
*found
= NULL
;
114 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
115 KVMSlot
*mem
= &s
->slots
[i
];
117 if (mem
->memory_size
== 0 ||
118 (found
&& found
->start_addr
< mem
->start_addr
)) {
122 if (end_addr
> mem
->start_addr
&&
123 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
131 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
133 struct kvm_userspace_memory_region mem
;
135 mem
.slot
= slot
->slot
;
136 mem
.guest_phys_addr
= slot
->start_addr
;
137 mem
.memory_size
= slot
->memory_size
;
138 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
139 mem
.flags
= slot
->flags
;
140 if (s
->migration_log
) {
141 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
143 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
147 int kvm_init_vcpu(CPUState
*env
)
149 KVMState
*s
= kvm_state
;
153 dprintf("kvm_init_vcpu\n");
155 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
157 dprintf("kvm_create_vcpu failed\n");
164 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
166 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
170 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
172 if (env
->kvm_run
== MAP_FAILED
) {
174 dprintf("mmap'ing vcpu state failed\n");
178 ret
= kvm_arch_init_vcpu(env
);
184 int kvm_put_mp_state(CPUState
*env
)
186 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
188 return kvm_vcpu_ioctl(env
, KVM_SET_MP_STATE
, &mp_state
);
191 int kvm_get_mp_state(CPUState
*env
)
193 struct kvm_mp_state mp_state
;
196 ret
= kvm_vcpu_ioctl(env
, KVM_GET_MP_STATE
, &mp_state
);
200 env
->mp_state
= mp_state
.mp_state
;
204 int kvm_sync_vcpus(void)
208 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
211 ret
= kvm_arch_put_registers(env
);
220 * dirty pages logging control
222 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
223 ram_addr_t size
, int flags
, int mask
)
225 KVMState
*s
= kvm_state
;
226 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
230 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
231 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
232 phys_addr
+ size
- 1);
236 old_flags
= mem
->flags
;
238 flags
= (mem
->flags
& ~mask
) | flags
;
241 /* If nothing changed effectively, no need to issue ioctl */
242 if (s
->migration_log
) {
243 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
245 if (flags
== old_flags
) {
249 return kvm_set_user_memory_region(s
, mem
);
252 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
254 return kvm_dirty_pages_log_change(phys_addr
, size
,
255 KVM_MEM_LOG_DIRTY_PAGES
,
256 KVM_MEM_LOG_DIRTY_PAGES
);
259 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
261 return kvm_dirty_pages_log_change(phys_addr
, size
,
263 KVM_MEM_LOG_DIRTY_PAGES
);
266 int kvm_set_migration_log(int enable
)
268 KVMState
*s
= kvm_state
;
272 s
->migration_log
= enable
;
274 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
277 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
280 err
= kvm_set_user_memory_region(s
, mem
);
289 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
290 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
291 * This means all bits are set to dirty.
293 * @start_add: start of logged region.
294 * @end_addr: end of logged region.
296 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
297 target_phys_addr_t end_addr
)
299 KVMState
*s
= kvm_state
;
300 unsigned long size
, allocated_size
= 0;
301 target_phys_addr_t phys_addr
;
307 d
.dirty_bitmap
= NULL
;
308 while (start_addr
< end_addr
) {
309 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
314 size
= ((mem
->memory_size
>> TARGET_PAGE_BITS
) + 7) / 8;
315 if (!d
.dirty_bitmap
) {
316 d
.dirty_bitmap
= qemu_malloc(size
);
317 } else if (size
> allocated_size
) {
318 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
320 allocated_size
= size
;
321 memset(d
.dirty_bitmap
, 0, allocated_size
);
325 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
326 dprintf("ioctl failed %d\n", errno
);
331 for (phys_addr
= mem
->start_addr
, addr
= mem
->phys_offset
;
332 phys_addr
< mem
->start_addr
+ mem
->memory_size
;
333 phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
334 unsigned long *bitmap
= (unsigned long *)d
.dirty_bitmap
;
335 unsigned nr
= (phys_addr
- mem
->start_addr
) >> TARGET_PAGE_BITS
;
336 unsigned word
= nr
/ (sizeof(*bitmap
) * 8);
337 unsigned bit
= nr
% (sizeof(*bitmap
) * 8);
339 if ((bitmap
[word
] >> bit
) & 1) {
340 cpu_physical_memory_set_dirty(addr
);
343 start_addr
= phys_addr
;
345 qemu_free(d
.dirty_bitmap
);
350 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
353 #ifdef KVM_CAP_COALESCED_MMIO
354 KVMState
*s
= kvm_state
;
356 if (s
->coalesced_mmio
) {
357 struct kvm_coalesced_mmio_zone zone
;
362 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
369 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
372 #ifdef KVM_CAP_COALESCED_MMIO
373 KVMState
*s
= kvm_state
;
375 if (s
->coalesced_mmio
) {
376 struct kvm_coalesced_mmio_zone zone
;
381 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
388 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
392 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
400 static void kvm_reset_vcpus(void *opaque
)
405 int kvm_init(int smp_cpus
)
412 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
416 s
= qemu_mallocz(sizeof(KVMState
));
418 #ifdef KVM_CAP_SET_GUEST_DEBUG
419 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
421 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
422 s
->slots
[i
].slot
= i
;
425 s
->fd
= open("/dev/kvm", O_RDWR
);
427 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
432 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
433 if (ret
< KVM_API_VERSION
) {
436 fprintf(stderr
, "kvm version too old\n");
440 if (ret
> KVM_API_VERSION
) {
442 fprintf(stderr
, "kvm version not supported\n");
446 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
450 /* initially, KVM allocated its own memory and we had to jump through
451 * hooks to make phys_ram_base point to this. Modern versions of KVM
452 * just use a user allocated buffer so we can use regular pages
453 * unmodified. Make sure we have a sufficiently modern version of KVM.
455 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
457 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n");
461 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
462 * destroyed properly. Since we rely on this capability, refuse to work
463 * with any kernel without this capability. */
464 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
468 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
469 "Please upgrade to at least kvm-81.\n");
473 #ifdef KVM_CAP_COALESCED_MMIO
474 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
476 s
->coalesced_mmio
= 0;
479 s
->broken_set_mem_region
= 1;
480 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
481 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
483 s
->broken_set_mem_region
= 0;
487 ret
= kvm_arch_init(s
, smp_cpus
);
491 qemu_register_reset(kvm_reset_vcpus
, INT_MAX
, NULL
);
509 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
510 int direction
, int size
, uint32_t count
)
515 for (i
= 0; i
< count
; i
++) {
516 if (direction
== KVM_EXIT_IO_IN
) {
519 stb_p(ptr
, cpu_inb(env
, port
));
522 stw_p(ptr
, cpu_inw(env
, port
));
525 stl_p(ptr
, cpu_inl(env
, port
));
531 cpu_outb(env
, port
, ldub_p(ptr
));
534 cpu_outw(env
, port
, lduw_p(ptr
));
537 cpu_outl(env
, port
, ldl_p(ptr
));
548 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
550 #ifdef KVM_CAP_COALESCED_MMIO
551 KVMState
*s
= kvm_state
;
552 if (s
->coalesced_mmio
) {
553 struct kvm_coalesced_mmio_ring
*ring
;
555 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
556 while (ring
->first
!= ring
->last
) {
557 struct kvm_coalesced_mmio
*ent
;
559 ent
= &ring
->coalesced_mmio
[ring
->first
];
561 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
562 /* FIXME smp_wmb() */
563 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
569 int kvm_cpu_exec(CPUState
*env
)
571 struct kvm_run
*run
= env
->kvm_run
;
574 dprintf("kvm_cpu_exec()\n");
577 kvm_arch_pre_run(env
, run
);
579 if (env
->exit_request
) {
580 dprintf("interrupt exit requested\n");
585 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
586 kvm_arch_post_run(env
, run
);
588 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
589 dprintf("io window exit\n");
595 dprintf("kvm run failed %s\n", strerror(-ret
));
599 kvm_run_coalesced_mmio(env
, run
);
601 ret
= 0; /* exit loop */
602 switch (run
->exit_reason
) {
604 dprintf("handle_io\n");
605 ret
= kvm_handle_io(env
, run
->io
.port
,
606 (uint8_t *)run
+ run
->io
.data_offset
,
612 dprintf("handle_mmio\n");
613 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
619 case KVM_EXIT_IRQ_WINDOW_OPEN
:
620 dprintf("irq_window_open\n");
622 case KVM_EXIT_SHUTDOWN
:
623 dprintf("shutdown\n");
624 qemu_system_reset_request();
627 case KVM_EXIT_UNKNOWN
:
628 dprintf("kvm_exit_unknown\n");
630 case KVM_EXIT_FAIL_ENTRY
:
631 dprintf("kvm_exit_fail_entry\n");
633 case KVM_EXIT_EXCEPTION
:
634 dprintf("kvm_exit_exception\n");
637 dprintf("kvm_exit_debug\n");
638 #ifdef KVM_CAP_SET_GUEST_DEBUG
639 if (kvm_arch_debug(&run
->debug
.arch
)) {
640 gdb_set_stop_cpu(env
);
642 env
->exception_index
= EXCP_DEBUG
;
645 /* re-enter, this exception was guest-internal */
647 #endif /* KVM_CAP_SET_GUEST_DEBUG */
650 dprintf("kvm_arch_handle_exit\n");
651 ret
= kvm_arch_handle_exit(env
, run
);
656 if (env
->exit_request
) {
657 env
->exit_request
= 0;
658 env
->exception_index
= EXCP_INTERRUPT
;
664 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
666 ram_addr_t phys_offset
)
668 KVMState
*s
= kvm_state
;
669 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
673 if (start_addr
& ~TARGET_PAGE_MASK
) {
674 if (flags
>= IO_MEM_UNASSIGNED
) {
675 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
676 start_addr
+ size
)) {
679 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
681 fprintf(stderr
, "Only page-aligned memory slots supported\n");
686 /* KVM does not support read-only slots */
687 phys_offset
&= ~IO_MEM_ROM
;
690 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
695 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
696 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
697 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
698 /* The new slot fits into the existing one and comes with
699 * identical parameters - nothing to be done. */
705 /* unregister the overlapping slot */
706 mem
->memory_size
= 0;
707 err
= kvm_set_user_memory_region(s
, mem
);
709 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
710 __func__
, strerror(-err
));
714 /* Workaround for older KVM versions: we can't join slots, even not by
715 * unregistering the previous ones and then registering the larger
716 * slot. We have to maintain the existing fragmentation. Sigh.
718 * This workaround assumes that the new slot starts at the same
719 * address as the first existing one. If not or if some overlapping
720 * slot comes around later, we will fail (not seen in practice so far)
721 * - and actually require a recent KVM version. */
722 if (s
->broken_set_mem_region
&&
723 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
724 flags
< IO_MEM_UNASSIGNED
) {
725 mem
= kvm_alloc_slot(s
);
726 mem
->memory_size
= old
.memory_size
;
727 mem
->start_addr
= old
.start_addr
;
728 mem
->phys_offset
= old
.phys_offset
;
731 err
= kvm_set_user_memory_region(s
, mem
);
733 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
738 start_addr
+= old
.memory_size
;
739 phys_offset
+= old
.memory_size
;
740 size
-= old
.memory_size
;
744 /* register prefix slot */
745 if (old
.start_addr
< start_addr
) {
746 mem
= kvm_alloc_slot(s
);
747 mem
->memory_size
= start_addr
- old
.start_addr
;
748 mem
->start_addr
= old
.start_addr
;
749 mem
->phys_offset
= old
.phys_offset
;
752 err
= kvm_set_user_memory_region(s
, mem
);
754 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
755 __func__
, strerror(-err
));
760 /* register suffix slot */
761 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
762 ram_addr_t size_delta
;
764 mem
= kvm_alloc_slot(s
);
765 mem
->start_addr
= start_addr
+ size
;
766 size_delta
= mem
->start_addr
- old
.start_addr
;
767 mem
->memory_size
= old
.memory_size
- size_delta
;
768 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
771 err
= kvm_set_user_memory_region(s
, mem
);
773 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
774 __func__
, strerror(-err
));
780 /* in case the KVM bug workaround already "consumed" the new slot */
784 /* KVM does not need to know about this memory */
785 if (flags
>= IO_MEM_UNASSIGNED
)
788 mem
= kvm_alloc_slot(s
);
789 mem
->memory_size
= size
;
790 mem
->start_addr
= start_addr
;
791 mem
->phys_offset
= phys_offset
;
794 err
= kvm_set_user_memory_region(s
, mem
);
796 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
802 int kvm_ioctl(KVMState
*s
, int type
, ...)
809 arg
= va_arg(ap
, void *);
812 ret
= ioctl(s
->fd
, type
, arg
);
819 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
826 arg
= va_arg(ap
, void *);
829 ret
= ioctl(s
->vmfd
, type
, arg
);
836 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
843 arg
= va_arg(ap
, void *);
846 ret
= ioctl(env
->kvm_fd
, type
, arg
);
853 int kvm_has_sync_mmu(void)
855 #ifdef KVM_CAP_SYNC_MMU
856 KVMState
*s
= kvm_state
;
858 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
864 void kvm_setup_guest_memory(void *start
, size_t size
)
866 if (!kvm_has_sync_mmu()) {
868 int ret
= madvise(start
, size
, MADV_DONTFORK
);
876 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
882 #ifdef KVM_CAP_SET_GUEST_DEBUG
883 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
886 struct kvm_sw_breakpoint
*bp
;
888 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
895 int kvm_sw_breakpoints_active(CPUState
*env
)
897 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
900 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
902 struct kvm_guest_debug dbg
;
905 if (env
->singlestep_enabled
)
906 dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
908 kvm_arch_update_guest_debug(env
, &dbg
);
909 dbg
.control
|= reinject_trap
;
911 return kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg
);
914 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
915 target_ulong len
, int type
)
917 struct kvm_sw_breakpoint
*bp
;
921 if (type
== GDB_BREAKPOINT_SW
) {
922 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
928 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
934 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
940 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
943 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
948 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
949 err
= kvm_update_guest_debug(env
, 0);
956 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
957 target_ulong len
, int type
)
959 struct kvm_sw_breakpoint
*bp
;
963 if (type
== GDB_BREAKPOINT_SW
) {
964 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
968 if (bp
->use_count
> 1) {
973 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
977 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
980 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
985 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
986 err
= kvm_update_guest_debug(env
, 0);
993 void kvm_remove_all_breakpoints(CPUState
*current_env
)
995 struct kvm_sw_breakpoint
*bp
, *next
;
996 KVMState
*s
= current_env
->kvm_state
;
999 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1000 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1001 /* Try harder to find a CPU that currently sees the breakpoint. */
1002 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1003 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1008 kvm_arch_remove_all_hw_breakpoints();
1010 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1011 kvm_update_guest_debug(env
, 0);
1014 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1016 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1021 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1022 target_ulong len
, int type
)
1027 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1028 target_ulong len
, int type
)
1033 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1036 #endif /* !KVM_CAP_SET_GUEST_DEBUG */