[WIN32] Enable -k option on Windows too
[qemu.git] / target-i386 / exec.h
blob864d030986e287cfac4b5d92fc404ff090303722
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "dyngen-exec.h"
22 /* XXX: factorize this mess */
23 #ifdef TARGET_X86_64
24 #define TARGET_LONG_BITS 64
25 #else
26 #define TARGET_LONG_BITS 32
27 #endif
29 #include "cpu-defs.h"
31 register struct CPUX86State *env asm(AREG0);
33 #include "qemu-common.h"
34 #include "qemu-log.h"
36 #undef EAX
37 #define EAX (env->regs[R_EAX])
38 #undef ECX
39 #define ECX (env->regs[R_ECX])
40 #undef EDX
41 #define EDX (env->regs[R_EDX])
42 #undef EBX
43 #define EBX (env->regs[R_EBX])
44 #undef ESP
45 #define ESP (env->regs[R_ESP])
46 #undef EBP
47 #define EBP (env->regs[R_EBP])
48 #undef ESI
49 #define ESI (env->regs[R_ESI])
50 #undef EDI
51 #define EDI (env->regs[R_EDI])
52 #undef EIP
53 #define EIP (env->eip)
54 #define DF (env->df)
56 #define CC_SRC (env->cc_src)
57 #define CC_DST (env->cc_dst)
58 #define CC_OP (env->cc_op)
60 /* float macros */
61 #define FT0 (env->ft0)
62 #define ST0 (env->fpregs[env->fpstt].d)
63 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
64 #define ST1 ST(1)
66 #include "cpu.h"
67 #include "exec-all.h"
69 /* op_helper.c */
70 void do_interrupt(int intno, int is_int, int error_code,
71 target_ulong next_eip, int is_hw);
72 void do_interrupt_user(int intno, int is_int, int error_code,
73 target_ulong next_eip);
74 void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75 void QEMU_NORETURN raise_exception(int exception_index);
76 void do_smm_enter(void);
78 /* n must be a constant to be efficient */
79 static inline target_long lshift(target_long x, int n)
81 if (n >= 0)
82 return x << n;
83 else
84 return x >> (-n);
87 #include "helper.h"
89 static inline void svm_check_intercept(uint32_t type)
91 helper_svm_check_intercept_param(type, 0);
94 #if !defined(CONFIG_USER_ONLY)
96 #include "softmmu_exec.h"
98 #endif /* !defined(CONFIG_USER_ONLY) */
100 #ifdef USE_X86LDOUBLE
101 /* use long double functions */
102 #define floatx_to_int32 floatx80_to_int32
103 #define floatx_to_int64 floatx80_to_int64
104 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
105 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
106 #define int32_to_floatx int32_to_floatx80
107 #define int64_to_floatx int64_to_floatx80
108 #define float32_to_floatx float32_to_floatx80
109 #define float64_to_floatx float64_to_floatx80
110 #define floatx_to_float32 floatx80_to_float32
111 #define floatx_to_float64 floatx80_to_float64
112 #define floatx_abs floatx80_abs
113 #define floatx_chs floatx80_chs
114 #define floatx_round_to_int floatx80_round_to_int
115 #define floatx_compare floatx80_compare
116 #define floatx_compare_quiet floatx80_compare_quiet
117 #else
118 #define floatx_to_int32 float64_to_int32
119 #define floatx_to_int64 float64_to_int64
120 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
121 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
122 #define int32_to_floatx int32_to_float64
123 #define int64_to_floatx int64_to_float64
124 #define float32_to_floatx float32_to_float64
125 #define float64_to_floatx(x, e) (x)
126 #define floatx_to_float32 float64_to_float32
127 #define floatx_to_float64(x, e) (x)
128 #define floatx_abs float64_abs
129 #define floatx_chs float64_chs
130 #define floatx_round_to_int float64_round_to_int
131 #define floatx_compare float64_compare
132 #define floatx_compare_quiet float64_compare_quiet
133 #endif
135 #define RC_MASK 0xc00
136 #define RC_NEAR 0x000
137 #define RC_DOWN 0x400
138 #define RC_UP 0x800
139 #define RC_CHOP 0xc00
141 #define MAXTAN 9223372036854775808.0
143 #ifdef USE_X86LDOUBLE
145 /* only for x86 */
146 typedef union {
147 long double d;
148 struct {
149 unsigned long long lower;
150 unsigned short upper;
151 } l;
152 } CPU86_LDoubleU;
154 /* the following deal with x86 long double-precision numbers */
155 #define MAXEXPD 0x7fff
156 #define EXPBIAS 16383
157 #define EXPD(fp) (fp.l.upper & 0x7fff)
158 #define SIGND(fp) ((fp.l.upper) & 0x8000)
159 #define MANTD(fp) (fp.l.lower)
160 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
162 #else
164 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
165 typedef union {
166 double d;
167 #if !defined(HOST_WORDS_BIGENDIAN) && !defined(__arm__)
168 struct {
169 uint32_t lower;
170 int32_t upper;
171 } l;
172 #else
173 struct {
174 int32_t upper;
175 uint32_t lower;
176 } l;
177 #endif
178 #ifndef __arm__
179 int64_t ll;
180 #endif
181 } CPU86_LDoubleU;
183 /* the following deal with IEEE double-precision numbers */
184 #define MAXEXPD 0x7ff
185 #define EXPBIAS 1023
186 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
187 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
188 #ifdef __arm__
189 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
190 #else
191 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
192 #endif
193 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
194 #endif
196 static inline void fpush(void)
198 env->fpstt = (env->fpstt - 1) & 7;
199 env->fptags[env->fpstt] = 0; /* validate stack entry */
202 static inline void fpop(void)
204 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
205 env->fpstt = (env->fpstt + 1) & 7;
208 #ifndef USE_X86LDOUBLE
209 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
211 CPU86_LDoubleU temp;
212 int upper, e;
213 uint64_t ll;
215 /* mantissa */
216 upper = lduw(ptr + 8);
217 /* XXX: handle overflow ? */
218 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
219 e |= (upper >> 4) & 0x800; /* sign */
220 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
221 #ifdef __arm__
222 temp.l.upper = (e << 20) | (ll >> 32);
223 temp.l.lower = ll;
224 #else
225 temp.ll = ll | ((uint64_t)e << 52);
226 #endif
227 return temp.d;
230 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
232 CPU86_LDoubleU temp;
233 int e;
235 temp.d = f;
236 /* mantissa */
237 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
238 /* exponent + sign */
239 e = EXPD(temp) - EXPBIAS + 16383;
240 e |= SIGND(temp) >> 16;
241 stw(ptr + 8, e);
243 #else
245 /* we use memory access macros */
247 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
249 CPU86_LDoubleU temp;
251 temp.l.lower = ldq(ptr);
252 temp.l.upper = lduw(ptr + 8);
253 return temp.d;
256 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
258 CPU86_LDoubleU temp;
260 temp.d = f;
261 stq(ptr, temp.l.lower);
262 stw(ptr + 8, temp.l.upper);
265 #endif /* USE_X86LDOUBLE */
267 #define FPUS_IE (1 << 0)
268 #define FPUS_DE (1 << 1)
269 #define FPUS_ZE (1 << 2)
270 #define FPUS_OE (1 << 3)
271 #define FPUS_UE (1 << 4)
272 #define FPUS_PE (1 << 5)
273 #define FPUS_SF (1 << 6)
274 #define FPUS_SE (1 << 7)
275 #define FPUS_B (1 << 15)
277 #define FPUC_EM 0x3f
279 static inline uint32_t compute_eflags(void)
281 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
284 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
285 static inline void load_eflags(int eflags, int update_mask)
287 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
288 DF = 1 - (2 * ((eflags >> 10) & 1));
289 env->eflags = (env->eflags & ~update_mask) |
290 (eflags & update_mask) | 0x2;
293 static inline void env_to_regs(void)
295 #ifdef reg_EAX
296 EAX = env->regs[R_EAX];
297 #endif
298 #ifdef reg_ECX
299 ECX = env->regs[R_ECX];
300 #endif
301 #ifdef reg_EDX
302 EDX = env->regs[R_EDX];
303 #endif
304 #ifdef reg_EBX
305 EBX = env->regs[R_EBX];
306 #endif
307 #ifdef reg_ESP
308 ESP = env->regs[R_ESP];
309 #endif
310 #ifdef reg_EBP
311 EBP = env->regs[R_EBP];
312 #endif
313 #ifdef reg_ESI
314 ESI = env->regs[R_ESI];
315 #endif
316 #ifdef reg_EDI
317 EDI = env->regs[R_EDI];
318 #endif
321 static inline void regs_to_env(void)
323 #ifdef reg_EAX
324 env->regs[R_EAX] = EAX;
325 #endif
326 #ifdef reg_ECX
327 env->regs[R_ECX] = ECX;
328 #endif
329 #ifdef reg_EDX
330 env->regs[R_EDX] = EDX;
331 #endif
332 #ifdef reg_EBX
333 env->regs[R_EBX] = EBX;
334 #endif
335 #ifdef reg_ESP
336 env->regs[R_ESP] = ESP;
337 #endif
338 #ifdef reg_EBP
339 env->regs[R_EBP] = EBP;
340 #endif
341 #ifdef reg_ESI
342 env->regs[R_ESI] = ESI;
343 #endif
344 #ifdef reg_EDI
345 env->regs[R_EDI] = EDI;
346 #endif
349 static inline int cpu_has_work(CPUState *env)
351 int work;
353 work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
354 (env->eflags & IF_MASK);
355 work |= env->interrupt_request & CPU_INTERRUPT_NMI;
356 work |= env->interrupt_request & CPU_INTERRUPT_INIT;
357 work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
359 return work;
362 static inline int cpu_halted(CPUState *env) {
363 /* handle exit of HALTED state */
364 if (!env->halted)
365 return 0;
366 /* disable halt condition */
367 if (cpu_has_work(env)) {
368 env->halted = 0;
369 return 0;
371 return EXCP_HALTED;
374 /* load efer and update the corresponding hflags. XXX: do consistency
375 checks with cpuid bits ? */
376 static inline void cpu_load_efer(CPUState *env, uint64_t val)
378 env->efer = val;
379 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
380 if (env->efer & MSR_EFER_LMA)
381 env->hflags |= HF_LMA_MASK;
382 if (env->efer & MSR_EFER_SVME)
383 env->hflags |= HF_SVME_MASK;